1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 hwaddr low; 83 hwaddr high; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 */ 99 struct MemoryRegionSection { 100 Int128 size; 101 MemoryRegion *mr; 102 FlatView *fv; 103 hwaddr offset_within_region; 104 hwaddr offset_within_address_space; 105 bool readonly; 106 bool nonvolatile; 107 }; 108 109 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 110 111 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 112 typedef enum { 113 IOMMU_NONE = 0, 114 IOMMU_RO = 1, 115 IOMMU_WO = 2, 116 IOMMU_RW = 3, 117 } IOMMUAccessFlags; 118 119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 120 121 struct IOMMUTLBEntry { 122 AddressSpace *target_as; 123 hwaddr iova; 124 hwaddr translated_addr; 125 hwaddr addr_mask; /* 0xfff = 4k translation */ 126 IOMMUAccessFlags perm; 127 }; 128 129 /* 130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 131 * register with one or multiple IOMMU Notifier capability bit(s). 132 */ 133 typedef enum { 134 IOMMU_NOTIFIER_NONE = 0, 135 /* Notify cache invalidations */ 136 IOMMU_NOTIFIER_UNMAP = 0x1, 137 /* Notify entry changes (newly created entries) */ 138 IOMMU_NOTIFIER_MAP = 0x2, 139 /* Notify changes on device IOTLB entries */ 140 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 141 } IOMMUNotifierFlag; 142 143 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 144 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 145 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 146 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 147 148 struct IOMMUNotifier; 149 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 150 IOMMUTLBEntry *data); 151 152 struct IOMMUNotifier { 153 IOMMUNotify notify; 154 IOMMUNotifierFlag notifier_flags; 155 /* Notify for address space range start <= addr <= end */ 156 hwaddr start; 157 hwaddr end; 158 int iommu_idx; 159 QLIST_ENTRY(IOMMUNotifier) node; 160 }; 161 typedef struct IOMMUNotifier IOMMUNotifier; 162 163 typedef struct IOMMUTLBEvent { 164 IOMMUNotifierFlag type; 165 IOMMUTLBEntry entry; 166 } IOMMUTLBEvent; 167 168 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 169 #define RAM_PREALLOC (1 << 0) 170 171 /* RAM is mmap-ed with MAP_SHARED */ 172 #define RAM_SHARED (1 << 1) 173 174 /* Only a portion of RAM (used_length) is actually used, and migrated. 175 * Resizing RAM while migrating can result in the migration being canceled. 176 */ 177 #define RAM_RESIZEABLE (1 << 2) 178 179 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 180 * zero the page and wake waiting processes. 181 * (Set during postcopy) 182 */ 183 #define RAM_UF_ZEROPAGE (1 << 3) 184 185 /* RAM can be migrated */ 186 #define RAM_MIGRATABLE (1 << 4) 187 188 /* RAM is a persistent kind memory */ 189 #define RAM_PMEM (1 << 5) 190 191 192 /* 193 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 194 * support 'write-tracking' migration type. 195 * Implies ram_state->ram_wt_enabled. 196 */ 197 #define RAM_UF_WRITEPROTECT (1 << 6) 198 199 /* 200 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 201 * pages if applicable) is skipped: will bail out if not supported. When not 202 * set, the OS will do the reservation, if supported for the memory type. 203 */ 204 #define RAM_NORESERVE (1 << 7) 205 206 /* RAM that isn't accessible through normal means. */ 207 #define RAM_PROTECTED (1 << 8) 208 209 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 210 IOMMUNotifierFlag flags, 211 hwaddr start, hwaddr end, 212 int iommu_idx) 213 { 214 n->notify = fn; 215 n->notifier_flags = flags; 216 n->start = start; 217 n->end = end; 218 n->iommu_idx = iommu_idx; 219 } 220 221 /* 222 * Memory region callbacks 223 */ 224 struct MemoryRegionOps { 225 /* Read from the memory region. @addr is relative to @mr; @size is 226 * in bytes. */ 227 uint64_t (*read)(void *opaque, 228 hwaddr addr, 229 unsigned size); 230 /* Write to the memory region. @addr is relative to @mr; @size is 231 * in bytes. */ 232 void (*write)(void *opaque, 233 hwaddr addr, 234 uint64_t data, 235 unsigned size); 236 237 MemTxResult (*read_with_attrs)(void *opaque, 238 hwaddr addr, 239 uint64_t *data, 240 unsigned size, 241 MemTxAttrs attrs); 242 MemTxResult (*write_with_attrs)(void *opaque, 243 hwaddr addr, 244 uint64_t data, 245 unsigned size, 246 MemTxAttrs attrs); 247 248 enum device_endian endianness; 249 /* Guest-visible constraints: */ 250 struct { 251 /* If nonzero, specify bounds on access sizes beyond which a machine 252 * check is thrown. 253 */ 254 unsigned min_access_size; 255 unsigned max_access_size; 256 /* If true, unaligned accesses are supported. Otherwise unaligned 257 * accesses throw machine checks. 258 */ 259 bool unaligned; 260 /* 261 * If present, and returns #false, the transaction is not accepted 262 * by the device (and results in machine dependent behaviour such 263 * as a machine check exception). 264 */ 265 bool (*accepts)(void *opaque, hwaddr addr, 266 unsigned size, bool is_write, 267 MemTxAttrs attrs); 268 } valid; 269 /* Internal implementation constraints: */ 270 struct { 271 /* If nonzero, specifies the minimum size implemented. Smaller sizes 272 * will be rounded upwards and a partial result will be returned. 273 */ 274 unsigned min_access_size; 275 /* If nonzero, specifies the maximum size implemented. Larger sizes 276 * will be done as a series of accesses with smaller sizes. 277 */ 278 unsigned max_access_size; 279 /* If true, unaligned accesses are supported. Otherwise all accesses 280 * are converted to (possibly multiple) naturally aligned accesses. 281 */ 282 bool unaligned; 283 } impl; 284 }; 285 286 typedef struct MemoryRegionClass { 287 /* private */ 288 ObjectClass parent_class; 289 } MemoryRegionClass; 290 291 292 enum IOMMUMemoryRegionAttr { 293 IOMMU_ATTR_SPAPR_TCE_FD 294 }; 295 296 /* 297 * IOMMUMemoryRegionClass: 298 * 299 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 300 * and provide an implementation of at least the @translate method here 301 * to handle requests to the memory region. Other methods are optional. 302 * 303 * The IOMMU implementation must use the IOMMU notifier infrastructure 304 * to report whenever mappings are changed, by calling 305 * memory_region_notify_iommu() (or, if necessary, by calling 306 * memory_region_notify_iommu_one() for each registered notifier). 307 * 308 * Conceptually an IOMMU provides a mapping from input address 309 * to an output TLB entry. If the IOMMU is aware of memory transaction 310 * attributes and the output TLB entry depends on the transaction 311 * attributes, we represent this using IOMMU indexes. Each index 312 * selects a particular translation table that the IOMMU has: 313 * 314 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 315 * 316 * @translate takes an input address and an IOMMU index 317 * 318 * and the mapping returned can only depend on the input address and the 319 * IOMMU index. 320 * 321 * Most IOMMUs don't care about the transaction attributes and support 322 * only a single IOMMU index. A more complex IOMMU might have one index 323 * for secure transactions and one for non-secure transactions. 324 */ 325 struct IOMMUMemoryRegionClass { 326 /* private: */ 327 MemoryRegionClass parent_class; 328 329 /* public: */ 330 /** 331 * @translate: 332 * 333 * Return a TLB entry that contains a given address. 334 * 335 * The IOMMUAccessFlags indicated via @flag are optional and may 336 * be specified as IOMMU_NONE to indicate that the caller needs 337 * the full translation information for both reads and writes. If 338 * the access flags are specified then the IOMMU implementation 339 * may use this as an optimization, to stop doing a page table 340 * walk as soon as it knows that the requested permissions are not 341 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 342 * full page table walk and report the permissions in the returned 343 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 344 * return different mappings for reads and writes.) 345 * 346 * The returned information remains valid while the caller is 347 * holding the big QEMU lock or is inside an RCU critical section; 348 * if the caller wishes to cache the mapping beyond that it must 349 * register an IOMMU notifier so it can invalidate its cached 350 * information when the IOMMU mapping changes. 351 * 352 * @iommu: the IOMMUMemoryRegion 353 * 354 * @hwaddr: address to be translated within the memory region 355 * 356 * @flag: requested access permission 357 * 358 * @iommu_idx: IOMMU index for the translation 359 */ 360 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 361 IOMMUAccessFlags flag, int iommu_idx); 362 /** 363 * @get_min_page_size: 364 * 365 * Returns minimum supported page size in bytes. 366 * 367 * If this method is not provided then the minimum is assumed to 368 * be TARGET_PAGE_SIZE. 369 * 370 * @iommu: the IOMMUMemoryRegion 371 */ 372 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 373 /** 374 * @notify_flag_changed: 375 * 376 * Called when IOMMU Notifier flag changes (ie when the set of 377 * events which IOMMU users are requesting notification for changes). 378 * Optional method -- need not be provided if the IOMMU does not 379 * need to know exactly which events must be notified. 380 * 381 * @iommu: the IOMMUMemoryRegion 382 * 383 * @old_flags: events which previously needed to be notified 384 * 385 * @new_flags: events which now need to be notified 386 * 387 * Returns 0 on success, or a negative errno; in particular 388 * returns -EINVAL if the new flag bitmap is not supported by the 389 * IOMMU memory region. In case of failure, the error object 390 * must be created 391 */ 392 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 393 IOMMUNotifierFlag old_flags, 394 IOMMUNotifierFlag new_flags, 395 Error **errp); 396 /** 397 * @replay: 398 * 399 * Called to handle memory_region_iommu_replay(). 400 * 401 * The default implementation of memory_region_iommu_replay() is to 402 * call the IOMMU translate method for every page in the address space 403 * with flag == IOMMU_NONE and then call the notifier if translate 404 * returns a valid mapping. If this method is implemented then it 405 * overrides the default behaviour, and must provide the full semantics 406 * of memory_region_iommu_replay(), by calling @notifier for every 407 * translation present in the IOMMU. 408 * 409 * Optional method -- an IOMMU only needs to provide this method 410 * if the default is inefficient or produces undesirable side effects. 411 * 412 * Note: this is not related to record-and-replay functionality. 413 */ 414 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 415 416 /** 417 * @get_attr: 418 * 419 * Get IOMMU misc attributes. This is an optional method that 420 * can be used to allow users of the IOMMU to get implementation-specific 421 * information. The IOMMU implements this method to handle calls 422 * by IOMMU users to memory_region_iommu_get_attr() by filling in 423 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 424 * the IOMMU supports. If the method is unimplemented then 425 * memory_region_iommu_get_attr() will always return -EINVAL. 426 * 427 * @iommu: the IOMMUMemoryRegion 428 * 429 * @attr: attribute being queried 430 * 431 * @data: memory to fill in with the attribute data 432 * 433 * Returns 0 on success, or a negative errno; in particular 434 * returns -EINVAL for unrecognized or unimplemented attribute types. 435 */ 436 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 437 void *data); 438 439 /** 440 * @attrs_to_index: 441 * 442 * Return the IOMMU index to use for a given set of transaction attributes. 443 * 444 * Optional method: if an IOMMU only supports a single IOMMU index then 445 * the default implementation of memory_region_iommu_attrs_to_index() 446 * will return 0. 447 * 448 * The indexes supported by an IOMMU must be contiguous, starting at 0. 449 * 450 * @iommu: the IOMMUMemoryRegion 451 * @attrs: memory transaction attributes 452 */ 453 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 454 455 /** 456 * @num_indexes: 457 * 458 * Return the number of IOMMU indexes this IOMMU supports. 459 * 460 * Optional method: if this method is not provided, then 461 * memory_region_iommu_num_indexes() will return 1, indicating that 462 * only a single IOMMU index is supported. 463 * 464 * @iommu: the IOMMUMemoryRegion 465 */ 466 int (*num_indexes)(IOMMUMemoryRegion *iommu); 467 468 /** 469 * @iommu_set_page_size_mask: 470 * 471 * Restrict the page size mask that can be supported with a given IOMMU 472 * memory region. Used for example to propagate host physical IOMMU page 473 * size mask limitations to the virtual IOMMU. 