xref: /openbmc/qemu/include/exec/memory.h (revision fbf32752)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51 
52 struct MemoryRegionMmio {
53     CPUReadMemoryFunc *read[3];
54     CPUWriteMemoryFunc *write[3];
55 };
56 
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58 
59 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
60 typedef enum {
61     IOMMU_NONE = 0,
62     IOMMU_RO   = 1,
63     IOMMU_WO   = 2,
64     IOMMU_RW   = 3,
65 } IOMMUAccessFlags;
66 
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68 
69 struct IOMMUTLBEntry {
70     AddressSpace    *target_as;
71     hwaddr           iova;
72     hwaddr           translated_addr;
73     hwaddr           addr_mask;  /* 0xfff = 4k translation */
74     IOMMUAccessFlags perm;
75 };
76 
77 /*
78  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79  * register with one or multiple IOMMU Notifier capability bit(s).
80  */
81 typedef enum {
82     IOMMU_NOTIFIER_NONE = 0,
83     /* Notify cache invalidations */
84     IOMMU_NOTIFIER_UNMAP = 0x1,
85     /* Notify entry changes (newly created entries) */
86     IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88 
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90 
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93                             IOMMUTLBEntry *data);
94 
95 struct IOMMUNotifier {
96     IOMMUNotify notify;
97     IOMMUNotifierFlag notifier_flags;
98     /* Notify for address space range start <= addr <= end */
99     hwaddr start;
100     hwaddr end;
101     QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104 
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106                                        IOMMUNotifierFlag flags,
107                                        hwaddr start, hwaddr end)
108 {
109     n->notify = fn;
110     n->notifier_flags = flags;
111     n->start = start;
112     n->end = end;
113 }
114 
115 /*
116  * Memory region callbacks
117  */
118 struct MemoryRegionOps {
119     /* Read from the memory region. @addr is relative to @mr; @size is
120      * in bytes. */
121     uint64_t (*read)(void *opaque,
122                      hwaddr addr,
123                      unsigned size);
124     /* Write to the memory region. @addr is relative to @mr; @size is
125      * in bytes. */
126     void (*write)(void *opaque,
127                   hwaddr addr,
128                   uint64_t data,
129                   unsigned size);
130 
131     MemTxResult (*read_with_attrs)(void *opaque,
132                                    hwaddr addr,
133                                    uint64_t *data,
134                                    unsigned size,
135                                    MemTxAttrs attrs);
136     MemTxResult (*write_with_attrs)(void *opaque,
137                                     hwaddr addr,
138                                     uint64_t data,
139                                     unsigned size,
140                                     MemTxAttrs attrs);
141     /* Instruction execution pre-callback:
142      * @addr is the address of the access relative to the @mr.
143      * @size is the size of the area returned by the callback.
144      * @offset is the location of the pointer inside @mr.
145      *
146      * Returns a pointer to a location which contains guest code.
147      */
148     void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149                          unsigned *offset);
150 
151     enum device_endian endianness;
152     /* Guest-visible constraints: */
153     struct {
154         /* If nonzero, specify bounds on access sizes beyond which a machine
155          * check is thrown.
156          */
157         unsigned min_access_size;
158         unsigned max_access_size;
159         /* If true, unaligned accesses are supported.  Otherwise unaligned
160          * accesses throw machine checks.
161          */
162          bool unaligned;
163         /*
164          * If present, and returns #false, the transaction is not accepted
165          * by the device (and results in machine dependent behaviour such
166          * as a machine check exception).
167          */
168         bool (*accepts)(void *opaque, hwaddr addr,
169                         unsigned size, bool is_write);
170     } valid;
171     /* Internal implementation constraints: */
172     struct {
173         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
174          * will be rounded upwards and a partial result will be returned.
175          */
176         unsigned min_access_size;
177         /* If nonzero, specifies the maximum size implemented.  Larger sizes
178          * will be done as a series of accesses with smaller sizes.
179          */
180         unsigned max_access_size;
181         /* If true, unaligned accesses are supported.  Otherwise all accesses
182          * are converted to (possibly multiple) naturally aligned accesses.
183          */
184         bool unaligned;
185     } impl;
186 
187     /* If .read and .write are not present, old_mmio may be used for
188      * backwards compatibility with old mmio registration
189      */
190     const MemoryRegionMmio old_mmio;
191 };
192 
193 enum IOMMUMemoryRegionAttr {
194     IOMMU_ATTR_SPAPR_TCE_FD
195 };
196 
197 typedef struct IOMMUMemoryRegionClass {
198     /* private */
199     struct DeviceClass parent_class;
200 
201     /*
202      * Return a TLB entry that contains a given address. Flag should
203      * be the access permission of this translation operation. We can
204      * set flag to IOMMU_NONE to mean that we don't need any
205      * read/write permission checks, like, when for region replay.
206      */
207     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
208                                IOMMUAccessFlags flag);
209     /* Returns minimum supported page size */
210     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
211     /* Called when IOMMU Notifier flag changed */
212     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
213                                 IOMMUNotifierFlag old_flags,
214                                 IOMMUNotifierFlag new_flags);
215     /* Set this up to provide customized IOMMU replay function */
216     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
217 
218     /* Get IOMMU misc attributes */
219     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr,
220                     void *data);
221 } IOMMUMemoryRegionClass;
222 
223 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
224 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
225 
226 struct MemoryRegion {
227     Object parent_obj;
228 
229     /* All fields are private - violators will be prosecuted */
230 
231     /* The following fields should fit in a cache line */
232     bool romd_mode;
233     bool ram;
234     bool subpage;
235     bool readonly; /* For RAM regions */
236     bool rom_device;
237     bool flush_coalesced_mmio;
238     bool global_locking;
239     uint8_t dirty_log_mask;
240     bool is_iommu;
241     RAMBlock *ram_block;
242     Object *owner;
243 
244     const MemoryRegionOps *ops;
245     void *opaque;
246     MemoryRegion *container;
247     Int128 size;
248     hwaddr addr;
249     void (*destructor)(MemoryRegion *mr);
250     uint64_t align;
251     bool terminates;
252     bool ram_device;
253     bool enabled;
254     bool warning_printed; /* For reservations */
255     uint8_t vga_logging_count;
256     MemoryRegion *alias;
257     hwaddr alias_offset;
258     int32_t priority;
259     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
260     QTAILQ_ENTRY(MemoryRegion) subregions_link;
261     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
262     const char *name;
263     unsigned ioeventfd_nb;
264     MemoryRegionIoeventfd *ioeventfds;
265 };
266 
267 struct IOMMUMemoryRegion {
268     MemoryRegion parent_obj;
269 
270     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
271     IOMMUNotifierFlag iommu_notify_flags;
272 };
273 
274 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
275     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
276 
277 /**
278  * MemoryListener: callbacks structure for updates to the physical memory map
279  *
280  * Allows a component to adjust to changes in the guest-visible memory map.
281  * Use with memory_listener_register() and memory_listener_unregister().
282  */
283 struct MemoryListener {
284     void (*begin)(MemoryListener *listener);
285     void (*commit)(MemoryListener *listener);
286     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
287     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
288     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
289     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
290                       int old, int new);
291     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
292                      int old, int new);
293     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
294     void (*log_global_start)(MemoryListener *listener);
295     void (*log_global_stop)(MemoryListener *listener);
296     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
297                         bool match_data, uint64_t data, EventNotifier *e);
298     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
299                         bool match_data, uint64_t data, EventNotifier *e);
300     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
301                                hwaddr addr, hwaddr len);
302     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
303                                hwaddr addr, hwaddr len);
304     /* Lower = earlier (during add), later (during del) */
305     unsigned priority;
306     AddressSpace *address_space;
307     QTAILQ_ENTRY(MemoryListener) link;
308     QTAILQ_ENTRY(MemoryListener) link_as;
309 };
310 
311 /**
312  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
313  */
314 struct AddressSpace {
315     /* All fields are private. */
316     struct rcu_head rcu;
317     char *name;
318     MemoryRegion *root;
319 
320     /* Accessed via RCU.  */
321     struct FlatView *current_map;
322 
323     int ioeventfd_nb;
324     struct MemoryRegionIoeventfd *ioeventfds;
325     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
326     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
327 };
328 
329 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
330 typedef struct FlatRange FlatRange;
331 
332 /* Flattened global view of current active memory hierarchy.  Kept in sorted
333  * order.
