1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 #define MEMORY_REGION(obj) \ 38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 41 #define IOMMU_MEMORY_REGION(obj) \ 42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 43 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 45 TYPE_IOMMU_MEMORY_REGION) 46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 48 TYPE_IOMMU_MEMORY_REGION) 49 50 extern bool global_dirty_log; 51 52 typedef struct MemoryRegionOps MemoryRegionOps; 53 typedef struct MemoryRegionMmio MemoryRegionMmio; 54 55 struct MemoryRegionMmio { 56 CPUReadMemoryFunc *read[3]; 57 CPUWriteMemoryFunc *write[3]; 58 }; 59 60 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 61 62 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 63 typedef enum { 64 IOMMU_NONE = 0, 65 IOMMU_RO = 1, 66 IOMMU_WO = 2, 67 IOMMU_RW = 3, 68 } IOMMUAccessFlags; 69 70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 71 72 struct IOMMUTLBEntry { 73 AddressSpace *target_as; 74 hwaddr iova; 75 hwaddr translated_addr; 76 hwaddr addr_mask; /* 0xfff = 4k translation */ 77 IOMMUAccessFlags perm; 78 }; 79 80 /* 81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 82 * register with one or multiple IOMMU Notifier capability bit(s). 83 */ 84 typedef enum { 85 IOMMU_NOTIFIER_NONE = 0, 86 /* Notify cache invalidations */ 87 IOMMU_NOTIFIER_UNMAP = 0x1, 88 /* Notify entry changes (newly created entries) */ 89 IOMMU_NOTIFIER_MAP = 0x2, 90 } IOMMUNotifierFlag; 91 92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 93 94 struct IOMMUNotifier; 95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 96 IOMMUTLBEntry *data); 97 98 struct IOMMUNotifier { 99 IOMMUNotify notify; 100 IOMMUNotifierFlag notifier_flags; 101 /* Notify for address space range start <= addr <= end */ 102 hwaddr start; 103 hwaddr end; 104 int iommu_idx; 105 QLIST_ENTRY(IOMMUNotifier) node; 106 }; 107 typedef struct IOMMUNotifier IOMMUNotifier; 108 109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 110 #define RAM_PREALLOC (1 << 0) 111 112 /* RAM is mmap-ed with MAP_SHARED */ 113 #define RAM_SHARED (1 << 1) 114 115 /* Only a portion of RAM (used_length) is actually used, and migrated. 116 * This used_length size can change across reboots. 117 */ 118 #define RAM_RESIZEABLE (1 << 2) 119 120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 121 * zero the page and wake waiting processes. 122 * (Set during postcopy) 123 */ 124 #define RAM_UF_ZEROPAGE (1 << 3) 125 126 /* RAM can be migrated */ 127 #define RAM_MIGRATABLE (1 << 4) 128 129 /* RAM is a persistent kind memory */ 130 #define RAM_PMEM (1 << 5) 131 132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 133 IOMMUNotifierFlag flags, 134 hwaddr start, hwaddr end, 135 int iommu_idx) 136 { 137 n->notify = fn; 138 n->notifier_flags = flags; 139 n->start = start; 140 n->end = end; 141 n->iommu_idx = iommu_idx; 142 } 143 144 /* 145 * Memory region callbacks 146 */ 147 struct MemoryRegionOps { 148 /* Read from the memory region. @addr is relative to @mr; @size is 149 * in bytes. */ 150 uint64_t (*read)(void *opaque, 151 hwaddr addr, 152 unsigned size); 153 /* Write to the memory region. @addr is relative to @mr; @size is 154 * in bytes. */ 155 void (*write)(void *opaque, 156 hwaddr addr, 157 uint64_t data, 158 unsigned size); 159 160 MemTxResult (*read_with_attrs)(void *opaque, 161 hwaddr addr, 162 uint64_t *data, 163 unsigned size, 164 MemTxAttrs attrs); 165 MemTxResult (*write_with_attrs)(void *opaque, 166 hwaddr addr, 167 uint64_t data, 168 unsigned size, 169 MemTxAttrs attrs); 170 171 enum device_endian endianness; 172 /* Guest-visible constraints: */ 173 struct { 174 /* If nonzero, specify bounds on access sizes beyond which a machine 175 * check is thrown. 176 */ 177 unsigned min_access_size; 178 unsigned max_access_size; 179 /* If true, unaligned accesses are supported. Otherwise unaligned 180 * accesses throw machine checks. 181 */ 182 bool unaligned; 183 /* 184 * If present, and returns #false, the transaction is not accepted 185 * by the device (and results in machine dependent behaviour such 186 * as a machine check exception). 187 */ 188 bool (*accepts)(void *opaque, hwaddr addr, 189 unsigned size, bool is_write, 190 MemTxAttrs attrs); 191 } valid; 192 /* Internal implementation constraints: */ 193 struct { 194 /* If nonzero, specifies the minimum size implemented. Smaller sizes 195 * will be rounded upwards and a partial result will be returned. 196 */ 197 unsigned min_access_size; 198 /* If nonzero, specifies the maximum size implemented. Larger sizes 199 * will be done as a series of accesses with smaller sizes. 200 */ 201 unsigned max_access_size; 202 /* If true, unaligned accesses are supported. Otherwise all accesses 203 * are converted to (possibly multiple) naturally aligned accesses. 204 */ 205 bool unaligned; 206 } impl; 207 }; 208 209 typedef struct MemoryRegionClass { 210 /* private */ 211 ObjectClass parent_class; 212 } MemoryRegionClass; 213 214 215 enum IOMMUMemoryRegionAttr { 216 IOMMU_ATTR_SPAPR_TCE_FD 217 }; 218 219 /** 220 * IOMMUMemoryRegionClass: 221 * 222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 223 * and provide an implementation of at least the @translate method here 224 * to handle requests to the memory region. Other methods are optional. 225 * 226 * The IOMMU implementation must use the IOMMU notifier infrastructure 227 * to report whenever mappings are changed, by calling 228 * memory_region_notify_iommu() (or, if necessary, by calling 229 * memory_region_notify_one() for each registered notifier). 230 * 231 * Conceptually an IOMMU provides a mapping from input address 232 * to an output TLB entry. If the IOMMU is aware of memory transaction 233 * attributes and the output TLB entry depends on the transaction 234 * attributes, we represent this using IOMMU indexes. Each index 235 * selects a particular translation table that the IOMMU has: 236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 237 * @translate takes an input address and an IOMMU index 238 * and the mapping returned can only depend on the input address and the 239 * IOMMU index. 240 * 241 * Most IOMMUs don't care about the transaction attributes and support 242 * only a single IOMMU index. A more complex IOMMU might have one index 243 * for secure transactions and one for non-secure transactions. 244 */ 245 typedef struct IOMMUMemoryRegionClass { 246 /* private */ 247 MemoryRegionClass parent_class; 248 249 /* 250 * Return a TLB entry that contains a given address. 251 * 252 * The IOMMUAccessFlags indicated via @flag are optional and may 253 * be specified as IOMMU_NONE to indicate that the caller needs 254 * the full translation information for both reads and writes. If 255 * the access flags are specified then the IOMMU implementation 256 * may use this as an optimization, to stop doing a page table 257 * walk as soon as it knows that the requested permissions are not 258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 259 * full page table walk and report the permissions in the returned 260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 261 * return different mappings for reads and writes.) 262 * 263 * The returned information remains valid while the caller is 264 * holding the big QEMU lock or is inside an RCU critical section; 265 * if the caller wishes to cache the mapping beyond that it must 266 * register an IOMMU notifier so it can invalidate its cached 267 * information when the IOMMU mapping changes. 268 * 269 * @iommu: the IOMMUMemoryRegion 270 * @hwaddr: address to be translated within the memory region 271 * @flag: requested access permissions 272 * @iommu_idx: IOMMU index for the translation 273 */ 274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 275 IOMMUAccessFlags flag, int iommu_idx); 276 /* Returns minimum supported page size in bytes. 277 * If this method is not provided then the minimum is assumed to 278 * be TARGET_PAGE_SIZE. 279 * 280 * @iommu: the IOMMUMemoryRegion 281 */ 282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 283 /* Called when IOMMU Notifier flag changes (ie when the set of 284 * events which IOMMU users are requesting notification for changes). 285 * Optional method -- need not be provided if the IOMMU does not 286 * need to know exactly which events must be notified. 287 * 288 * @iommu: the IOMMUMemoryRegion 289 * @old_flags: events which previously needed to be notified 290 * @new_flags: events which now need to be notified 291 * 292 * Returns 0 on success, or a negative errno; in particular 293 * returns -EINVAL if the new flag bitmap is not supported by the 294 * IOMMU memory region. In case of failure, the error object 295 * must be created 296 */ 297 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 298 IOMMUNotifierFlag old_flags, 299 IOMMUNotifierFlag new_flags, 300 Error **errp); 301 /* Called to handle memory_region_iommu_replay(). 302 * 303 * The default implementation of memory_region_iommu_replay() is to 304 * call the IOMMU translate method for every page in the address space 305 * with flag == IOMMU_NONE and then call the notifier if translate 306 * returns a valid mapping. If this method is implemented then it 307 * overrides the default behaviour, and must provide the full semantics 308 * of memory_region_iommu_replay(), by calling @notifier for every 309 * translation present in the IOMMU. 310 * 311 * Optional method -- an IOMMU only needs to provide this method 312 * if the default is inefficient or produces undesirable side effects. 313 * 314 * Note: this is not related to record-and-replay functionality. 315 */ 316 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 317 318 /* Get IOMMU misc attributes. This is an optional method that 319 * can be used to allow users of the IOMMU to get implementation-specific 320 * information. The IOMMU implements this method to handle calls 321 * by IOMMU users to memory_region_iommu_get_attr() by filling in 322 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 323 * the IOMMU supports. If the method is unimplemented then 324 * memory_region_iommu_get_attr() will always return -EINVAL. 