474 * 475 * Optional method: if this method is not provided, then the default global 476 * page mask is used. 477 * 478 * @iommu: the IOMMUMemoryRegion 479 * 480 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 481 * representing the smallest page size, must be set. Additional set bits 482 * represent supported block sizes. For example a host physical IOMMU that 483 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 484 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 485 * block sizes is specified with mask 0xfffffffffffff000. 486 * 487 * Returns 0 on success, or a negative error. In case of failure, the error 488 * object must be created. 489 */ 490 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 491 uint64_t page_size_mask, 492 Error **errp); 493 }; 494 495 typedef struct RamDiscardListener RamDiscardListener; 496 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 497 MemoryRegionSection *section); 498 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 499 MemoryRegionSection *section); 500 501 struct RamDiscardListener { 502 /* 503 * @notify_populate: 504 * 505 * Notification that previously discarded memory is about to get populated. 506 * Listeners are able to object. If any listener objects, already 507 * successfully notified listeners are notified about a discard again. 508 * 509 * @rdl: the #RamDiscardListener getting notified 510 * @section: the #MemoryRegionSection to get populated. The section 511 * is aligned within the memory region to the minimum granularity 512 * unless it would exceed the registered section. 513 * 514 * Returns 0 on success. If the notification is rejected by the listener, 515 * an error is returned. 516 */ 517 NotifyRamPopulate notify_populate; 518 519 /* 520 * @notify_discard: 521 * 522 * Notification that previously populated memory was discarded successfully 523 * and listeners should drop all references to such memory and prevent 524 * new population (e.g., unmap). 525 * 526 * @rdl: the #RamDiscardListener getting notified 527 * @section: the #MemoryRegionSection to get populated. The section 528 * is aligned within the memory region to the minimum granularity 529 * unless it would exceed the registered section. 530 */ 531 NotifyRamDiscard notify_discard; 532 533 /* 534 * @double_discard_supported: 535 * 536 * The listener suppors getting @notify_discard notifications that span 537 * already discarded parts. 538 */ 539 bool double_discard_supported; 540 541 MemoryRegionSection *section; 542 QLIST_ENTRY(RamDiscardListener) next; 543 }; 544 545 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 546 NotifyRamPopulate populate_fn, 547 NotifyRamDiscard discard_fn, 548 bool double_discard_supported) 549 { 550 rdl->notify_populate = populate_fn; 551 rdl->notify_discard = discard_fn; 552 rdl->double_discard_supported = double_discard_supported; 553 } 554 555 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 556 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 557 558 /* 559 * RamDiscardManagerClass: 560 * 561 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 562 * regions are currently populated to be used/accessed by the VM, notifying 563 * after parts were discarded (freeing up memory) and before parts will be 564 * populated (consuming memory), to be used/acessed by the VM. 565 * 566 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 567 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is 568 * mapped. 569 * 570 * The #RamDiscardManager is intended to be used by technologies that are 571 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 572 * memory inside a #MemoryRegion), and require proper coordination to only 573 * map the currently populated parts, to hinder parts that are expected to 574 * remain discarded from silently getting populated and consuming memory. 575 * Technologies that support discarding of RAM don't have to bother and can 576 * simply map the whole #MemoryRegion. 577 * 578 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 579 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 580 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 581 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 582 * properly coordinate with listeners before memory is plugged (populated), 583 * and after memory is unplugged (discarded). 584 * 585 * Listeners are called in multiples of the minimum granularity (unless it 586 * would exceed the registered range) and changes are aligned to the minimum 587 * granularity within the #MemoryRegion. Listeners have to prepare for memory 588 * becomming discarded in a different granularity than it was populated and the 589 * other way around. 590 */ 591 struct RamDiscardManagerClass { 592 /* private */ 593 InterfaceClass parent_class; 594 595 /* public */ 596 597 /** 598 * @get_min_granularity: 599 * 600 * Get the minimum granularity in which listeners will get notified 601 * about changes within the #MemoryRegion via the #RamDiscardManager. 602 * 603 * @rdm: the #RamDiscardManager 604 * @mr: the #MemoryRegion 605 * 606 * Returns the minimum granularity. 607 */ 608 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 609 const MemoryRegion *mr); 610 611 /** 612 * @is_populated: 613 * 614 * Check whether the given #MemoryRegionSection is completely populated 615 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 616 * There are no alignment requirements. 617 * 618 * @rdm: the #RamDiscardManager 619 * @section: the #MemoryRegionSection 620 * 621 * Returns whether the given range is completely populated. 622 */ 623 bool (*is_populated)(const RamDiscardManager *rdm, 624 const MemoryRegionSection *section); 625 626 /** 627 * @replay_populated: 628 * 629 * Call the #ReplayRamPopulate callback for all populated parts within the 630 * #MemoryRegionSection via the #RamDiscardManager. 631 * 632 * In case any call fails, no further calls are made. 633 * 634 * @rdm: the #RamDiscardManager 635 * @section: the #MemoryRegionSection 636 * @replay_fn: the #ReplayRamPopulate callback 637 * @opaque: pointer to forward to the callback 638 * 639 * Returns 0 on success, or a negative error if any notification failed. 640 */ 641 int (*replay_populated)(const RamDiscardManager *rdm, 642 MemoryRegionSection *section, 643 ReplayRamPopulate replay_fn, void *opaque); 644 645 /** 646 * @replay_discarded: 647 * 648 * Call the #ReplayRamDiscard callback for all discarded parts within the 649 * #MemoryRegionSection via the #RamDiscardManager. 650 * 651 * @rdm: the #RamDiscardManager 652 * @section: the #MemoryRegionSection 653 * @replay_fn: the #ReplayRamDiscard callback 654 * @opaque: pointer to forward to the callback 655 */ 656 void (*replay_discarded)(const RamDiscardManager *rdm, 657 MemoryRegionSection *section, 658 ReplayRamDiscard replay_fn, void *opaque); 659 660 /** 661 * @register_listener: 662 * 663 * Register a #RamDiscardListener for the given #MemoryRegionSection and 664 * immediately notify the #RamDiscardListener about all populated parts 665 * within the #MemoryRegionSection via the #RamDiscardManager. 666 * 667 * In case any notification fails, no further notifications are triggered 668 * and an error is logged. 669 * 670 * @rdm: the #RamDiscardManager 671 * @rdl: the #RamDiscardListener 672 * @section: the #MemoryRegionSection 673 */ 674 void (*register_listener)(RamDiscardManager *rdm, 675 RamDiscardListener *rdl, 676 MemoryRegionSection *section); 677 678 /** 679 * @unregister_listener: 680 * 681 * Unregister a previously registered #RamDiscardListener via the 682 * #RamDiscardManager after notifying the #RamDiscardListener about all 683 * populated parts becoming unpopulated within the registered 684 * #MemoryRegionSection. 685 * 686 * @rdm: the #RamDiscardManager 687 * @rdl: the #RamDiscardListener 688 */ 689 void (*unregister_listener)(RamDiscardManager *rdm, 690 RamDiscardListener *rdl); 691 }; 692 693 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 694 const MemoryRegion *mr); 695 696 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 697 const MemoryRegionSection *section); 698 699 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 700 MemoryRegionSection *section, 701 ReplayRamPopulate replay_fn, 702 void *opaque); 703 704 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 705 MemoryRegionSection *section, 706 ReplayRamDiscard replay_fn, 707 void *opaque); 708 709 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 710 RamDiscardListener *rdl, 711 MemoryRegionSection *section); 712 713 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 714 RamDiscardListener *rdl); 715 716 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 717 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 718 719 /** MemoryRegion: 720 * 721 * A struct representing a memory region. 722 */ 723 struct MemoryRegion { 724 Object parent_obj; 725 726 /* private: */ 727 728 /* The following fields should fit in a cache line */ 729 bool romd_mode; 730 bool ram; 731 bool subpage; 732 bool readonly; /* For RAM regions */ 733 bool nonvolatile; 734 bool rom_device; 735 bool flush_coalesced_mmio; 736 uint8_t dirty_log_mask; 737 bool is_iommu; 738 RAMBlock *ram_block; 739 Object *owner; 740 741 const MemoryRegionOps *ops; 742 void *opaque; 743 MemoryRegion *container; 744 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 745 Int128 size; 746 hwaddr addr; 747 void (*destructor)(MemoryRegion *mr); 748 uint64_t align; 749 bool terminates; 750 bool ram_device; 751 bool enabled; 752 bool warning_printed; /* For reservations */ 753 uint8_t vga_logging_count; 754 MemoryRegion *alias; 755 hwaddr alias_offset; 756 int32_t priority; 757 QTAILQ_HEAD(, MemoryRegion) subregions; 758 QTAILQ_ENTRY(MemoryRegion) subregions_link; 759 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 760 const char *name; 761 unsigned ioeventfd_nb; 762 MemoryRegionIoeventfd *ioeventfds; 763 RamDiscardManager *rdm; /* Only for RAM */ 764 }; 765 766 struct IOMMUMemoryRegion { 767 MemoryRegion parent_obj; 768 769 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 770 IOMMUNotifierFlag iommu_notify_flags; 771 }; 772 773 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 774 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 775 776 /** 777 * struct MemoryListener: callbacks structure for updates to the physical memory map 778 * 779 * Allows a component to adjust to changes in the guest-visible memory map. 780 * Use with memory_listener_register() and memory_listener_unregister(). 781 */ 782 struct MemoryListener { 783 /** 784 * @begin: 785 * 786 * Called at the beginning of an address space update transaction. 787 * Followed by calls to #MemoryListener.region_add(), 788 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 789 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 790 * increasing address order. 791 * 792 * @listener: The #MemoryListener. 793 */ 794 void (*begin)(MemoryListener *listener); 795 796 /** 797 * @commit: 798 * 799 * Called at the end of an address space update transaction, 800 * after the last call to #MemoryListener.region_add(), 801 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 802 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 803 * 804 * @listener: The #MemoryListener. 805 */ 806 void (*commit)(MemoryListener *listener); 807 808 /** 809 * @region_add: 810 * 811 * Called during an address space update transaction, 812 * for a section of the address space that is new in this address space 813 * space since the last transaction. 814 * 815 * @listener: The #MemoryListener. 816 * @section: The new #MemoryRegionSection. 817 */ 818 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 819 820 /** 821 * @region_del: 822 * 823 * Called during an address space update transaction, 824 * for a section of the address space that has disappeared in the address 825 * space since the last transaction. 826 * 827 * @listener: The #MemoryListener. 828 * @section: The old #MemoryRegionSection. 829 */ 830 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 831 832 /** 833 * @region_nop: 834 * 835 * Called during an address space update transaction, 836 * for a section of the address space that is in the same place in the address 837 * space as in the last transaction. 838 * 839 * @listener: The #MemoryListener. 840 * @section: The #MemoryRegionSection. 841 */ 842 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 843 844 /** 845 * @log_start: 846 * 847 * Called during an address space update transaction, after 848 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 849 * #MemoryListener.region_nop(), if dirty memory logging clients have 850 * become active since the last transaction. 851 * 852 * @listener: The #MemoryListener. 853 * @section: The #MemoryRegionSection. 854 * @old: A bitmap of dirty memory logging clients that were active in 855 * the previous transaction. 856 * @new: A bitmap of dirty memory logging clients that are active in 857 * the current transaction. 858 */ 859 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 860 int old, int new); 861 862 /** 863 * @log_stop: 864 * 865 * Called during an address space update transaction, after 866 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 867 * #MemoryListener.region_nop() and possibly after 868 * #MemoryListener.log_start(), if dirty memory logging clients have 869 * become inactive since the last transaction. 