1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 hwaddr low; 83 hwaddr high; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 */ 99 struct MemoryRegionSection { 100 Int128 size; 101 MemoryRegion *mr; 102 FlatView *fv; 103 hwaddr offset_within_region; 104 hwaddr offset_within_address_space; 105 bool readonly; 106 bool nonvolatile; 107 }; 108 109 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 110 111 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 112 typedef enum { 113 IOMMU_NONE = 0, 114 IOMMU_RO = 1, 115 IOMMU_WO = 2, 116 IOMMU_RW = 3, 117 } IOMMUAccessFlags; 118 119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 120 121 struct IOMMUTLBEntry { 122 AddressSpace *target_as; 123 hwaddr iova; 124 hwaddr translated_addr; 125 hwaddr addr_mask; /* 0xfff = 4k translation */ 126 IOMMUAccessFlags perm; 127 }; 128 129 /* 130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 131 * register with one or multiple IOMMU Notifier capability bit(s). 132 */ 133 typedef enum { 134 IOMMU_NOTIFIER_NONE = 0, 135 /* Notify cache invalidations */ 136 IOMMU_NOTIFIER_UNMAP = 0x1, 137 /* Notify entry changes (newly created entries) */ 138 IOMMU_NOTIFIER_MAP = 0x2, 139 /* Notify changes on device IOTLB entries */ 140 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 141 } IOMMUNotifierFlag; 142 143 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 144 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 145 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 146 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 147 148 struct IOMMUNotifier; 149 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 150 IOMMUTLBEntry *data); 151 152 struct IOMMUNotifier { 153 IOMMUNotify notify; 154 IOMMUNotifierFlag notifier_flags; 155 /* Notify for address space range start <= addr <= end */ 156 hwaddr start; 157 hwaddr end; 158 int iommu_idx; 159 QLIST_ENTRY(IOMMUNotifier) node; 160 }; 161 typedef struct IOMMUNotifier IOMMUNotifier; 162 163 typedef struct IOMMUTLBEvent { 164 IOMMUNotifierFlag type; 165 IOMMUTLBEntry entry; 166 } IOMMUTLBEvent; 167 168 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 169 #define RAM_PREALLOC (1 << 0) 170 171 /* RAM is mmap-ed with MAP_SHARED */ 172 #define RAM_SHARED (1 << 1) 173 174 /* Only a portion of RAM (used_length) is actually used, and migrated. 175 * Resizing RAM while migrating can result in the migration being canceled. 176 */ 177 #define RAM_RESIZEABLE (1 << 2) 178 179 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 180 * zero the page and wake waiting processes. 181 * (Set during postcopy) 182 */ 183 #define RAM_UF_ZEROPAGE (1 << 3) 184 185 /* RAM can be migrated */ 186 #define RAM_MIGRATABLE (1 << 4) 187 188 /* RAM is a persistent kind memory */ 189 #define RAM_PMEM (1 << 5) 190 191 192 /* 193 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 194 * support 'write-tracking' migration type. 195 * Implies ram_state->ram_wt_enabled. 196 */ 197 #define RAM_UF_WRITEPROTECT (1 << 6) 198 199 /* 200 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 201 * pages if applicable) is skipped: will bail out if not supported. When not 202 * set, the OS will do the reservation, if supported for the memory type. 203 */ 204 #define RAM_NORESERVE (1 << 7) 205 206 /* RAM that isn't accessible through normal means. */ 207 #define RAM_PROTECTED (1 << 8) 208 209 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 210 IOMMUNotifierFlag flags, 211 hwaddr start, hwaddr end, 212 int iommu_idx) 213 { 214 n->notify = fn; 215 n->notifier_flags = flags; 216 n->start = start; 217 n->end = end; 218 n->iommu_idx = iommu_idx; 219 } 220 221 /* 222 * Memory region callbacks 223 */ 224 struct MemoryRegionOps { 225 /* Read from the memory region. @addr is relative to @mr; @size is 226 * in bytes. */ 227 uint64_t (*read)(void *opaque, 228 hwaddr addr, 229 unsigned size); 230 /* Write to the memory region. @addr is relative to @mr; @size is 231 * in bytes. */ 232 void (*write)(void *opaque, 233 hwaddr addr, 234 uint64_t data, 235 unsigned size); 236 237 MemTxResult (*read_with_attrs)(void *opaque, 238 hwaddr addr, 239 uint64_t *data, 240 unsigned size, 241 MemTxAttrs attrs); 242 MemTxResult (*write_with_attrs)(void *opaque, 243 hwaddr addr, 244 uint64_t data, 245 unsigned size, 246 MemTxAttrs attrs); 247 248 enum device_endian endianness; 249 /* Guest-visible constraints: */ 250 struct { 251 /* If nonzero, specify bounds on access sizes beyond which a machine 252 * check is thrown. 253 */ 254 unsigned min_access_size; 255 unsigned max_access_size; 256 /* If true, unaligned accesses are supported. Otherwise unaligned 257 * accesses throw machine checks. 258 */ 259 bool unaligned; 260 /* 261 * If present, and returns #false, the transaction is not accepted 262 * by the device (and results in machine dependent behaviour such 263 * as a machine check exception). 264 */ 265 bool (*accepts)(void *opaque, hwaddr addr, 266 unsigned size, bool is_write, 267 MemTxAttrs attrs); 268 } valid; 269 /* Internal implementation constraints: */ 270 struct { 271 /* If nonzero, specifies the minimum size implemented. Smaller sizes 272 * will be rounded upwards and a partial result will be returned. 273 */ 274 unsigned min_access_size; 275 /* If nonzero, specifies the maximum size implemented. Larger sizes 276 * will be done as a series of accesses with smaller sizes. 277 */ 278 unsigned max_access_size; 279 /* If true, unaligned accesses are supported. Otherwise all accesses 280 * are converted to (possibly multiple) naturally aligned accesses. 281 */ 282 bool unaligned; 283 } impl; 284 }; 285 286 typedef struct MemoryRegionClass { 287 /* private */ 288 ObjectClass parent_class; 289 } MemoryRegionClass; 290 291 292 enum IOMMUMemoryRegionAttr { 293 IOMMU_ATTR_SPAPR_TCE_FD 294 }; 295 296 /* 297 * IOMMUMemoryRegionClass: 298 * 299 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 300 * and provide an implementation of at least the @translate method here 301 * to handle requests to the memory region. Other methods are optional. 302 * 303 * The IOMMU implementation must use the IOMMU notifier infrastructure 304 * to report whenever mappings are changed, by calling 305 * memory_region_notify_iommu() (or, if necessary, by calling 306 * memory_region_notify_iommu_one() for each registered notifier). 307 * 308 * Conceptually an IOMMU provides a mapping from input address 309 * to an output TLB entry. If the IOMMU is aware of memory transaction 310 * attributes and the output TLB entry depends on the transaction 311 * attributes, we represent this using IOMMU indexes. Each index 312 * selects a particular translation table that the IOMMU has: 313 * 314 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 315 * 316 * @translate takes an input address and an IOMMU index 317 * 318 * and the mapping returned can only depend on the input address and the 319 * IOMMU index. 320 * 321 * Most IOMMUs don't care about the transaction attributes and support 322 * only a single IOMMU index. A more complex IOMMU might have one index 323 * for secure transactions and one for non-secure transactions. 324 */ 325 struct IOMMUMemoryRegionClass { 326 /* private: */ 327 MemoryRegionClass parent_class; 328 329 /* public: */ 330 /** 331 * @translate: 332 * 333 * Return a TLB entry that contains a given address. 334 * 335 * The IOMMUAccessFlags indicated via @flag are optional and may 336 * be specified as IOMMU_NONE to indicate that the caller needs 337 * the full translation information for both reads and writes. If 338 * the access flags are specified then the IOMMU implementation 339 * may use this as an optimization, to stop doing a page table 340 * walk as soon as it knows that the requested permissions are not 341 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 342 * full page table walk and report the permissions in the returned 343 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 344 * return different mappings for reads and writes.) 345 * 346 * The returned information remains valid while the caller is 347 * holding the big QEMU lock or is inside an RCU critical section; 348 * if the caller wishes to cache the mapping beyond that it must 349 * register an IOMMU notifier so it can invalidate its cached 350 * information when the IOMMU mapping changes. 351 * 352 * @iommu: the IOMMUMemoryRegion 353 * 354 * @hwaddr: address to be translated within the memory region 355 * 356 * @flag: requested access permission 357 * 358 * @iommu_idx: IOMMU index for the translation 359 */ 360 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 361 IOMMUAccessFlags flag, int iommu_idx); 362 /** 363 * @get_min_page_size: 364 * 365 * Returns minimum supported page size in bytes. 366 * 367 * If this method is not provided then the minimum is assumed to 368 * be TARGET_PAGE_SIZE. 369 * 370 * @iommu: the IOMMUMemoryRegion 371 */ 372 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 373 /** 374 * @notify_flag_changed: 375 * 376 * Called when IOMMU Notifier flag changes (ie when the set of 377 * events which IOMMU users are requesting notification for changes). 378 * Optional method -- need not be provided if the IOMMU does not 379 * need to know exactly which events must be notified. 380 * 381 * @iommu: the IOMMUMemoryRegion 382 * 383 * @old_flags: events which previously needed to be notified 384 * 385 * @new_flags: events which now need to be notified 386 * 387 * Returns 0 on success, or a negative errno; in particular 388 * returns -EINVAL if the new flag bitmap is not supported by the 389 * IOMMU memory region. In case of failure, the error object 390 * must be created 391 */ 392 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 393 IOMMUNotifierFlag old_flags, 394 IOMMUNotifierFlag new_flags, 395 Error **errp); 396 /** 397 * @replay: 398 * 399 * Called to handle memory_region_iommu_replay(). 400 * 401 * The default implementation of memory_region_iommu_replay() is to 402 * call the IOMMU translate method for every page in the address space 403 * with flag == IOMMU_NONE and then call the notifier if translate 404 * returns a valid mapping. If this method is implemented then it 405 * overrides the default behaviour, and must provide the full semantics 406 * of memory_region_iommu_replay(), by calling @notifier for every 407 * translation present in the IOMMU. 408 * 409 * Optional method -- an IOMMU only needs to provide this method 410 * if the default is inefficient or produces undesirable side effects. 411 * 412 * Note: this is not related to record-and-replay functionality. 413 */ 414 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 415 416 /** 417 * @get_attr: 418 * 419 * Get IOMMU misc attributes. This is an optional method that 420 * can be used to allow users of the IOMMU to get implementation-specific 421 * information. The IOMMU implements this method to handle calls 422 * by IOMMU users to memory_region_iommu_get_attr() by filling in 423 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 424 * the IOMMU supports. If the method is unimplemented then 425 * memory_region_iommu_get_attr() will always return -EINVAL. 426 * 427 * @iommu: the IOMMUMemoryRegion 428 * 429 * @attr: attribute being queried 430 * 431 * @data: memory to fill in with the attribute data 432 * 433 * Returns 0 on success, or a negative errno; in particular 434 * returns -EINVAL for unrecognized or unimplemented attribute types. 435 */ 436 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 437 void *data); 438 439 /** 440 * @attrs_to_index: 441 * 442 * Return the IOMMU index to use for a given set of transaction attributes. 443 * 444 * Optional method: if an IOMMU only supports a single IOMMU index then 445 * the default implementation of memory_region_iommu_attrs_to_index() 446 * will return 0. 447 * 448 * The indexes supported by an IOMMU must be contiguous, starting at 0. 449 * 450 * @iommu: the IOMMUMemoryRegion 451 * @attrs: memory transaction attributes 452 */ 453 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 454 455 /** 456 * @num_indexes: 457 * 458 * Return the number of IOMMU indexes this IOMMU supports. 459 * 460 * Optional method: if this method is not provided, then 461 * memory_region_iommu_num_indexes() will return 1, indicating that 462 * only a single IOMMU index is supported. 463 * 464 * @iommu: the IOMMUMemoryRegion 465 */ 466 int (*num_indexes)(IOMMUMemoryRegion *iommu); 467 468 /** 469 * @iommu_set_page_size_mask: 470 * 471 * Restrict the page size mask that can be supported with a given IOMMU 472 * memory region. Used for example to propagate host physical IOMMU page 473 * size mask limitations to the virtual IOMMU. 474 * 475 * Optional method: if this method is not provided, then the default global 476 * page mask is used. 477 * 478 * @iommu: the IOMMUMemoryRegion 479 * 480 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 481 * representing the smallest page size, must be set. Additional set bits 482 * represent supported block sizes. For example a host physical IOMMU that 483 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 484 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 485 * block sizes is specified with mask 0xfffffffffffff000. 