325 * 326 * @iommu: the IOMMUMemoryRegion 327 * @attr: attribute being queried 328 * @data: memory to fill in with the attribute data 329 * 330 * Returns 0 on success, or a negative errno; in particular 331 * returns -EINVAL for unrecognized or unimplemented attribute types. 332 */ 333 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 334 void *data); 335 336 /* Return the IOMMU index to use for a given set of transaction attributes. 337 * 338 * Optional method: if an IOMMU only supports a single IOMMU index then 339 * the default implementation of memory_region_iommu_attrs_to_index() 340 * will return 0. 341 * 342 * The indexes supported by an IOMMU must be contiguous, starting at 0. 343 * 344 * @iommu: the IOMMUMemoryRegion 345 * @attrs: memory transaction attributes 346 */ 347 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 348 349 /* Return the number of IOMMU indexes this IOMMU supports. 350 * 351 * Optional method: if this method is not provided, then 352 * memory_region_iommu_num_indexes() will return 1, indicating that 353 * only a single IOMMU index is supported. 354 * 355 * @iommu: the IOMMUMemoryRegion 356 */ 357 int (*num_indexes)(IOMMUMemoryRegion *iommu); 358 } IOMMUMemoryRegionClass; 359 360 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 361 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 362 363 struct MemoryRegion { 364 Object parent_obj; 365 366 /* All fields are private - violators will be prosecuted */ 367 368 /* The following fields should fit in a cache line */ 369 bool romd_mode; 370 bool ram; 371 bool subpage; 372 bool readonly; /* For RAM regions */ 373 bool nonvolatile; 374 bool rom_device; 375 bool flush_coalesced_mmio; 376 bool global_locking; 377 uint8_t dirty_log_mask; 378 bool is_iommu; 379 RAMBlock *ram_block; 380 Object *owner; 381 382 const MemoryRegionOps *ops; 383 void *opaque; 384 MemoryRegion *container; 385 Int128 size; 386 hwaddr addr; 387 void (*destructor)(MemoryRegion *mr); 388 uint64_t align; 389 bool terminates; 390 bool ram_device; 391 bool enabled; 392 bool warning_printed; /* For reservations */ 393 uint8_t vga_logging_count; 394 MemoryRegion *alias; 395 hwaddr alias_offset; 396 int32_t priority; 397 QTAILQ_HEAD(, MemoryRegion) subregions; 398 QTAILQ_ENTRY(MemoryRegion) subregions_link; 399 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 400 const char *name; 401 unsigned ioeventfd_nb; 402 MemoryRegionIoeventfd *ioeventfds; 403 }; 404 405 struct IOMMUMemoryRegion { 406 MemoryRegion parent_obj; 407 408 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 409 IOMMUNotifierFlag iommu_notify_flags; 410 }; 411 412 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 413 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 414 415 /** 416 * MemoryListener: callbacks structure for updates to the physical memory map 417 * 418 * Allows a component to adjust to changes in the guest-visible memory map. 419 * Use with memory_listener_register() and memory_listener_unregister(). 420 */ 421 struct MemoryListener { 422 void (*begin)(MemoryListener *listener); 423 void (*commit)(MemoryListener *listener); 424 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 425 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 426 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 427 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 428 int old, int new); 429 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 430 int old, int new); 431 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 432 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 433 void (*log_global_start)(MemoryListener *listener); 434 void (*log_global_stop)(MemoryListener *listener); 435 void (*log_global_after_sync)(MemoryListener *listener); 436 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 437 bool match_data, uint64_t data, EventNotifier *e); 438 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 439 bool match_data, uint64_t data, EventNotifier *e); 440 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 441 hwaddr addr, hwaddr len); 442 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 443 hwaddr addr, hwaddr len); 444 /* Lower = earlier (during add), later (during del) */ 445 unsigned priority; 446 AddressSpace *address_space; 447 QTAILQ_ENTRY(MemoryListener) link; 448 QTAILQ_ENTRY(MemoryListener) link_as; 449 }; 450 451 /** 452 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 453 */ 454 struct AddressSpace { 455 /* All fields are private. */ 456 struct rcu_head rcu; 457 char *name; 458 MemoryRegion *root; 459 460 /* Accessed via RCU. */ 461 struct FlatView *current_map; 462 463 int ioeventfd_nb; 464 struct MemoryRegionIoeventfd *ioeventfds; 465 QTAILQ_HEAD(, MemoryListener) listeners; 466 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 467 }; 468 469 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 470 typedef struct FlatRange FlatRange; 471 472 /* Flattened global view of current active memory hierarchy. Kept in sorted 473 * order. 474 */ 475 struct FlatView { 476 struct rcu_head rcu; 477 unsigned ref; 478 FlatRange *ranges; 479 unsigned nr; 480 unsigned nr_allocated; 481 struct AddressSpaceDispatch *dispatch; 482 MemoryRegion *root; 483 }; 484 485 static inline FlatView *address_space_to_flatview(AddressSpace *as) 486 { 487 return atomic_rcu_read(&as->current_map); 488 } 489 490 491 /** 492 * MemoryRegionSection: describes a fragment of a #MemoryRegion 493 * 494 * @mr: the region, or %NULL if empty 495 * @fv: the flat view of the address space the region is mapped in 496 * @offset_within_region: the beginning of the section, relative to @mr's start 497 * @size: the size of the section; will not exceed @mr's boundaries 498 * @offset_within_address_space: the address of the first byte of the section 499 * relative to the region's address space 500 * @readonly: writes to this section are ignored 501 * @nonvolatile: this section is non-volatile 502 */ 503 struct MemoryRegionSection { 504 Int128 size; 505 MemoryRegion *mr; 506 FlatView *fv; 507 hwaddr offset_within_region; 508 hwaddr offset_within_address_space; 509 bool readonly; 510 bool nonvolatile; 511 }; 512 513 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 514 MemoryRegionSection *b) 515 { 516 return a->mr == b->mr && 517 a->fv == b->fv && 518 a->offset_within_region == b->offset_within_region && 519 a->offset_within_address_space == b->offset_within_address_space && 520 int128_eq(a->size, b->size) && 521 a->readonly == b->readonly && 522 a->nonvolatile == b->nonvolatile; 523 } 524 525 /** 526 * memory_region_init: Initialize a memory region 527 * 528 * The region typically acts as a container for other memory regions. Use 529 * memory_region_add_subregion() to add subregions. 530 * 531 * @mr: the #MemoryRegion to be initialized 532 * @owner: the object that tracks the region's reference count 533 * @name: used for debugging; not visible to the user or ABI 534 * @size: size of the region; any subregions beyond this size will be clipped 535 */ 536 void memory_region_init(MemoryRegion *mr, 537 struct Object *owner, 538 const char *name, 539 uint64_t size); 540 541 /** 542 * memory_region_ref: Add 1 to a memory region's reference count 543 * 544 * Whenever memory regions are accessed outside the BQL, they need to be 545 * preserved against hot-unplug. MemoryRegions actually do not have their 546 * own reference count; they piggyback on a QOM object, their "owner". 547 * This function adds a reference to the owner. 548 * 549 * All MemoryRegions must have an owner if they can disappear, even if the 550 * device they belong to operates exclusively under the BQL. This is because 551 * the region could be returned at any time by memory_region_find, and this 552 * is usually under guest control. 553 * 554 * @mr: the #MemoryRegion 555 */ 556 void memory_region_ref(MemoryRegion *mr); 557 558 /** 559 * memory_region_unref: Remove 1 to a memory region's reference count 560 * 561 * Whenever memory regions are accessed outside the BQL, they need to be 562 * preserved against hot-unplug. MemoryRegions actually do not have their 563 * own reference count; they piggyback on a QOM object, their "owner". 564 * This function removes a reference to the owner and possibly destroys it. 565 * 566 * @mr: the #MemoryRegion 567 */ 568 void memory_region_unref(MemoryRegion *mr); 569 570 /** 571 * memory_region_init_io: Initialize an I/O memory region. 572 * 573 * Accesses into the region will cause the callbacks in @ops to be called. 574 * if @size is nonzero, subregions will be clipped to @size. 575 * 576 * @mr: the #MemoryRegion to be initialized. 577 * @owner: the object that tracks the region's reference count 578 * @ops: a structure containing read and write callbacks to be used when 579 * I/O is performed on the region. 580 * @opaque: passed to the read and write callbacks of the @ops structure. 581 * @name: used for debugging; not visible to the user or ABI 582 * @size: size of the region. 583 */ 584 void memory_region_init_io(MemoryRegion *mr, 585 struct Object *owner, 586 const MemoryRegionOps *ops, 587 void *opaque, 588 const char *name, 589 uint64_t size); 590 591 /** 592 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 593 * into the region will modify memory 594 * directly. 595 * 596 * @mr: the #MemoryRegion to be initialized. 597 * @owner: the object that tracks the region's reference count 598 * @name: Region name, becomes part of RAMBlock name used in migration stream 599 * must be unique within any device 600 * @size: size of the region. 601 * @errp: pointer to Error*, to store an error if it happens. 602 * 603 * Note that this function does not do anything to cause the data in the 604 * RAM memory region to be migrated; that is the responsibility of the caller. 605 */ 606 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 607 struct Object *owner, 608 const char *name, 609 uint64_t size, 610 Error **errp); 611 612 /** 613 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 614 * Accesses into the region will 615 * modify memory directly. 