870 * 871 * @listener: The #MemoryListener. 872 * @section: The #MemoryRegionSection. 873 * @old: A bitmap of dirty memory logging clients that were active in 874 * the previous transaction. 875 * @new: A bitmap of dirty memory logging clients that are active in 876 * the current transaction. 877 */ 878 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 879 int old, int new); 880 881 /** 882 * @log_sync: 883 * 884 * Called by memory_region_snapshot_and_clear_dirty() and 885 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 886 * copy of the dirty memory bitmap for a #MemoryRegionSection. 887 * 888 * @listener: The #MemoryListener. 889 * @section: The #MemoryRegionSection. 890 */ 891 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 892 893 /** 894 * @log_sync_global: 895 * 896 * This is the global version of @log_sync when the listener does 897 * not have a way to synchronize the log with finer granularity. 898 * When the listener registers with @log_sync_global defined, then 899 * its @log_sync must be NULL. Vice versa. 900 * 901 * @listener: The #MemoryListener. 902 */ 903 void (*log_sync_global)(MemoryListener *listener); 904 905 /** 906 * @log_clear: 907 * 908 * Called before reading the dirty memory bitmap for a 909 * #MemoryRegionSection. 910 * 911 * @listener: The #MemoryListener. 912 * @section: The #MemoryRegionSection. 913 */ 914 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 915 916 /** 917 * @log_global_start: 918 * 919 * Called by memory_global_dirty_log_start(), which 920 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 921 * the address space. #MemoryListener.log_global_start() is also 922 * called when a #MemoryListener is added, if global dirty logging is 923 * active at that time. 924 * 925 * @listener: The #MemoryListener. 926 */ 927 void (*log_global_start)(MemoryListener *listener); 928 929 /** 930 * @log_global_stop: 931 * 932 * Called by memory_global_dirty_log_stop(), which 933 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 934 * the address space. 935 * 936 * @listener: The #MemoryListener. 937 */ 938 void (*log_global_stop)(MemoryListener *listener); 939 940 /** 941 * @log_global_after_sync: 942 * 943 * Called after reading the dirty memory bitmap 944 * for any #MemoryRegionSection. 945 * 946 * @listener: The #MemoryListener. 947 */ 948 void (*log_global_after_sync)(MemoryListener *listener); 949 950 /** 951 * @eventfd_add: 952 * 953 * Called during an address space update transaction, 954 * for a section of the address space that has had a new ioeventfd 955 * registration since the last transaction. 956 * 957 * @listener: The #MemoryListener. 958 * @section: The new #MemoryRegionSection. 959 * @match_data: The @match_data parameter for the new ioeventfd. 960 * @data: The @data parameter for the new ioeventfd. 961 * @e: The #EventNotifier parameter for the new ioeventfd. 962 */ 963 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 964 bool match_data, uint64_t data, EventNotifier *e); 965 966 /** 967 * @eventfd_del: 968 * 969 * Called during an address space update transaction, 970 * for a section of the address space that has dropped an ioeventfd 971 * registration since the last transaction. 972 * 973 * @listener: The #MemoryListener. 974 * @section: The new #MemoryRegionSection. 975 * @match_data: The @match_data parameter for the dropped ioeventfd. 976 * @data: The @data parameter for the dropped ioeventfd. 977 * @e: The #EventNotifier parameter for the dropped ioeventfd. 978 */ 979 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 980 bool match_data, uint64_t data, EventNotifier *e); 981 982 /** 983 * @coalesced_io_add: 984 * 985 * Called during an address space update transaction, 986 * for a section of the address space that has had a new coalesced 987 * MMIO range registration since the last transaction. 988 * 989 * @listener: The #MemoryListener. 990 * @section: The new #MemoryRegionSection. 991 * @addr: The starting address for the coalesced MMIO range. 992 * @len: The length of the coalesced MMIO range. 993 */ 994 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 995 hwaddr addr, hwaddr len); 996 997 /** 998 * @coalesced_io_del: 999 * 1000 * Called during an address space update transaction, 1001 * for a section of the address space that has dropped a coalesced 1002 * MMIO range since the last transaction. 1003 * 1004 * @listener: The #MemoryListener. 1005 * @section: The new #MemoryRegionSection. 1006 * @addr: The starting address for the coalesced MMIO range. 1007 * @len: The length of the coalesced MMIO range. 1008 */ 1009 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1010 hwaddr addr, hwaddr len); 1011 /** 1012 * @priority: 1013 * 1014 * Govern the order in which memory listeners are invoked. Lower priorities 1015 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1016 * or "stop" callbacks. 1017 */ 1018 unsigned priority; 1019 1020 /** 1021 * @name: 1022 * 1023 * Name of the listener. It can be used in contexts where we'd like to 1024 * identify one memory listener with the rest. 1025 */ 1026 const char *name; 1027 1028 /* private: */ 1029 AddressSpace *address_space; 1030 QTAILQ_ENTRY(MemoryListener) link; 1031 QTAILQ_ENTRY(MemoryListener) link_as; 1032 }; 1033 1034 /** 1035 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1036 */ 1037 struct AddressSpace { 1038 /* private: */ 1039 struct rcu_head rcu; 1040 char *name; 1041 MemoryRegion *root; 1042 1043 /* Accessed via RCU. */ 1044 struct FlatView *current_map; 1045 1046 int ioeventfd_nb; 1047 struct MemoryRegionIoeventfd *ioeventfds; 1048 QTAILQ_HEAD(, MemoryListener) listeners; 1049 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1050 }; 1051 1052 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1053 typedef struct FlatRange FlatRange; 1054 1055 /* Flattened global view of current active memory hierarchy. Kept in sorted 1056 * order. 1057 */ 1058 struct FlatView { 1059 struct rcu_head rcu; 1060 unsigned ref; 1061 FlatRange *ranges; 1062 unsigned nr; 1063 unsigned nr_allocated; 1064 struct AddressSpaceDispatch *dispatch; 1065 MemoryRegion *root; 1066 }; 1067 1068 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1069 { 1070 return qatomic_rcu_read(&as->current_map); 1071 } 1072 1073 /** 1074 * typedef flatview_cb: callback for flatview_for_each_range() 1075 * 1076 * @start: start address of the range within the FlatView 1077 * @len: length of the range in bytes 1078 * @mr: MemoryRegion covering this range 1079 * @offset_in_region: offset of the first byte of the range within @mr 1080 * @opaque: data pointer passed to flatview_for_each_range() 1081 * 1082 * Returns: true to stop the iteration, false to keep going. 1083 */ 1084 typedef bool (*flatview_cb)(Int128 start, 1085 Int128 len, 1086 const MemoryRegion *mr, 1087 hwaddr offset_in_region, 1088 void *opaque); 1089 1090 /** 1091 * flatview_for_each_range: Iterate through a FlatView 1092 * @fv: the FlatView to iterate through 1093 * @cb: function to call for each range 1094 * @opaque: opaque data pointer to pass to @cb 1095 * 1096 * A FlatView is made up of a list of non-overlapping ranges, each of 1097 * which is a slice of a MemoryRegion. This function iterates through 1098 * each range in @fv, calling @cb. The callback function can terminate 1099 * iteration early by returning 'true'. 1100 */ 1101 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1102 1103 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1104 MemoryRegionSection *b) 1105 { 1106 return a->mr == b->mr && 1107 a->fv == b->fv && 1108 a->offset_within_region == b->offset_within_region && 1109 a->offset_within_address_space == b->offset_within_address_space && 1110 int128_eq(a->size, b->size) && 1111 a->readonly == b->readonly && 1112 a->nonvolatile == b->nonvolatile; 1113 } 1114 1115 /** 1116 * memory_region_section_new_copy: Copy a memory region section 1117 * 1118 * Allocate memory for a new copy, copy the memory region section, and 1119 * properly take a reference on all relevant members. 1120 * 1121 * @s: the #MemoryRegionSection to copy 1122 */ 1123 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1124 1125 /** 1126 * memory_region_section_new_copy: Free a copied memory region section 1127 * 1128 * Free a copy of a memory section created via memory_region_section_new_copy(). 1129 * properly dropping references on all relevant members. 1130 * 1131 * @s: the #MemoryRegionSection to copy 1132 */ 1133 void memory_region_section_free_copy(MemoryRegionSection *s); 1134 1135 /** 1136 * memory_region_init: Initialize a memory region 1137 * 1138 * The region typically acts as a container for other memory regions. Use 1139 * memory_region_add_subregion() to add subregions. 1140 * 1141 * @mr: the #MemoryRegion to be initialized 1142 * @owner: the object that tracks the region's reference count 1143 * @name: used for debugging; not visible to the user or ABI 1144 * @size: size of the region; any subregions beyond this size will be clipped 1145 */ 1146 void memory_region_init(MemoryRegion *mr, 1147 Object *owner, 1148 const char *name, 1149 uint64_t size); 1150 1151 /** 1152 * memory_region_ref: Add 1 to a memory region's reference count 1153 * 1154 * Whenever memory regions are accessed outside the BQL, they need to be 1155 * preserved against hot-unplug. MemoryRegions actually do not have their 1156 * own reference count; they piggyback on a QOM object, their "owner". 1157 * This function adds a reference to the owner. 1158 * 1159 * All MemoryRegions must have an owner if they can disappear, even if the 1160 * device they belong to operates exclusively under the BQL. This is because 1161 * the region could be returned at any time by memory_region_find, and this 1162 * is usually under guest control. 1163 * 1164 * @mr: the #MemoryRegion 1165 */ 1166 void memory_region_ref(MemoryRegion *mr); 1167 1168 /** 1169 * memory_region_unref: Remove 1 to a memory region's reference count 1170 * 1171 * Whenever memory regions are accessed outside the BQL, they need to be 1172 * preserved against hot-unplug. MemoryRegions actually do not have their 1173 * own reference count; they piggyback on a QOM object, their "owner". 1174 * This function removes a reference to the owner and possibly destroys it. 1175 * 1176 * @mr: the #MemoryRegion 1177 */ 1178 void memory_region_unref(MemoryRegion *mr); 1179 1180 /** 1181 * memory_region_init_io: Initialize an I/O memory region. 1182 * 1183 * Accesses into the region will cause the callbacks in @ops to be called. 1184 * if @size is nonzero, subregions will be clipped to @size. 1185 * 1186 * @mr: the #MemoryRegion to be initialized. 1187 * @owner: the object that tracks the region's reference count 1188 * @ops: a structure containing read and write callbacks to be used when 1189 * I/O is performed on the region. 1190 * @opaque: passed to the read and write callbacks of the @ops structure. 1191 * @name: used for debugging; not visible to the user or ABI 1192 * @size: size of the region. 1193 */ 1194 void memory_region_init_io(MemoryRegion *mr, 1195 Object *owner, 1196 const MemoryRegionOps *ops, 1197 void *opaque, 1198 const char *name, 1199 uint64_t size); 1200 1201 /** 1202 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1203 * into the region will modify memory 1204 * directly. 1205 * 1206 * @mr: the #MemoryRegion to be initialized. 1207 * @owner: the object that tracks the region's reference count 1208 * @name: Region name, becomes part of RAMBlock name used in migration stream 1209 * must be unique within any device 1210 * @size: size of the region. 1211 * @errp: pointer to Error*, to store an error if it happens. 1212 * 1213 * Note that this function does not do anything to cause the data in the 1214 * RAM memory region to be migrated; that is the responsibility of the caller. 1215 */ 1216 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1217 Object *owner, 1218 const char *name, 1219 uint64_t size, 1220 Error **errp); 1221 1222 /** 1223 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1224 * Accesses into the region will 1225 * modify memory directly. 1226 * 1227 * @mr: the #MemoryRegion to be initialized. 1228 * @owner: the object that tracks the region's reference count 1229 * @name: Region name, becomes part of RAMBlock name used in migration stream 1230 * must be unique within any device 1231 * @size: size of the region. 1232 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1233 * @errp: pointer to Error*, to store an error if it happens. 1234 * 1235 * Note that this function does not do anything to cause the data in the 1236 * RAM memory region to be migrated; that is the responsibility of the caller. 