486 * 487 * Returns 0 on success, or a negative error. In case of failure, the error 488 * object must be created. 489 */ 490 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 491 uint64_t page_size_mask, 492 Error **errp); 493 }; 494 495 typedef struct RamDiscardListener RamDiscardListener; 496 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 497 MemoryRegionSection *section); 498 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 499 MemoryRegionSection *section); 500 501 struct RamDiscardListener { 502 /* 503 * @notify_populate: 504 * 505 * Notification that previously discarded memory is about to get populated. 506 * Listeners are able to object. If any listener objects, already 507 * successfully notified listeners are notified about a discard again. 508 * 509 * @rdl: the #RamDiscardListener getting notified 510 * @section: the #MemoryRegionSection to get populated. The section 511 * is aligned within the memory region to the minimum granularity 512 * unless it would exceed the registered section. 513 * 514 * Returns 0 on success. If the notification is rejected by the listener, 515 * an error is returned. 516 */ 517 NotifyRamPopulate notify_populate; 518 519 /* 520 * @notify_discard: 521 * 522 * Notification that previously populated memory was discarded successfully 523 * and listeners should drop all references to such memory and prevent 524 * new population (e.g., unmap). 525 * 526 * @rdl: the #RamDiscardListener getting notified 527 * @section: the #MemoryRegionSection to get populated. The section 528 * is aligned within the memory region to the minimum granularity 529 * unless it would exceed the registered section. 530 */ 531 NotifyRamDiscard notify_discard; 532 533 /* 534 * @double_discard_supported: 535 * 536 * The listener suppors getting @notify_discard notifications that span 537 * already discarded parts. 538 */ 539 bool double_discard_supported; 540 541 MemoryRegionSection *section; 542 QLIST_ENTRY(RamDiscardListener) next; 543 }; 544 545 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 546 NotifyRamPopulate populate_fn, 547 NotifyRamDiscard discard_fn, 548 bool double_discard_supported) 549 { 550 rdl->notify_populate = populate_fn; 551 rdl->notify_discard = discard_fn; 552 rdl->double_discard_supported = double_discard_supported; 553 } 554 555 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 556 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 557 558 /* 559 * RamDiscardManagerClass: 560 * 561 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 562 * regions are currently populated to be used/accessed by the VM, notifying 563 * after parts were discarded (freeing up memory) and before parts will be 564 * populated (consuming memory), to be used/accessed by the VM. 565 * 566 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 567 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is 568 * mapped. 569 * 570 * The #RamDiscardManager is intended to be used by technologies that are 571 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 572 * memory inside a #MemoryRegion), and require proper coordination to only 573 * map the currently populated parts, to hinder parts that are expected to 574 * remain discarded from silently getting populated and consuming memory. 575 * Technologies that support discarding of RAM don't have to bother and can 576 * simply map the whole #MemoryRegion. 577 * 578 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 579 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 580 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 581 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 582 * properly coordinate with listeners before memory is plugged (populated), 583 * and after memory is unplugged (discarded). 584 * 585 * Listeners are called in multiples of the minimum granularity (unless it 586 * would exceed the registered range) and changes are aligned to the minimum 587 * granularity within the #MemoryRegion. Listeners have to prepare for memory 588 * becoming discarded in a different granularity than it was populated and the 589 * other way around. 590 */ 591 struct RamDiscardManagerClass { 592 /* private */ 593 InterfaceClass parent_class; 594 595 /* public */ 596 597 /** 598 * @get_min_granularity: 599 * 600 * Get the minimum granularity in which listeners will get notified 601 * about changes within the #MemoryRegion via the #RamDiscardManager. 602 * 603 * @rdm: the #RamDiscardManager 604 * @mr: the #MemoryRegion 605 * 606 * Returns the minimum granularity. 607 */ 608 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 609 const MemoryRegion *mr); 610 611 /** 612 * @is_populated: 613 * 614 * Check whether the given #MemoryRegionSection is completely populated 615 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 616 * There are no alignment requirements. 617 * 618 * @rdm: the #RamDiscardManager 619 * @section: the #MemoryRegionSection 620 * 621 * Returns whether the given range is completely populated. 622 */ 623 bool (*is_populated)(const RamDiscardManager *rdm, 624 const MemoryRegionSection *section); 625 626 /** 627 * @replay_populated: 628 * 629 * Call the #ReplayRamPopulate callback for all populated parts within the 630 * #MemoryRegionSection via the #RamDiscardManager. 631 * 632 * In case any call fails, no further calls are made. 633 * 634 * @rdm: the #RamDiscardManager 635 * @section: the #MemoryRegionSection 636 * @replay_fn: the #ReplayRamPopulate callback 637 * @opaque: pointer to forward to the callback 638 * 639 * Returns 0 on success, or a negative error if any notification failed. 640 */ 641 int (*replay_populated)(const RamDiscardManager *rdm, 642 MemoryRegionSection *section, 643 ReplayRamPopulate replay_fn, void *opaque); 644 645 /** 646 * @replay_discarded: 647 * 648 * Call the #ReplayRamDiscard callback for all discarded parts within the 649 * #MemoryRegionSection via the #RamDiscardManager. 650 * 651 * @rdm: the #RamDiscardManager 652 * @section: the #MemoryRegionSection 653 * @replay_fn: the #ReplayRamDiscard callback 654 * @opaque: pointer to forward to the callback 655 */ 656 void (*replay_discarded)(const RamDiscardManager *rdm, 657 MemoryRegionSection *section, 658 ReplayRamDiscard replay_fn, void *opaque); 659 660 /** 661 * @register_listener: 662 * 663 * Register a #RamDiscardListener for the given #MemoryRegionSection and 664 * immediately notify the #RamDiscardListener about all populated parts 665 * within the #MemoryRegionSection via the #RamDiscardManager. 666 * 667 * In case any notification fails, no further notifications are triggered 668 * and an error is logged. 669 * 670 * @rdm: the #RamDiscardManager 671 * @rdl: the #RamDiscardListener 672 * @section: the #MemoryRegionSection 673 */ 674 void (*register_listener)(RamDiscardManager *rdm, 675 RamDiscardListener *rdl, 676 MemoryRegionSection *section); 677 678 /** 679 * @unregister_listener: 680 * 681 * Unregister a previously registered #RamDiscardListener via the 682 * #RamDiscardManager after notifying the #RamDiscardListener about all 683 * populated parts becoming unpopulated within the registered 684 * #MemoryRegionSection. 685 * 686 * @rdm: the #RamDiscardManager 687 * @rdl: the #RamDiscardListener 688 */ 689 void (*unregister_listener)(RamDiscardManager *rdm, 690 RamDiscardListener *rdl); 691 }; 692 693 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 694 const MemoryRegion *mr); 695 696 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 697 const MemoryRegionSection *section); 698 699 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 700 MemoryRegionSection *section, 701 ReplayRamPopulate replay_fn, 702 void *opaque); 703 704 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 705 MemoryRegionSection *section, 706 ReplayRamDiscard replay_fn, 707 void *opaque); 708 709 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 710 RamDiscardListener *rdl, 711 MemoryRegionSection *section); 712 713 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 714 RamDiscardListener *rdl); 715 716 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 717 ram_addr_t *ram_addr, bool *read_only, 718 bool *mr_has_discard_manager); 719 720 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 721 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 722 723 /** MemoryRegion: 724 * 725 * A struct representing a memory region. 726 */ 727 struct MemoryRegion { 728 Object parent_obj; 729 730 /* private: */ 731 732 /* The following fields should fit in a cache line */ 733 bool romd_mode; 734 bool ram; 735 bool subpage; 736 bool readonly; /* For RAM regions */ 737 bool nonvolatile; 738 bool rom_device; 739 bool flush_coalesced_mmio; 740 uint8_t dirty_log_mask; 741 bool is_iommu; 742 RAMBlock *ram_block; 743 Object *owner; 744 745 const MemoryRegionOps *ops; 746 void *opaque; 747 MemoryRegion *container; 748 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 749 Int128 size; 750 hwaddr addr; 751 void (*destructor)(MemoryRegion *mr); 752 uint64_t align; 753 bool terminates; 754 bool ram_device; 755 bool enabled; 756 bool warning_printed; /* For reservations */ 757 uint8_t vga_logging_count; 758 MemoryRegion *alias; 759 hwaddr alias_offset; 760 int32_t priority; 761 QTAILQ_HEAD(, MemoryRegion) subregions; 762 QTAILQ_ENTRY(MemoryRegion) subregions_link; 763 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 764 const char *name; 765 unsigned ioeventfd_nb; 766 MemoryRegionIoeventfd *ioeventfds; 767 RamDiscardManager *rdm; /* Only for RAM */ 768 }; 769 770 struct IOMMUMemoryRegion { 771 MemoryRegion parent_obj; 772 773 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 774 IOMMUNotifierFlag iommu_notify_flags; 775 }; 776 777 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 778 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 779 780 /** 781 * struct MemoryListener: callbacks structure for updates to the physical memory map 782 * 783 * Allows a component to adjust to changes in the guest-visible memory map. 784 * Use with memory_listener_register() and memory_listener_unregister(). 785 */ 786 struct MemoryListener { 787 /** 788 * @begin: 789 * 790 * Called at the beginning of an address space update transaction. 791 * Followed by calls to #MemoryListener.region_add(), 792 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 793 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 794 * increasing address order. 795 * 796 * @listener: The #MemoryListener. 797 */ 798 void (*begin)(MemoryListener *listener); 799 800 /** 801 * @commit: 802 * 803 * Called at the end of an address space update transaction, 804 * after the last call to #MemoryListener.region_add(), 805 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 806 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 807 * 808 * @listener: The #MemoryListener. 809 */ 810 void (*commit)(MemoryListener *listener); 811 812 /** 813 * @region_add: 814 * 815 * Called during an address space update transaction, 816 * for a section of the address space that is new in this address space 817 * space since the last transaction. 818 * 819 * @listener: The #MemoryListener. 820 * @section: The new #MemoryRegionSection. 821 */ 822 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 823 824 /** 825 * @region_del: 826 * 827 * Called during an address space update transaction, 828 * for a section of the address space that has disappeared in the address 829 * space since the last transaction. 830 * 831 * @listener: The #MemoryListener. 832 * @section: The old #MemoryRegionSection. 833 */ 834 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 835 836 /** 837 * @region_nop: 838 * 839 * Called during an address space update transaction, 840 * for a section of the address space that is in the same place in the address 841 * space as in the last transaction. 842 * 843 * @listener: The #MemoryListener. 844 * @section: The #MemoryRegionSection. 845 */ 846 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 847 848 /** 849 * @log_start: 850 * 851 * Called during an address space update transaction, after 852 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 853 * #MemoryListener.region_nop(), if dirty memory logging clients have 854 * become active since the last transaction. 855 * 856 * @listener: The #MemoryListener. 857 * @section: The #MemoryRegionSection. 858 * @old: A bitmap of dirty memory logging clients that were active in 859 * the previous transaction. 860 * @new: A bitmap of dirty memory logging clients that are active in 861 * the current transaction. 