334  */
335 struct FlatView {
336     struct rcu_head rcu;
337     unsigned ref;
338     FlatRange *ranges;
339     unsigned nr;
340     unsigned nr_allocated;
341     struct AddressSpaceDispatch *dispatch;
342     MemoryRegion *root;
343 };
344 
345 static inline FlatView *address_space_to_flatview(AddressSpace *as)
346 {
347     return atomic_rcu_read(&as->current_map);
348 }
349 
350 
351 /**
352  * MemoryRegionSection: describes a fragment of a #MemoryRegion
353  *
354  * @mr: the region, or %NULL if empty
355  * @fv: the flat view of the address space the region is mapped in
356  * @offset_within_region: the beginning of the section, relative to @mr's start
357  * @size: the size of the section; will not exceed @mr's boundaries
358  * @offset_within_address_space: the address of the first byte of the section
359  *     relative to the region's address space
360  * @readonly: writes to this section are ignored
361  */
362 struct MemoryRegionSection {
363     MemoryRegion *mr;
364     FlatView *fv;
365     hwaddr offset_within_region;
366     Int128 size;
367     hwaddr offset_within_address_space;
368     bool readonly;
369 };
370 
371 /**
372  * memory_region_init: Initialize a memory region
373  *
374  * The region typically acts as a container for other memory regions.  Use
375  * memory_region_add_subregion() to add subregions.
376  *
377  * @mr: the #MemoryRegion to be initialized
378  * @owner: the object that tracks the region's reference count
379  * @name: used for debugging; not visible to the user or ABI
380  * @size: size of the region; any subregions beyond this size will be clipped
381  */
382 void memory_region_init(MemoryRegion *mr,
383                         struct Object *owner,
384                         const char *name,
385                         uint64_t size);
386 
387 /**
388  * memory_region_ref: Add 1 to a memory region's reference count
389  *
390  * Whenever memory regions are accessed outside the BQL, they need to be
391  * preserved against hot-unplug.  MemoryRegions actually do not have their
392  * own reference count; they piggyback on a QOM object, their "owner".
393  * This function adds a reference to the owner.
394  *
395  * All MemoryRegions must have an owner if they can disappear, even if the
396  * device they belong to operates exclusively under the BQL.  This is because
397  * the region could be returned at any time by memory_region_find, and this
398  * is usually under guest control.
399  *
400  * @mr: the #MemoryRegion
401  */
402 void memory_region_ref(MemoryRegion *mr);
403 
404 /**
405  * memory_region_unref: Remove 1 to a memory region's reference count
406  *
407  * Whenever memory regions are accessed outside the BQL, they need to be
408  * preserved against hot-unplug.  MemoryRegions actually do not have their
409  * own reference count; they piggyback on a QOM object, their "owner".
410  * This function removes a reference to the owner and possibly destroys it.
411  *
412  * @mr: the #MemoryRegion
413  */
414 void memory_region_unref(MemoryRegion *mr);
415 
416 /**
417  * memory_region_init_io: Initialize an I/O memory region.
418  *
419  * Accesses into the region will cause the callbacks in @ops to be called.
420  * if @size is nonzero, subregions will be clipped to @size.
421  *
422  * @mr: the #MemoryRegion to be initialized.
423  * @owner: the object that tracks the region's reference count
424  * @ops: a structure containing read and write callbacks to be used when
425  *       I/O is performed on the region.
426  * @opaque: passed to the read and write callbacks of the @ops structure.
427  * @name: used for debugging; not visible to the user or ABI
428  * @size: size of the region.
429  */
430 void memory_region_init_io(MemoryRegion *mr,
431                            struct Object *owner,
432                            const MemoryRegionOps *ops,
433                            void *opaque,
434                            const char *name,
435                            uint64_t size);
436 
437 /**
438  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
439  *                                    into the region will modify memory
440  *                                    directly.
441  *
442  * @mr: the #MemoryRegion to be initialized.
443  * @owner: the object that tracks the region's reference count
444  * @name: Region name, becomes part of RAMBlock name used in migration stream
445  *        must be unique within any device
446  * @size: size of the region.
447  * @errp: pointer to Error*, to store an error if it happens.
448  *
449  * Note that this function does not do anything to cause the data in the
450  * RAM memory region to be migrated; that is the responsibility of the caller.
451  */
452 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
453                                       struct Object *owner,
454                                       const char *name,
455                                       uint64_t size,
456                                       Error **errp);
457 
458 /**
459  * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
460  *                                           Accesses into the region will
461  *                                           modify memory directly.
462  *
463  * @mr: the #MemoryRegion to be initialized.
464  * @owner: the object that tracks the region's reference count
465  * @name: Region name, becomes part of RAMBlock name used in migration stream
466  *        must be unique within any device
467  * @size: size of the region.
468  * @share: allow remapping RAM to different addresses
469  * @errp: pointer to Error*, to store an error if it happens.
470  *
471  * Note that this function is similar to memory_region_init_ram_nomigrate.
472  * The only difference is part of the RAM region can be remapped.
473  */
474 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
475                                              struct Object *owner,
476                                              const char *name,
477                                              uint64_t size,
478                                              bool share,
479                                              Error **errp);
480 
481 /**
482  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
483  *                                     RAM.  Accesses into the region will
484  *                                     modify memory directly.  Only an initial
485  *                                     portion of this RAM is actually used.
486  *                                     The used size can change across reboots.
487  *
488  * @mr: the #MemoryRegion to be initialized.
489  * @owner: the object that tracks the region's reference count
490  * @name: Region name, becomes part of RAMBlock name used in migration stream
491  *        must be unique within any device
492  * @size: used size of the region.
493  * @max_size: max size of the region.
494  * @resized: callback to notify owner about used size change.
495  * @errp: pointer to Error*, to store an error if it happens.
496  *
497  * Note that this function does not do anything to cause the data in the
498  * RAM memory region to be migrated; that is the responsibility of the caller.
499  */
500 void memory_region_init_resizeable_ram(MemoryRegion *mr,
501                                        struct Object *owner,
502                                        const char *name,
503                                        uint64_t size,
504                                        uint64_t max_size,
505                                        void (*resized)(const char*,
506                                                        uint64_t length,
507                                                        void *host),
508                                        Error **errp);
509 #ifdef __linux__
510 /**
511  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
512  *                                    mmap-ed backend.
513  *
514  * @mr: the #MemoryRegion to be initialized.
515  * @owner: the object that tracks the region's reference count
516  * @name: Region name, becomes part of RAMBlock name used in migration stream
517  *        must be unique within any device
518  * @size: size of the region.
519  * @align: alignment of the region base address; if 0, the default alignment
520  *         (getpagesize()) will be used.
521  * @share: %true if memory must be mmaped with the MAP_SHARED flag
522  * @path: the path in which to allocate the RAM.
523  * @errp: pointer to Error*, to store an error if it happens.
524  *
525  * Note that this function does not do anything to cause the data in the
526  * RAM memory region to be migrated; that is the responsibility of the caller.
527  */
528 void memory_region_init_ram_from_file(MemoryRegion *mr,
529                                       struct Object *owner,
530                                       const char *name,
531                                       uint64_t size,
532                                       uint64_t align,
533                                       bool share,
534                                       const char *path,
535                                       Error **errp);
536 
537 /**
538  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
539  *                                  mmap-ed backend.