1237 */ 1238 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1239 Object *owner, 1240 const char *name, 1241 uint64_t size, 1242 uint32_t ram_flags, 1243 Error **errp); 1244 1245 /** 1246 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 1247 * RAM. Accesses into the region will 1248 * modify memory directly. Only an initial 1249 * portion of this RAM is actually used. 1250 * Changing the size while migrating 1251 * can result in the migration being 1252 * canceled. 1253 * 1254 * @mr: the #MemoryRegion to be initialized. 1255 * @owner: the object that tracks the region's reference count 1256 * @name: Region name, becomes part of RAMBlock name used in migration stream 1257 * must be unique within any device 1258 * @size: used size of the region. 1259 * @max_size: max size of the region. 1260 * @resized: callback to notify owner about used size change. 1261 * @errp: pointer to Error*, to store an error if it happens. 1262 * 1263 * Note that this function does not do anything to cause the data in the 1264 * RAM memory region to be migrated; that is the responsibility of the caller. 1265 */ 1266 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1267 Object *owner, 1268 const char *name, 1269 uint64_t size, 1270 uint64_t max_size, 1271 void (*resized)(const char*, 1272 uint64_t length, 1273 void *host), 1274 Error **errp); 1275 #ifdef CONFIG_POSIX 1276 1277 /** 1278 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1279 * mmap-ed backend. 1280 * 1281 * @mr: the #MemoryRegion to be initialized. 1282 * @owner: the object that tracks the region's reference count 1283 * @name: Region name, becomes part of RAMBlock name used in migration stream 1284 * must be unique within any device 1285 * @size: size of the region. 1286 * @align: alignment of the region base address; if 0, the default alignment 1287 * (getpagesize()) will be used. 1288 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1289 * RAM_NORESERVE, 1290 * @path: the path in which to allocate the RAM. 1291 * @readonly: true to open @path for reading, false for read/write. 1292 * @errp: pointer to Error*, to store an error if it happens. 1293 * 1294 * Note that this function does not do anything to cause the data in the 1295 * RAM memory region to be migrated; that is the responsibility of the caller. 1296 */ 1297 void memory_region_init_ram_from_file(MemoryRegion *mr, 1298 Object *owner, 1299 const char *name, 1300 uint64_t size, 1301 uint64_t align, 1302 uint32_t ram_flags, 1303 const char *path, 1304 bool readonly, 1305 Error **errp); 1306 1307 /** 1308 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1309 * mmap-ed backend. 1310 * 1311 * @mr: the #MemoryRegion to be initialized. 1312 * @owner: the object that tracks the region's reference count 1313 * @name: the name of the region. 1314 * @size: size of the region. 1315 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1316 * RAM_NORESERVE, RAM_PROTECTED. 1317 * @fd: the fd to mmap. 1318 * @offset: offset within the file referenced by fd 1319 * @errp: pointer to Error*, to store an error if it happens. 1320 * 1321 * Note that this function does not do anything to cause the data in the 1322 * RAM memory region to be migrated; that is the responsibility of the caller. 1323 */ 1324 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1325 Object *owner, 1326 const char *name, 1327 uint64_t size, 1328 uint32_t ram_flags, 1329 int fd, 1330 ram_addr_t offset, 1331 Error **errp); 1332 #endif 1333 1334 /** 1335 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1336 * user-provided pointer. Accesses into the 1337 * region will modify memory directly. 1338 * 1339 * @mr: the #MemoryRegion to be initialized. 1340 * @owner: the object that tracks the region's reference count 1341 * @name: Region name, becomes part of RAMBlock name used in migration stream 1342 * must be unique within any device 1343 * @size: size of the region. 1344 * @ptr: memory to be mapped; must contain at least @size bytes. 1345 * 1346 * Note that this function does not do anything to cause the data in the 1347 * RAM memory region to be migrated; that is the responsibility of the caller. 1348 */ 1349 void memory_region_init_ram_ptr(MemoryRegion *mr, 1350 Object *owner, 1351 const char *name, 1352 uint64_t size, 1353 void *ptr); 1354 1355 /** 1356 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1357 * a user-provided pointer. 1358 * 1359 * A RAM device represents a mapping to a physical device, such as to a PCI 1360 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1361 * into the VM address space and access to the region will modify memory 1362 * directly. However, the memory region should not be included in a memory 1363 * dump (device may not be enabled/mapped at the time of the dump), and 1364 * operations incompatible with manipulating MMIO should be avoided. Replaces 1365 * skip_dump flag. 1366 * 1367 * @mr: the #MemoryRegion to be initialized. 1368 * @owner: the object that tracks the region's reference count 1369 * @name: the name of the region. 1370 * @size: size of the region. 1371 * @ptr: memory to be mapped; must contain at least @size bytes. 1372 * 1373 * Note that this function does not do anything to cause the data in the 1374 * RAM memory region to be migrated; that is the responsibility of the caller. 1375 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1376 */ 1377 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1378 Object *owner, 1379 const char *name, 1380 uint64_t size, 1381 void *ptr); 1382 1383 /** 1384 * memory_region_init_alias: Initialize a memory region that aliases all or a 1385 * part of another memory region. 1386 * 1387 * @mr: the #MemoryRegion to be initialized. 1388 * @owner: the object that tracks the region's reference count 1389 * @name: used for debugging; not visible to the user or ABI 1390 * @orig: the region to be referenced; @mr will be equivalent to 1391 * @orig between @offset and @offset + @size - 1. 1392 * @offset: start of the section in @orig to be referenced. 1393 * @size: size of the region. 1394 */ 1395 void memory_region_init_alias(MemoryRegion *mr, 1396 Object *owner, 1397 const char *name, 1398 MemoryRegion *orig, 1399 hwaddr offset, 1400 uint64_t size); 1401 1402 /** 1403 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1404 * 1405 * This has the same effect as calling memory_region_init_ram_nomigrate() 1406 * and then marking the resulting region read-only with 1407 * memory_region_set_readonly(). 1408 * 1409 * Note that this function does not do anything to cause the data in the 1410 * RAM side of the memory region to be migrated; that is the responsibility 1411 * of the caller. 1412 * 1413 * @mr: the #MemoryRegion to be initialized. 1414 * @owner: the object that tracks the region's reference count 1415 * @name: Region name, becomes part of RAMBlock name used in migration stream 1416 * must be unique within any device 1417 * @size: size of the region. 1418 * @errp: pointer to Error*, to store an error if it happens. 1419 */ 1420 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1421 Object *owner, 1422 const char *name, 1423 uint64_t size, 1424 Error **errp); 1425 1426 /** 1427 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1428 * Writes are handled via callbacks. 1429 * 1430 * Note that this function does not do anything to cause the data in the 1431 * RAM side of the memory region to be migrated; that is the responsibility 1432 * of the caller. 1433 * 1434 * @mr: the #MemoryRegion to be initialized. 1435 * @owner: the object that tracks the region's reference count 1436 * @ops: callbacks for write access handling (must not be NULL). 1437 * @opaque: passed to the read and write callbacks of the @ops structure. 1438 * @name: Region name, becomes part of RAMBlock name used in migration stream 1439 * must be unique within any device 1440 * @size: size of the region. 1441 * @errp: pointer to Error*, to store an error if it happens. 1442 */ 1443 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1444 Object *owner, 1445 const MemoryRegionOps *ops, 1446 void *opaque, 1447 const char *name, 1448 uint64_t size, 1449 Error **errp); 1450 1451 /** 1452 * memory_region_init_iommu: Initialize a memory region of a custom type 1453 * that translates addresses 1454 * 1455 * An IOMMU region translates addresses and forwards accesses to a target 1456 * memory region. 1457 * 1458 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1459 * @_iommu_mr should be a pointer to enough memory for an instance of 1460 * that subclass, @instance_size is the size of that subclass, and 1461 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1462 * instance of the subclass, and its methods will then be called to handle 1463 * accesses to the memory region. See the documentation of 1464 * #IOMMUMemoryRegionClass for further details. 1465 * 1466 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1467 * @instance_size: the IOMMUMemoryRegion subclass instance size 1468 * @mrtypename: the type name of the #IOMMUMemoryRegion 1469 * @owner: the object that tracks the region's reference count 1470 * @name: used for debugging; not visible to the user or ABI 1471 * @size: size of the region. 1472 */ 1473 void memory_region_init_iommu(void *_iommu_mr, 1474 size_t instance_size, 1475 const char *mrtypename, 1476 Object *owner, 1477 const char *name, 1478 uint64_t size); 1479 1480 /** 1481 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1482 * region will modify memory directly. 1483 * 1484 * @mr: the #MemoryRegion to be initialized 1485 * @owner: the object that tracks the region's reference count (must be 1486 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1487 * @name: name of the memory region 1488 * @size: size of the region in bytes 1489 * @errp: pointer to Error*, to store an error if it happens. 1490 * 1491 * This function allocates RAM for a board model or device, and 1492 * arranges for it to be migrated (by calling vmstate_register_ram() 1493 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1494 * @owner is NULL). 1495 * 1496 * TODO: Currently we restrict @owner to being either NULL (for 1497 * global RAM regions with no owner) or devices, so that we can 1498 * give the RAM block a unique name for migration purposes. 1499 * We should lift this restriction and allow arbitrary Objects. 1500 * If you pass a non-NULL non-device @owner then we will assert. 1501 */ 1502 void memory_region_init_ram(MemoryRegion *mr, 1503 Object *owner, 1504 const char *name, 1505 uint64_t size, 1506 Error **errp); 1507 1508 /** 1509 * memory_region_init_rom: Initialize a ROM memory region. 1510 * 1511 * This has the same effect as calling memory_region_init_ram() 1512 * and then marking the resulting region read-only with 1513 * memory_region_set_readonly(). This includes arranging for the 1514 * contents to be migrated. 1515 * 1516 * TODO: Currently we restrict @owner to being either NULL (for 1517 * global RAM regions with no owner) or devices, so that we can 1518 * give the RAM block a unique name for migration purposes. 1519 * We should lift this restriction and allow arbitrary Objects. 1520 * If you pass a non-NULL non-device @owner then we will assert. 1521 * 1522 * @mr: the #MemoryRegion to be initialized. 1523 * @owner: the object that tracks the region's reference count 1524 * @name: Region name, becomes part of RAMBlock name used in migration stream 1525 * must be unique within any device 1526 * @size: size of the region. 1527 * @errp: pointer to Error*, to store an error if it happens. 1528 */ 1529 void memory_region_init_rom(MemoryRegion *mr, 1530 Object *owner, 1531 const char *name, 1532 uint64_t size, 1533 Error **errp); 1534 1535 /** 1536 * memory_region_init_rom_device: Initialize a ROM memory region. 1537 * Writes are handled via callbacks. 1538 * 1539 * This function initializes a memory region backed by RAM for reads 1540 * and callbacks for writes, and arranges for the RAM backing to 1541 * be migrated (by calling vmstate_register_ram() 1542 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1543 * @owner is NULL). 1544 * 1545 * TODO: Currently we restrict @owner to being either NULL (for 1546 * global RAM regions with no owner) or devices, so that we can 1547 * give the RAM block a unique name for migration purposes. 1548 * We should lift this restriction and allow arbitrary Objects. 1549 * If you pass a non-NULL non-device @owner then we will assert. 1550 * 1551 * @mr: the #MemoryRegion to be initialized. 1552 * @owner: the object that tracks the region's reference count 1553 * @ops: callbacks for write access handling (must not be NULL). 1554 * @opaque: passed to the read and write callbacks of the @ops structure. 1555 * @name: Region name, becomes part of RAMBlock name used in migration stream 1556 * must be unique within any device 1557 * @size: size of the region. 1558 * @errp: pointer to Error*, to store an error if it happens. 