862 */ 863 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 864 int old, int new); 865 866 /** 867 * @log_stop: 868 * 869 * Called during an address space update transaction, after 870 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 871 * #MemoryListener.region_nop() and possibly after 872 * #MemoryListener.log_start(), if dirty memory logging clients have 873 * become inactive since the last transaction. 874 * 875 * @listener: The #MemoryListener. 876 * @section: The #MemoryRegionSection. 877 * @old: A bitmap of dirty memory logging clients that were active in 878 * the previous transaction. 879 * @new: A bitmap of dirty memory logging clients that are active in 880 * the current transaction. 881 */ 882 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 883 int old, int new); 884 885 /** 886 * @log_sync: 887 * 888 * Called by memory_region_snapshot_and_clear_dirty() and 889 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 890 * copy of the dirty memory bitmap for a #MemoryRegionSection. 891 * 892 * @listener: The #MemoryListener. 893 * @section: The #MemoryRegionSection. 894 */ 895 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 896 897 /** 898 * @log_sync_global: 899 * 900 * This is the global version of @log_sync when the listener does 901 * not have a way to synchronize the log with finer granularity. 902 * When the listener registers with @log_sync_global defined, then 903 * its @log_sync must be NULL. Vice versa. 904 * 905 * @listener: The #MemoryListener. 906 */ 907 void (*log_sync_global)(MemoryListener *listener); 908 909 /** 910 * @log_clear: 911 * 912 * Called before reading the dirty memory bitmap for a 913 * #MemoryRegionSection. 914 * 915 * @listener: The #MemoryListener. 916 * @section: The #MemoryRegionSection. 917 */ 918 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 919 920 /** 921 * @log_global_start: 922 * 923 * Called by memory_global_dirty_log_start(), which 924 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 925 * the address space. #MemoryListener.log_global_start() is also 926 * called when a #MemoryListener is added, if global dirty logging is 927 * active at that time. 928 * 929 * @listener: The #MemoryListener. 930 */ 931 void (*log_global_start)(MemoryListener *listener); 932 933 /** 934 * @log_global_stop: 935 * 936 * Called by memory_global_dirty_log_stop(), which 937 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 938 * the address space. 939 * 940 * @listener: The #MemoryListener. 941 */ 942 void (*log_global_stop)(MemoryListener *listener); 943 944 /** 945 * @log_global_after_sync: 946 * 947 * Called after reading the dirty memory bitmap 948 * for any #MemoryRegionSection. 949 * 950 * @listener: The #MemoryListener. 951 */ 952 void (*log_global_after_sync)(MemoryListener *listener); 953 954 /** 955 * @eventfd_add: 956 * 957 * Called during an address space update transaction, 958 * for a section of the address space that has had a new ioeventfd 959 * registration since the last transaction. 960 * 961 * @listener: The #MemoryListener. 962 * @section: The new #MemoryRegionSection. 963 * @match_data: The @match_data parameter for the new ioeventfd. 964 * @data: The @data parameter for the new ioeventfd. 965 * @e: The #EventNotifier parameter for the new ioeventfd. 966 */ 967 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 968 bool match_data, uint64_t data, EventNotifier *e); 969 970 /** 971 * @eventfd_del: 972 * 973 * Called during an address space update transaction, 974 * for a section of the address space that has dropped an ioeventfd 975 * registration since the last transaction. 976 * 977 * @listener: The #MemoryListener. 978 * @section: The new #MemoryRegionSection. 979 * @match_data: The @match_data parameter for the dropped ioeventfd. 980 * @data: The @data parameter for the dropped ioeventfd. 981 * @e: The #EventNotifier parameter for the dropped ioeventfd. 982 */ 983 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 984 bool match_data, uint64_t data, EventNotifier *e); 985 986 /** 987 * @coalesced_io_add: 988 * 989 * Called during an address space update transaction, 990 * for a section of the address space that has had a new coalesced 991 * MMIO range registration since the last transaction. 992 * 993 * @listener: The #MemoryListener. 994 * @section: The new #MemoryRegionSection. 995 * @addr: The starting address for the coalesced MMIO range. 996 * @len: The length of the coalesced MMIO range. 997 */ 998 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 999 hwaddr addr, hwaddr len); 1000 1001 /** 1002 * @coalesced_io_del: 1003 * 1004 * Called during an address space update transaction, 1005 * for a section of the address space that has dropped a coalesced 1006 * MMIO range since the last transaction. 1007 * 1008 * @listener: The #MemoryListener. 1009 * @section: The new #MemoryRegionSection. 1010 * @addr: The starting address for the coalesced MMIO range. 1011 * @len: The length of the coalesced MMIO range. 1012 */ 1013 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1014 hwaddr addr, hwaddr len); 1015 /** 1016 * @priority: 1017 * 1018 * Govern the order in which memory listeners are invoked. Lower priorities 1019 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1020 * or "stop" callbacks. 1021 */ 1022 unsigned priority; 1023 1024 /** 1025 * @name: 1026 * 1027 * Name of the listener. It can be used in contexts where we'd like to 1028 * identify one memory listener with the rest. 1029 */ 1030 const char *name; 1031 1032 /* private: */ 1033 AddressSpace *address_space; 1034 QTAILQ_ENTRY(MemoryListener) link; 1035 QTAILQ_ENTRY(MemoryListener) link_as; 1036 }; 1037 1038 /** 1039 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1040 */ 1041 struct AddressSpace { 1042 /* private: */ 1043 struct rcu_head rcu; 1044 char *name; 1045 MemoryRegion *root; 1046 1047 /* Accessed via RCU. */ 1048 struct FlatView *current_map; 1049 1050 int ioeventfd_nb; 1051 struct MemoryRegionIoeventfd *ioeventfds; 1052 QTAILQ_HEAD(, MemoryListener) listeners; 1053 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1054 }; 1055 1056 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1057 typedef struct FlatRange FlatRange; 1058 1059 /* Flattened global view of current active memory hierarchy. Kept in sorted 1060 * order. 1061 */ 1062 struct FlatView { 1063 struct rcu_head rcu; 1064 unsigned ref; 1065 FlatRange *ranges; 1066 unsigned nr; 1067 unsigned nr_allocated; 1068 struct AddressSpaceDispatch *dispatch; 1069 MemoryRegion *root; 1070 }; 1071 1072 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1073 { 1074 return qatomic_rcu_read(&as->current_map); 1075 } 1076 1077 /** 1078 * typedef flatview_cb: callback for flatview_for_each_range() 1079 * 1080 * @start: start address of the range within the FlatView 1081 * @len: length of the range in bytes 1082 * @mr: MemoryRegion covering this range 1083 * @offset_in_region: offset of the first byte of the range within @mr 1084 * @opaque: data pointer passed to flatview_for_each_range() 1085 * 1086 * Returns: true to stop the iteration, false to keep going. 1087 */ 1088 typedef bool (*flatview_cb)(Int128 start, 1089 Int128 len, 1090 const MemoryRegion *mr, 1091 hwaddr offset_in_region, 1092 void *opaque); 1093 1094 /** 1095 * flatview_for_each_range: Iterate through a FlatView 1096 * @fv: the FlatView to iterate through 1097 * @cb: function to call for each range 1098 * @opaque: opaque data pointer to pass to @cb 1099 * 1100 * A FlatView is made up of a list of non-overlapping ranges, each of 1101 * which is a slice of a MemoryRegion. This function iterates through 1102 * each range in @fv, calling @cb. The callback function can terminate 1103 * iteration early by returning 'true'. 1104 */ 1105 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1106 1107 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1108 MemoryRegionSection *b) 1109 { 1110 return a->mr == b->mr && 1111 a->fv == b->fv && 1112 a->offset_within_region == b->offset_within_region && 1113 a->offset_within_address_space == b->offset_within_address_space && 1114 int128_eq(a->size, b->size) && 1115 a->readonly == b->readonly && 1116 a->nonvolatile == b->nonvolatile; 1117 } 1118 1119 /** 1120 * memory_region_section_new_copy: Copy a memory region section 1121 * 1122 * Allocate memory for a new copy, copy the memory region section, and 1123 * properly take a reference on all relevant members. 1124 * 1125 * @s: the #MemoryRegionSection to copy 1126 */ 1127 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1128 1129 /** 1130 * memory_region_section_new_copy: Free a copied memory region section 1131 * 1132 * Free a copy of a memory section created via memory_region_section_new_copy(). 1133 * properly dropping references on all relevant members. 1134 * 1135 * @s: the #MemoryRegionSection to copy 1136 */ 1137 void memory_region_section_free_copy(MemoryRegionSection *s); 1138 1139 /** 1140 * memory_region_init: Initialize a memory region 1141 * 1142 * The region typically acts as a container for other memory regions. Use 1143 * memory_region_add_subregion() to add subregions. 1144 * 1145 * @mr: the #MemoryRegion to be initialized 1146 * @owner: the object that tracks the region's reference count 1147 * @name: used for debugging; not visible to the user or ABI 1148 * @size: size of the region; any subregions beyond this size will be clipped 1149 */ 1150 void memory_region_init(MemoryRegion *mr, 1151 Object *owner, 1152 const char *name, 1153 uint64_t size); 1154 1155 /** 1156 * memory_region_ref: Add 1 to a memory region's reference count 1157 * 1158 * Whenever memory regions are accessed outside the BQL, they need to be 1159 * preserved against hot-unplug. MemoryRegions actually do not have their 1160 * own reference count; they piggyback on a QOM object, their "owner". 1161 * This function adds a reference to the owner. 1162 * 1163 * All MemoryRegions must have an owner if they can disappear, even if the 1164 * device they belong to operates exclusively under the BQL. This is because 1165 * the region could be returned at any time by memory_region_find, and this 1166 * is usually under guest control. 1167 * 1168 * @mr: the #MemoryRegion 1169 */ 1170 void memory_region_ref(MemoryRegion *mr); 1171 1172 /** 1173 * memory_region_unref: Remove 1 to a memory region's reference count 1174 * 1175 * Whenever memory regions are accessed outside the BQL, they need to be 1176 * preserved against hot-unplug. MemoryRegions actually do not have their 1177 * own reference count; they piggyback on a QOM object, their "owner". 1178 * This function removes a reference to the owner and possibly destroys it. 1179 * 1180 * @mr: the #MemoryRegion 1181 */ 1182 void memory_region_unref(MemoryRegion *mr); 1183 1184 /** 1185 * memory_region_init_io: Initialize an I/O memory region. 1186 * 1187 * Accesses into the region will cause the callbacks in @ops to be called. 1188 * if @size is nonzero, subregions will be clipped to @size. 1189 * 1190 * @mr: the #MemoryRegion to be initialized. 1191 * @owner: the object that tracks the region's reference count 1192 * @ops: a structure containing read and write callbacks to be used when 1193 * I/O is performed on the region. 1194 * @opaque: passed to the read and write callbacks of the @ops structure. 1195 * @name: used for debugging; not visible to the user or ABI 1196 * @size: size of the region. 1197 */ 1198 void memory_region_init_io(MemoryRegion *mr, 1199 Object *owner, 1200 const MemoryRegionOps *ops, 1201 void *opaque, 1202 const char *name, 1203 uint64_t size); 1204 1205 /** 1206 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1207 * into the region will modify memory 1208 * directly. 1209 * 1210 * @mr: the #MemoryRegion to be initialized. 1211 * @owner: the object that tracks the region's reference count 1212 * @name: Region name, becomes part of RAMBlock name used in migration stream 1213 * must be unique within any device 1214 * @size: size of the region. 1215 * @errp: pointer to Error*, to store an error if it happens. 1216 * 1217 * Note that this function does not do anything to cause the data in the 1218 * RAM memory region to be migrated; that is the responsibility of the caller. 1219 */ 1220 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1221 Object *owner, 1222 const char *name, 1223 uint64_t size, 1224 Error **errp); 1225 1226 /** 1227 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1228 * Accesses into the region will 1229 * modify memory directly. 1230 * 1231 * @mr: the #MemoryRegion to be initialized. 1232 * @owner: the object that tracks the region's reference count 1233 * @name: Region name, becomes part of RAMBlock name used in migration stream 1234 * must be unique within any device 1235 * @size: size of the region. 1236 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1237 * @errp: pointer to Error*, to store an error if it happens. 1238 * 1239 * Note that this function does not do anything to cause the data in the 1240 * RAM memory region to be migrated; that is the responsibility of the caller. 