616 * 617 * @mr: the #MemoryRegion to be initialized. 618 * @owner: the object that tracks the region's reference count 619 * @name: Region name, becomes part of RAMBlock name used in migration stream 620 * must be unique within any device 621 * @size: size of the region. 622 * @share: allow remapping RAM to different addresses 623 * @errp: pointer to Error*, to store an error if it happens. 624 * 625 * Note that this function is similar to memory_region_init_ram_nomigrate. 626 * The only difference is part of the RAM region can be remapped. 627 */ 628 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 629 struct Object *owner, 630 const char *name, 631 uint64_t size, 632 bool share, 633 Error **errp); 634 635 /** 636 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 637 * RAM. Accesses into the region will 638 * modify memory directly. Only an initial 639 * portion of this RAM is actually used. 640 * The used size can change across reboots. 641 * 642 * @mr: the #MemoryRegion to be initialized. 643 * @owner: the object that tracks the region's reference count 644 * @name: Region name, becomes part of RAMBlock name used in migration stream 645 * must be unique within any device 646 * @size: used size of the region. 647 * @max_size: max size of the region. 648 * @resized: callback to notify owner about used size change. 649 * @errp: pointer to Error*, to store an error if it happens. 650 * 651 * Note that this function does not do anything to cause the data in the 652 * RAM memory region to be migrated; that is the responsibility of the caller. 653 */ 654 void memory_region_init_resizeable_ram(MemoryRegion *mr, 655 struct Object *owner, 656 const char *name, 657 uint64_t size, 658 uint64_t max_size, 659 void (*resized)(const char*, 660 uint64_t length, 661 void *host), 662 Error **errp); 663 #ifdef CONFIG_POSIX 664 665 /** 666 * memory_region_init_ram_from_file: Initialize RAM memory region with a 667 * mmap-ed backend. 668 * 669 * @mr: the #MemoryRegion to be initialized. 670 * @owner: the object that tracks the region's reference count 671 * @name: Region name, becomes part of RAMBlock name used in migration stream 672 * must be unique within any device 673 * @size: size of the region. 674 * @align: alignment of the region base address; if 0, the default alignment 675 * (getpagesize()) will be used. 676 * @ram_flags: Memory region features: 677 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 678 * - RAM_PMEM: the memory is persistent memory 679 * Other bits are ignored now. 680 * @path: the path in which to allocate the RAM. 681 * @errp: pointer to Error*, to store an error if it happens. 682 * 683 * Note that this function does not do anything to cause the data in the 684 * RAM memory region to be migrated; that is the responsibility of the caller. 685 */ 686 void memory_region_init_ram_from_file(MemoryRegion *mr, 687 struct Object *owner, 688 const char *name, 689 uint64_t size, 690 uint64_t align, 691 uint32_t ram_flags, 692 const char *path, 693 Error **errp); 694 695 /** 696 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 697 * mmap-ed backend. 698 * 699 * @mr: the #MemoryRegion to be initialized. 700 * @owner: the object that tracks the region's reference count 701 * @name: the name of the region. 702 * @size: size of the region. 703 * @share: %true if memory must be mmaped with the MAP_SHARED flag 704 * @fd: the fd to mmap. 705 * @errp: pointer to Error*, to store an error if it happens. 706 * 707 * Note that this function does not do anything to cause the data in the 708 * RAM memory region to be migrated; that is the responsibility of the caller. 709 */ 710 void memory_region_init_ram_from_fd(MemoryRegion *mr, 711 struct Object *owner, 712 const char *name, 713 uint64_t size, 714 bool share, 715 int fd, 716 Error **errp); 717 #endif 718 719 /** 720 * memory_region_init_ram_ptr: Initialize RAM memory region from a 721 * user-provided pointer. Accesses into the 722 * region will modify memory directly. 723 * 724 * @mr: the #MemoryRegion to be initialized. 725 * @owner: the object that tracks the region's reference count 726 * @name: Region name, becomes part of RAMBlock name used in migration stream 727 * must be unique within any device 728 * @size: size of the region. 729 * @ptr: memory to be mapped; must contain at least @size bytes. 730 * 731 * Note that this function does not do anything to cause the data in the 732 * RAM memory region to be migrated; that is the responsibility of the caller. 733 */ 734 void memory_region_init_ram_ptr(MemoryRegion *mr, 735 struct Object *owner, 736 const char *name, 737 uint64_t size, 738 void *ptr); 739 740 /** 741 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 742 * a user-provided pointer. 743 * 744 * A RAM device represents a mapping to a physical device, such as to a PCI 745 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 746 * into the VM address space and access to the region will modify memory 747 * directly. However, the memory region should not be included in a memory 748 * dump (device may not be enabled/mapped at the time of the dump), and 749 * operations incompatible with manipulating MMIO should be avoided. Replaces 750 * skip_dump flag. 751 * 752 * @mr: the #MemoryRegion to be initialized. 753 * @owner: the object that tracks the region's reference count 754 * @name: the name of the region. 755 * @size: size of the region. 756 * @ptr: memory to be mapped; must contain at least @size bytes. 757 * 758 * Note that this function does not do anything to cause the data in the 759 * RAM memory region to be migrated; that is the responsibility of the caller. 760 * (For RAM device memory regions, migrating the contents rarely makes sense.) 761 */ 762 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 763 struct Object *owner, 764 const char *name, 765 uint64_t size, 766 void *ptr); 767 768 /** 769 * memory_region_init_alias: Initialize a memory region that aliases all or a 770 * part of another memory region. 771 * 772 * @mr: the #MemoryRegion to be initialized. 773 * @owner: the object that tracks the region's reference count 774 * @name: used for debugging; not visible to the user or ABI 775 * @orig: the region to be referenced; @mr will be equivalent to 776 * @orig between @offset and @offset + @size - 1. 777 * @offset: start of the section in @orig to be referenced. 778 * @size: size of the region. 779 */ 780 void memory_region_init_alias(MemoryRegion *mr, 781 struct Object *owner, 782 const char *name, 783 MemoryRegion *orig, 784 hwaddr offset, 785 uint64_t size); 786 787 /** 788 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 789 * 790 * This has the same effect as calling memory_region_init_ram_nomigrate() 791 * and then marking the resulting region read-only with 792 * memory_region_set_readonly(). 793 * 794 * Note that this function does not do anything to cause the data in the 795 * RAM side of the memory region to be migrated; that is the responsibility 796 * of the caller. 797 * 798 * @mr: the #MemoryRegion to be initialized. 799 * @owner: the object that tracks the region's reference count 800 * @name: Region name, becomes part of RAMBlock name used in migration stream 801 * must be unique within any device 802 * @size: size of the region. 803 * @errp: pointer to Error*, to store an error if it happens. 804 */ 805 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 806 struct Object *owner, 807 const char *name, 808 uint64_t size, 809 Error **errp); 810 811 /** 812 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 813 * Writes are handled via callbacks. 814 * 815 * Note that this function does not do anything to cause the data in the 816 * RAM side of the memory region to be migrated; that is the responsibility 817 * of the caller. 818 * 819 * @mr: the #MemoryRegion to be initialized. 820 * @owner: the object that tracks the region's reference count 821 * @ops: callbacks for write access handling (must not be NULL). 822 * @opaque: passed to the read and write callbacks of the @ops structure. 823 * @name: Region name, becomes part of RAMBlock name used in migration stream 824 * must be unique within any device 825 * @size: size of the region. 826 * @errp: pointer to Error*, to store an error if it happens. 827 */ 828 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 829 struct Object *owner, 830 const MemoryRegionOps *ops, 831 void *opaque, 832 const char *name, 833 uint64_t size, 834 Error **errp); 835 836 /** 837 * memory_region_init_iommu: Initialize a memory region of a custom type 838 * that translates addresses 839 * 840 * An IOMMU region translates addresses and forwards accesses to a target 841 * memory region. 842 * 843 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 844 * @_iommu_mr should be a pointer to enough memory for an instance of 845 * that subclass, @instance_size is the size of that subclass, and 846 * @mrtypename is its name. This function will initialize @_iommu_mr as an 847 * instance of the subclass, and its methods will then be called to handle 848 * accesses to the memory region. See the documentation of 849 * #IOMMUMemoryRegionClass for further details. 850 * 851 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 852 * @instance_size: the IOMMUMemoryRegion subclass instance size 853 * @mrtypename: the type name of the #IOMMUMemoryRegion 854 * @owner: the object that tracks the region's reference count 855 * @name: used for debugging; not visible to the user or ABI 856 * @size: size of the region. 857 */ 858 void memory_region_init_iommu(void *_iommu_mr, 859 size_t instance_size, 860 const char *mrtypename, 861 Object *owner, 862 const char *name, 863 uint64_t size); 864 865 /** 866 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 867 * region will modify memory directly. 