1559 */ 1560 void memory_region_init_rom_device(MemoryRegion *mr, 1561 Object *owner, 1562 const MemoryRegionOps *ops, 1563 void *opaque, 1564 const char *name, 1565 uint64_t size, 1566 Error **errp); 1567 1568 1569 /** 1570 * memory_region_owner: get a memory region's owner. 1571 * 1572 * @mr: the memory region being queried. 1573 */ 1574 Object *memory_region_owner(MemoryRegion *mr); 1575 1576 /** 1577 * memory_region_size: get a memory region's size. 1578 * 1579 * @mr: the memory region being queried. 1580 */ 1581 uint64_t memory_region_size(MemoryRegion *mr); 1582 1583 /** 1584 * memory_region_is_ram: check whether a memory region is random access 1585 * 1586 * Returns %true if a memory region is random access. 1587 * 1588 * @mr: the memory region being queried 1589 */ 1590 static inline bool memory_region_is_ram(MemoryRegion *mr) 1591 { 1592 return mr->ram; 1593 } 1594 1595 /** 1596 * memory_region_is_ram_device: check whether a memory region is a ram device 1597 * 1598 * Returns %true if a memory region is a device backed ram region 1599 * 1600 * @mr: the memory region being queried 1601 */ 1602 bool memory_region_is_ram_device(MemoryRegion *mr); 1603 1604 /** 1605 * memory_region_is_romd: check whether a memory region is in ROMD mode 1606 * 1607 * Returns %true if a memory region is a ROM device and currently set to allow 1608 * direct reads. 1609 * 1610 * @mr: the memory region being queried 1611 */ 1612 static inline bool memory_region_is_romd(MemoryRegion *mr) 1613 { 1614 return mr->rom_device && mr->romd_mode; 1615 } 1616 1617 /** 1618 * memory_region_is_protected: check whether a memory region is protected 1619 * 1620 * Returns %true if a memory region is protected RAM and cannot be accessed 1621 * via standard mechanisms, e.g. DMA. 1622 * 1623 * @mr: the memory region being queried 1624 */ 1625 bool memory_region_is_protected(MemoryRegion *mr); 1626 1627 /** 1628 * memory_region_get_iommu: check whether a memory region is an iommu 1629 * 1630 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1631 * otherwise NULL. 1632 * 1633 * @mr: the memory region being queried 1634 */ 1635 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1636 { 1637 if (mr->alias) { 1638 return memory_region_get_iommu(mr->alias); 1639 } 1640 if (mr->is_iommu) { 1641 return (IOMMUMemoryRegion *) mr; 1642 } 1643 return NULL; 1644 } 1645 1646 /** 1647 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1648 * if an iommu or NULL if not 1649 * 1650 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1651 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1652 * 1653 * @iommu_mr: the memory region being queried 1654 */ 1655 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1656 IOMMUMemoryRegion *iommu_mr) 1657 { 1658 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1659 } 1660 1661 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1662 1663 /** 1664 * memory_region_iommu_get_min_page_size: get minimum supported page size 1665 * for an iommu 1666 * 1667 * Returns minimum supported page size for an iommu. 1668 * 1669 * @iommu_mr: the memory region being queried 1670 */ 1671 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1672 1673 /** 1674 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1675 * 1676 * Note: for any IOMMU implementation, an in-place mapping change 1677 * should be notified with an UNMAP followed by a MAP. 1678 * 1679 * @iommu_mr: the memory region that was changed 1680 * @iommu_idx: the IOMMU index for the translation table which has changed 1681 * @event: TLB event with the new entry in the IOMMU translation table. 1682 * The entry replaces all old entries for the same virtual I/O address 1683 * range. 1684 */ 1685 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1686 int iommu_idx, 1687 IOMMUTLBEvent event); 1688 1689 /** 1690 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1691 * entry to a single notifier 1692 * 1693 * This works just like memory_region_notify_iommu(), but it only 1694 * notifies a specific notifier, not all of them. 1695 * 1696 * @notifier: the notifier to be notified 1697 * @event: TLB event with the new entry in the IOMMU translation table. 1698 * The entry replaces all old entries for the same virtual I/O address 1699 * range. 1700 */ 1701 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1702 IOMMUTLBEvent *event); 1703 1704 /** 1705 * memory_region_register_iommu_notifier: register a notifier for changes to 1706 * IOMMU translation entries. 1707 * 1708 * Returns 0 on success, or a negative errno otherwise. In particular, 1709 * -EINVAL indicates that at least one of the attributes of the notifier 1710 * is not supported (flag/range) by the IOMMU memory region. In case of error 1711 * the error object must be created. 1712 * 1713 * @mr: the memory region to observe 1714 * @n: the IOMMUNotifier to be added; the notify callback receives a 1715 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1716 * ceases to be valid on exit from the notifier. 1717 * @errp: pointer to Error*, to store an error if it happens. 1718 */ 1719 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1720 IOMMUNotifier *n, Error **errp); 1721 1722 /** 1723 * memory_region_iommu_replay: replay existing IOMMU translations to 1724 * a notifier with the minimum page granularity returned by 1725 * mr->iommu_ops->get_page_size(). 1726 * 1727 * Note: this is not related to record-and-replay functionality. 1728 * 1729 * @iommu_mr: the memory region to observe 1730 * @n: the notifier to which to replay iommu mappings 1731 */ 1732 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1733 1734 /** 1735 * memory_region_unregister_iommu_notifier: unregister a notifier for 1736 * changes to IOMMU translation entries. 1737 * 1738 * @mr: the memory region which was observed and for which notity_stopped() 1739 * needs to be called 1740 * @n: the notifier to be removed. 1741 */ 1742 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1743 IOMMUNotifier *n); 1744 1745 /** 1746 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1747 * defined on the IOMMU. 1748 * 1749 * Returns 0 on success, or a negative errno otherwise. In particular, 1750 * -EINVAL indicates that the IOMMU does not support the requested 1751 * attribute. 1752 * 1753 * @iommu_mr: the memory region 1754 * @attr: the requested attribute 1755 * @data: a pointer to the requested attribute data 1756 */ 1757 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1758 enum IOMMUMemoryRegionAttr attr, 1759 void *data); 1760 1761 /** 1762 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1763 * use for translations with the given memory transaction attributes. 1764 * 1765 * @iommu_mr: the memory region 1766 * @attrs: the memory transaction attributes 1767 */ 1768 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1769 MemTxAttrs attrs); 1770 1771 /** 1772 * memory_region_iommu_num_indexes: return the total number of IOMMU 1773 * indexes that this IOMMU supports. 1774 * 1775 * @iommu_mr: the memory region 1776 */ 1777 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1778 1779 /** 1780 * memory_region_iommu_set_page_size_mask: set the supported page 1781 * sizes for a given IOMMU memory region 1782 * 1783 * @iommu_mr: IOMMU memory region 1784 * @page_size_mask: supported page size mask 1785 * @errp: pointer to Error*, to store an error if it happens. 1786 */ 1787 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1788 uint64_t page_size_mask, 1789 Error **errp); 1790 1791 /** 1792 * memory_region_name: get a memory region's name 1793 * 1794 * Returns the string that was used to initialize the memory region. 1795 * 1796 * @mr: the memory region being queried 1797 */ 1798 const char *memory_region_name(const MemoryRegion *mr); 1799 1800 /** 1801 * memory_region_is_logging: return whether a memory region is logging writes 1802 * 1803 * Returns %true if the memory region is logging writes for the given client 1804 * 1805 * @mr: the memory region being queried 1806 * @client: the client being queried 1807 */ 1808 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1809 1810 /** 1811 * memory_region_get_dirty_log_mask: return the clients for which a 1812 * memory region is logging writes. 1813 * 1814 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1815 * are the bit indices. 1816 * 1817 * @mr: the memory region being queried 1818 */ 1819 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1820 1821 /** 1822 * memory_region_is_rom: check whether a memory region is ROM 1823 * 1824 * Returns %true if a memory region is read-only memory. 1825 * 1826 * @mr: the memory region being queried 1827 */ 1828 static inline bool memory_region_is_rom(MemoryRegion *mr) 1829 { 1830 return mr->ram && mr->readonly; 1831 } 1832 1833 /** 1834 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1835 * 1836 * Returns %true is a memory region is non-volatile memory. 1837 * 1838 * @mr: the memory region being queried 1839 */ 1840 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1841 { 1842 return mr->nonvolatile; 1843 } 1844 1845 /** 1846 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1847 * 1848 * Returns a file descriptor backing a file-based RAM memory region, 1849 * or -1 if the region is not a file-based RAM memory region. 1850 * 1851 * @mr: the RAM or alias memory region being queried. 1852 */ 1853 int memory_region_get_fd(MemoryRegion *mr); 1854 1855 /** 1856 * memory_region_from_host: Convert a pointer into a RAM memory region 1857 * and an offset within it. 1858 * 1859 * Given a host pointer inside a RAM memory region (created with 1860 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1861 * the MemoryRegion and the offset within it. 1862 * 1863 * Use with care; by the time this function returns, the returned pointer is 1864 * not protected by RCU anymore. If the caller is not within an RCU critical 1865 * section and does not hold the iothread lock, it must have other means of 1866 * protecting the pointer, such as a reference to the region that includes 1867 * the incoming ram_addr_t. 1868 * 1869 * @ptr: the host pointer to be converted 1870 * @offset: the offset within memory region 1871 */ 1872 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1873 1874 /** 1875 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1876 * 1877 * Returns a host pointer to a RAM memory region (created with 1878 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1879 * 1880 * Use with care; by the time this function returns, the returned pointer is 1881 * not protected by RCU anymore. If the caller is not within an RCU critical 1882 * section and does not hold the iothread lock, it must have other means of 1883 * protecting the pointer, such as a reference to the region that includes 1884 * the incoming ram_addr_t. 1885 * 1886 * @mr: the memory region being queried. 1887 */ 1888 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1889 1890 /* memory_region_ram_resize: Resize a RAM region. 1891 * 1892 * Resizing RAM while migrating can result in the migration being canceled. 1893 * Care has to be taken if the guest might have already detected the memory. 1894 * 1895 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1896 * @newsize: the new size the region 1897 * @errp: pointer to Error*, to store an error if it happens. 1898 */ 1899 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1900 Error **errp); 1901 1902 /** 1903 * memory_region_msync: Synchronize selected address range of 1904 * a memory mapped region 1905 * 1906 * @mr: the memory region to be msync 1907 * @addr: the initial address of the range to be sync 1908 * @size: the size of the range to be sync 1909 */ 1910 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1911 1912 /** 1913 * memory_region_writeback: Trigger cache writeback for 1914 * selected address range 1915 * 1916 * @mr: the memory region to be updated 1917 * @addr: the initial address of the range to be written back 1918 * @size: the size of the range to be written back 1919 */ 1920 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1921 1922 /** 1923 * memory_region_set_log: Turn dirty logging on or off for a region. 1924 * 1925 * Turns dirty logging on or off for a specified client (display, migration). 1926 * Only meaningful for RAM regions. 1927 * 1928 * @mr: the memory region being updated. 1929 * @log: whether dirty logging is to be enabled or disabled. 1930 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1931 */ 1932 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1933 1934 /** 1935 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1936 * 1937 * Marks a range of bytes as dirty, after it has been dirtied outside 1938 * guest code. 1939 * 1940 * @mr: the memory region being dirtied. 1941 * @addr: the address (relative to the start of the region) being dirtied. 1942 * @size: size of the range being dirtied. 