1241 */ 1242 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1243 Object *owner, 1244 const char *name, 1245 uint64_t size, 1246 uint32_t ram_flags, 1247 Error **errp); 1248 1249 /** 1250 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1251 * RAM. Accesses into the region will 1252 * modify memory directly. Only an initial 1253 * portion of this RAM is actually used. 1254 * Changing the size while migrating 1255 * can result in the migration being 1256 * canceled. 1257 * 1258 * @mr: the #MemoryRegion to be initialized. 1259 * @owner: the object that tracks the region's reference count 1260 * @name: Region name, becomes part of RAMBlock name used in migration stream 1261 * must be unique within any device 1262 * @size: used size of the region. 1263 * @max_size: max size of the region. 1264 * @resized: callback to notify owner about used size change. 1265 * @errp: pointer to Error*, to store an error if it happens. 1266 * 1267 * Note that this function does not do anything to cause the data in the 1268 * RAM memory region to be migrated; that is the responsibility of the caller. 1269 */ 1270 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1271 Object *owner, 1272 const char *name, 1273 uint64_t size, 1274 uint64_t max_size, 1275 void (*resized)(const char*, 1276 uint64_t length, 1277 void *host), 1278 Error **errp); 1279 #ifdef CONFIG_POSIX 1280 1281 /** 1282 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1283 * mmap-ed backend. 1284 * 1285 * @mr: the #MemoryRegion to be initialized. 1286 * @owner: the object that tracks the region's reference count 1287 * @name: Region name, becomes part of RAMBlock name used in migration stream 1288 * must be unique within any device 1289 * @size: size of the region. 1290 * @align: alignment of the region base address; if 0, the default alignment 1291 * (getpagesize()) will be used. 1292 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1293 * RAM_NORESERVE, 1294 * @path: the path in which to allocate the RAM. 1295 * @readonly: true to open @path for reading, false for read/write. 1296 * @errp: pointer to Error*, to store an error if it happens. 1297 * 1298 * Note that this function does not do anything to cause the data in the 1299 * RAM memory region to be migrated; that is the responsibility of the caller. 1300 */ 1301 void memory_region_init_ram_from_file(MemoryRegion *mr, 1302 Object *owner, 1303 const char *name, 1304 uint64_t size, 1305 uint64_t align, 1306 uint32_t ram_flags, 1307 const char *path, 1308 bool readonly, 1309 Error **errp); 1310 1311 /** 1312 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1313 * mmap-ed backend. 1314 * 1315 * @mr: the #MemoryRegion to be initialized. 1316 * @owner: the object that tracks the region's reference count 1317 * @name: the name of the region. 1318 * @size: size of the region. 1319 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1320 * RAM_NORESERVE, RAM_PROTECTED. 1321 * @fd: the fd to mmap. 1322 * @offset: offset within the file referenced by fd 1323 * @errp: pointer to Error*, to store an error if it happens. 1324 * 1325 * Note that this function does not do anything to cause the data in the 1326 * RAM memory region to be migrated; that is the responsibility of the caller. 1327 */ 1328 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1329 Object *owner, 1330 const char *name, 1331 uint64_t size, 1332 uint32_t ram_flags, 1333 int fd, 1334 ram_addr_t offset, 1335 Error **errp); 1336 #endif 1337 1338 /** 1339 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1340 * user-provided pointer. Accesses into the 1341 * region will modify memory directly. 1342 * 1343 * @mr: the #MemoryRegion to be initialized. 1344 * @owner: the object that tracks the region's reference count 1345 * @name: Region name, becomes part of RAMBlock name used in migration stream 1346 * must be unique within any device 1347 * @size: size of the region. 1348 * @ptr: memory to be mapped; must contain at least @size bytes. 1349 * 1350 * Note that this function does not do anything to cause the data in the 1351 * RAM memory region to be migrated; that is the responsibility of the caller. 1352 */ 1353 void memory_region_init_ram_ptr(MemoryRegion *mr, 1354 Object *owner, 1355 const char *name, 1356 uint64_t size, 1357 void *ptr); 1358 1359 /** 1360 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1361 * a user-provided pointer. 1362 * 1363 * A RAM device represents a mapping to a physical device, such as to a PCI 1364 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1365 * into the VM address space and access to the region will modify memory 1366 * directly. However, the memory region should not be included in a memory 1367 * dump (device may not be enabled/mapped at the time of the dump), and 1368 * operations incompatible with manipulating MMIO should be avoided. Replaces 1369 * skip_dump flag. 1370 * 1371 * @mr: the #MemoryRegion to be initialized. 1372 * @owner: the object that tracks the region's reference count 1373 * @name: the name of the region. 1374 * @size: size of the region. 1375 * @ptr: memory to be mapped; must contain at least @size bytes. 1376 * 1377 * Note that this function does not do anything to cause the data in the 1378 * RAM memory region to be migrated; that is the responsibility of the caller. 1379 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1380 */ 1381 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1382 Object *owner, 1383 const char *name, 1384 uint64_t size, 1385 void *ptr); 1386 1387 /** 1388 * memory_region_init_alias: Initialize a memory region that aliases all or a 1389 * part of another memory region. 1390 * 1391 * @mr: the #MemoryRegion to be initialized. 1392 * @owner: the object that tracks the region's reference count 1393 * @name: used for debugging; not visible to the user or ABI 1394 * @orig: the region to be referenced; @mr will be equivalent to 1395 * @orig between @offset and @offset + @size - 1. 1396 * @offset: start of the section in @orig to be referenced. 1397 * @size: size of the region. 1398 */ 1399 void memory_region_init_alias(MemoryRegion *mr, 1400 Object *owner, 1401 const char *name, 1402 MemoryRegion *orig, 1403 hwaddr offset, 1404 uint64_t size); 1405 1406 /** 1407 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1408 * 1409 * This has the same effect as calling memory_region_init_ram_nomigrate() 1410 * and then marking the resulting region read-only with 1411 * memory_region_set_readonly(). 1412 * 1413 * Note that this function does not do anything to cause the data in the 1414 * RAM side of the memory region to be migrated; that is the responsibility 1415 * of the caller. 1416 * 1417 * @mr: the #MemoryRegion to be initialized. 1418 * @owner: the object that tracks the region's reference count 1419 * @name: Region name, becomes part of RAMBlock name used in migration stream 1420 * must be unique within any device 1421 * @size: size of the region. 1422 * @errp: pointer to Error*, to store an error if it happens. 1423 */ 1424 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1425 Object *owner, 1426 const char *name, 1427 uint64_t size, 1428 Error **errp); 1429 1430 /** 1431 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1432 * Writes are handled via callbacks. 1433 * 1434 * Note that this function does not do anything to cause the data in the 1435 * RAM side of the memory region to be migrated; that is the responsibility 1436 * of the caller. 1437 * 1438 * @mr: the #MemoryRegion to be initialized. 1439 * @owner: the object that tracks the region's reference count 1440 * @ops: callbacks for write access handling (must not be NULL). 1441 * @opaque: passed to the read and write callbacks of the @ops structure. 1442 * @name: Region name, becomes part of RAMBlock name used in migration stream 1443 * must be unique within any device 1444 * @size: size of the region. 1445 * @errp: pointer to Error*, to store an error if it happens. 1446 */ 1447 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1448 Object *owner, 1449 const MemoryRegionOps *ops, 1450 void *opaque, 1451 const char *name, 1452 uint64_t size, 1453 Error **errp); 1454 1455 /** 1456 * memory_region_init_iommu: Initialize a memory region of a custom type 1457 * that translates addresses 1458 * 1459 * An IOMMU region translates addresses and forwards accesses to a target 1460 * memory region. 1461 * 1462 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1463 * @_iommu_mr should be a pointer to enough memory for an instance of 1464 * that subclass, @instance_size is the size of that subclass, and 1465 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1466 * instance of the subclass, and its methods will then be called to handle 1467 * accesses to the memory region. See the documentation of 1468 * #IOMMUMemoryRegionClass for further details. 1469 * 1470 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1471 * @instance_size: the IOMMUMemoryRegion subclass instance size 1472 * @mrtypename: the type name of the #IOMMUMemoryRegion 1473 * @owner: the object that tracks the region's reference count 1474 * @name: used for debugging; not visible to the user or ABI 1475 * @size: size of the region. 1476 */ 1477 void memory_region_init_iommu(void *_iommu_mr, 1478 size_t instance_size, 1479 const char *mrtypename, 1480 Object *owner, 1481 const char *name, 1482 uint64_t size); 1483 1484 /** 1485 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1486 * region will modify memory directly. 1487 * 1488 * @mr: the #MemoryRegion to be initialized 1489 * @owner: the object that tracks the region's reference count (must be 1490 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1491 * @name: name of the memory region 1492 * @size: size of the region in bytes 1493 * @errp: pointer to Error*, to store an error if it happens. 1494 * 1495 * This function allocates RAM for a board model or device, and 1496 * arranges for it to be migrated (by calling vmstate_register_ram() 1497 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1498 * @owner is NULL). 1499 * 1500 * TODO: Currently we restrict @owner to being either NULL (for 1501 * global RAM regions with no owner) or devices, so that we can 1502 * give the RAM block a unique name for migration purposes. 1503 * We should lift this restriction and allow arbitrary Objects. 1504 * If you pass a non-NULL non-device @owner then we will assert. 1505 */ 1506 void memory_region_init_ram(MemoryRegion *mr, 1507 Object *owner, 1508 const char *name, 1509 uint64_t size, 1510 Error **errp); 1511 1512 /** 1513 * memory_region_init_rom: Initialize a ROM memory region. 1514 * 1515 * This has the same effect as calling memory_region_init_ram() 1516 * and then marking the resulting region read-only with 1517 * memory_region_set_readonly(). This includes arranging for the 1518 * contents to be migrated. 1519 * 1520 * TODO: Currently we restrict @owner to being either NULL (for 1521 * global RAM regions with no owner) or devices, so that we can 1522 * give the RAM block a unique name for migration purposes. 1523 * We should lift this restriction and allow arbitrary Objects. 1524 * If you pass a non-NULL non-device @owner then we will assert. 1525 * 1526 * @mr: the #MemoryRegion to be initialized. 1527 * @owner: the object that tracks the region's reference count 1528 * @name: Region name, becomes part of RAMBlock name used in migration stream 1529 * must be unique within any device 1530 * @size: size of the region. 1531 * @errp: pointer to Error*, to store an error if it happens. 1532 */ 1533 void memory_region_init_rom(MemoryRegion *mr, 1534 Object *owner, 1535 const char *name, 1536 uint64_t size, 1537 Error **errp); 1538 1539 /** 1540 * memory_region_init_rom_device: Initialize a ROM memory region. 1541 * Writes are handled via callbacks. 1542 * 1543 * This function initializes a memory region backed by RAM for reads 1544 * and callbacks for writes, and arranges for the RAM backing to 1545 * be migrated (by calling vmstate_register_ram() 1546 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1547 * @owner is NULL). 1548 * 1549 * TODO: Currently we restrict @owner to being either NULL (for 1550 * global RAM regions with no owner) or devices, so that we can 1551 * give the RAM block a unique name for migration purposes. 1552 * We should lift this restriction and allow arbitrary Objects. 1553 * If you pass a non-NULL non-device @owner then we will assert. 1554 * 1555 * @mr: the #MemoryRegion to be initialized. 1556 * @owner: the object that tracks the region's reference count 1557 * @ops: callbacks for write access handling (must not be NULL). 1558 * @opaque: passed to the read and write callbacks of the @ops structure. 1559 * @name: Region name, becomes part of RAMBlock name used in migration stream 1560 * must be unique within any device 1561 * @size: size of the region. 1562 * @errp: pointer to Error*, to store an error if it happens. 