868 * 869 * @mr: the #MemoryRegion to be initialized 870 * @owner: the object that tracks the region's reference count (must be 871 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 872 * @name: name of the memory region 873 * @size: size of the region in bytes 874 * @errp: pointer to Error*, to store an error if it happens. 875 * 876 * This function allocates RAM for a board model or device, and 877 * arranges for it to be migrated (by calling vmstate_register_ram() 878 * if @owner is a DeviceState, or vmstate_register_ram_global() if 879 * @owner is NULL). 880 * 881 * TODO: Currently we restrict @owner to being either NULL (for 882 * global RAM regions with no owner) or devices, so that we can 883 * give the RAM block a unique name for migration purposes. 884 * We should lift this restriction and allow arbitrary Objects. 885 * If you pass a non-NULL non-device @owner then we will assert. 886 */ 887 void memory_region_init_ram(MemoryRegion *mr, 888 struct Object *owner, 889 const char *name, 890 uint64_t size, 891 Error **errp); 892 893 /** 894 * memory_region_init_rom: Initialize a ROM memory region. 895 * 896 * This has the same effect as calling memory_region_init_ram() 897 * and then marking the resulting region read-only with 898 * memory_region_set_readonly(). This includes arranging for the 899 * contents to be migrated. 900 * 901 * TODO: Currently we restrict @owner to being either NULL (for 902 * global RAM regions with no owner) or devices, so that we can 903 * give the RAM block a unique name for migration purposes. 904 * We should lift this restriction and allow arbitrary Objects. 905 * If you pass a non-NULL non-device @owner then we will assert. 906 * 907 * @mr: the #MemoryRegion to be initialized. 908 * @owner: the object that tracks the region's reference count 909 * @name: Region name, becomes part of RAMBlock name used in migration stream 910 * must be unique within any device 911 * @size: size of the region. 912 * @errp: pointer to Error*, to store an error if it happens. 913 */ 914 void memory_region_init_rom(MemoryRegion *mr, 915 struct Object *owner, 916 const char *name, 917 uint64_t size, 918 Error **errp); 919 920 /** 921 * memory_region_init_rom_device: Initialize a ROM memory region. 922 * Writes are handled via callbacks. 923 * 924 * This function initializes a memory region backed by RAM for reads 925 * and callbacks for writes, and arranges for the RAM backing to 926 * be migrated (by calling vmstate_register_ram() 927 * if @owner is a DeviceState, or vmstate_register_ram_global() if 928 * @owner is NULL). 929 * 930 * TODO: Currently we restrict @owner to being either NULL (for 931 * global RAM regions with no owner) or devices, so that we can 932 * give the RAM block a unique name for migration purposes. 933 * We should lift this restriction and allow arbitrary Objects. 934 * If you pass a non-NULL non-device @owner then we will assert. 935 * 936 * @mr: the #MemoryRegion to be initialized. 937 * @owner: the object that tracks the region's reference count 938 * @ops: callbacks for write access handling (must not be NULL). 939 * @name: Region name, becomes part of RAMBlock name used in migration stream 940 * must be unique within any device 941 * @size: size of the region. 942 * @errp: pointer to Error*, to store an error if it happens. 943 */ 944 void memory_region_init_rom_device(MemoryRegion *mr, 945 struct Object *owner, 946 const MemoryRegionOps *ops, 947 void *opaque, 948 const char *name, 949 uint64_t size, 950 Error **errp); 951 952 953 /** 954 * memory_region_owner: get a memory region's owner. 955 * 956 * @mr: the memory region being queried. 957 */ 958 struct Object *memory_region_owner(MemoryRegion *mr); 959 960 /** 961 * memory_region_size: get a memory region's size. 962 * 963 * @mr: the memory region being queried. 964 */ 965 uint64_t memory_region_size(MemoryRegion *mr); 966 967 /** 968 * memory_region_is_ram: check whether a memory region is random access 969 * 970 * Returns %true if a memory region is random access. 971 * 972 * @mr: the memory region being queried 973 */ 974 static inline bool memory_region_is_ram(MemoryRegion *mr) 975 { 976 return mr->ram; 977 } 978 979 /** 980 * memory_region_is_ram_device: check whether a memory region is a ram device 981 * 982 * Returns %true if a memory region is a device backed ram region 983 * 984 * @mr: the memory region being queried 985 */ 986 bool memory_region_is_ram_device(MemoryRegion *mr); 987 988 /** 989 * memory_region_is_romd: check whether a memory region is in ROMD mode 990 * 991 * Returns %true if a memory region is a ROM device and currently set to allow 992 * direct reads. 993 * 994 * @mr: the memory region being queried 995 */ 996 static inline bool memory_region_is_romd(MemoryRegion *mr) 997 { 998 return mr->rom_device && mr->romd_mode; 999 } 1000 1001 /** 1002 * memory_region_get_iommu: check whether a memory region is an iommu 1003 * 1004 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1005 * otherwise NULL. 1006 * 1007 * @mr: the memory region being queried 1008 */ 1009 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1010 { 1011 if (mr->alias) { 1012 return memory_region_get_iommu(mr->alias); 1013 } 1014 if (mr->is_iommu) { 1015 return (IOMMUMemoryRegion *) mr; 1016 } 1017 return NULL; 1018 } 1019 1020 /** 1021 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1022 * if an iommu or NULL if not 1023 * 1024 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1025 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1026 * 1027 * @mr: the memory region being queried 1028 */ 1029 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1030 IOMMUMemoryRegion *iommu_mr) 1031 { 1032 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1033 } 1034 1035 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1036 1037 /** 1038 * memory_region_iommu_get_min_page_size: get minimum supported page size 1039 * for an iommu 1040 * 1041 * Returns minimum supported page size for an iommu. 1042 * 1043 * @iommu_mr: the memory region being queried 1044 */ 1045 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1046 1047 /** 1048 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1049 * 1050 * The notification type will be decided by entry.perm bits: 1051 * 1052 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1053 * - For MAP (newly added entry) notifies: set entry.perm to the 1054 * permission of the page (which is definitely !IOMMU_NONE). 1055 * 1056 * Note: for any IOMMU implementation, an in-place mapping change 1057 * should be notified with an UNMAP followed by a MAP. 1058 * 1059 * @iommu_mr: the memory region that was changed 1060 * @iommu_idx: the IOMMU index for the translation table which has changed 1061 * @entry: the new entry in the IOMMU translation table. The entry 1062 * replaces all old entries for the same virtual I/O address range. 1063 * Deleted entries have .@perm == 0. 1064 */ 1065 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1066 int iommu_idx, 1067 IOMMUTLBEntry entry); 1068 1069 /** 1070 * memory_region_notify_one: notify a change in an IOMMU translation 1071 * entry to a single notifier 1072 * 1073 * This works just like memory_region_notify_iommu(), but it only 1074 * notifies a specific notifier, not all of them. 1075 * 1076 * @notifier: the notifier to be notified 1077 * @entry: the new entry in the IOMMU translation table. The entry 1078 * replaces all old entries for the same virtual I/O address range. 1079 * Deleted entries have .@perm == 0. 1080 */ 1081 void memory_region_notify_one(IOMMUNotifier *notifier, 1082 IOMMUTLBEntry *entry); 1083 1084 /** 1085 * memory_region_register_iommu_notifier: register a notifier for changes to 1086 * IOMMU translation entries. 1087 * 1088 * Returns 0 on success, or a negative errno otherwise. In particular, 1089 * -EINVAL indicates that at least one of the attributes of the notifier 1090 * is not supported (flag/range) by the IOMMU memory region. In case of error 1091 * the error object must be created. 1092 * 1093 * @mr: the memory region to observe 1094 * @n: the IOMMUNotifier to be added; the notify callback receives a 1095 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1096 * ceases to be valid on exit from the notifier. 1097 */ 1098 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1099 IOMMUNotifier *n, Error **errp); 1100 1101 /** 1102 * memory_region_iommu_replay: replay existing IOMMU translations to 1103 * a notifier with the minimum page granularity returned by 1104 * mr->iommu_ops->get_page_size(). 1105 * 1106 * Note: this is not related to record-and-replay functionality. 1107 * 1108 * @iommu_mr: the memory region to observe 1109 * @n: the notifier to which to replay iommu mappings 1110 */ 1111 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1112 1113 /** 1114 * memory_region_unregister_iommu_notifier: unregister a notifier for 1115 * changes to IOMMU translation entries. 1116 * 1117 * @mr: the memory region which was observed and for which notity_stopped() 1118 * needs to be called 1119 * @n: the notifier to be removed. 1120 */ 1121 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1122 IOMMUNotifier *n); 1123 1124 /** 1125 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1126 * defined on the IOMMU. 1127 * 1128 * Returns 0 on success, or a negative errno otherwise. In particular, 1129 * -EINVAL indicates that the IOMMU does not support the requested 1130 * attribute. 1131 * 1132 * @iommu_mr: the memory region 1133 * @attr: the requested attribute 1134 * @data: a pointer to the requested attribute data 1135 */ 1136 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1137 enum IOMMUMemoryRegionAttr attr, 1138 void *data); 1139 1140 /** 1141 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1142 * use for translations with the given memory transaction attributes. 1143 * 1144 * @iommu_mr: the memory region 1145 * @attrs: the memory transaction attributes 1146 */ 1147 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1148 MemTxAttrs attrs); 1149 1150 /** 1151 * memory_region_iommu_num_indexes: return the total number of IOMMU 1152 * indexes that this IOMMU supports. 