540  *
541  * @mr: the #MemoryRegion to be initialized.
542  * @owner: the object that tracks the region's reference count
543  * @name: the name of the region.
544  * @size: size of the region.
545  * @share: %true if memory must be mmaped with the MAP_SHARED flag
546  * @fd: the fd to mmap.
547  * @errp: pointer to Error*, to store an error if it happens.
548  *
549  * Note that this function does not do anything to cause the data in the
550  * RAM memory region to be migrated; that is the responsibility of the caller.
551  */
552 void memory_region_init_ram_from_fd(MemoryRegion *mr,
553                                     struct Object *owner,
554                                     const char *name,
555                                     uint64_t size,
556                                     bool share,
557                                     int fd,
558                                     Error **errp);
559 #endif
560 
561 /**
562  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
563  *                              user-provided pointer.  Accesses into the
564  *                              region will modify memory directly.
565  *
566  * @mr: the #MemoryRegion to be initialized.
567  * @owner: the object that tracks the region's reference count
568  * @name: Region name, becomes part of RAMBlock name used in migration stream
569  *        must be unique within any device
570  * @size: size of the region.
571  * @ptr: memory to be mapped; must contain at least @size bytes.
572  *
573  * Note that this function does not do anything to cause the data in the
574  * RAM memory region to be migrated; that is the responsibility of the caller.
575  */
576 void memory_region_init_ram_ptr(MemoryRegion *mr,
577                                 struct Object *owner,
578                                 const char *name,
579                                 uint64_t size,
580                                 void *ptr);
581 
582 /**
583  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
584  *                                     a user-provided pointer.
585  *
586  * A RAM device represents a mapping to a physical device, such as to a PCI
587  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
588  * into the VM address space and access to the region will modify memory
589  * directly.  However, the memory region should not be included in a memory
590  * dump (device may not be enabled/mapped at the time of the dump), and
591  * operations incompatible with manipulating MMIO should be avoided.  Replaces
592  * skip_dump flag.
593  *
594  * @mr: the #MemoryRegion to be initialized.
595  * @owner: the object that tracks the region's reference count
596  * @name: the name of the region.
597  * @size: size of the region.
598  * @ptr: memory to be mapped; must contain at least @size bytes.
599  *
600  * Note that this function does not do anything to cause the data in the
601  * RAM memory region to be migrated; that is the responsibility of the caller.
602  * (For RAM device memory regions, migrating the contents rarely makes sense.)
603  */
604 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
605                                        struct Object *owner,
606                                        const char *name,
607                                        uint64_t size,
608                                        void *ptr);
609 
610 /**
611  * memory_region_init_alias: Initialize a memory region that aliases all or a
612  *                           part of another memory region.
613  *
614  * @mr: the #MemoryRegion to be initialized.
615  * @owner: the object that tracks the region's reference count
616  * @name: used for debugging; not visible to the user or ABI
617  * @orig: the region to be referenced; @mr will be equivalent to
618  *        @orig between @offset and @offset + @size - 1.
619  * @offset: start of the section in @orig to be referenced.
620  * @size: size of the region.
621  */
622 void memory_region_init_alias(MemoryRegion *mr,
623                               struct Object *owner,
624                               const char *name,
625                               MemoryRegion *orig,
626                               hwaddr offset,
627                               uint64_t size);
628 
629 /**
630  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
631  *
632  * This has the same effect as calling memory_region_init_ram_nomigrate()
633  * and then marking the resulting region read-only with
634  * memory_region_set_readonly().
635  *
636  * Note that this function does not do anything to cause the data in the
637  * RAM side of the memory region to be migrated; that is the responsibility
638  * of the caller.
639  *
640  * @mr: the #MemoryRegion to be initialized.
641  * @owner: the object that tracks the region's reference count
642  * @name: Region name, becomes part of RAMBlock name used in migration stream
643  *        must be unique within any device
644  * @size: size of the region.
645  * @errp: pointer to Error*, to store an error if it happens.
646  */
647 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
648                                       struct Object *owner,
649                                       const char *name,
650                                       uint64_t size,
651                                       Error **errp);
652 
653 /**
654  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
655  *                                 Writes are handled via callbacks.
656  *
657  * Note that this function does not do anything to cause the data in the
658  * RAM side of the memory region to be migrated; that is the responsibility
659  * of the caller.
660  *
661  * @mr: the #MemoryRegion to be initialized.
662  * @owner: the object that tracks the region's reference count
663  * @ops: callbacks for write access handling (must not be NULL).
664  * @opaque: passed to the read and write callbacks of the @ops structure.
665  * @name: Region name, becomes part of RAMBlock name used in migration stream
666  *        must be unique within any device
667  * @size: size of the region.
668  * @errp: pointer to Error*, to store an error if it happens.
669  */
670 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
671                                              struct Object *owner,
672                                              const MemoryRegionOps *ops,
673                                              void *opaque,
674                                              const char *name,
675                                              uint64_t size,
676                                              Error **errp);
677 
678 /**
679  * memory_region_init_reservation: Initialize a memory region that reserves
680  *                                 I/O space.
681  *
682  * A reservation region primariy serves debugging purposes.  It claims I/O
683  * space that is not supposed to be handled by QEMU itself.  Any access via
684  * the memory API will cause an abort().
685  * This function is deprecated. Use memory_region_init_io() with NULL
686  * callbacks instead.
687  *
688  * @mr: the #MemoryRegion to be initialized
689  * @owner: the object that tracks the region's reference count
690  * @name: used for debugging; not visible to the user or ABI
691  * @size: size of the region.
692  */
693 static inline void memory_region_init_reservation(MemoryRegion *mr,
694                                     Object *owner,
695                                     const char *name,
696                                     uint64_t size)
697 {
698     memory_region_init_io(mr, owner, NULL, mr, name, size);
699 }
700 
701 /**
702  * memory_region_init_iommu: Initialize a memory region of a custom type
703  * that translates addresses
704  *
705  * An IOMMU region translates addresses and forwards accesses to a target
706  * memory region.
707  *
708  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
709  * @instance_size: the IOMMUMemoryRegion subclass instance size
710  * @mrtypename: the type name of the #IOMMUMemoryRegion
711  * @owner: the object that tracks the region's reference count
712  * @name: used for debugging; not visible to the user or ABI
713  * @size: size of the region.
714  */
715 void memory_region_init_iommu(void *_iommu_mr,
716                               size_t instance_size,
717                               const char *mrtypename,
718                               Object *owner,
719                               const char *name,
720                               uint64_t size);
721 
722 /**
723  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
724  *                          region will modify memory directly.
725  *
726  * @mr: the #MemoryRegion to be initialized
727  * @owner: the object that tracks the region's reference count (must be
728  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
729  * @name: name of the memory region
730  * @size: size of the region in bytes
731  * @errp: pointer to Error*, to store an error if it happens.
732  *
733  * This function allocates RAM for a board model or device, and
734  * arranges for it to be migrated (by calling vmstate_register_ram()
735  * if @owner is a DeviceState, or vmstate_register_ram_global() if
736  * @owner is NULL).
737  *
738  * TODO: Currently we restrict @owner to being either NULL (for
739  * global RAM regions with no owner) or devices, so that we can
740  * give the RAM block a unique name for migration purposes.
741  * We should lift this restriction and allow arbitrary Objects.
742  * If you pass a non-NULL non-device @owner then we will assert.
743  */
744 void memory_region_init_ram(MemoryRegion *mr,
745                             struct Object *owner,
746                             const char *name,
747                             uint64_t size,
748                             Error **errp);
749 
750 /**
751  * memory_region_init_rom: Initialize a ROM memory region.
752  *
753  * This has the same effect as calling memory_region_init_ram()
754  * and then marking the resulting region read-only with
755  * memory_region_set_readonly(). This includes arranging for the
756  * contents to be migrated.