1563 */ 1564 void memory_region_init_rom_device(MemoryRegion *mr, 1565 Object *owner, 1566 const MemoryRegionOps *ops, 1567 void *opaque, 1568 const char *name, 1569 uint64_t size, 1570 Error **errp); 1571 1572 1573 /** 1574 * memory_region_owner: get a memory region's owner. 1575 * 1576 * @mr: the memory region being queried. 1577 */ 1578 Object *memory_region_owner(MemoryRegion *mr); 1579 1580 /** 1581 * memory_region_size: get a memory region's size. 1582 * 1583 * @mr: the memory region being queried. 1584 */ 1585 uint64_t memory_region_size(MemoryRegion *mr); 1586 1587 /** 1588 * memory_region_is_ram: check whether a memory region is random access 1589 * 1590 * Returns %true if a memory region is random access. 1591 * 1592 * @mr: the memory region being queried 1593 */ 1594 static inline bool memory_region_is_ram(MemoryRegion *mr) 1595 { 1596 return mr->ram; 1597 } 1598 1599 /** 1600 * memory_region_is_ram_device: check whether a memory region is a ram device 1601 * 1602 * Returns %true if a memory region is a device backed ram region 1603 * 1604 * @mr: the memory region being queried 1605 */ 1606 bool memory_region_is_ram_device(MemoryRegion *mr); 1607 1608 /** 1609 * memory_region_is_romd: check whether a memory region is in ROMD mode 1610 * 1611 * Returns %true if a memory region is a ROM device and currently set to allow 1612 * direct reads. 1613 * 1614 * @mr: the memory region being queried 1615 */ 1616 static inline bool memory_region_is_romd(MemoryRegion *mr) 1617 { 1618 return mr->rom_device && mr->romd_mode; 1619 } 1620 1621 /** 1622 * memory_region_is_protected: check whether a memory region is protected 1623 * 1624 * Returns %true if a memory region is protected RAM and cannot be accessed 1625 * via standard mechanisms, e.g. DMA. 1626 * 1627 * @mr: the memory region being queried 1628 */ 1629 bool memory_region_is_protected(MemoryRegion *mr); 1630 1631 /** 1632 * memory_region_get_iommu: check whether a memory region is an iommu 1633 * 1634 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1635 * otherwise NULL. 1636 * 1637 * @mr: the memory region being queried 1638 */ 1639 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1640 { 1641 if (mr->alias) { 1642 return memory_region_get_iommu(mr->alias); 1643 } 1644 if (mr->is_iommu) { 1645 return (IOMMUMemoryRegion *) mr; 1646 } 1647 return NULL; 1648 } 1649 1650 /** 1651 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1652 * if an iommu or NULL if not 1653 * 1654 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1655 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1656 * 1657 * @iommu_mr: the memory region being queried 1658 */ 1659 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1660 IOMMUMemoryRegion *iommu_mr) 1661 { 1662 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1663 } 1664 1665 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1666 1667 /** 1668 * memory_region_iommu_get_min_page_size: get minimum supported page size 1669 * for an iommu 1670 * 1671 * Returns minimum supported page size for an iommu. 1672 * 1673 * @iommu_mr: the memory region being queried 1674 */ 1675 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1676 1677 /** 1678 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1679 * 1680 * Note: for any IOMMU implementation, an in-place mapping change 1681 * should be notified with an UNMAP followed by a MAP. 1682 * 1683 * @iommu_mr: the memory region that was changed 1684 * @iommu_idx: the IOMMU index for the translation table which has changed 1685 * @event: TLB event with the new entry in the IOMMU translation table. 1686 * The entry replaces all old entries for the same virtual I/O address 1687 * range. 1688 */ 1689 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1690 int iommu_idx, 1691 IOMMUTLBEvent event); 1692 1693 /** 1694 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1695 * entry to a single notifier 1696 * 1697 * This works just like memory_region_notify_iommu(), but it only 1698 * notifies a specific notifier, not all of them. 1699 * 1700 * @notifier: the notifier to be notified 1701 * @event: TLB event with the new entry in the IOMMU translation table. 1702 * The entry replaces all old entries for the same virtual I/O address 1703 * range. 1704 */ 1705 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1706 IOMMUTLBEvent *event); 1707 1708 /** 1709 * memory_region_register_iommu_notifier: register a notifier for changes to 1710 * IOMMU translation entries. 1711 * 1712 * Returns 0 on success, or a negative errno otherwise. In particular, 1713 * -EINVAL indicates that at least one of the attributes of the notifier 1714 * is not supported (flag/range) by the IOMMU memory region. In case of error 1715 * the error object must be created. 1716 * 1717 * @mr: the memory region to observe 1718 * @n: the IOMMUNotifier to be added; the notify callback receives a 1719 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1720 * ceases to be valid on exit from the notifier. 1721 * @errp: pointer to Error*, to store an error if it happens. 1722 */ 1723 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1724 IOMMUNotifier *n, Error **errp); 1725 1726 /** 1727 * memory_region_iommu_replay: replay existing IOMMU translations to 1728 * a notifier with the minimum page granularity returned by 1729 * mr->iommu_ops->get_page_size(). 1730 * 1731 * Note: this is not related to record-and-replay functionality. 1732 * 1733 * @iommu_mr: the memory region to observe 1734 * @n: the notifier to which to replay iommu mappings 1735 */ 1736 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1737 1738 /** 1739 * memory_region_unregister_iommu_notifier: unregister a notifier for 1740 * changes to IOMMU translation entries. 1741 * 1742 * @mr: the memory region which was observed and for which notity_stopped() 1743 * needs to be called 1744 * @n: the notifier to be removed. 1745 */ 1746 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1747 IOMMUNotifier *n); 1748 1749 /** 1750 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1751 * defined on the IOMMU. 1752 * 1753 * Returns 0 on success, or a negative errno otherwise. In particular, 1754 * -EINVAL indicates that the IOMMU does not support the requested 1755 * attribute. 1756 * 1757 * @iommu_mr: the memory region 1758 * @attr: the requested attribute 1759 * @data: a pointer to the requested attribute data 1760 */ 1761 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1762 enum IOMMUMemoryRegionAttr attr, 1763 void *data); 1764 1765 /** 1766 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1767 * use for translations with the given memory transaction attributes. 1768 * 1769 * @iommu_mr: the memory region 1770 * @attrs: the memory transaction attributes 1771 */ 1772 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1773 MemTxAttrs attrs); 1774 1775 /** 1776 * memory_region_iommu_num_indexes: return the total number of IOMMU 1777 * indexes that this IOMMU supports. 1778 * 1779 * @iommu_mr: the memory region 1780 */ 1781 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1782 1783 /** 1784 * memory_region_iommu_set_page_size_mask: set the supported page 1785 * sizes for a given IOMMU memory region 1786 * 1787 * @iommu_mr: IOMMU memory region 1788 * @page_size_mask: supported page size mask 1789 * @errp: pointer to Error*, to store an error if it happens. 1790 */ 1791 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1792 uint64_t page_size_mask, 1793 Error **errp); 1794 1795 /** 1796 * memory_region_name: get a memory region's name 1797 * 1798 * Returns the string that was used to initialize the memory region. 1799 * 1800 * @mr: the memory region being queried 1801 */ 1802 const char *memory_region_name(const MemoryRegion *mr); 1803 1804 /** 1805 * memory_region_is_logging: return whether a memory region is logging writes 1806 * 1807 * Returns %true if the memory region is logging writes for the given client 1808 * 1809 * @mr: the memory region being queried 1810 * @client: the client being queried 1811 */ 1812 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1813 1814 /** 1815 * memory_region_get_dirty_log_mask: return the clients for which a 1816 * memory region is logging writes. 1817 * 1818 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1819 * are the bit indices. 1820 * 1821 * @mr: the memory region being queried 1822 */ 1823 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1824 1825 /** 1826 * memory_region_is_rom: check whether a memory region is ROM 1827 * 1828 * Returns %true if a memory region is read-only memory. 1829 * 1830 * @mr: the memory region being queried 1831 */ 1832 static inline bool memory_region_is_rom(MemoryRegion *mr) 1833 { 1834 return mr->ram && mr->readonly; 1835 } 1836 1837 /** 1838 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1839 * 1840 * Returns %true is a memory region is non-volatile memory. 1841 * 1842 * @mr: the memory region being queried 1843 */ 1844 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1845 { 1846 return mr->nonvolatile; 1847 } 1848 1849 /** 1850 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1851 * 1852 * Returns a file descriptor backing a file-based RAM memory region, 1853 * or -1 if the region is not a file-based RAM memory region. 1854 * 1855 * @mr: the RAM or alias memory region being queried. 1856 */ 1857 int memory_region_get_fd(MemoryRegion *mr); 1858 1859 /** 1860 * memory_region_from_host: Convert a pointer into a RAM memory region 1861 * and an offset within it. 1862 * 1863 * Given a host pointer inside a RAM memory region (created with 1864 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1865 * the MemoryRegion and the offset within it. 1866 * 1867 * Use with care; by the time this function returns, the returned pointer is 1868 * not protected by RCU anymore. If the caller is not within an RCU critical 1869 * section and does not hold the iothread lock, it must have other means of 1870 * protecting the pointer, such as a reference to the region that includes 1871 * the incoming ram_addr_t. 1872 * 1873 * @ptr: the host pointer to be converted 1874 * @offset: the offset within memory region 1875 */ 1876 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1877 1878 /** 1879 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1880 * 1881 * Returns a host pointer to a RAM memory region (created with 1882 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1883 * 1884 * Use with care; by the time this function returns, the returned pointer is 1885 * not protected by RCU anymore. If the caller is not within an RCU critical 1886 * section and does not hold the iothread lock, it must have other means of 1887 * protecting the pointer, such as a reference to the region that includes 1888 * the incoming ram_addr_t. 1889 * 1890 * @mr: the memory region being queried. 1891 */ 1892 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1893 1894 /* memory_region_ram_resize: Resize a RAM region. 1895 * 1896 * Resizing RAM while migrating can result in the migration being canceled. 1897 * Care has to be taken if the guest might have already detected the memory. 1898 * 1899 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1900 * @newsize: the new size the region 1901 * @errp: pointer to Error*, to store an error if it happens. 1902 */ 1903 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1904 Error **errp); 1905 1906 /** 1907 * memory_region_msync: Synchronize selected address range of 1908 * a memory mapped region 1909 * 1910 * @mr: the memory region to be msync 1911 * @addr: the initial address of the range to be sync 1912 * @size: the size of the range to be sync 1913 */ 1914 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1915 1916 /** 1917 * memory_region_writeback: Trigger cache writeback for 1918 * selected address range 1919 * 1920 * @mr: the memory region to be updated 1921 * @addr: the initial address of the range to be written back 1922 * @size: the size of the range to be written back 1923 */ 1924 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1925 1926 /** 1927 * memory_region_set_log: Turn dirty logging on or off for a region. 1928 * 1929 * Turns dirty logging on or off for a specified client (display, migration). 1930 * Only meaningful for RAM regions. 1931 * 1932 * @mr: the memory region being updated. 1933 * @log: whether dirty logging is to be enabled or disabled. 1934 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1935 */ 1936 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1937 1938 /** 1939 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1940 * 1941 * Marks a range of bytes as dirty, after it has been dirtied outside 1942 * guest code. 1943 * 1944 * @mr: the memory region being dirtied. 1945 * @addr: the address (relative to the start of the region) being dirtied. 1946 * @size: size of the range being dirtied. 