1153 * 1154 * @iommu_mr: the memory region 1155 */ 1156 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1157 1158 /** 1159 * memory_region_name: get a memory region's name 1160 * 1161 * Returns the string that was used to initialize the memory region. 1162 * 1163 * @mr: the memory region being queried 1164 */ 1165 const char *memory_region_name(const MemoryRegion *mr); 1166 1167 /** 1168 * memory_region_is_logging: return whether a memory region is logging writes 1169 * 1170 * Returns %true if the memory region is logging writes for the given client 1171 * 1172 * @mr: the memory region being queried 1173 * @client: the client being queried 1174 */ 1175 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1176 1177 /** 1178 * memory_region_get_dirty_log_mask: return the clients for which a 1179 * memory region is logging writes. 1180 * 1181 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1182 * are the bit indices. 1183 * 1184 * @mr: the memory region being queried 1185 */ 1186 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1187 1188 /** 1189 * memory_region_is_rom: check whether a memory region is ROM 1190 * 1191 * Returns %true if a memory region is read-only memory. 1192 * 1193 * @mr: the memory region being queried 1194 */ 1195 static inline bool memory_region_is_rom(MemoryRegion *mr) 1196 { 1197 return mr->ram && mr->readonly; 1198 } 1199 1200 /** 1201 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1202 * 1203 * Returns %true is a memory region is non-volatile memory. 1204 * 1205 * @mr: the memory region being queried 1206 */ 1207 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1208 { 1209 return mr->nonvolatile; 1210 } 1211 1212 /** 1213 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1214 * 1215 * Returns a file descriptor backing a file-based RAM memory region, 1216 * or -1 if the region is not a file-based RAM memory region. 1217 * 1218 * @mr: the RAM or alias memory region being queried. 1219 */ 1220 int memory_region_get_fd(MemoryRegion *mr); 1221 1222 /** 1223 * memory_region_from_host: Convert a pointer into a RAM memory region 1224 * and an offset within it. 1225 * 1226 * Given a host pointer inside a RAM memory region (created with 1227 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1228 * the MemoryRegion and the offset within it. 1229 * 1230 * Use with care; by the time this function returns, the returned pointer is 1231 * not protected by RCU anymore. If the caller is not within an RCU critical 1232 * section and does not hold the iothread lock, it must have other means of 1233 * protecting the pointer, such as a reference to the region that includes 1234 * the incoming ram_addr_t. 1235 * 1236 * @ptr: the host pointer to be converted 1237 * @offset: the offset within memory region 1238 */ 1239 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1240 1241 /** 1242 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1243 * 1244 * Returns a host pointer to a RAM memory region (created with 1245 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1246 * 1247 * Use with care; by the time this function returns, the returned pointer is 1248 * not protected by RCU anymore. If the caller is not within an RCU critical 1249 * section and does not hold the iothread lock, it must have other means of 1250 * protecting the pointer, such as a reference to the region that includes 1251 * the incoming ram_addr_t. 1252 * 1253 * @mr: the memory region being queried. 1254 */ 1255 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1256 1257 /* memory_region_ram_resize: Resize a RAM region. 1258 * 1259 * Only legal before guest might have detected the memory size: e.g. on 1260 * incoming migration, or right after reset. 1261 * 1262 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1263 * @newsize: the new size the region 1264 * @errp: pointer to Error*, to store an error if it happens. 1265 */ 1266 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1267 Error **errp); 1268 /** 1269 * memory_region_do_writeback: Trigger writeback for selected address range 1270 * [addr, addr + size] 1271 * 1272 */ 1273 void memory_region_do_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1274 1275 /** 1276 * memory_region_set_log: Turn dirty logging on or off for a region. 1277 * 1278 * Turns dirty logging on or off for a specified client (display, migration). 1279 * Only meaningful for RAM regions. 1280 * 1281 * @mr: the memory region being updated. 1282 * @log: whether dirty logging is to be enabled or disabled. 1283 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1284 */ 1285 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1286 1287 /** 1288 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1289 * 1290 * Marks a range of bytes as dirty, after it has been dirtied outside 1291 * guest code. 1292 * 1293 * @mr: the memory region being dirtied. 1294 * @addr: the address (relative to the start of the region) being dirtied. 1295 * @size: size of the range being dirtied. 1296 */ 1297 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1298 hwaddr size); 1299 1300 /** 1301 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1302 * 1303 * This function is called when the caller wants to clear the remote 1304 * dirty bitmap of a memory range within the memory region. This can 1305 * be used by e.g. KVM to manually clear dirty log when 1306 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1307 * kernel. 1308 * 1309 * @mr: the memory region to clear the dirty log upon 1310 * @start: start address offset within the memory region 1311 * @len: length of the memory region to clear dirty bitmap 1312 */ 1313 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1314 hwaddr len); 1315 1316 /** 1317 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1318 * bitmap and clear it. 1319 * 1320 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1321 * returns the snapshot. The snapshot can then be used to query dirty 1322 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1323 * querying the same page multiple times, which is especially useful for 1324 * display updates where the scanlines often are not page aligned. 1325 * 1326 * The dirty bitmap region which gets copyed into the snapshot (and 1327 * cleared afterwards) can be larger than requested. The boundaries 1328 * are rounded up/down so complete bitmap longs (covering 64 pages on 1329 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1330 * isn't a problem for display updates as the extra pages are outside 1331 * the visible area, and in case the visible area changes a full 1332 * display redraw is due anyway. Should other use cases for this 1333 * function emerge we might have to revisit this implementation 1334 * detail. 1335 * 1336 * Use g_free to release DirtyBitmapSnapshot. 1337 * 1338 * @mr: the memory region being queried. 1339 * @addr: the address (relative to the start of the region) being queried. 1340 * @size: the size of the range being queried. 1341 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1342 */ 1343 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1344 hwaddr addr, 1345 hwaddr size, 1346 unsigned client); 1347 1348 /** 1349 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1350 * in the specified dirty bitmap snapshot. 1351 * 1352 * @mr: the memory region being queried. 1353 * @snap: the dirty bitmap snapshot 1354 * @addr: the address (relative to the start of the region) being queried. 1355 * @size: the size of the range being queried. 1356 */ 1357 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1358 DirtyBitmapSnapshot *snap, 1359 hwaddr addr, hwaddr size); 1360 1361 /** 1362 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1363 * client. 1364 * 1365 * Marks a range of pages as no longer dirty. 1366 * 1367 * @mr: the region being updated. 1368 * @addr: the start of the subrange being cleaned. 1369 * @size: the size of the subrange being cleaned. 1370 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1371 * %DIRTY_MEMORY_VGA. 1372 */ 1373 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1374 hwaddr size, unsigned client); 1375 1376 /** 1377 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1378 * TBs (for self-modifying code). 1379 * 1380 * The MemoryRegionOps->write() callback of a ROM device must use this function 1381 * to mark byte ranges that have been modified internally, such as by directly 1382 * accessing the memory returned by memory_region_get_ram_ptr(). 1383 * 1384 * This function marks the range dirty and invalidates TBs so that TCG can 1385 * detect self-modifying code. 1386 * 1387 * @mr: the region being flushed. 1388 * @addr: the start, relative to the start of the region, of the range being 1389 * flushed. 1390 * @size: the size, in bytes, of the range being flushed. 1391 */ 1392 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1393 1394 /** 1395 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1396 * 1397 * Allows a memory region to be marked as read-only (turning it into a ROM). 1398 * only useful on RAM regions. 1399 * 1400 * @mr: the region being updated. 1401 * @readonly: whether rhe region is to be ROM or RAM. 1402 */ 1403 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1404 1405 /** 1406 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1407 * 1408 * Allows a memory region to be marked as non-volatile. 1409 * only useful on RAM regions. 1410 * 1411 * @mr: the region being updated. 1412 * @nonvolatile: whether rhe region is to be non-volatile. 1413 */ 1414 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1415 1416 /** 1417 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1418 * 1419 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1420 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1421 * device is mapped to guest memory and satisfies read access directly. 1422 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1423 * Writes are always handled by the #MemoryRegion.write function. 