757  *
758  * TODO: Currently we restrict @owner to being either NULL (for
759  * global RAM regions with no owner) or devices, so that we can
760  * give the RAM block a unique name for migration purposes.
761  * We should lift this restriction and allow arbitrary Objects.
762  * If you pass a non-NULL non-device @owner then we will assert.
763  *
764  * @mr: the #MemoryRegion to be initialized.
765  * @owner: the object that tracks the region's reference count
766  * @name: Region name, becomes part of RAMBlock name used in migration stream
767  *        must be unique within any device
768  * @size: size of the region.
769  * @errp: pointer to Error*, to store an error if it happens.
770  */
771 void memory_region_init_rom(MemoryRegion *mr,
772                             struct Object *owner,
773                             const char *name,
774                             uint64_t size,
775                             Error **errp);
776 
777 /**
778  * memory_region_init_rom_device:  Initialize a ROM memory region.
779  *                                 Writes are handled via callbacks.
780  *
781  * This function initializes a memory region backed by RAM for reads
782  * and callbacks for writes, and arranges for the RAM backing to
783  * be migrated (by calling vmstate_register_ram()
784  * if @owner is a DeviceState, or vmstate_register_ram_global() if
785  * @owner is NULL).
786  *
787  * TODO: Currently we restrict @owner to being either NULL (for
788  * global RAM regions with no owner) or devices, so that we can
789  * give the RAM block a unique name for migration purposes.
790  * We should lift this restriction and allow arbitrary Objects.
791  * If you pass a non-NULL non-device @owner then we will assert.
792  *
793  * @mr: the #MemoryRegion to be initialized.
794  * @owner: the object that tracks the region's reference count
795  * @ops: callbacks for write access handling (must not be NULL).
796  * @name: Region name, becomes part of RAMBlock name used in migration stream
797  *        must be unique within any device
798  * @size: size of the region.
799  * @errp: pointer to Error*, to store an error if it happens.
800  */
801 void memory_region_init_rom_device(MemoryRegion *mr,
802                                    struct Object *owner,
803                                    const MemoryRegionOps *ops,
804                                    void *opaque,
805                                    const char *name,
806                                    uint64_t size,
807                                    Error **errp);
808 
809 
810 /**
811  * memory_region_owner: get a memory region's owner.
812  *
813  * @mr: the memory region being queried.
814  */
815 struct Object *memory_region_owner(MemoryRegion *mr);
816 
817 /**
818  * memory_region_size: get a memory region's size.
819  *
820  * @mr: the memory region being queried.
821  */
822 uint64_t memory_region_size(MemoryRegion *mr);
823 
824 /**
825  * memory_region_is_ram: check whether a memory region is random access
826  *
827  * Returns %true is a memory region is random access.
828  *
829  * @mr: the memory region being queried
830  */
831 static inline bool memory_region_is_ram(MemoryRegion *mr)
832 {
833     return mr->ram;
834 }
835 
836 /**
837  * memory_region_is_ram_device: check whether a memory region is a ram device
838  *
839  * Returns %true is a memory region is a device backed ram region
840  *
841  * @mr: the memory region being queried
842  */
843 bool memory_region_is_ram_device(MemoryRegion *mr);
844 
845 /**
846  * memory_region_is_romd: check whether a memory region is in ROMD mode
847  *
848  * Returns %true if a memory region is a ROM device and currently set to allow
849  * direct reads.
850  *
851  * @mr: the memory region being queried
852  */
853 static inline bool memory_region_is_romd(MemoryRegion *mr)
854 {
855     return mr->rom_device && mr->romd_mode;
856 }
857 
858 /**
859  * memory_region_get_iommu: check whether a memory region is an iommu
860  *
861  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
862  * otherwise NULL.
863  *
864  * @mr: the memory region being queried
865  */
866 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
867 {
868     if (mr->alias) {
869         return memory_region_get_iommu(mr->alias);
870     }
871     if (mr->is_iommu) {
872         return (IOMMUMemoryRegion *) mr;
873     }
874     return NULL;
875 }
876 
877 /**
878  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
879  *   if an iommu or NULL if not
880  *
881  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
882  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
883  *
884  * @mr: the memory region being queried
885  */
886 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
887         IOMMUMemoryRegion *iommu_mr)
888 {
889     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
890 }
891 
892 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
893 
894 /**
895  * memory_region_iommu_get_min_page_size: get minimum supported page size
896  * for an iommu
897  *
898  * Returns minimum supported page size for an iommu.
899  *
900  * @iommu_mr: the memory region being queried
901  */
902 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
903 
904 /**
905  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
906  *
907  * The notification type will be decided by entry.perm bits:
908  *
909  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
910  * - For MAP (newly added entry) notifies: set entry.perm to the
911  *   permission of the page (which is definitely !IOMMU_NONE).
912  *
913  * Note: for any IOMMU implementation, an in-place mapping change
914  * should be notified with an UNMAP followed by a MAP.
915  *
916  * @iommu_mr: the memory region that was changed
917  * @entry: the new entry in the IOMMU translation table.  The entry
918  *         replaces all old entries for the same virtual I/O address range.
919  *         Deleted entries have .@perm == 0.
920  */
921 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
922                                 IOMMUTLBEntry entry);
923 
924 /**
925  * memory_region_notify_one: notify a change in an IOMMU translation
926  *                           entry to a single notifier
927  *
928  * This works just like memory_region_notify_iommu(), but it only
929  * notifies a specific notifier, not all of them.
930  *
931  * @notifier: the notifier to be notified
932  * @entry: the new entry in the IOMMU translation table.  The entry
933  *         replaces all old entries for the same virtual I/O address range.
934  *         Deleted entries have .@perm == 0.
935  */
936 void memory_region_notify_one(IOMMUNotifier *notifier,
937                               IOMMUTLBEntry *entry);
938 
939 /**
940  * memory_region_register_iommu_notifier: register a notifier for changes to
941  * IOMMU translation entries.
942  *
943  * @mr: the memory region to observe
944  * @n: the IOMMUNotifier to be added; the notify callback receives a
945  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
946  *     ceases to be valid on exit from the notifier.
947  */
948 void memory_region_register_iommu_notifier(MemoryRegion *mr,
949                                            IOMMUNotifier *n);
950 
951 /**
952  * memory_region_iommu_replay: replay existing IOMMU translations to
953  * a notifier with the minimum page granularity returned by
954  * mr->iommu_ops->get_page_size().
955  *
956  * @iommu_mr: the memory region to observe
957  * @n: the notifier to which to replay iommu mappings
958  */
959 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
960 
961 /**
962  * memory_region_iommu_replay_all: replay existing IOMMU translations
963  * to all the notifiers registered.
964  *
965  * @iommu_mr: the memory region to observe
966  */
967 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
968 
969 /**
970  * memory_region_unregister_iommu_notifier: unregister a notifier for
971  * changes to IOMMU translation entries.
972  *
973  * @mr: the memory region which was observed and for which notity_stopped()
974  *      needs to be called
975  * @n: the notifier to be removed.
976  */
977 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
978                                              IOMMUNotifier *n);
979 
980 /**
981  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
982  * defined on the IOMMU.
983  *
984  * Returns 0 if succeded, error code otherwise.
985  *
986  * @iommu_mr: the memory region
987  * @attr: the requested attribute
988  * @data: a pointer to the requested attribute data
989  */
990 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
991                                  enum IOMMUMemoryRegionAttr attr,
992                                  void *data);
993 
994 /**
995  * memory_region_name: get a memory region's name
996  *
997  * Returns the string that was used to initialize the memory region.
998  *
999  * @mr: the memory region being queried
1000  */
1001 const char *memory_region_name(const MemoryRegion *mr);
1002 
1003 /**
1004  * memory_region_is_logging: return whether a memory region is logging writes
1005  *
1006  * Returns %true if the memory region is logging writes for the given client
1007  *
1008  * @mr: the memory region being queried
1009  * @client: the client being queried
1010  */
1011 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1012 
1013 /**
1014  * memory_region_get_dirty_log_mask: return the clients for which a
1015  * memory region is logging writes.