1947 */ 1948 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1949 hwaddr size); 1950 1951 /** 1952 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1953 * 1954 * This function is called when the caller wants to clear the remote 1955 * dirty bitmap of a memory range within the memory region. This can 1956 * be used by e.g. KVM to manually clear dirty log when 1957 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1958 * kernel. 1959 * 1960 * @mr: the memory region to clear the dirty log upon 1961 * @start: start address offset within the memory region 1962 * @len: length of the memory region to clear dirty bitmap 1963 */ 1964 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1965 hwaddr len); 1966 1967 /** 1968 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1969 * bitmap and clear it. 1970 * 1971 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1972 * returns the snapshot. The snapshot can then be used to query dirty 1973 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1974 * querying the same page multiple times, which is especially useful for 1975 * display updates where the scanlines often are not page aligned. 1976 * 1977 * The dirty bitmap region which gets copied into the snapshot (and 1978 * cleared afterwards) can be larger than requested. The boundaries 1979 * are rounded up/down so complete bitmap longs (covering 64 pages on 1980 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1981 * isn't a problem for display updates as the extra pages are outside 1982 * the visible area, and in case the visible area changes a full 1983 * display redraw is due anyway. Should other use cases for this 1984 * function emerge we might have to revisit this implementation 1985 * detail. 1986 * 1987 * Use g_free to release DirtyBitmapSnapshot. 1988 * 1989 * @mr: the memory region being queried. 1990 * @addr: the address (relative to the start of the region) being queried. 1991 * @size: the size of the range being queried. 1992 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1993 */ 1994 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1995 hwaddr addr, 1996 hwaddr size, 1997 unsigned client); 1998 1999 /** 2000 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2001 * in the specified dirty bitmap snapshot. 2002 * 2003 * @mr: the memory region being queried. 2004 * @snap: the dirty bitmap snapshot 2005 * @addr: the address (relative to the start of the region) being queried. 2006 * @size: the size of the range being queried. 2007 */ 2008 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2009 DirtyBitmapSnapshot *snap, 2010 hwaddr addr, hwaddr size); 2011 2012 /** 2013 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2014 * client. 2015 * 2016 * Marks a range of pages as no longer dirty. 2017 * 2018 * @mr: the region being updated. 2019 * @addr: the start of the subrange being cleaned. 2020 * @size: the size of the subrange being cleaned. 2021 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2022 * %DIRTY_MEMORY_VGA. 2023 */ 2024 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2025 hwaddr size, unsigned client); 2026 2027 /** 2028 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2029 * TBs (for self-modifying code). 2030 * 2031 * The MemoryRegionOps->write() callback of a ROM device must use this function 2032 * to mark byte ranges that have been modified internally, such as by directly 2033 * accessing the memory returned by memory_region_get_ram_ptr(). 2034 * 2035 * This function marks the range dirty and invalidates TBs so that TCG can 2036 * detect self-modifying code. 2037 * 2038 * @mr: the region being flushed. 2039 * @addr: the start, relative to the start of the region, of the range being 2040 * flushed. 2041 * @size: the size, in bytes, of the range being flushed. 2042 */ 2043 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2044 2045 /** 2046 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2047 * 2048 * Allows a memory region to be marked as read-only (turning it into a ROM). 2049 * only useful on RAM regions. 2050 * 2051 * @mr: the region being updated. 2052 * @readonly: whether rhe region is to be ROM or RAM. 2053 */ 2054 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2055 2056 /** 2057 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2058 * 2059 * Allows a memory region to be marked as non-volatile. 2060 * only useful on RAM regions. 2061 * 2062 * @mr: the region being updated. 2063 * @nonvolatile: whether rhe region is to be non-volatile. 2064 */ 2065 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2066 2067 /** 2068 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2069 * 2070 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2071 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2072 * device is mapped to guest memory and satisfies read access directly. 2073 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2074 * Writes are always handled by the #MemoryRegion.write function. 2075 * 2076 * @mr: the memory region to be updated 2077 * @romd_mode: %true to put the region into ROMD mode 2078 */ 2079 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2080 2081 /** 2082 * memory_region_set_coalescing: Enable memory coalescing for the region. 2083 * 2084 * Enabled writes to a region to be queued for later processing. MMIO ->write 2085 * callbacks may be delayed until a non-coalesced MMIO is issued. 2086 * Only useful for IO regions. Roughly similar to write-combining hardware. 2087 * 2088 * @mr: the memory region to be write coalesced 2089 */ 2090 void memory_region_set_coalescing(MemoryRegion *mr); 2091 2092 /** 2093 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2094 * a region. 2095 * 2096 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2097 * Multiple calls can be issued coalesced disjoint ranges. 2098 * 2099 * @mr: the memory region to be updated. 2100 * @offset: the start of the range within the region to be coalesced. 2101 * @size: the size of the subrange to be coalesced. 2102 */ 2103 void memory_region_add_coalescing(MemoryRegion *mr, 2104 hwaddr offset, 2105 uint64_t size); 2106 2107 /** 2108 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2109 * 2110 * Disables any coalescing caused by memory_region_set_coalescing() or 2111 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2112 * hardware. 2113 * 2114 * @mr: the memory region to be updated. 2115 */ 2116 void memory_region_clear_coalescing(MemoryRegion *mr); 2117 2118 /** 2119 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2120 * accesses. 2121 * 2122 * Ensure that pending coalesced MMIO request are flushed before the memory 2123 * region is accessed. This property is automatically enabled for all regions 2124 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2125 * 2126 * @mr: the memory region to be updated. 2127 */ 2128 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2129 2130 /** 2131 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2132 * accesses. 2133 * 2134 * Clear the automatic coalesced MMIO flushing enabled via 2135 * memory_region_set_flush_coalesced. Note that this service has no effect on 2136 * memory regions that have MMIO coalescing enabled for themselves. For them, 2137 * automatic flushing will stop once coalescing is disabled. 2138 * 2139 * @mr: the memory region to be updated. 2140 */ 2141 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2142 2143 /** 2144 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2145 * is written to a location. 2146 * 2147 * Marks a word in an IO region (initialized with memory_region_init_io()) 2148 * as a trigger for an eventfd event. The I/O callback will not be called. 2149 * The caller must be prepared to handle failure (that is, take the required 2150 * action if the callback _is_ called). 2151 * 2152 * @mr: the memory region being updated. 2153 * @addr: the address within @mr that is to be monitored 2154 * @size: the size of the access to trigger the eventfd 2155 * @match_data: whether to match against @data, instead of just @addr 2156 * @data: the data to match against the guest write 2157 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2158 **/ 2159 void memory_region_add_eventfd(MemoryRegion *mr, 2160 hwaddr addr, 2161 unsigned size, 2162 bool match_data, 2163 uint64_t data, 2164 EventNotifier *e); 2165 2166 /** 2167 * memory_region_del_eventfd: Cancel an eventfd. 2168 * 2169 * Cancels an eventfd trigger requested by a previous 2170 * memory_region_add_eventfd() call. 2171 * 2172 * @mr: the memory region being updated. 2173 * @addr: the address within @mr that is to be monitored 2174 * @size: the size of the access to trigger the eventfd 2175 * @match_data: whether to match against @data, instead of just @addr 2176 * @data: the data to match against the guest write 2177 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2178 */ 2179 void memory_region_del_eventfd(MemoryRegion *mr, 2180 hwaddr addr, 2181 unsigned size, 2182 bool match_data, 2183 uint64_t data, 2184 EventNotifier *e); 2185 2186 /** 2187 * memory_region_add_subregion: Add a subregion to a container. 2188 * 2189 * Adds a subregion at @offset. The subregion may not overlap with other 2190 * subregions (except for those explicitly marked as overlapping). A region 2191 * may only be added once as a subregion (unless removed with 2192 * memory_region_del_subregion()); use memory_region_init_alias() if you 2193 * want a region to be a subregion in multiple locations. 2194 * 2195 * @mr: the region to contain the new subregion; must be a container 2196 * initialized with memory_region_init(). 2197 * @offset: the offset relative to @mr where @subregion is added. 2198 * @subregion: the subregion to be added. 2199 */ 2200 void memory_region_add_subregion(MemoryRegion *mr, 2201 hwaddr offset, 2202 MemoryRegion *subregion); 2203 /** 2204 * memory_region_add_subregion_overlap: Add a subregion to a container 2205 * with overlap. 2206 * 2207 * Adds a subregion at @offset. The subregion may overlap with other 2208 * subregions. Conflicts are resolved by having a higher @priority hide a 2209 * lower @priority. Subregions without priority are taken as @priority 0. 2210 * A region may only be added once as a subregion (unless removed with 2211 * memory_region_del_subregion()); use memory_region_init_alias() if you 2212 * want a region to be a subregion in multiple locations. 2213 * 2214 * @mr: the region to contain the new subregion; must be a container 2215 * initialized with memory_region_init(). 2216 * @offset: the offset relative to @mr where @subregion is added. 2217 * @subregion: the subregion to be added. 2218 * @priority: used for resolving overlaps; highest priority wins. 2219 */ 2220 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2221 hwaddr offset, 2222 MemoryRegion *subregion, 2223 int priority); 2224 2225 /** 2226 * memory_region_get_ram_addr: Get the ram address associated with a memory 2227 * region 2228 * 2229 * @mr: the region to be queried 2230 */ 2231 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2232 2233 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2234 /** 2235 * memory_region_del_subregion: Remove a subregion. 2236 * 2237 * Removes a subregion from its container. 2238 * 2239 * @mr: the container to be updated. 2240 * @subregion: the region being removed; must be a current subregion of @mr. 2241 */ 2242 void memory_region_del_subregion(MemoryRegion *mr, 2243 MemoryRegion *subregion); 2244 2245 /* 2246 * memory_region_set_enabled: dynamically enable or disable a region 2247 * 2248 * Enables or disables a memory region. A disabled memory region 2249 * ignores all accesses to itself and its subregions. It does not 2250 * obscure sibling subregions with lower priority - it simply behaves as 2251 * if it was removed from the hierarchy. 2252 * 2253 * Regions default to being enabled. 2254 * 2255 * @mr: the region to be updated 2256 * @enabled: whether to enable or disable the region 2257 */ 2258 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2259 2260 /* 2261 * memory_region_set_address: dynamically update the address of a region 2262 * 2263 * Dynamically updates the address of a region, relative to its container. 2264 * May be used on regions are currently part of a memory hierarchy. 2265 * 2266 * @mr: the region to be updated 2267 * @addr: new address, relative to container region 2268 */ 2269 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2270 2271 /* 2272 * memory_region_set_size: dynamically update the size of a region. 2273 * 2274 * Dynamically updates the size of a region. 2275 * 2276 * @mr: the region to be updated 2277 * @size: used size of the region. 2278 */ 2279 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2280 2281 /* 2282 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2283 * 2284 * Dynamically updates the offset into the target region that an alias points 2285 * to, as if the fourth argument to memory_region_init_alias() has changed. 2286 * 2287 * @mr: the #MemoryRegion to be updated; should be an alias. 