1424 * 1425 * @mr: the memory region to be updated 1426 * @romd_mode: %true to put the region into ROMD mode 1427 */ 1428 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1429 1430 /** 1431 * memory_region_set_coalescing: Enable memory coalescing for the region. 1432 * 1433 * Enabled writes to a region to be queued for later processing. MMIO ->write 1434 * callbacks may be delayed until a non-coalesced MMIO is issued. 1435 * Only useful for IO regions. Roughly similar to write-combining hardware. 1436 * 1437 * @mr: the memory region to be write coalesced 1438 */ 1439 void memory_region_set_coalescing(MemoryRegion *mr); 1440 1441 /** 1442 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1443 * a region. 1444 * 1445 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1446 * Multiple calls can be issued coalesced disjoint ranges. 1447 * 1448 * @mr: the memory region to be updated. 1449 * @offset: the start of the range within the region to be coalesced. 1450 * @size: the size of the subrange to be coalesced. 1451 */ 1452 void memory_region_add_coalescing(MemoryRegion *mr, 1453 hwaddr offset, 1454 uint64_t size); 1455 1456 /** 1457 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1458 * 1459 * Disables any coalescing caused by memory_region_set_coalescing() or 1460 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1461 * hardware. 1462 * 1463 * @mr: the memory region to be updated. 1464 */ 1465 void memory_region_clear_coalescing(MemoryRegion *mr); 1466 1467 /** 1468 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1469 * accesses. 1470 * 1471 * Ensure that pending coalesced MMIO request are flushed before the memory 1472 * region is accessed. This property is automatically enabled for all regions 1473 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1474 * 1475 * @mr: the memory region to be updated. 1476 */ 1477 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1478 1479 /** 1480 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1481 * accesses. 1482 * 1483 * Clear the automatic coalesced MMIO flushing enabled via 1484 * memory_region_set_flush_coalesced. Note that this service has no effect on 1485 * memory regions that have MMIO coalescing enabled for themselves. For them, 1486 * automatic flushing will stop once coalescing is disabled. 1487 * 1488 * @mr: the memory region to be updated. 1489 */ 1490 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1491 1492 /** 1493 * memory_region_clear_global_locking: Declares that access processing does 1494 * not depend on the QEMU global lock. 1495 * 1496 * By clearing this property, accesses to the memory region will be processed 1497 * outside of QEMU's global lock (unless the lock is held on when issuing the 1498 * access request). In this case, the device model implementing the access 1499 * handlers is responsible for synchronization of concurrency. 1500 * 1501 * @mr: the memory region to be updated. 1502 */ 1503 void memory_region_clear_global_locking(MemoryRegion *mr); 1504 1505 /** 1506 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1507 * is written to a location. 1508 * 1509 * Marks a word in an IO region (initialized with memory_region_init_io()) 1510 * as a trigger for an eventfd event. The I/O callback will not be called. 1511 * The caller must be prepared to handle failure (that is, take the required 1512 * action if the callback _is_ called). 1513 * 1514 * @mr: the memory region being updated. 1515 * @addr: the address within @mr that is to be monitored 1516 * @size: the size of the access to trigger the eventfd 1517 * @match_data: whether to match against @data, instead of just @addr 1518 * @data: the data to match against the guest write 1519 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1520 **/ 1521 void memory_region_add_eventfd(MemoryRegion *mr, 1522 hwaddr addr, 1523 unsigned size, 1524 bool match_data, 1525 uint64_t data, 1526 EventNotifier *e); 1527 1528 /** 1529 * memory_region_del_eventfd: Cancel an eventfd. 1530 * 1531 * Cancels an eventfd trigger requested by a previous 1532 * memory_region_add_eventfd() call. 1533 * 1534 * @mr: the memory region being updated. 1535 * @addr: the address within @mr that is to be monitored 1536 * @size: the size of the access to trigger the eventfd 1537 * @match_data: whether to match against @data, instead of just @addr 1538 * @data: the data to match against the guest write 1539 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1540 */ 1541 void memory_region_del_eventfd(MemoryRegion *mr, 1542 hwaddr addr, 1543 unsigned size, 1544 bool match_data, 1545 uint64_t data, 1546 EventNotifier *e); 1547 1548 /** 1549 * memory_region_add_subregion: Add a subregion to a container. 1550 * 1551 * Adds a subregion at @offset. The subregion may not overlap with other 1552 * subregions (except for those explicitly marked as overlapping). A region 1553 * may only be added once as a subregion (unless removed with 1554 * memory_region_del_subregion()); use memory_region_init_alias() if you 1555 * want a region to be a subregion in multiple locations. 1556 * 1557 * @mr: the region to contain the new subregion; must be a container 1558 * initialized with memory_region_init(). 1559 * @offset: the offset relative to @mr where @subregion is added. 1560 * @subregion: the subregion to be added. 1561 */ 1562 void memory_region_add_subregion(MemoryRegion *mr, 1563 hwaddr offset, 1564 MemoryRegion *subregion); 1565 /** 1566 * memory_region_add_subregion_overlap: Add a subregion to a container 1567 * with overlap. 1568 * 1569 * Adds a subregion at @offset. The subregion may overlap with other 1570 * subregions. Conflicts are resolved by having a higher @priority hide a 1571 * lower @priority. Subregions without priority are taken as @priority 0. 1572 * A region may only be added once as a subregion (unless removed with 1573 * memory_region_del_subregion()); use memory_region_init_alias() if you 1574 * want a region to be a subregion in multiple locations. 1575 * 1576 * @mr: the region to contain the new subregion; must be a container 1577 * initialized with memory_region_init(). 1578 * @offset: the offset relative to @mr where @subregion is added. 1579 * @subregion: the subregion to be added. 1580 * @priority: used for resolving overlaps; highest priority wins. 1581 */ 1582 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1583 hwaddr offset, 1584 MemoryRegion *subregion, 1585 int priority); 1586 1587 /** 1588 * memory_region_get_ram_addr: Get the ram address associated with a memory 1589 * region 1590 */ 1591 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1592 1593 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1594 /** 1595 * memory_region_del_subregion: Remove a subregion. 1596 * 1597 * Removes a subregion from its container. 1598 * 1599 * @mr: the container to be updated. 1600 * @subregion: the region being removed; must be a current subregion of @mr. 1601 */ 1602 void memory_region_del_subregion(MemoryRegion *mr, 1603 MemoryRegion *subregion); 1604 1605 /* 1606 * memory_region_set_enabled: dynamically enable or disable a region 1607 * 1608 * Enables or disables a memory region. A disabled memory region 1609 * ignores all accesses to itself and its subregions. It does not 1610 * obscure sibling subregions with lower priority - it simply behaves as 1611 * if it was removed from the hierarchy. 1612 * 1613 * Regions default to being enabled. 1614 * 1615 * @mr: the region to be updated 1616 * @enabled: whether to enable or disable the region 1617 */ 1618 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1619 1620 /* 1621 * memory_region_set_address: dynamically update the address of a region 1622 * 1623 * Dynamically updates the address of a region, relative to its container. 1624 * May be used on regions are currently part of a memory hierarchy. 1625 * 1626 * @mr: the region to be updated 1627 * @addr: new address, relative to container region 1628 */ 1629 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1630 1631 /* 1632 * memory_region_set_size: dynamically update the size of a region. 1633 * 1634 * Dynamically updates the size of a region. 1635 * 1636 * @mr: the region to be updated 1637 * @size: used size of the region. 1638 */ 1639 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1640 1641 /* 1642 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1643 * 1644 * Dynamically updates the offset into the target region that an alias points 1645 * to, as if the fourth argument to memory_region_init_alias() has changed. 1646 * 1647 * @mr: the #MemoryRegion to be updated; should be an alias. 1648 * @offset: the new offset into the target memory region 1649 */ 1650 void memory_region_set_alias_offset(MemoryRegion *mr, 1651 hwaddr offset); 1652 1653 /** 1654 * memory_region_present: checks if an address relative to a @container 1655 * translates into #MemoryRegion within @container 1656 * 1657 * Answer whether a #MemoryRegion within @container covers the address 1658 * @addr. 1659 * 1660 * @container: a #MemoryRegion within which @addr is a relative address 1661 * @addr: the area within @container to be searched 1662 */ 1663 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1664 1665 /** 1666 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1667 * into any address space. 1668 * 1669 * @mr: a #MemoryRegion which should be checked if it's mapped 1670 */ 1671 bool memory_region_is_mapped(MemoryRegion *mr); 1672 1673 /** 1674 * memory_region_find: translate an address/size relative to a 1675 * MemoryRegion into a #MemoryRegionSection. 1676 * 1677 * Locates the first #MemoryRegion within @mr that overlaps the range 1678 * given by @addr and @size. 1679 * 1680 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1681 * It will have the following characteristics: 1682 * .@size = 0 iff no overlap was found 1683 * .@mr is non-%NULL iff an overlap was found 1684 * 1685 * Remember that in the return value the @offset_within_region is 1686 * relative to the returned region (in the .@mr field), not to the 1687 * @mr argument. 1688 * 1689 * Similarly, the .