1943 */ 1944 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1945 hwaddr size); 1946 1947 /** 1948 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1949 * 1950 * This function is called when the caller wants to clear the remote 1951 * dirty bitmap of a memory range within the memory region. This can 1952 * be used by e.g. KVM to manually clear dirty log when 1953 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1954 * kernel. 1955 * 1956 * @mr: the memory region to clear the dirty log upon 1957 * @start: start address offset within the memory region 1958 * @len: length of the memory region to clear dirty bitmap 1959 */ 1960 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1961 hwaddr len); 1962 1963 /** 1964 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1965 * bitmap and clear it. 1966 * 1967 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1968 * returns the snapshot. The snapshot can then be used to query dirty 1969 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1970 * querying the same page multiple times, which is especially useful for 1971 * display updates where the scanlines often are not page aligned. 1972 * 1973 * The dirty bitmap region which gets copyed into the snapshot (and 1974 * cleared afterwards) can be larger than requested. The boundaries 1975 * are rounded up/down so complete bitmap longs (covering 64 pages on 1976 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1977 * isn't a problem for display updates as the extra pages are outside 1978 * the visible area, and in case the visible area changes a full 1979 * display redraw is due anyway. Should other use cases for this 1980 * function emerge we might have to revisit this implementation 1981 * detail. 1982 * 1983 * Use g_free to release DirtyBitmapSnapshot. 1984 * 1985 * @mr: the memory region being queried. 1986 * @addr: the address (relative to the start of the region) being queried. 1987 * @size: the size of the range being queried. 1988 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1989 */ 1990 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1991 hwaddr addr, 1992 hwaddr size, 1993 unsigned client); 1994 1995 /** 1996 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1997 * in the specified dirty bitmap snapshot. 1998 * 1999 * @mr: the memory region being queried. 2000 * @snap: the dirty bitmap snapshot 2001 * @addr: the address (relative to the start of the region) being queried. 2002 * @size: the size of the range being queried. 2003 */ 2004 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2005 DirtyBitmapSnapshot *snap, 2006 hwaddr addr, hwaddr size); 2007 2008 /** 2009 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2010 * client. 2011 * 2012 * Marks a range of pages as no longer dirty. 2013 * 2014 * @mr: the region being updated. 2015 * @addr: the start of the subrange being cleaned. 2016 * @size: the size of the subrange being cleaned. 2017 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2018 * %DIRTY_MEMORY_VGA. 2019 */ 2020 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2021 hwaddr size, unsigned client); 2022 2023 /** 2024 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2025 * TBs (for self-modifying code). 2026 * 2027 * The MemoryRegionOps->write() callback of a ROM device must use this function 2028 * to mark byte ranges that have been modified internally, such as by directly 2029 * accessing the memory returned by memory_region_get_ram_ptr(). 2030 * 2031 * This function marks the range dirty and invalidates TBs so that TCG can 2032 * detect self-modifying code. 2033 * 2034 * @mr: the region being flushed. 2035 * @addr: the start, relative to the start of the region, of the range being 2036 * flushed. 2037 * @size: the size, in bytes, of the range being flushed. 2038 */ 2039 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2040 2041 /** 2042 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2043 * 2044 * Allows a memory region to be marked as read-only (turning it into a ROM). 2045 * only useful on RAM regions. 2046 * 2047 * @mr: the region being updated. 2048 * @readonly: whether rhe region is to be ROM or RAM. 2049 */ 2050 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2051 2052 /** 2053 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2054 * 2055 * Allows a memory region to be marked as non-volatile. 2056 * only useful on RAM regions. 2057 * 2058 * @mr: the region being updated. 2059 * @nonvolatile: whether rhe region is to be non-volatile. 2060 */ 2061 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2062 2063 /** 2064 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2065 * 2066 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2067 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2068 * device is mapped to guest memory and satisfies read access directly. 2069 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2070 * Writes are always handled by the #MemoryRegion.write function. 2071 * 2072 * @mr: the memory region to be updated 2073 * @romd_mode: %true to put the region into ROMD mode 2074 */ 2075 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2076 2077 /** 2078 * memory_region_set_coalescing: Enable memory coalescing for the region. 2079 * 2080 * Enabled writes to a region to be queued for later processing. MMIO ->write 2081 * callbacks may be delayed until a non-coalesced MMIO is issued. 2082 * Only useful for IO regions. Roughly similar to write-combining hardware. 2083 * 2084 * @mr: the memory region to be write coalesced 2085 */ 2086 void memory_region_set_coalescing(MemoryRegion *mr); 2087 2088 /** 2089 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2090 * a region. 2091 * 2092 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2093 * Multiple calls can be issued coalesced disjoint ranges. 2094 * 2095 * @mr: the memory region to be updated. 2096 * @offset: the start of the range within the region to be coalesced. 2097 * @size: the size of the subrange to be coalesced. 2098 */ 2099 void memory_region_add_coalescing(MemoryRegion *mr, 2100 hwaddr offset, 2101 uint64_t size); 2102 2103 /** 2104 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2105 * 2106 * Disables any coalescing caused by memory_region_set_coalescing() or 2107 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2108 * hardware. 2109 * 2110 * @mr: the memory region to be updated. 2111 */ 2112 void memory_region_clear_coalescing(MemoryRegion *mr); 2113 2114 /** 2115 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2116 * accesses. 2117 * 2118 * Ensure that pending coalesced MMIO request are flushed before the memory 2119 * region is accessed. This property is automatically enabled for all regions 2120 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2121 * 2122 * @mr: the memory region to be updated. 2123 */ 2124 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2125 2126 /** 2127 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2128 * accesses. 2129 * 2130 * Clear the automatic coalesced MMIO flushing enabled via 2131 * memory_region_set_flush_coalesced. Note that this service has no effect on 2132 * memory regions that have MMIO coalescing enabled for themselves. For them, 2133 * automatic flushing will stop once coalescing is disabled. 2134 * 2135 * @mr: the memory region to be updated. 2136 */ 2137 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2138 2139 /** 2140 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2141 * is written to a location. 2142 * 2143 * Marks a word in an IO region (initialized with memory_region_init_io()) 2144 * as a trigger for an eventfd event. The I/O callback will not be called. 2145 * The caller must be prepared to handle failure (that is, take the required 2146 * action if the callback _is_ called). 2147 * 2148 * @mr: the memory region being updated. 2149 * @addr: the address within @mr that is to be monitored 2150 * @size: the size of the access to trigger the eventfd 2151 * @match_data: whether to match against @data, instead of just @addr 2152 * @data: the data to match against the guest write 2153 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2154 **/ 2155 void memory_region_add_eventfd(MemoryRegion *mr, 2156 hwaddr addr, 2157 unsigned size, 2158 bool match_data, 2159 uint64_t data, 2160 EventNotifier *e); 2161 2162 /** 2163 * memory_region_del_eventfd: Cancel an eventfd. 2164 * 2165 * Cancels an eventfd trigger requested by a previous 2166 * memory_region_add_eventfd() call. 2167 * 2168 * @mr: the memory region being updated. 2169 * @addr: the address within @mr that is to be monitored 2170 * @size: the size of the access to trigger the eventfd 2171 * @match_data: whether to match against @data, instead of just @addr 2172 * @data: the data to match against the guest write 2173 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2174 */ 2175 void memory_region_del_eventfd(MemoryRegion *mr, 2176 hwaddr addr, 2177 unsigned size, 2178 bool match_data, 2179 uint64_t data, 2180 EventNotifier *e); 2181 2182 /** 2183 * memory_region_add_subregion: Add a subregion to a container. 2184 * 2185 * Adds a subregion at @offset. The subregion may not overlap with other 2186 * subregions (except for those explicitly marked as overlapping). A region 2187 * may only be added once as a subregion (unless removed with 2188 * memory_region_del_subregion()); use memory_region_init_alias() if you 2189 * want a region to be a subregion in multiple locations. 2190 * 2191 * @mr: the region to contain the new subregion; must be a container 2192 * initialized with memory_region_init(). 2193 * @offset: the offset relative to @mr where @subregion is added. 2194 * @subregion: the subregion to be added. 2195 */ 2196 void memory_region_add_subregion(MemoryRegion *mr, 2197 hwaddr offset, 2198 MemoryRegion *subregion); 2199 /** 2200 * memory_region_add_subregion_overlap: Add a subregion to a container 2201 * with overlap. 2202 * 2203 * Adds a subregion at @offset. The subregion may overlap with other 2204 * subregions. Conflicts are resolved by having a higher @priority hide a 2205 * lower @priority. Subregions without priority are taken as @priority 0. 2206 * A region may only be added once as a subregion (unless removed with 2207 * memory_region_del_subregion()); use memory_region_init_alias() if you 2208 * want a region to be a subregion in multiple locations. 2209 * 2210 * @mr: the region to contain the new subregion; must be a container 2211 * initialized with memory_region_init(). 2212 * @offset: the offset relative to @mr where @subregion is added. 2213 * @subregion: the subregion to be added. 2214 * @priority: used for resolving overlaps; highest priority wins. 2215 */ 2216 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2217 hwaddr offset, 2218 MemoryRegion *subregion, 2219 int priority); 2220 2221 /** 2222 * memory_region_get_ram_addr: Get the ram address associated with a memory 2223 * region 2224 * 2225 * @mr: the region to be queried 2226 */ 2227 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2228 2229 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2230 /** 2231 * memory_region_del_subregion: Remove a subregion. 2232 * 2233 * Removes a subregion from its container. 2234 * 2235 * @mr: the container to be updated. 2236 * @subregion: the region being removed; must be a current subregion of @mr. 2237 */ 2238 void memory_region_del_subregion(MemoryRegion *mr, 2239 MemoryRegion *subregion); 2240 2241 /* 2242 * memory_region_set_enabled: dynamically enable or disable a region 2243 * 2244 * Enables or disables a memory region. A disabled memory region 2245 * ignores all accesses to itself and its subregions. It does not 2246 * obscure sibling subregions with lower priority - it simply behaves as 2247 * if it was removed from the hierarchy. 2248 * 2249 * Regions default to being enabled. 2250 * 2251 * @mr: the region to be updated 2252 * @enabled: whether to enable or disable the region 2253 */ 2254 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2255 2256 /* 2257 * memory_region_set_address: dynamically update the address of a region 2258 * 2259 * Dynamically updates the address of a region, relative to its container. 2260 * May be used on regions are currently part of a memory hierarchy. 2261 * 2262 * @mr: the region to be updated 2263 * @addr: new address, relative to container region 2264 */ 2265 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2266 2267 /* 2268 * memory_region_set_size: dynamically update the size of a region. 2269 * 2270 * Dynamically updates the size of a region. 2271 * 2272 * @mr: the region to be updated 2273 * @size: used size of the region. 2274 */ 2275 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2276 2277 /* 2278 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2279 * 2280 * Dynamically updates the offset into the target region that an alias points 2281 * to, as if the fourth argument to memory_region_init_alias() has changed. 2282 * 2283 * @mr: the #MemoryRegion to be updated; should be an alias. 