2288 * @offset: the new offset into the target memory region 2289 */ 2290 void memory_region_set_alias_offset(MemoryRegion *mr, 2291 hwaddr offset); 2292 2293 /** 2294 * memory_region_present: checks if an address relative to a @container 2295 * translates into #MemoryRegion within @container 2296 * 2297 * Answer whether a #MemoryRegion within @container covers the address 2298 * @addr. 2299 * 2300 * @container: a #MemoryRegion within which @addr is a relative address 2301 * @addr: the area within @container to be searched 2302 */ 2303 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2304 2305 /** 2306 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2307 * into another memory region, which does not necessarily imply that it is 2308 * mapped into an address space. 2309 * 2310 * @mr: a #MemoryRegion which should be checked if it's mapped 2311 */ 2312 bool memory_region_is_mapped(MemoryRegion *mr); 2313 2314 /** 2315 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2316 * #MemoryRegion 2317 * 2318 * The #RamDiscardManager cannot change while a memory region is mapped. 2319 * 2320 * @mr: the #MemoryRegion 2321 */ 2322 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2323 2324 /** 2325 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2326 * #RamDiscardManager assigned 2327 * 2328 * @mr: the #MemoryRegion 2329 */ 2330 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2331 { 2332 return !!memory_region_get_ram_discard_manager(mr); 2333 } 2334 2335 /** 2336 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2337 * #MemoryRegion 2338 * 2339 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2340 * that does not cover RAM, or a #MemoryRegion that already has a 2341 * #RamDiscardManager assigned. 2342 * 2343 * @mr: the #MemoryRegion 2344 * @rdm: #RamDiscardManager to set 2345 */ 2346 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2347 RamDiscardManager *rdm); 2348 2349 /** 2350 * memory_region_find: translate an address/size relative to a 2351 * MemoryRegion into a #MemoryRegionSection. 2352 * 2353 * Locates the first #MemoryRegion within @mr that overlaps the range 2354 * given by @addr and @size. 2355 * 2356 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2357 * It will have the following characteristics: 2358 * - @size = 0 iff no overlap was found 2359 * - @mr is non-%NULL iff an overlap was found 2360 * 2361 * Remember that in the return value the @offset_within_region is 2362 * relative to the returned region (in the .@mr field), not to the 2363 * @mr argument. 2364 * 2365 * Similarly, the .@offset_within_address_space is relative to the 2366 * address space that contains both regions, the passed and the 2367 * returned one. However, in the special case where the @mr argument 2368 * has no container (and thus is the root of the address space), the 2369 * following will hold: 2370 * - @offset_within_address_space >= @addr 2371 * - @offset_within_address_space + .@size <= @addr + @size 2372 * 2373 * @mr: a MemoryRegion within which @addr is a relative address 2374 * @addr: start of the area within @as to be searched 2375 * @size: size of the area to be searched 2376 */ 2377 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2378 hwaddr addr, uint64_t size); 2379 2380 /** 2381 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2382 * 2383 * Synchronizes the dirty page log for all address spaces. 2384 */ 2385 void memory_global_dirty_log_sync(void); 2386 2387 /** 2388 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2389 * 2390 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2391 * This function must be called after the dirty log bitmap is cleared, and 2392 * before dirty guest memory pages are read. If you are using 2393 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2394 * care of doing this. 2395 */ 2396 void memory_global_after_dirty_log_sync(void); 2397 2398 /** 2399 * memory_region_transaction_begin: Start a transaction. 2400 * 2401 * During a transaction, changes will be accumulated and made visible 2402 * only when the transaction ends (is committed). 2403 */ 2404 void memory_region_transaction_begin(void); 2405 2406 /** 2407 * memory_region_transaction_commit: Commit a transaction and make changes 2408 * visible to the guest. 2409 */ 2410 void memory_region_transaction_commit(void); 2411 2412 /** 2413 * memory_listener_register: register callbacks to be called when memory 2414 * sections are mapped or unmapped into an address 2415 * space 2416 * 2417 * @listener: an object containing the callbacks to be called 2418 * @filter: if non-%NULL, only regions in this address space will be observed 2419 */ 2420 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2421 2422 /** 2423 * memory_listener_unregister: undo the effect of memory_listener_register() 2424 * 2425 * @listener: an object containing the callbacks to be removed 2426 */ 2427 void memory_listener_unregister(MemoryListener *listener); 2428 2429 /** 2430 * memory_global_dirty_log_start: begin dirty logging for all regions 2431 * 2432 * @flags: purpose of starting dirty log, migration or dirty rate 2433 */ 2434 void memory_global_dirty_log_start(unsigned int flags); 2435 2436 /** 2437 * memory_global_dirty_log_stop: end dirty logging for all regions 2438 * 2439 * @flags: purpose of stopping dirty log, migration or dirty rate 2440 */ 2441 void memory_global_dirty_log_stop(unsigned int flags); 2442 2443 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2444 2445 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2446 unsigned size, bool is_write, 2447 MemTxAttrs attrs); 2448 2449 /** 2450 * memory_region_dispatch_read: perform a read directly to the specified 2451 * MemoryRegion. 2452 * 2453 * @mr: #MemoryRegion to access 2454 * @addr: address within that region 2455 * @pval: pointer to uint64_t which the data is written to 2456 * @op: size, sign, and endianness of the memory operation 2457 * @attrs: memory transaction attributes to use for the access 2458 */ 2459 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2460 hwaddr addr, 2461 uint64_t *pval, 2462 MemOp op, 2463 MemTxAttrs attrs); 2464 /** 2465 * memory_region_dispatch_write: perform a write directly to the specified 2466 * MemoryRegion. 2467 * 2468 * @mr: #MemoryRegion to access 2469 * @addr: address within that region 2470 * @data: data to write 2471 * @op: size, sign, and endianness of the memory operation 2472 * @attrs: memory transaction attributes to use for the access 2473 */ 2474 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2475 hwaddr addr, 2476 uint64_t data, 2477 MemOp op, 2478 MemTxAttrs attrs); 2479 2480 /** 2481 * address_space_init: initializes an address space 2482 * 2483 * @as: an uninitialized #AddressSpace 2484 * @root: a #MemoryRegion that routes addresses for the address space 2485 * @name: an address space name. The name is only used for debugging 2486 * output. 2487 */ 2488 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2489 2490 /** 2491 * address_space_destroy: destroy an address space 2492 * 2493 * Releases all resources associated with an address space. After an address space 2494 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2495 * as well. 2496 * 2497 * @as: address space to be destroyed 2498 */ 2499 void address_space_destroy(AddressSpace *as); 2500 2501 /** 2502 * address_space_remove_listeners: unregister all listeners of an address space 2503 * 2504 * Removes all callbacks previously registered with memory_listener_register() 2505 * for @as. 2506 * 2507 * @as: an initialized #AddressSpace 2508 */ 2509 void address_space_remove_listeners(AddressSpace *as); 2510 2511 /** 2512 * address_space_rw: read from or write to an address space. 2513 * 2514 * Return a MemTxResult indicating whether the operation succeeded 2515 * or failed (eg unassigned memory, device rejected the transaction, 2516 * IOMMU fault). 2517 * 2518 * @as: #AddressSpace to be accessed 2519 * @addr: address within that address space 2520 * @attrs: memory transaction attributes 2521 * @buf: buffer with the data transferred 2522 * @len: the number of bytes to read or write 2523 * @is_write: indicates the transfer direction 2524 */ 2525 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2526 MemTxAttrs attrs, void *buf, 2527 hwaddr len, bool is_write); 2528 2529 /** 2530 * address_space_write: write to address space. 2531 * 2532 * Return a MemTxResult indicating whether the operation succeeded 2533 * or failed (eg unassigned memory, device rejected the transaction, 2534 * IOMMU fault). 2535 * 2536 * @as: #AddressSpace to be accessed 2537 * @addr: address within that address space 2538 * @attrs: memory transaction attributes 2539 * @buf: buffer with the data transferred 2540 * @len: the number of bytes to write 2541 */ 2542 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2543 MemTxAttrs attrs, 2544 const void *buf, hwaddr len); 2545 2546 /** 2547 * address_space_write_rom: write to address space, including ROM. 2548 * 2549 * This function writes to the specified address space, but will 2550 * write data to both ROM and RAM. This is used for non-guest 2551 * writes like writes from the gdb debug stub or initial loading 2552 * of ROM contents. 2553 * 2554 * Note that portions of the write which attempt to write data to 2555 * a device will be silently ignored -- only real RAM and ROM will 2556 * be written to. 2557 * 2558 * Return a MemTxResult indicating whether the operation succeeded 2559 * or failed (eg unassigned memory, device rejected the transaction, 2560 * IOMMU fault). 2561 * 2562 * @as: #AddressSpace to be accessed 2563 * @addr: address within that address space 2564 * @attrs: memory transaction attributes 2565 * @buf: buffer with the data transferred 2566 * @len: the number of bytes to write 2567 */ 2568 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2569 MemTxAttrs attrs, 2570 const void *buf, hwaddr len); 2571 2572 /* address_space_ld*: load from an address space 2573 * address_space_st*: store to an address space 2574 * 2575 * These functions perform a load or store of the byte, word, 2576 * longword or quad to the specified address within the AddressSpace. 2577 * The _le suffixed functions treat the data as little endian; 2578 * _be indicates big endian; no suffix indicates "same endianness 2579 * as guest CPU". 2580 * 2581 * The "guest CPU endianness" accessors are deprecated for use outside 2582 * target-* code; devices should be CPU-agnostic and use either the LE 2583 * or the BE accessors. 2584 * 2585 * @as #AddressSpace to be accessed 2586 * @addr: address within that address space 2587 * @val: data value, for stores 2588 * @attrs: memory transaction attributes 2589 * @result: location to write the success/failure of the transaction; 2590 * if NULL, this information is discarded 2591 */ 2592 2593 #define SUFFIX 2594 #define ARG1 as 2595 #define ARG1_DECL AddressSpace *as 2596 #include "exec/memory_ldst.h.inc" 2597 2598 #define SUFFIX 2599 #define ARG1 as 2600 #define ARG1_DECL AddressSpace *as 2601 #include "exec/memory_ldst_phys.h.inc" 2602 2603 struct MemoryRegionCache { 2604 void *ptr; 2605 hwaddr xlat; 2606 hwaddr len; 2607 FlatView *fv; 2608 MemoryRegionSection mrs; 2609 bool is_write; 2610 }; 2611 2612 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2613 2614 2615 /* address_space_ld*_cached: load from a cached #MemoryRegion 2616 * address_space_st*_cached: store into a cached #MemoryRegion 2617 * 2618 * These functions perform a load or store of the byte, word, 2619 * longword or quad to the specified address. The address is 2620 * a physical address in the AddressSpace, but it must lie within 2621 * a #MemoryRegion that was mapped with address_space_cache_init. 2622 * 2623 * The _le suffixed functions treat the data as little endian; 2624 * _be indicates big endian; no suffix indicates "same endianness 2625 * as guest CPU". 2626 * 2627 * The "guest CPU endianness" accessors are deprecated for use outside 2628 * target-* code; devices should be CPU-agnostic and use either the LE 2629 * or the BE accessors. 