@offset_within_address_space is relative to the 1690 * address space that contains both regions, the passed and the 1691 * returned one. However, in the special case where the @mr argument 1692 * has no container (and thus is the root of the address space), the 1693 * following will hold: 1694 * .@offset_within_address_space >= @addr 1695 * .@offset_within_address_space + .@size <= @addr + @size 1696 * 1697 * @mr: a MemoryRegion within which @addr is a relative address 1698 * @addr: start of the area within @as to be searched 1699 * @size: size of the area to be searched 1700 */ 1701 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1702 hwaddr addr, uint64_t size); 1703 1704 /** 1705 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1706 * 1707 * Synchronizes the dirty page log for all address spaces. 1708 */ 1709 void memory_global_dirty_log_sync(void); 1710 1711 /** 1712 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1713 * 1714 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 1715 * This function must be called after the dirty log bitmap is cleared, and 1716 * before dirty guest memory pages are read. If you are using 1717 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 1718 * care of doing this. 1719 */ 1720 void memory_global_after_dirty_log_sync(void); 1721 1722 /** 1723 * memory_region_transaction_begin: Start a transaction. 1724 * 1725 * During a transaction, changes will be accumulated and made visible 1726 * only when the transaction ends (is committed). 1727 */ 1728 void memory_region_transaction_begin(void); 1729 1730 /** 1731 * memory_region_transaction_commit: Commit a transaction and make changes 1732 * visible to the guest. 1733 */ 1734 void memory_region_transaction_commit(void); 1735 1736 /** 1737 * memory_listener_register: register callbacks to be called when memory 1738 * sections are mapped or unmapped into an address 1739 * space 1740 * 1741 * @listener: an object containing the callbacks to be called 1742 * @filter: if non-%NULL, only regions in this address space will be observed 1743 */ 1744 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1745 1746 /** 1747 * memory_listener_unregister: undo the effect of memory_listener_register() 1748 * 1749 * @listener: an object containing the callbacks to be removed 1750 */ 1751 void memory_listener_unregister(MemoryListener *listener); 1752 1753 /** 1754 * memory_global_dirty_log_start: begin dirty logging for all regions 1755 */ 1756 void memory_global_dirty_log_start(void); 1757 1758 /** 1759 * memory_global_dirty_log_stop: end dirty logging for all regions 1760 */ 1761 void memory_global_dirty_log_stop(void); 1762 1763 void mtree_info(bool flatview, bool dispatch_tree, bool owner); 1764 1765 /** 1766 * memory_region_dispatch_read: perform a read directly to the specified 1767 * MemoryRegion. 1768 * 1769 * @mr: #MemoryRegion to access 1770 * @addr: address within that region 1771 * @pval: pointer to uint64_t which the data is written to 1772 * @op: size, sign, and endianness of the memory operation 1773 * @attrs: memory transaction attributes to use for the access 1774 */ 1775 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1776 hwaddr addr, 1777 uint64_t *pval, 1778 MemOp op, 1779 MemTxAttrs attrs); 1780 /** 1781 * memory_region_dispatch_write: perform a write directly to the specified 1782 * MemoryRegion. 1783 * 1784 * @mr: #MemoryRegion to access 1785 * @addr: address within that region 1786 * @data: data to write 1787 * @op: size, sign, and endianness of the memory operation 1788 * @attrs: memory transaction attributes to use for the access 1789 */ 1790 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1791 hwaddr addr, 1792 uint64_t data, 1793 MemOp op, 1794 MemTxAttrs attrs); 1795 1796 /** 1797 * address_space_init: initializes an address space 1798 * 1799 * @as: an uninitialized #AddressSpace 1800 * @root: a #MemoryRegion that routes addresses for the address space 1801 * @name: an address space name. The name is only used for debugging 1802 * output. 1803 */ 1804 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1805 1806 /** 1807 * address_space_destroy: destroy an address space 1808 * 1809 * Releases all resources associated with an address space. After an address space 1810 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1811 * as well. 1812 * 1813 * @as: address space to be destroyed 1814 */ 1815 void address_space_destroy(AddressSpace *as); 1816 1817 /** 1818 * address_space_remove_listeners: unregister all listeners of an address space 1819 * 1820 * Removes all callbacks previously registered with memory_listener_register() 1821 * for @as. 1822 * 1823 * @as: an initialized #AddressSpace 1824 */ 1825 void address_space_remove_listeners(AddressSpace *as); 1826 1827 /** 1828 * address_space_rw: read from or write to an address space. 1829 * 1830 * Return a MemTxResult indicating whether the operation succeeded 1831 * or failed (eg unassigned memory, device rejected the transaction, 1832 * IOMMU fault). 1833 * 1834 * @as: #AddressSpace to be accessed 1835 * @addr: address within that address space 1836 * @attrs: memory transaction attributes 1837 * @buf: buffer with the data transferred 1838 * @len: the number of bytes to read or write 1839 * @is_write: indicates the transfer direction 1840 */ 1841 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1842 MemTxAttrs attrs, uint8_t *buf, 1843 hwaddr len, bool is_write); 1844 1845 /** 1846 * address_space_write: write to address space. 1847 * 1848 * Return a MemTxResult indicating whether the operation succeeded 1849 * or failed (eg unassigned memory, device rejected the transaction, 1850 * IOMMU fault). 1851 * 1852 * @as: #AddressSpace to be accessed 1853 * @addr: address within that address space 1854 * @attrs: memory transaction attributes 1855 * @buf: buffer with the data transferred 1856 * @len: the number of bytes to write 1857 */ 1858 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1859 MemTxAttrs attrs, 1860 const uint8_t *buf, hwaddr len); 1861 1862 /** 1863 * address_space_write_rom: write to address space, including ROM. 1864 * 1865 * This function writes to the specified address space, but will 1866 * write data to both ROM and RAM. This is used for non-guest 1867 * writes like writes from the gdb debug stub or initial loading 1868 * of ROM contents. 1869 * 1870 * Note that portions of the write which attempt to write data to 1871 * a device will be silently ignored -- only real RAM and ROM will 1872 * be written to. 1873 * 1874 * Return a MemTxResult indicating whether the operation succeeded 1875 * or failed (eg unassigned memory, device rejected the transaction, 1876 * IOMMU fault). 1877 * 1878 * @as: #AddressSpace to be accessed 1879 * @addr: address within that address space 1880 * @attrs: memory transaction attributes 1881 * @buf: buffer with the data transferred 1882 * @len: the number of bytes to write 1883 */ 1884 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 1885 MemTxAttrs attrs, 1886 const uint8_t *buf, hwaddr len); 1887 1888 /* address_space_ld*: load from an address space 1889 * address_space_st*: store to an address space 1890 * 1891 * These functions perform a load or store of the byte, word, 1892 * longword or quad to the specified address within the AddressSpace. 1893 * The _le suffixed functions treat the data as little endian; 1894 * _be indicates big endian; no suffix indicates "same endianness 1895 * as guest CPU". 1896 * 1897 * The "guest CPU endianness" accessors are deprecated for use outside 1898 * target-* code; devices should be CPU-agnostic and use either the LE 1899 * or the BE accessors. 1900 * 1901 * @as #AddressSpace to be accessed 1902 * @addr: address within that address space 1903 * @val: data value, for stores 1904 * @attrs: memory transaction attributes 1905 * @result: location to write the success/failure of the transaction; 1906 * if NULL, this information is discarded 1907 */ 1908 1909 #define SUFFIX 1910 #define ARG1 as 1911 #define ARG1_DECL AddressSpace *as 1912 #include "exec/memory_ldst.inc.h" 1913 1914 #define SUFFIX 1915 #define ARG1 as 1916 #define ARG1_DECL AddressSpace *as 1917 #include "exec/memory_ldst_phys.inc.h" 1918 1919 struct MemoryRegionCache { 1920 void *ptr; 1921 hwaddr xlat; 1922 hwaddr len; 1923 FlatView *fv; 1924 MemoryRegionSection mrs; 1925 bool is_write; 1926 }; 1927 1928 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 1929 1930 1931 /* address_space_ld*_cached: load from a cached #MemoryRegion 1932 * address_space_st*_cached: store into a cached #MemoryRegion 1933 * 1934 * These functions perform a load or store of the byte, word, 1935 * longword or quad to the specified address. The address is 1936 * a physical address in the AddressSpace, but it must lie within 1937 * a #MemoryRegion that was mapped with address_space_cache_init. 1938 * 1939 * The _le suffixed functions treat the data as little endian; 1940 * _be indicates big endian; no suffix indicates "same endianness 1941 * as guest CPU". 1942 * 1943 * The "guest CPU endianness" accessors are deprecated for use outside 1944 * target-* code; devices should be CPU-agnostic and use either the LE 1945 * or the BE accessors. 