1016  *
1017  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1018  * are the bit indices.
1019  *
1020  * @mr: the memory region being queried
1021  */
1022 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1023 
1024 /**
1025  * memory_region_is_rom: check whether a memory region is ROM
1026  *
1027  * Returns %true is a memory region is read-only memory.
1028  *
1029  * @mr: the memory region being queried
1030  */
1031 static inline bool memory_region_is_rom(MemoryRegion *mr)
1032 {
1033     return mr->ram && mr->readonly;
1034 }
1035 
1036 
1037 /**
1038  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1039  *
1040  * Returns a file descriptor backing a file-based RAM memory region,
1041  * or -1 if the region is not a file-based RAM memory region.
1042  *
1043  * @mr: the RAM or alias memory region being queried.
1044  */
1045 int memory_region_get_fd(MemoryRegion *mr);
1046 
1047 /**
1048  * memory_region_from_host: Convert a pointer into a RAM memory region
1049  * and an offset within it.
1050  *
1051  * Given a host pointer inside a RAM memory region (created with
1052  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1053  * the MemoryRegion and the offset within it.
1054  *
1055  * Use with care; by the time this function returns, the returned pointer is
1056  * not protected by RCU anymore.  If the caller is not within an RCU critical
1057  * section and does not hold the iothread lock, it must have other means of
1058  * protecting the pointer, such as a reference to the region that includes
1059  * the incoming ram_addr_t.
1060  *
1061  * @ptr: the host pointer to be converted
1062  * @offset: the offset within memory region
1063  */
1064 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1065 
1066 /**
1067  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1068  *
1069  * Returns a host pointer to a RAM memory region (created with
1070  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1071  *
1072  * Use with care; by the time this function returns, the returned pointer is
1073  * not protected by RCU anymore.  If the caller is not within an RCU critical
1074  * section and does not hold the iothread lock, it must have other means of
1075  * protecting the pointer, such as a reference to the region that includes
1076  * the incoming ram_addr_t.
1077  *
1078  * @mr: the memory region being queried.
1079  */
1080 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1081 
1082 /* memory_region_ram_resize: Resize a RAM region.
1083  *
1084  * Only legal before guest might have detected the memory size: e.g. on
1085  * incoming migration, or right after reset.
1086  *
1087  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1088  * @newsize: the new size the region
1089  * @errp: pointer to Error*, to store an error if it happens.
1090  */
1091 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1092                               Error **errp);
1093 
1094 /**
1095  * memory_region_set_log: Turn dirty logging on or off for a region.
1096  *
1097  * Turns dirty logging on or off for a specified client (display, migration).
1098  * Only meaningful for RAM regions.
1099  *
1100  * @mr: the memory region being updated.
1101  * @log: whether dirty logging is to be enabled or disabled.
1102  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1103  */
1104 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1105 
1106 /**
1107  * memory_region_get_dirty: Check whether a range of bytes is dirty
1108  *                          for a specified client.
1109  *
1110  * Checks whether a range of bytes has been written to since the last
1111  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1112  * must be enabled.
1113  *
1114  * @mr: the memory region being queried.
1115  * @addr: the address (relative to the start of the region) being queried.
1116  * @size: the size of the range being queried.
1117  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1118  *          %DIRTY_MEMORY_VGA.
1119  */
1120 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1121                              hwaddr size, unsigned client);
1122 
1123 /**
1124  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1125  *
1126  * Marks a range of bytes as dirty, after it has been dirtied outside
1127  * guest code.
1128  *
1129  * @mr: the memory region being dirtied.
1130  * @addr: the address (relative to the start of the region) being dirtied.
1131  * @size: size of the range being dirtied.
1132  */
1133 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1134                              hwaddr size);
1135 
1136 /**
1137  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1138  *                                         bitmap and clear it.
1139  *
1140  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1141  * returns the snapshot.  The snapshot can then be used to query dirty
1142  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1143  * querying the same page multiple times, which is especially useful for
1144  * display updates where the scanlines often are not page aligned.
1145  *
1146  * The dirty bitmap region which gets copyed into the snapshot (and
1147  * cleared afterwards) can be larger than requested.  The boundaries
1148  * are rounded up/down so complete bitmap longs (covering 64 pages on
1149  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1150  * isn't a problem for display updates as the extra pages are outside
1151  * the visible area, and in case the visible area changes a full
1152  * display redraw is due anyway.  Should other use cases for this
1153  * function emerge we might have to revisit this implementation
1154  * detail.
1155  *
1156  * Use g_free to release DirtyBitmapSnapshot.
1157  *
1158  * @mr: the memory region being queried.
1159  * @addr: the address (relative to the start of the region) being queried.
1160  * @size: the size of the range being queried.
1161  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1162  */
1163 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1164                                                             hwaddr addr,
1165                                                             hwaddr size,
1166                                                             unsigned client);
1167 
1168 /**
1169  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1170  *                                   in the specified dirty bitmap snapshot.
1171  *
1172  * @mr: the memory region being queried.
1173  * @snap: the dirty bitmap snapshot
1174  * @addr: the address (relative to the start of the region) being queried.
1175  * @size: the size of the range being queried.
1176  */
1177 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1178                                       DirtyBitmapSnapshot *snap,
1179                                       hwaddr addr, hwaddr size);
1180 
1181 /**
1182  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1183  *                            client.
1184  *
1185  * Marks a range of pages as no longer dirty.
1186  *
1187  * @mr: the region being updated.
1188  * @addr: the start of the subrange being cleaned.
1189  * @size: the size of the subrange being cleaned.
1190  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1191  *          %DIRTY_MEMORY_VGA.
1192  */
1193 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1194                                hwaddr size, unsigned client);
1195 
1196 /**
1197  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1198  *
1199  * Allows a memory region to be marked as read-only (turning it into a ROM).
1200  * only useful on RAM regions.
1201  *
1202  * @mr: the region being updated.
1203  * @readonly: whether rhe region is to be ROM or RAM.
1204  */
1205 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1206 
1207 /**
1208  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1209  *
1210  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1211  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1212  * device is mapped to guest memory and satisfies read access directly.
1213  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1214  * Writes are always handled by the #MemoryRegion.write function.
1215  *
1216  * @mr: the memory region to be updated
1217  * @romd_mode: %true to put the region into ROMD mode
1218  */
1219 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1220 
1221 /**
1222  * memory_region_set_coalescing: Enable memory coalescing for the region.
1223  *
1224  * Enabled writes to a region to be queued for later processing. MMIO ->write
1225  * callbacks may be delayed until a non-coalesced MMIO is issued.
1226  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1227  *
1228  * @mr: the memory region to be write coalesced
1229  */
1230 void memory_region_set_coalescing(MemoryRegion *mr);
1231 
1232 /**
1233  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1234  *                               a region.
1235  *
1236  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1237  * Multiple calls can be issued coalesced disjoint ranges.
1238  *
1239  * @mr: the memory region to be updated.
1240  * @offset: the start of the range within the region to be coalesced.
1241  * @size: the size of the subrange to be coalesced.
1242  */
1243 void memory_region_add_coalescing(MemoryRegion *mr,
1244                                   hwaddr offset,
1245                                   uint64_t size);
1246 
1247 /**
1248  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1249  *
1250  * Disables any coalescing caused by memory_region_set_coalescing() or
1251  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1252  * hardware.
1253  *
1254  * @mr: the memory region to be updated.
1255  */
1256 void memory_region_clear_coalescing(MemoryRegion *mr);
1257 
1258 /**
1259  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1260  *                                    accesses.
1261  *
1262  * Ensure that pending coalesced MMIO request are flushed before the memory
1263  * region is accessed. This property is automatically enabled for all regions
1264  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1265  *
1266  * @mr: the memory region to be updated.