2630 * 2631 * @cache: previously initialized #MemoryRegionCache to be accessed 2632 * @addr: address within the address space 2633 * @val: data value, for stores 2634 * @attrs: memory transaction attributes 2635 * @result: location to write the success/failure of the transaction; 2636 * if NULL, this information is discarded 2637 */ 2638 2639 #define SUFFIX _cached_slow 2640 #define ARG1 cache 2641 #define ARG1_DECL MemoryRegionCache *cache 2642 #include "exec/memory_ldst.h.inc" 2643 2644 /* Inline fast path for direct RAM access. */ 2645 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2646 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2647 { 2648 assert(addr < cache->len); 2649 if (likely(cache->ptr)) { 2650 return ldub_p(cache->ptr + addr); 2651 } else { 2652 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2653 } 2654 } 2655 2656 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2657 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2658 { 2659 assert(addr < cache->len); 2660 if (likely(cache->ptr)) { 2661 stb_p(cache->ptr + addr, val); 2662 } else { 2663 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2664 } 2665 } 2666 2667 #define ENDIANNESS _le 2668 #include "exec/memory_ldst_cached.h.inc" 2669 2670 #define ENDIANNESS _be 2671 #include "exec/memory_ldst_cached.h.inc" 2672 2673 #define SUFFIX _cached 2674 #define ARG1 cache 2675 #define ARG1_DECL MemoryRegionCache *cache 2676 #include "exec/memory_ldst_phys.h.inc" 2677 2678 /* address_space_cache_init: prepare for repeated access to a physical 2679 * memory region 2680 * 2681 * @cache: #MemoryRegionCache to be filled 2682 * @as: #AddressSpace to be accessed 2683 * @addr: address within that address space 2684 * @len: length of buffer 2685 * @is_write: indicates the transfer direction 2686 * 2687 * Will only work with RAM, and may map a subset of the requested range by 2688 * returning a value that is less than @len. On failure, return a negative 2689 * errno value. 2690 * 2691 * Because it only works with RAM, this function can be used for 2692 * read-modify-write operations. In this case, is_write should be %true. 2693 * 2694 * Note that addresses passed to the address_space_*_cached functions 2695 * are relative to @addr. 2696 */ 2697 int64_t address_space_cache_init(MemoryRegionCache *cache, 2698 AddressSpace *as, 2699 hwaddr addr, 2700 hwaddr len, 2701 bool is_write); 2702 2703 /** 2704 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2705 * 2706 * @cache: The #MemoryRegionCache to operate on. 2707 * @addr: The first physical address that was written, relative to the 2708 * address that was passed to @address_space_cache_init. 2709 * @access_len: The number of bytes that were written starting at @addr. 2710 */ 2711 void address_space_cache_invalidate(MemoryRegionCache *cache, 2712 hwaddr addr, 2713 hwaddr access_len); 2714 2715 /** 2716 * address_space_cache_destroy: free a #MemoryRegionCache 2717 * 2718 * @cache: The #MemoryRegionCache whose memory should be released. 2719 */ 2720 void address_space_cache_destroy(MemoryRegionCache *cache); 2721 2722 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2723 * entry. Should be called from an RCU critical section. 2724 */ 2725 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2726 bool is_write, MemTxAttrs attrs); 2727 2728 /* address_space_translate: translate an address range into an address space 2729 * into a MemoryRegion and an address range into that section. Should be 2730 * called from an RCU critical section, to avoid that the last reference 2731 * to the returned region disappears after address_space_translate returns. 2732 * 2733 * @fv: #FlatView to be accessed 2734 * @addr: address within that address space 2735 * @xlat: pointer to address within the returned memory region section's 2736 * #MemoryRegion. 2737 * @len: pointer to length 2738 * @is_write: indicates the transfer direction 2739 * @attrs: memory attributes 2740 */ 2741 MemoryRegion *flatview_translate(FlatView *fv, 2742 hwaddr addr, hwaddr *xlat, 2743 hwaddr *len, bool is_write, 2744 MemTxAttrs attrs); 2745 2746 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2747 hwaddr addr, hwaddr *xlat, 2748 hwaddr *len, bool is_write, 2749 MemTxAttrs attrs) 2750 { 2751 return flatview_translate(address_space_to_flatview(as), 2752 addr, xlat, len, is_write, attrs); 2753 } 2754 2755 /* address_space_access_valid: check for validity of accessing an address 2756 * space range 2757 * 2758 * Check whether memory is assigned to the given address space range, and 2759 * access is permitted by any IOMMU regions that are active for the address 2760 * space. 2761 * 2762 * For now, addr and len should be aligned to a page size. This limitation 2763 * will be lifted in the future. 2764 * 2765 * @as: #AddressSpace to be accessed 2766 * @addr: address within that address space 2767 * @len: length of the area to be checked 2768 * @is_write: indicates the transfer direction 2769 * @attrs: memory attributes 2770 */ 2771 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2772 bool is_write, MemTxAttrs attrs); 2773 2774 /* address_space_map: map a physical memory region into a host virtual address 2775 * 2776 * May map a subset of the requested range, given by and returned in @plen. 2777 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2778 * the mapping are exhausted. 2779 * Use only for reads OR writes - not for read-modify-write operations. 2780 * Use cpu_register_map_client() to know when retrying the map operation is 2781 * likely to succeed. 2782 * 2783 * @as: #AddressSpace to be accessed 2784 * @addr: address within that address space 2785 * @plen: pointer to length of buffer; updated on return 2786 * @is_write: indicates the transfer direction 2787 * @attrs: memory attributes 2788 */ 2789 void *address_space_map(AddressSpace *as, hwaddr addr, 2790 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2791 2792 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2793 * 2794 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2795 * the amount of memory that was actually read or written by the caller. 2796 * 2797 * @as: #AddressSpace used 2798 * @buffer: host pointer as returned by address_space_map() 2799 * @len: buffer length as returned by address_space_map() 2800 * @access_len: amount of data actually transferred 2801 * @is_write: indicates the transfer direction 2802 */ 2803 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2804 bool is_write, hwaddr access_len); 2805 2806 2807 /* Internal functions, part of the implementation of address_space_read. */ 2808 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2809 MemTxAttrs attrs, void *buf, hwaddr len); 2810 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2811 MemTxAttrs attrs, void *buf, 2812 hwaddr len, hwaddr addr1, hwaddr l, 2813 MemoryRegion *mr); 2814 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2815 2816 /* Internal functions, part of the implementation of address_space_read_cached 2817 * and address_space_write_cached. */ 2818 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2819 hwaddr addr, void *buf, hwaddr len); 2820 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2821 hwaddr addr, const void *buf, 2822 hwaddr len); 2823 2824 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2825 bool prepare_mmio_access(MemoryRegion *mr); 2826 2827 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2828 { 2829 if (is_write) { 2830 return memory_region_is_ram(mr) && !mr->readonly && 2831 !mr->rom_device && !memory_region_is_ram_device(mr); 2832 } else { 2833 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2834 memory_region_is_romd(mr); 2835 } 2836 } 2837 2838 /** 2839 * address_space_read: read from an address space. 2840 * 2841 * Return a MemTxResult indicating whether the operation succeeded 2842 * or failed (eg unassigned memory, device rejected the transaction, 2843 * IOMMU fault). Called within RCU critical section. 2844 * 2845 * @as: #AddressSpace to be accessed 2846 * @addr: address within that address space 2847 * @attrs: memory transaction attributes 2848 * @buf: buffer with the data transferred 2849 * @len: length of the data transferred 2850 */ 2851 static inline __attribute__((__always_inline__)) 2852 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2853 MemTxAttrs attrs, void *buf, 2854 hwaddr len) 2855 { 2856 MemTxResult result = MEMTX_OK; 2857 hwaddr l, addr1; 2858 void *ptr; 2859 MemoryRegion *mr; 2860 FlatView *fv; 2861 2862 if (__builtin_constant_p(len)) { 2863 if (len) { 2864 RCU_READ_LOCK_GUARD(); 2865 fv = address_space_to_flatview(as); 2866 l = len; 2867 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2868 if (len == l && memory_access_is_direct(mr, false)) { 2869 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2870 memcpy(buf, ptr, len); 2871 } else { 2872 result = flatview_read_continue(fv, addr, attrs, buf, len, 2873 addr1, l, mr); 2874 } 2875 } 2876 } else { 2877 result = address_space_read_full(as, addr, attrs, buf, len); 2878 } 2879 return result; 2880 } 2881 2882 /** 2883 * address_space_read_cached: read from a cached RAM region 2884 * 2885 * @cache: Cached region to be addressed 2886 * @addr: address relative to the base of the RAM region 2887 * @buf: buffer with the data transferred 2888 * @len: length of the data transferred 2889 */ 2890 static inline MemTxResult 2891 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2892 void *buf, hwaddr len) 2893 { 2894 assert(addr < cache->len && len <= cache->len - addr); 2895 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2896 if (likely(cache->ptr)) { 2897 memcpy(buf, cache->ptr + addr, len); 2898 return MEMTX_OK; 2899 } else { 2900 return address_space_read_cached_slow(cache, addr, buf, len); 2901 } 2902 } 2903 2904 /** 2905 * address_space_write_cached: write to a cached RAM region 2906 * 2907 * @cache: Cached region to be addressed 2908 * @addr: address relative to the base of the RAM region 2909 * @buf: buffer with the data transferred 2910 * @len: length of the data transferred 2911 */ 2912 static inline MemTxResult 2913 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2914 const void *buf, hwaddr len) 2915 { 2916 assert(addr < cache->len && len <= cache->len - addr); 2917 if (likely(cache->ptr)) { 2918 memcpy(cache->ptr + addr, buf, len); 2919 return MEMTX_OK; 2920 } else { 2921 return address_space_write_cached_slow(cache, addr, buf, len); 2922 } 2923 } 2924 2925 /** 2926 * address_space_set: Fill address space with a constant byte. 2927 * 2928 * Return a MemTxResult indicating whether the operation succeeded 2929 * or failed (eg unassigned memory, device rejected the transaction, 2930 * IOMMU fault). 2931 * 2932 * @as: #AddressSpace to be accessed 2933 * @addr: address within that address space 2934 * @c: constant byte to fill the memory 2935 * @len: the number of bytes to fill with the constant byte 2936 * @attrs: memory transaction attributes 2937 */ 2938 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2939 uint8_t c, hwaddr len, MemTxAttrs attrs); 2940 2941 #ifdef NEED_CPU_H 2942 /* enum device_endian to MemOp. */ 2943 static inline MemOp devend_memop(enum device_endian end) 2944 { 2945 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2946 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2947 2948 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 2949 /* Swap if non-host endianness or native (target) endianness */ 2950 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2951 #else 2952 const int non_host_endianness = 2953 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2954 2955 /* In this case, native (target) endianness needs no swap. */ 2956 return (end == non_host_endianness) ? MO_BSWAP : 0; 2957 #endif 2958 } 2959 #endif 2960 2961 /* 2962 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2963 * to manage the actual amount of memory consumed by the VM (then, the memory 2964 * provided by RAM blocks might be bigger than the desired memory consumption). 2965 * This *must* be set if: 2966 * - Discarding parts of a RAM blocks does not result in the change being 2967 * reflected in the VM and the pages getting freed. 2968 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2969 * discards blindly. 2970 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2971 * encrypted VMs). 2972 * Technologies that only temporarily pin the current working set of a 2973 * driver are fine, because we don't expect such pages to be discarded 2974 * (esp. based on guest action like balloon inflation). 2975 * 2976 * This is *not* to be used to protect from concurrent discards (esp., 2977 * postcopy). 2978 * 2979 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2980 * discards to work reliably is active. 2981 */ 2982 int ram_block_discard_disable(bool state); 2983 2984 /* 2985 * See ram_block_discard_disable(): only disable uncoordinated discards, 2986 * keeping coordinated discards (via the RamDiscardManager) enabled. 2987 */ 2988 int ram_block_uncoordinated_discard_disable(bool state); 2989 2990 /* 2991 * Inhibit technologies that disable discarding of pages in RAM blocks. 2992 * 2993 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2994 * broken. 2995 */ 2996 int ram_block_discard_require(bool state); 2997 2998 /* 2999 * See ram_block_discard_require(): only inhibit technologies that disable 3000 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 3001 * technologies that only inhibit uncoordinated discards (via the 3002 * RamDiscardManager). 3003 */ 3004 int ram_block_coordinated_discard_require(bool state); 3005 3006 /* 3007 * Test if any discarding of memory in ram blocks is disabled. 3008 */ 3009 bool ram_block_discard_is_disabled(void); 3010 3011 /* 3012 * Test if any discarding of memory in ram blocks is required to work reliably. 3013 */ 3014 bool ram_block_discard_is_required(void); 3015 3016 #endif 3017 3018 #endif 3019