2284 * @offset: the new offset into the target memory region 2285 */ 2286 void memory_region_set_alias_offset(MemoryRegion *mr, 2287 hwaddr offset); 2288 2289 /** 2290 * memory_region_present: checks if an address relative to a @container 2291 * translates into #MemoryRegion within @container 2292 * 2293 * Answer whether a #MemoryRegion within @container covers the address 2294 * @addr. 2295 * 2296 * @container: a #MemoryRegion within which @addr is a relative address 2297 * @addr: the area within @container to be searched 2298 */ 2299 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2300 2301 /** 2302 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2303 * into another memory region, which does not necessarily imply that it is 2304 * mapped into an address space. 2305 * 2306 * @mr: a #MemoryRegion which should be checked if it's mapped 2307 */ 2308 bool memory_region_is_mapped(MemoryRegion *mr); 2309 2310 /** 2311 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2312 * #MemoryRegion 2313 * 2314 * The #RamDiscardManager cannot change while a memory region is mapped. 2315 * 2316 * @mr: the #MemoryRegion 2317 */ 2318 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2319 2320 /** 2321 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2322 * #RamDiscardManager assigned 2323 * 2324 * @mr: the #MemoryRegion 2325 */ 2326 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2327 { 2328 return !!memory_region_get_ram_discard_manager(mr); 2329 } 2330 2331 /** 2332 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2333 * #MemoryRegion 2334 * 2335 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2336 * that does not cover RAM, or a #MemoryRegion that already has a 2337 * #RamDiscardManager assigned. 2338 * 2339 * @mr: the #MemoryRegion 2340 * @rdm: #RamDiscardManager to set 2341 */ 2342 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2343 RamDiscardManager *rdm); 2344 2345 /** 2346 * memory_region_find: translate an address/size relative to a 2347 * MemoryRegion into a #MemoryRegionSection. 2348 * 2349 * Locates the first #MemoryRegion within @mr that overlaps the range 2350 * given by @addr and @size. 2351 * 2352 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2353 * It will have the following characteristics: 2354 * - @size = 0 iff no overlap was found 2355 * - @mr is non-%NULL iff an overlap was found 2356 * 2357 * Remember that in the return value the @offset_within_region is 2358 * relative to the returned region (in the .@mr field), not to the 2359 * @mr argument. 2360 * 2361 * Similarly, the .@offset_within_address_space is relative to the 2362 * address space that contains both regions, the passed and the 2363 * returned one. However, in the special case where the @mr argument 2364 * has no container (and thus is the root of the address space), the 2365 * following will hold: 2366 * - @offset_within_address_space >= @addr 2367 * - @offset_within_address_space + .@size <= @addr + @size 2368 * 2369 * @mr: a MemoryRegion within which @addr is a relative address 2370 * @addr: start of the area within @as to be searched 2371 * @size: size of the area to be searched 2372 */ 2373 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2374 hwaddr addr, uint64_t size); 2375 2376 /** 2377 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2378 * 2379 * Synchronizes the dirty page log for all address spaces. 2380 */ 2381 void memory_global_dirty_log_sync(void); 2382 2383 /** 2384 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2385 * 2386 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2387 * This function must be called after the dirty log bitmap is cleared, and 2388 * before dirty guest memory pages are read. If you are using 2389 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2390 * care of doing this. 2391 */ 2392 void memory_global_after_dirty_log_sync(void); 2393 2394 /** 2395 * memory_region_transaction_begin: Start a transaction. 2396 * 2397 * During a transaction, changes will be accumulated and made visible 2398 * only when the transaction ends (is committed). 2399 */ 2400 void memory_region_transaction_begin(void); 2401 2402 /** 2403 * memory_region_transaction_commit: Commit a transaction and make changes 2404 * visible to the guest. 2405 */ 2406 void memory_region_transaction_commit(void); 2407 2408 /** 2409 * memory_listener_register: register callbacks to be called when memory 2410 * sections are mapped or unmapped into an address 2411 * space 2412 * 2413 * @listener: an object containing the callbacks to be called 2414 * @filter: if non-%NULL, only regions in this address space will be observed 2415 */ 2416 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2417 2418 /** 2419 * memory_listener_unregister: undo the effect of memory_listener_register() 2420 * 2421 * @listener: an object containing the callbacks to be removed 2422 */ 2423 void memory_listener_unregister(MemoryListener *listener); 2424 2425 /** 2426 * memory_global_dirty_log_start: begin dirty logging for all regions 2427 * 2428 * @flags: purpose of starting dirty log, migration or dirty rate 2429 */ 2430 void memory_global_dirty_log_start(unsigned int flags); 2431 2432 /** 2433 * memory_global_dirty_log_stop: end dirty logging for all regions 2434 * 2435 * @flags: purpose of stopping dirty log, migration or dirty rate 2436 */ 2437 void memory_global_dirty_log_stop(unsigned int flags); 2438 2439 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2440 2441 /** 2442 * memory_region_dispatch_read: perform a read directly to the specified 2443 * MemoryRegion. 2444 * 2445 * @mr: #MemoryRegion to access 2446 * @addr: address within that region 2447 * @pval: pointer to uint64_t which the data is written to 2448 * @op: size, sign, and endianness of the memory operation 2449 * @attrs: memory transaction attributes to use for the access 2450 */ 2451 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2452 hwaddr addr, 2453 uint64_t *pval, 2454 MemOp op, 2455 MemTxAttrs attrs); 2456 /** 2457 * memory_region_dispatch_write: perform a write directly to the specified 2458 * MemoryRegion. 2459 * 2460 * @mr: #MemoryRegion to access 2461 * @addr: address within that region 2462 * @data: data to write 2463 * @op: size, sign, and endianness of the memory operation 2464 * @attrs: memory transaction attributes to use for the access 2465 */ 2466 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2467 hwaddr addr, 2468 uint64_t data, 2469 MemOp op, 2470 MemTxAttrs attrs); 2471 2472 /** 2473 * address_space_init: initializes an address space 2474 * 2475 * @as: an uninitialized #AddressSpace 2476 * @root: a #MemoryRegion that routes addresses for the address space 2477 * @name: an address space name. The name is only used for debugging 2478 * output. 2479 */ 2480 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2481 2482 /** 2483 * address_space_destroy: destroy an address space 2484 * 2485 * Releases all resources associated with an address space. After an address space 2486 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2487 * as well. 2488 * 2489 * @as: address space to be destroyed 2490 */ 2491 void address_space_destroy(AddressSpace *as); 2492 2493 /** 2494 * address_space_remove_listeners: unregister all listeners of an address space 2495 * 2496 * Removes all callbacks previously registered with memory_listener_register() 2497 * for @as. 2498 * 2499 * @as: an initialized #AddressSpace 2500 */ 2501 void address_space_remove_listeners(AddressSpace *as); 2502 2503 /** 2504 * address_space_rw: read from or write to an address space. 2505 * 2506 * Return a MemTxResult indicating whether the operation succeeded 2507 * or failed (eg unassigned memory, device rejected the transaction, 2508 * IOMMU fault). 2509 * 2510 * @as: #AddressSpace to be accessed 2511 * @addr: address within that address space 2512 * @attrs: memory transaction attributes 2513 * @buf: buffer with the data transferred 2514 * @len: the number of bytes to read or write 2515 * @is_write: indicates the transfer direction 2516 */ 2517 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2518 MemTxAttrs attrs, void *buf, 2519 hwaddr len, bool is_write); 2520 2521 /** 2522 * address_space_write: write to address space. 2523 * 2524 * Return a MemTxResult indicating whether the operation succeeded 2525 * or failed (eg unassigned memory, device rejected the transaction, 2526 * IOMMU fault). 2527 * 2528 * @as: #AddressSpace to be accessed 2529 * @addr: address within that address space 2530 * @attrs: memory transaction attributes 2531 * @buf: buffer with the data transferred 2532 * @len: the number of bytes to write 2533 */ 2534 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2535 MemTxAttrs attrs, 2536 const void *buf, hwaddr len); 2537 2538 /** 2539 * address_space_write_rom: write to address space, including ROM. 2540 * 2541 * This function writes to the specified address space, but will 2542 * write data to both ROM and RAM. This is used for non-guest 2543 * writes like writes from the gdb debug stub or initial loading 2544 * of ROM contents. 2545 * 2546 * Note that portions of the write which attempt to write data to 2547 * a device will be silently ignored -- only real RAM and ROM will 2548 * be written to. 2549 * 2550 * Return a MemTxResult indicating whether the operation succeeded 2551 * or failed (eg unassigned memory, device rejected the transaction, 2552 * IOMMU fault). 2553 * 2554 * @as: #AddressSpace to be accessed 2555 * @addr: address within that address space 2556 * @attrs: memory transaction attributes 2557 * @buf: buffer with the data transferred 2558 * @len: the number of bytes to write 2559 */ 2560 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2561 MemTxAttrs attrs, 2562 const void *buf, hwaddr len); 2563 2564 /* address_space_ld*: load from an address space 2565 * address_space_st*: store to an address space 2566 * 2567 * These functions perform a load or store of the byte, word, 2568 * longword or quad to the specified address within the AddressSpace. 2569 * The _le suffixed functions treat the data as little endian; 2570 * _be indicates big endian; no suffix indicates "same endianness 2571 * as guest CPU". 2572 * 2573 * The "guest CPU endianness" accessors are deprecated for use outside 2574 * target-* code; devices should be CPU-agnostic and use either the LE 2575 * or the BE accessors. 2576 * 2577 * @as #AddressSpace to be accessed 2578 * @addr: address within that address space 2579 * @val: data value, for stores 2580 * @attrs: memory transaction attributes 2581 * @result: location to write the success/failure of the transaction; 2582 * if NULL, this information is discarded 2583 */ 2584 2585 #define SUFFIX 2586 #define ARG1 as 2587 #define ARG1_DECL AddressSpace *as 2588 #include "exec/memory_ldst.h.inc" 2589 2590 #define SUFFIX 2591 #define ARG1 as 2592 #define ARG1_DECL AddressSpace *as 2593 #include "exec/memory_ldst_phys.h.inc" 2594 2595 struct MemoryRegionCache { 2596 void *ptr; 2597 hwaddr xlat; 2598 hwaddr len; 2599 FlatView *fv; 2600 MemoryRegionSection mrs; 2601 bool is_write; 2602 }; 2603 2604 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2605 2606 2607 /* address_space_ld*_cached: load from a cached #MemoryRegion 2608 * address_space_st*_cached: store into a cached #MemoryRegion 2609 * 2610 * These functions perform a load or store of the byte, word, 2611 * longword or quad to the specified address. The address is 2612 * a physical address in the AddressSpace, but it must lie within 2613 * a #MemoryRegion that was mapped with address_space_cache_init. 2614 * 2615 * The _le suffixed functions treat the data as little endian; 2616 * _be indicates big endian; no suffix indicates "same endianness 2617 * as guest CPU". 2618 * 2619 * The "guest CPU endianness" accessors are deprecated for use outside 2620 * target-* code; devices should be CPU-agnostic and use either the LE 2621 * or the BE accessors. 