1267  */
1268 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1269 
1270 /**
1271  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1272  *                                      accesses.
1273  *
1274  * Clear the automatic coalesced MMIO flushing enabled via
1275  * memory_region_set_flush_coalesced. Note that this service has no effect on
1276  * memory regions that have MMIO coalescing enabled for themselves. For them,
1277  * automatic flushing will stop once coalescing is disabled.
1278  *
1279  * @mr: the memory region to be updated.
1280  */
1281 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1282 
1283 /**
1284  * memory_region_clear_global_locking: Declares that access processing does
1285  *                                     not depend on the QEMU global lock.
1286  *
1287  * By clearing this property, accesses to the memory region will be processed
1288  * outside of QEMU's global lock (unless the lock is held on when issuing the
1289  * access request). In this case, the device model implementing the access
1290  * handlers is responsible for synchronization of concurrency.
1291  *
1292  * @mr: the memory region to be updated.
1293  */
1294 void memory_region_clear_global_locking(MemoryRegion *mr);
1295 
1296 /**
1297  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1298  *                            is written to a location.
1299  *
1300  * Marks a word in an IO region (initialized with memory_region_init_io())
1301  * as a trigger for an eventfd event.  The I/O callback will not be called.
1302  * The caller must be prepared to handle failure (that is, take the required
1303  * action if the callback _is_ called).
1304  *
1305  * @mr: the memory region being updated.
1306  * @addr: the address within @mr that is to be monitored
1307  * @size: the size of the access to trigger the eventfd
1308  * @match_data: whether to match against @data, instead of just @addr
1309  * @data: the data to match against the guest write
1310  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1311  **/
1312 void memory_region_add_eventfd(MemoryRegion *mr,
1313                                hwaddr addr,
1314                                unsigned size,
1315                                bool match_data,
1316                                uint64_t data,
1317                                EventNotifier *e);
1318 
1319 /**
1320  * memory_region_del_eventfd: Cancel an eventfd.
1321  *
1322  * Cancels an eventfd trigger requested by a previous
1323  * memory_region_add_eventfd() call.
1324  *
1325  * @mr: the memory region being updated.
1326  * @addr: the address within @mr that is to be monitored
1327  * @size: the size of the access to trigger the eventfd
1328  * @match_data: whether to match against @data, instead of just @addr
1329  * @data: the data to match against the guest write
1330  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1331  */
1332 void memory_region_del_eventfd(MemoryRegion *mr,
1333                                hwaddr addr,
1334                                unsigned size,
1335                                bool match_data,
1336                                uint64_t data,
1337                                EventNotifier *e);
1338 
1339 /**
1340  * memory_region_add_subregion: Add a subregion to a container.
1341  *
1342  * Adds a subregion at @offset.  The subregion may not overlap with other
1343  * subregions (except for those explicitly marked as overlapping).  A region
1344  * may only be added once as a subregion (unless removed with
1345  * memory_region_del_subregion()); use memory_region_init_alias() if you
1346  * want a region to be a subregion in multiple locations.
1347  *
1348  * @mr: the region to contain the new subregion; must be a container
1349  *      initialized with memory_region_init().
1350  * @offset: the offset relative to @mr where @subregion is added.
1351  * @subregion: the subregion to be added.
1352  */
1353 void memory_region_add_subregion(MemoryRegion *mr,
1354                                  hwaddr offset,
1355                                  MemoryRegion *subregion);
1356 /**
1357  * memory_region_add_subregion_overlap: Add a subregion to a container
1358  *                                      with overlap.
1359  *
1360  * Adds a subregion at @offset.  The subregion may overlap with other
1361  * subregions.  Conflicts are resolved by having a higher @priority hide a
1362  * lower @priority. Subregions without priority are taken as @priority 0.
1363  * A region may only be added once as a subregion (unless removed with
1364  * memory_region_del_subregion()); use memory_region_init_alias() if you
1365  * want a region to be a subregion in multiple locations.
1366  *
1367  * @mr: the region to contain the new subregion; must be a container
1368  *      initialized with memory_region_init().
1369  * @offset: the offset relative to @mr where @subregion is added.
1370  * @subregion: the subregion to be added.
1371  * @priority: used for resolving overlaps; highest priority wins.
1372  */
1373 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1374                                          hwaddr offset,
1375                                          MemoryRegion *subregion,
1376                                          int priority);
1377 
1378 /**
1379  * memory_region_get_ram_addr: Get the ram address associated with a memory
1380  *                             region
1381  */
1382 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1383 
1384 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1385 /**
1386  * memory_region_del_subregion: Remove a subregion.
1387  *
1388  * Removes a subregion from its container.
1389  *
1390  * @mr: the container to be updated.
1391  * @subregion: the region being removed; must be a current subregion of @mr.
1392  */
1393 void memory_region_del_subregion(MemoryRegion *mr,
1394                                  MemoryRegion *subregion);
1395 
1396 /*
1397  * memory_region_set_enabled: dynamically enable or disable a region
1398  *
1399  * Enables or disables a memory region.  A disabled memory region
1400  * ignores all accesses to itself and its subregions.  It does not
1401  * obscure sibling subregions with lower priority - it simply behaves as
1402  * if it was removed from the hierarchy.
1403  *
1404  * Regions default to being enabled.
1405  *
1406  * @mr: the region to be updated
1407  * @enabled: whether to enable or disable the region
1408  */
1409 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1410 
1411 /*
1412  * memory_region_set_address: dynamically update the address of a region
1413  *
1414  * Dynamically updates the address of a region, relative to its container.
1415  * May be used on regions are currently part of a memory hierarchy.
1416  *
1417  * @mr: the region to be updated
1418  * @addr: new address, relative to container region
1419  */
1420 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1421 
1422 /*
1423  * memory_region_set_size: dynamically update the size of a region.
1424  *
1425  * Dynamically updates the size of a region.
1426  *
1427  * @mr: the region to be updated
1428  * @size: used size of the region.
1429  */
1430 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1431 
1432 /*
1433  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1434  *
1435  * Dynamically updates the offset into the target region that an alias points
1436  * to, as if the fourth argument to memory_region_init_alias() has changed.
1437  *
1438  * @mr: the #MemoryRegion to be updated; should be an alias.
1439  * @offset: the new offset into the target memory region
1440  */
1441 void memory_region_set_alias_offset(MemoryRegion *mr,
1442                                     hwaddr offset);
1443 
1444 /**
1445  * memory_region_present: checks if an address relative to a @container
1446  * translates into #MemoryRegion within @container
1447  *
1448  * Answer whether a #MemoryRegion within @container covers the address
1449  * @addr.
1450  *
1451  * @container: a #MemoryRegion within which @addr is a relative address
1452  * @addr: the area within @container to be searched
1453  */
1454 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1455 
1456 /**
1457  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1458  * into any address space.
1459  *
1460  * @mr: a #MemoryRegion which should be checked if it's mapped
1461  */
1462 bool memory_region_is_mapped(MemoryRegion *mr);
1463 
1464 /**
1465  * memory_region_find: translate an address/size relative to a
1466  * MemoryRegion into a #MemoryRegionSection.
1467  *
1468  * Locates the first #MemoryRegion within @mr that overlaps the range
1469  * given by @addr and @size.
1470  *
1471  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1472  * It will have the following characteristics:
1473  *    .@size = 0 iff no overlap was found
1474  *    .@mr is non-%NULL iff an overlap was found
1475  *
1476  * Remember that in the return value the @offset_within_region is
1477  * relative to the returned region (in the .@mr field), not to the
1478  * @mr argument.