1946 * 1947 * @cache: previously initialized #MemoryRegionCache to be accessed 1948 * @addr: address within the address space 1949 * @val: data value, for stores 1950 * @attrs: memory transaction attributes 1951 * @result: location to write the success/failure of the transaction; 1952 * if NULL, this information is discarded 1953 */ 1954 1955 #define SUFFIX _cached_slow 1956 #define ARG1 cache 1957 #define ARG1_DECL MemoryRegionCache *cache 1958 #include "exec/memory_ldst.inc.h" 1959 1960 /* Inline fast path for direct RAM access. */ 1961 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 1962 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 1963 { 1964 assert(addr < cache->len); 1965 if (likely(cache->ptr)) { 1966 return ldub_p(cache->ptr + addr); 1967 } else { 1968 return address_space_ldub_cached_slow(cache, addr, attrs, result); 1969 } 1970 } 1971 1972 static inline void address_space_stb_cached(MemoryRegionCache *cache, 1973 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 1974 { 1975 assert(addr < cache->len); 1976 if (likely(cache->ptr)) { 1977 stb_p(cache->ptr + addr, val); 1978 } else { 1979 address_space_stb_cached_slow(cache, addr, val, attrs, result); 1980 } 1981 } 1982 1983 #define ENDIANNESS _le 1984 #include "exec/memory_ldst_cached.inc.h" 1985 1986 #define ENDIANNESS _be 1987 #include "exec/memory_ldst_cached.inc.h" 1988 1989 #define SUFFIX _cached 1990 #define ARG1 cache 1991 #define ARG1_DECL MemoryRegionCache *cache 1992 #include "exec/memory_ldst_phys.inc.h" 1993 1994 /* address_space_cache_init: prepare for repeated access to a physical 1995 * memory region 1996 * 1997 * @cache: #MemoryRegionCache to be filled 1998 * @as: #AddressSpace to be accessed 1999 * @addr: address within that address space 2000 * @len: length of buffer 2001 * @is_write: indicates the transfer direction 2002 * 2003 * Will only work with RAM, and may map a subset of the requested range by 2004 * returning a value that is less than @len. On failure, return a negative 2005 * errno value. 2006 * 2007 * Because it only works with RAM, this function can be used for 2008 * read-modify-write operations. In this case, is_write should be %true. 2009 * 2010 * Note that addresses passed to the address_space_*_cached functions 2011 * are relative to @addr. 2012 */ 2013 int64_t address_space_cache_init(MemoryRegionCache *cache, 2014 AddressSpace *as, 2015 hwaddr addr, 2016 hwaddr len, 2017 bool is_write); 2018 2019 /** 2020 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2021 * 2022 * @cache: The #MemoryRegionCache to operate on. 2023 * @addr: The first physical address that was written, relative to the 2024 * address that was passed to @address_space_cache_init. 2025 * @access_len: The number of bytes that were written starting at @addr. 2026 */ 2027 void address_space_cache_invalidate(MemoryRegionCache *cache, 2028 hwaddr addr, 2029 hwaddr access_len); 2030 2031 /** 2032 * address_space_cache_destroy: free a #MemoryRegionCache 2033 * 2034 * @cache: The #MemoryRegionCache whose memory should be released. 2035 */ 2036 void address_space_cache_destroy(MemoryRegionCache *cache); 2037 2038 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2039 * entry. Should be called from an RCU critical section. 2040 */ 2041 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2042 bool is_write, MemTxAttrs attrs); 2043 2044 /* address_space_translate: translate an address range into an address space 2045 * into a MemoryRegion and an address range into that section. Should be 2046 * called from an RCU critical section, to avoid that the last reference 2047 * to the returned region disappears after address_space_translate returns. 2048 * 2049 * @fv: #FlatView to be accessed 2050 * @addr: address within that address space 2051 * @xlat: pointer to address within the returned memory region section's 2052 * #MemoryRegion. 2053 * @len: pointer to length 2054 * @is_write: indicates the transfer direction 2055 * @attrs: memory attributes 2056 */ 2057 MemoryRegion *flatview_translate(FlatView *fv, 2058 hwaddr addr, hwaddr *xlat, 2059 hwaddr *len, bool is_write, 2060 MemTxAttrs attrs); 2061 2062 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2063 hwaddr addr, hwaddr *xlat, 2064 hwaddr *len, bool is_write, 2065 MemTxAttrs attrs) 2066 { 2067 return flatview_translate(address_space_to_flatview(as), 2068 addr, xlat, len, is_write, attrs); 2069 } 2070 2071 /* address_space_access_valid: check for validity of accessing an address 2072 * space range 2073 * 2074 * Check whether memory is assigned to the given address space range, and 2075 * access is permitted by any IOMMU regions that are active for the address 2076 * space. 2077 * 2078 * For now, addr and len should be aligned to a page size. This limitation 2079 * will be lifted in the future. 2080 * 2081 * @as: #AddressSpace to be accessed 2082 * @addr: address within that address space 2083 * @len: length of the area to be checked 2084 * @is_write: indicates the transfer direction 2085 * @attrs: memory attributes 2086 */ 2087 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2088 bool is_write, MemTxAttrs attrs); 2089 2090 /* address_space_map: map a physical memory region into a host virtual address 2091 * 2092 * May map a subset of the requested range, given by and returned in @plen. 2093 * May return %NULL if resources needed to perform the mapping are exhausted. 2094 * Use only for reads OR writes - not for read-modify-write operations. 2095 * Use cpu_register_map_client() to know when retrying the map operation is 2096 * likely to succeed. 2097 * 2098 * @as: #AddressSpace to be accessed 2099 * @addr: address within that address space 2100 * @plen: pointer to length of buffer; updated on return 2101 * @is_write: indicates the transfer direction 2102 * @attrs: memory attributes 2103 */ 2104 void *address_space_map(AddressSpace *as, hwaddr addr, 2105 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2106 2107 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2108 * 2109 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2110 * the amount of memory that was actually read or written by the caller. 2111 * 2112 * @as: #AddressSpace used 2113 * @buffer: host pointer as returned by address_space_map() 2114 * @len: buffer length as returned by address_space_map() 2115 * @access_len: amount of data actually transferred 2116 * @is_write: indicates the transfer direction 2117 */ 2118 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2119 int is_write, hwaddr access_len); 2120 2121 2122 /* Internal functions, part of the implementation of address_space_read. */ 2123 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2124 MemTxAttrs attrs, uint8_t *buf, hwaddr len); 2125 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2126 MemTxAttrs attrs, uint8_t *buf, 2127 hwaddr len, hwaddr addr1, hwaddr l, 2128 MemoryRegion *mr); 2129 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2130 2131 /* Internal functions, part of the implementation of address_space_read_cached 2132 * and address_space_write_cached. */ 2133 void address_space_read_cached_slow(MemoryRegionCache *cache, 2134 hwaddr addr, void *buf, hwaddr len); 2135 void address_space_write_cached_slow(MemoryRegionCache *cache, 2136 hwaddr addr, const void *buf, hwaddr len); 2137 2138 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2139 { 2140 if (is_write) { 2141 return memory_region_is_ram(mr) && 2142 !mr->readonly && !memory_region_is_ram_device(mr); 2143 } else { 2144 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2145 memory_region_is_romd(mr); 2146 } 2147 } 2148 2149 /** 2150 * address_space_read: read from an address space. 2151 * 2152 * Return a MemTxResult indicating whether the operation succeeded 2153 * or failed (eg unassigned memory, device rejected the transaction, 2154 * IOMMU fault). Called within RCU critical section. 2155 * 2156 * @as: #AddressSpace to be accessed 2157 * @addr: address within that address space 2158 * @attrs: memory transaction attributes 2159 * @buf: buffer with the data transferred 2160 */ 2161 static inline __attribute__((__always_inline__)) 2162 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2163 MemTxAttrs attrs, uint8_t *buf, 2164 hwaddr len) 2165 { 2166 MemTxResult result = MEMTX_OK; 2167 hwaddr l, addr1; 2168 void *ptr; 2169 MemoryRegion *mr; 2170 FlatView *fv; 2171 2172 if (__builtin_constant_p(len)) { 2173 if (len) { 2174 rcu_read_lock(); 2175 fv = address_space_to_flatview(as); 2176 l = len; 2177 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2178 if (len == l && memory_access_is_direct(mr, false)) { 2179 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2180 memcpy(buf, ptr, len); 2181 } else { 2182 result = flatview_read_continue(fv, addr, attrs, buf, len, 2183 addr1, l, mr); 2184 } 2185 rcu_read_unlock(); 2186 } 2187 } else { 2188 result = address_space_read_full(as, addr, attrs, buf, len); 2189 } 2190 return result; 2191 } 2192 2193 /** 2194 * address_space_read_cached: read from a cached RAM region 2195 * 2196 * @cache: Cached region to be addressed 2197 * @addr: address relative to the base of the RAM region 2198 * @buf: buffer with the data transferred 2199 * @len: length of the data transferred 2200 */ 2201 static inline void 2202 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2203 void *buf, hwaddr len) 2204 { 2205 assert(addr < cache->len && len <= cache->len - addr); 2206 if (likely(cache->ptr)) { 2207 memcpy(buf, cache->ptr + addr, len); 2208 } else { 2209 address_space_read_cached_slow(cache, addr, buf, len); 2210 } 2211 } 2212 2213 /** 2214 * address_space_write_cached: write to a cached RAM region 2215 * 2216 * @cache: Cached region to be addressed 2217 * @addr: address relative to the base of the RAM region 2218 * @buf: buffer with the data transferred 2219 * @len: length of the data transferred 2220 */ 2221 static inline void 2222 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2223 void *buf, hwaddr len) 2224 { 2225 assert(addr < cache->len && len <= cache->len - addr); 2226 if (likely(cache->ptr)) { 2227 memcpy(cache->ptr + addr, buf, len); 2228 } else { 2229 address_space_write_cached_slow(cache, addr, buf, len); 2230 } 2231 } 2232 2233 #ifdef NEED_CPU_H 2234 /* enum device_endian to MemOp. */ 2235 static inline MemOp devend_memop(enum device_endian end) 2236 { 2237 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2238 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2239 2240 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2241 /* Swap if non-host endianness or native (target) endianness */ 2242 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2243 #else 2244 const int non_host_endianness = 2245 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2246 2247 /* In this case, native (target) endianness needs no swap. */ 2248 return (end == non_host_endianness) ? MO_BSWAP : 0; 2249 #endif 2250 } 2251 #endif 2252 2253 #endif 2254 2255 #endif 2256