2622 * 2623 * @cache: previously initialized #MemoryRegionCache to be accessed 2624 * @addr: address within the address space 2625 * @val: data value, for stores 2626 * @attrs: memory transaction attributes 2627 * @result: location to write the success/failure of the transaction; 2628 * if NULL, this information is discarded 2629 */ 2630 2631 #define SUFFIX _cached_slow 2632 #define ARG1 cache 2633 #define ARG1_DECL MemoryRegionCache *cache 2634 #include "exec/memory_ldst.h.inc" 2635 2636 /* Inline fast path for direct RAM access. */ 2637 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2638 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2639 { 2640 assert(addr < cache->len); 2641 if (likely(cache->ptr)) { 2642 return ldub_p(cache->ptr + addr); 2643 } else { 2644 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2645 } 2646 } 2647 2648 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2649 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2650 { 2651 assert(addr < cache->len); 2652 if (likely(cache->ptr)) { 2653 stb_p(cache->ptr + addr, val); 2654 } else { 2655 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2656 } 2657 } 2658 2659 #define ENDIANNESS _le 2660 #include "exec/memory_ldst_cached.h.inc" 2661 2662 #define ENDIANNESS _be 2663 #include "exec/memory_ldst_cached.h.inc" 2664 2665 #define SUFFIX _cached 2666 #define ARG1 cache 2667 #define ARG1_DECL MemoryRegionCache *cache 2668 #include "exec/memory_ldst_phys.h.inc" 2669 2670 /* address_space_cache_init: prepare for repeated access to a physical 2671 * memory region 2672 * 2673 * @cache: #MemoryRegionCache to be filled 2674 * @as: #AddressSpace to be accessed 2675 * @addr: address within that address space 2676 * @len: length of buffer 2677 * @is_write: indicates the transfer direction 2678 * 2679 * Will only work with RAM, and may map a subset of the requested range by 2680 * returning a value that is less than @len. On failure, return a negative 2681 * errno value. 2682 * 2683 * Because it only works with RAM, this function can be used for 2684 * read-modify-write operations. In this case, is_write should be %true. 2685 * 2686 * Note that addresses passed to the address_space_*_cached functions 2687 * are relative to @addr. 2688 */ 2689 int64_t address_space_cache_init(MemoryRegionCache *cache, 2690 AddressSpace *as, 2691 hwaddr addr, 2692 hwaddr len, 2693 bool is_write); 2694 2695 /** 2696 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2697 * 2698 * @cache: The #MemoryRegionCache to operate on. 2699 * @addr: The first physical address that was written, relative to the 2700 * address that was passed to @address_space_cache_init. 2701 * @access_len: The number of bytes that were written starting at @addr. 2702 */ 2703 void address_space_cache_invalidate(MemoryRegionCache *cache, 2704 hwaddr addr, 2705 hwaddr access_len); 2706 2707 /** 2708 * address_space_cache_destroy: free a #MemoryRegionCache 2709 * 2710 * @cache: The #MemoryRegionCache whose memory should be released. 2711 */ 2712 void address_space_cache_destroy(MemoryRegionCache *cache); 2713 2714 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2715 * entry. Should be called from an RCU critical section. 2716 */ 2717 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2718 bool is_write, MemTxAttrs attrs); 2719 2720 /* address_space_translate: translate an address range into an address space 2721 * into a MemoryRegion and an address range into that section. Should be 2722 * called from an RCU critical section, to avoid that the last reference 2723 * to the returned region disappears after address_space_translate returns. 2724 * 2725 * @fv: #FlatView to be accessed 2726 * @addr: address within that address space 2727 * @xlat: pointer to address within the returned memory region section's 2728 * #MemoryRegion. 2729 * @len: pointer to length 2730 * @is_write: indicates the transfer direction 2731 * @attrs: memory attributes 2732 */ 2733 MemoryRegion *flatview_translate(FlatView *fv, 2734 hwaddr addr, hwaddr *xlat, 2735 hwaddr *len, bool is_write, 2736 MemTxAttrs attrs); 2737 2738 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2739 hwaddr addr, hwaddr *xlat, 2740 hwaddr *len, bool is_write, 2741 MemTxAttrs attrs) 2742 { 2743 return flatview_translate(address_space_to_flatview(as), 2744 addr, xlat, len, is_write, attrs); 2745 } 2746 2747 /* address_space_access_valid: check for validity of accessing an address 2748 * space range 2749 * 2750 * Check whether memory is assigned to the given address space range, and 2751 * access is permitted by any IOMMU regions that are active for the address 2752 * space. 2753 * 2754 * For now, addr and len should be aligned to a page size. This limitation 2755 * will be lifted in the future. 2756 * 2757 * @as: #AddressSpace to be accessed 2758 * @addr: address within that address space 2759 * @len: length of the area to be checked 2760 * @is_write: indicates the transfer direction 2761 * @attrs: memory attributes 2762 */ 2763 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2764 bool is_write, MemTxAttrs attrs); 2765 2766 /* address_space_map: map a physical memory region into a host virtual address 2767 * 2768 * May map a subset of the requested range, given by and returned in @plen. 2769 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2770 * the mapping are exhausted. 2771 * Use only for reads OR writes - not for read-modify-write operations. 2772 * Use cpu_register_map_client() to know when retrying the map operation is 2773 * likely to succeed. 2774 * 2775 * @as: #AddressSpace to be accessed 2776 * @addr: address within that address space 2777 * @plen: pointer to length of buffer; updated on return 2778 * @is_write: indicates the transfer direction 2779 * @attrs: memory attributes 2780 */ 2781 void *address_space_map(AddressSpace *as, hwaddr addr, 2782 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2783 2784 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2785 * 2786 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2787 * the amount of memory that was actually read or written by the caller. 2788 * 2789 * @as: #AddressSpace used 2790 * @buffer: host pointer as returned by address_space_map() 2791 * @len: buffer length as returned by address_space_map() 2792 * @access_len: amount of data actually transferred 2793 * @is_write: indicates the transfer direction 2794 */ 2795 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2796 bool is_write, hwaddr access_len); 2797 2798 2799 /* Internal functions, part of the implementation of address_space_read. */ 2800 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2801 MemTxAttrs attrs, void *buf, hwaddr len); 2802 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2803 MemTxAttrs attrs, void *buf, 2804 hwaddr len, hwaddr addr1, hwaddr l, 2805 MemoryRegion *mr); 2806 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2807 2808 /* Internal functions, part of the implementation of address_space_read_cached 2809 * and address_space_write_cached. */ 2810 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2811 hwaddr addr, void *buf, hwaddr len); 2812 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2813 hwaddr addr, const void *buf, 2814 hwaddr len); 2815 2816 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2817 bool prepare_mmio_access(MemoryRegion *mr); 2818 2819 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2820 { 2821 if (is_write) { 2822 return memory_region_is_ram(mr) && !mr->readonly && 2823 !mr->rom_device && !memory_region_is_ram_device(mr); 2824 } else { 2825 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2826 memory_region_is_romd(mr); 2827 } 2828 } 2829 2830 /** 2831 * address_space_read: read from an address space. 2832 * 2833 * Return a MemTxResult indicating whether the operation succeeded 2834 * or failed (eg unassigned memory, device rejected the transaction, 2835 * IOMMU fault). Called within RCU critical section. 2836 * 2837 * @as: #AddressSpace to be accessed 2838 * @addr: address within that address space 2839 * @attrs: memory transaction attributes 2840 * @buf: buffer with the data transferred 2841 * @len: length of the data transferred 2842 */ 2843 static inline __attribute__((__always_inline__)) 2844 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2845 MemTxAttrs attrs, void *buf, 2846 hwaddr len) 2847 { 2848 MemTxResult result = MEMTX_OK; 2849 hwaddr l, addr1; 2850 void *ptr; 2851 MemoryRegion *mr; 2852 FlatView *fv; 2853 2854 if (__builtin_constant_p(len)) { 2855 if (len) { 2856 RCU_READ_LOCK_GUARD(); 2857 fv = address_space_to_flatview(as); 2858 l = len; 2859 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2860 if (len == l && memory_access_is_direct(mr, false)) { 2861 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2862 memcpy(buf, ptr, len); 2863 } else { 2864 result = flatview_read_continue(fv, addr, attrs, buf, len, 2865 addr1, l, mr); 2866 } 2867 } 2868 } else { 2869 result = address_space_read_full(as, addr, attrs, buf, len); 2870 } 2871 return result; 2872 } 2873 2874 /** 2875 * address_space_read_cached: read from a cached RAM region 2876 * 2877 * @cache: Cached region to be addressed 2878 * @addr: address relative to the base of the RAM region 2879 * @buf: buffer with the data transferred 2880 * @len: length of the data transferred 2881 */ 2882 static inline MemTxResult 2883 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2884 void *buf, hwaddr len) 2885 { 2886 assert(addr < cache->len && len <= cache->len - addr); 2887 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2888 if (likely(cache->ptr)) { 2889 memcpy(buf, cache->ptr + addr, len); 2890 return MEMTX_OK; 2891 } else { 2892 return address_space_read_cached_slow(cache, addr, buf, len); 2893 } 2894 } 2895 2896 /** 2897 * address_space_write_cached: write to a cached RAM region 2898 * 2899 * @cache: Cached region to be addressed 2900 * @addr: address relative to the base of the RAM region 2901 * @buf: buffer with the data transferred 2902 * @len: length of the data transferred 2903 */ 2904 static inline MemTxResult 2905 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2906 const void *buf, hwaddr len) 2907 { 2908 assert(addr < cache->len && len <= cache->len - addr); 2909 if (likely(cache->ptr)) { 2910 memcpy(cache->ptr + addr, buf, len); 2911 return MEMTX_OK; 2912 } else { 2913 return address_space_write_cached_slow(cache, addr, buf, len); 2914 } 2915 } 2916 2917 /** 2918 * address_space_set: Fill address space with a constant byte. 2919 * 2920 * Return a MemTxResult indicating whether the operation succeeded 2921 * or failed (eg unassigned memory, device rejected the transaction, 2922 * IOMMU fault). 2923 * 2924 * @as: #AddressSpace to be accessed 2925 * @addr: address within that address space 2926 * @c: constant byte to fill the memory 2927 * @len: the number of bytes to fill with the constant byte 2928 * @attrs: memory transaction attributes 2929 */ 2930 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2931 uint8_t c, hwaddr len, MemTxAttrs attrs); 2932 2933 #ifdef NEED_CPU_H 2934 /* enum device_endian to MemOp. */ 2935 static inline MemOp devend_memop(enum device_endian end) 2936 { 2937 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2938 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2939 2940 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 2941 /* Swap if non-host endianness or native (target) endianness */ 2942 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2943 #else 2944 const int non_host_endianness = 2945 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2946 2947 /* In this case, native (target) endianness needs no swap. */ 2948 return (end == non_host_endianness) ? MO_BSWAP : 0; 2949 #endif 2950 } 2951 #endif 2952 2953 /* 2954 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2955 * to manage the actual amount of memory consumed by the VM (then, the memory 2956 * provided by RAM blocks might be bigger than the desired memory consumption). 2957 * This *must* be set if: 2958 * - Discarding parts of a RAM blocks does not result in the change being 2959 * reflected in the VM and the pages getting freed. 2960 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2961 * discards blindly. 2962 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2963 * encrypted VMs). 2964 * Technologies that only temporarily pin the current working set of a 2965 * driver are fine, because we don't expect such pages to be discarded 2966 * (esp. based on guest action like balloon inflation). 2967 * 2968 * This is *not* to be used to protect from concurrent discards (esp., 2969 * postcopy). 2970 * 2971 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2972 * discards to work reliably is active. 2973 */ 2974 int ram_block_discard_disable(bool state); 2975 2976 /* 2977 * See ram_block_discard_disable(): only disable uncoordinated discards, 2978 * keeping coordinated discards (via the RamDiscardManager) enabled. 2979 */ 2980 int ram_block_uncoordinated_discard_disable(bool state); 2981 2982 /* 2983 * Inhibit technologies that disable discarding of pages in RAM blocks. 2984 * 2985 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2986 * broken. 2987 */ 2988 int ram_block_discard_require(bool state); 2989 2990 /* 2991 * See ram_block_discard_require(): only inhibit technologies that disable 2992 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 2993 * technologies that only inhibit uncoordinated discards (via the 2994 * RamDiscardManager). 2995 */ 2996 int ram_block_coordinated_discard_require(bool state); 2997 2998 /* 2999 * Test if any discarding of memory in ram blocks is disabled. 3000 */ 3001 bool ram_block_discard_is_disabled(void); 3002 3003 /* 3004 * Test if any discarding of memory in ram blocks is required to work reliably. 3005 */ 3006 bool ram_block_discard_is_required(void); 3007 3008 #endif 3009 3010 #endif 3011