1479  *
1480  * Similarly, the .@offset_within_address_space is relative to the
1481  * address space that contains both regions, the passed and the
1482  * returned one.  However, in the special case where the @mr argument
1483  * has no container (and thus is the root of the address space), the
1484  * following will hold:
1485  *    .@offset_within_address_space >= @addr
1486  *    .@offset_within_address_space + .@size <= @addr + @size
1487  *
1488  * @mr: a MemoryRegion within which @addr is a relative address
1489  * @addr: start of the area within @as to be searched
1490  * @size: size of the area to be searched
1491  */
1492 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1493                                        hwaddr addr, uint64_t size);
1494 
1495 /**
1496  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1497  *
1498  * Synchronizes the dirty page log for all address spaces.
1499  */
1500 void memory_global_dirty_log_sync(void);
1501 
1502 /**
1503  * memory_region_transaction_begin: Start a transaction.
1504  *
1505  * During a transaction, changes will be accumulated and made visible
1506  * only when the transaction ends (is committed).
1507  */
1508 void memory_region_transaction_begin(void);
1509 
1510 /**
1511  * memory_region_transaction_commit: Commit a transaction and make changes
1512  *                                   visible to the guest.
1513  */
1514 void memory_region_transaction_commit(void);
1515 
1516 /**
1517  * memory_listener_register: register callbacks to be called when memory
1518  *                           sections are mapped or unmapped into an address
1519  *                           space
1520  *
1521  * @listener: an object containing the callbacks to be called
1522  * @filter: if non-%NULL, only regions in this address space will be observed
1523  */
1524 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1525 
1526 /**
1527  * memory_listener_unregister: undo the effect of memory_listener_register()
1528  *
1529  * @listener: an object containing the callbacks to be removed
1530  */
1531 void memory_listener_unregister(MemoryListener *listener);
1532 
1533 /**
1534  * memory_global_dirty_log_start: begin dirty logging for all regions
1535  */
1536 void memory_global_dirty_log_start(void);
1537 
1538 /**
1539  * memory_global_dirty_log_stop: end dirty logging for all regions
1540  */
1541 void memory_global_dirty_log_stop(void);
1542 
1543 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1544                 bool dispatch_tree);
1545 
1546 /**
1547  * memory_region_request_mmio_ptr: request a pointer to an mmio
1548  * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1549  * When the device wants to invalidate the pointer it will call
1550  * memory_region_invalidate_mmio_ptr.
1551  *
1552  * @mr: #MemoryRegion to check
1553  * @addr: address within that region
1554  *
1555  * Returns true on success, false otherwise.
1556  */
1557 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1558 
1559 /**
1560  * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1561  * previously requested.
1562  * In the end that means that if something wants to execute from this area it
1563  * will need to request the pointer again.
1564  *
1565  * @mr: #MemoryRegion associated to the pointer.
1566  * @offset: offset within the memory region
1567  * @size: size of that area.
1568  */
1569 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1570                                        unsigned size);
1571 
1572 /**
1573  * memory_region_dispatch_read: perform a read directly to the specified
1574  * MemoryRegion.
1575  *
1576  * @mr: #MemoryRegion to access
1577  * @addr: address within that region
1578  * @pval: pointer to uint64_t which the data is written to
1579  * @size: size of the access in bytes
1580  * @attrs: memory transaction attributes to use for the access
1581  */
1582 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1583                                         hwaddr addr,
1584                                         uint64_t *pval,
1585                                         unsigned size,
1586                                         MemTxAttrs attrs);
1587 /**
1588  * memory_region_dispatch_write: perform a write directly to the specified
1589  * MemoryRegion.
1590  *
1591  * @mr: #MemoryRegion to access
1592  * @addr: address within that region
1593  * @data: data to write
1594  * @size: size of the access in bytes
1595  * @attrs: memory transaction attributes to use for the access
1596  */
1597 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1598                                          hwaddr addr,
1599                                          uint64_t data,
1600                                          unsigned size,
1601                                          MemTxAttrs attrs);
1602 
1603 /**
1604  * address_space_init: initializes an address space
1605  *
1606  * @as: an uninitialized #AddressSpace
1607  * @root: a #MemoryRegion that routes addresses for the address space
1608  * @name: an address space name.  The name is only used for debugging
1609  *        output.
1610  */
1611 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1612 
1613 /**
1614  * address_space_destroy: destroy an address space
1615  *
1616  * Releases all resources associated with an address space.  After an address space
1617  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1618  * as well.
1619  *
1620  * @as: address space to be destroyed
1621  */
1622 void address_space_destroy(AddressSpace *as);
1623 
1624 /**
1625  * address_space_rw: read from or write to an address space.
1626  *
1627  * Return a MemTxResult indicating whether the operation succeeded
1628  * or failed (eg unassigned memory, device rejected the transaction,
1629  * IOMMU fault).
1630  *
1631  * @as: #AddressSpace to be accessed
1632  * @addr: address within that address space
1633  * @attrs: memory transaction attributes
1634  * @buf: buffer with the data transferred
1635  * @len: the number of bytes to read or write
1636  * @is_write: indicates the transfer direction
1637  */
1638 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1639                              MemTxAttrs attrs, uint8_t *buf,
1640                              int len, bool is_write);
1641 
1642 /**
1643  * address_space_write: write to address space.
1644  *
1645  * Return a MemTxResult indicating whether the operation succeeded
1646  * or failed (eg unassigned memory, device rejected the transaction,
1647  * IOMMU fault).
1648  *
1649  * @as: #AddressSpace to be accessed
1650  * @addr: address within that address space
1651  * @attrs: memory transaction attributes
1652  * @buf: buffer with the data transferred
1653  * @len: the number of bytes to write
1654  */
1655 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1656                                 MemTxAttrs attrs,
1657                                 const uint8_t *buf, int len);
1658 
1659 /* address_space_ld*: load from an address space
1660  * address_space_st*: store to an address space
1661  *
1662  * These functions perform a load or store of the byte, word,
1663  * longword or quad to the specified address within the AddressSpace.
1664  * The _le suffixed functions treat the data as little endian;
1665  * _be indicates big endian; no suffix indicates "same endianness
1666  * as guest CPU".
1667  *
1668  * The "guest CPU endianness" accessors are deprecated for use outside
1669  * target-* code; devices should be CPU-agnostic and use either the LE
1670  * or the BE accessors.
1671  *
1672  * @as #AddressSpace to be accessed
1673  * @addr: address within that address space
1674  * @val: data value, for stores
1675  * @attrs: memory transaction attributes
1676  * @result: location to write the success/failure of the transaction;
1677  *   if NULL, this information is discarded
1678  */
1679 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1680                             MemTxAttrs attrs, MemTxResult *result);
1681 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1682                             MemTxAttrs attrs, MemTxResult *result);
1683 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1684                             MemTxAttrs attrs, MemTxResult *result);
1685 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1686                             MemTxAttrs attrs, MemTxResult *result);
1687 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1688                             MemTxAttrs attrs, MemTxResult *result);
1689 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1690                             MemTxAttrs attrs, MemTxResult *result);
1691 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1692                             MemTxAttrs attrs, MemTxResult *result);
1693 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1694                             MemTxAttrs attrs, MemTxResult *result);
1695 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1696                             MemTxAttrs attrs, MemTxResult *result);
1697 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1698                             MemTxAttrs attrs, MemTxResult *result);
1699 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1700                             MemTxAttrs attrs, MemTxResult *result);
1701 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1702                             MemTxAttrs attrs, MemTxResult *result);
1703 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1704                             MemTxAttrs attrs, MemTxResult *result);
1705 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1706                             MemTxAttrs attrs, MemTxResult *result);
1707 
1708 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1709 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1710 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1711 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1712 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1713 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1714 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1715 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1716 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1717 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1718 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1719 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1720 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1721 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1722 
1723 struct MemoryRegionCache {
1724     hwaddr xlat;
1725     hwaddr len;
1726     AddressSpace *as;
1727 };
1728 
1729 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1730 
1731 /* address_space_cache_init: prepare for repeated access to a physical
1732  * memory region
1733  *
1734  * @cache: #MemoryRegionCache to be filled
1735  * @as: #AddressSpace to be accessed
1736  * @addr: address within that address space
1737  * @len: length of buffer
1738  * @is_write: indicates the transfer direction
1739  *
1740  * Will only work with RAM, and may map a subset of the requested range by
1741  * returning a value that is less than @len.  On failure, return a negative
1742  * errno value.
1743  *
1744  * Because it only works with RAM, this function can be used for
1745  * read-modify-write operations.  In this case, is_write should be %true.
1746  *
1747  * Note that addresses passed to the address_space_*_cached functions
1748  * are relative to @addr.
1749  */
1750 int64_t address_space_cache_init(MemoryRegionCache *cache,
1751                                  AddressSpace *as,
1752                                  hwaddr addr,
1753                                  hwaddr len,
1754                                  bool is_write);
1755 
1756 /**
1757  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1758  *
1759  * @cache: The #MemoryRegionCache to operate on.
1760  * @addr: The first physical address that was written, relative to the
1761  * address that was passed to @address_space_cache_init.
1762  * @access_len: The number of bytes that were written starting at @addr.
1763  */
1764 void address_space_cache_invalidate(MemoryRegionCache *cache,
1765                                     hwaddr addr,
1766                                     hwaddr access_len);
1767 
1768 /**
1769  * address_space_cache_destroy: free a #MemoryRegionCache
1770  *
1771  * @cache: The #MemoryRegionCache whose memory should be released.
1772  */
1773 void address_space_cache_destroy(MemoryRegionCache *cache);
1774 
1775 /* address_space_ld*_cached: load from a cached #MemoryRegion
1776  * address_space_st*_cached: store into a cached #MemoryRegion
1777  *
1778  * These functions perform a load or store of the byte, word,
1779  * longword or quad to the specified address.  The address is
1780  * a physical address in the AddressSpace, but it must lie within
1781  * a #MemoryRegion that was mapped with address_space_cache_init.
1782  *
1783  * The _le suffixed functions treat the data as little endian;
1784  * _be indicates big endian; no suffix indicates "same endianness
1785  * as guest CPU".
1786  *
1787  * The "guest CPU endianness" accessors are deprecated for use outside
1788  * target-* code; devices should be CPU-agnostic and use either the LE
1789  * or the BE accessors.
1790  *
1791  * @cache: previously initialized #MemoryRegionCache to be accessed
1792  * @addr: address within the address space
1793  * @val: data value, for stores
1794  * @attrs: memory transaction attributes
1795  * @result: location to write the success/failure of the transaction;
1796  *   if NULL, this information is discarded
1797  */
1798 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1799                             MemTxAttrs attrs, MemTxResult *result);
1800 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1801                             MemTxAttrs attrs, MemTxResult *result);
1802 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1803                             MemTxAttrs attrs, MemTxResult *result);
1804 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1805                             MemTxAttrs attrs, MemTxResult *result);
1806 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1807                             MemTxAttrs attrs, MemTxResult *result);
1808 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1809                             MemTxAttrs attrs, MemTxResult *result);
1810 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1811                             MemTxAttrs attrs, MemTxResult *result);
1812 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1813                             MemTxAttrs attrs, MemTxResult *result);
1814 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1815                             MemTxAttrs attrs, MemTxResult *result);
1816 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1817                             MemTxAttrs attrs, MemTxResult *result);
1818 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1819                             MemTxAttrs attrs, MemTxResult *result);
1820 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1821                             MemTxAttrs attrs, MemTxResult *result);
1822 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1823                             MemTxAttrs attrs, MemTxResult *result);
1824 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1825                             MemTxAttrs attrs, MemTxResult *result);
1826 
1827 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1828 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1829 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1830 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1831 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1832 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1833 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1834 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1835 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1836 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1837 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1838 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1839 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1840 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1841 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1842  * entry. Should be called from an RCU critical section.
1843  */
1844 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1845                                             bool is_write);
1846 
1847 /* address_space_translate: translate an address range into an address space
1848  * into a MemoryRegion and an address range into that section.  Should be
1849  * called from an RCU critical section, to avoid that the last reference
1850  * to the returned region disappears after address_space_translate returns.
1851  *
1852  * @fv: #FlatView to be accessed
1853  * @addr: address within that address space
1854  * @xlat: pointer to address within the returned memory region section's
1855  * #MemoryRegion.
1856  * @len: pointer to length
1857  * @is_write: indicates the transfer direction
1858  */
1859 MemoryRegion *flatview_translate(FlatView *fv,
1860                                  hwaddr addr, hwaddr *xlat,
1861                                  hwaddr *len, bool is_write);
1862 
1863 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1864                                                     hwaddr addr, hwaddr *xlat,
1865                                                     hwaddr *len, bool is_write)
1866 {
1867     return flatview_translate(address_space_to_flatview(as),
1868                               addr, xlat, len, is_write);
1869 }
1870 
1871 /* address_space_access_valid: check for validity of accessing an address
1872  * space range
1873  *
1874  * Check whether memory is assigned to the given address space range, and
1875  * access is permitted by any IOMMU regions that are active for the address
1876  * space.
1877  *
1878  * For now, addr and len should be aligned to a page size.  This limitation
1879  * will be lifted in the future.
1880  *
1881  * @as: #AddressSpace to be accessed
1882  * @addr: address within that address space
1883  * @len: length of the area to be checked
1884  * @is_write: indicates the transfer direction
1885  */
1886 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1887 
1888 /* address_space_map: map a physical memory region into a host virtual address
1889  *
1890  * May map a subset of the requested range, given by and returned in @plen.
1891  * May return %NULL if resources needed to perform the mapping are exhausted.
1892  * Use only for reads OR writes - not for read-modify-write operations.
1893  * Use cpu_register_map_client() to know when retrying the map operation is
1894  * likely to succeed.
1895  *
1896  * @as: #AddressSpace to be accessed
1897  * @addr: address within that address space
1898  * @plen: pointer to length of buffer; updated on return
1899  * @is_write: indicates the transfer direction
1900  */
1901 void *address_space_map(AddressSpace *as, hwaddr addr,
1902                         hwaddr *plen, bool is_write);
1903 
1904 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1905  *
1906  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1907  * the amount of memory that was actually read or written by the caller.
1908  *
1909  * @as: #AddressSpace used
1910  * @buffer: host pointer as returned by address_space_map()
1911  * @len: buffer length as returned by address_space_map()
1912  * @access_len: amount of data actually transferred
1913  * @is_write: indicates the transfer direction
1914  */
1915 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1916                          int is_write, hwaddr access_len);
1917 
1918 
1919 /* Internal functions, part of the implementation of address_space_read.  */
1920 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1921                                     MemTxAttrs attrs, uint8_t *buf, int len);
1922 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1923                                    MemTxAttrs attrs, uint8_t *buf,
1924                                    int len, hwaddr addr1, hwaddr l,
1925                                    MemoryRegion *mr);
1926 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1927 
1928 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1929 {
1930     if (is_write) {
1931         return memory_region_is_ram(mr) &&
1932                !mr->readonly && !memory_region_is_ram_device(mr);
1933     } else {
1934         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1935                memory_region_is_romd(mr);
1936     }
1937 }
1938 
1939 /**
1940  * address_space_read: read from an address space.
1941  *
1942  * Return a MemTxResult indicating whether the operation succeeded
1943  * or failed (eg unassigned memory, device rejected the transaction,
1944  * IOMMU fault).  Called within RCU critical section.
1945  *
1946  * @as: #AddressSpace to be accessed
1947  * @addr: address within that address space
1948  * @attrs: memory transaction attributes
1949  * @buf: buffer with the data transferred
1950  */
1951 static inline __attribute__((__always_inline__))
1952 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1953                                MemTxAttrs attrs, uint8_t *buf,
1954                                int len)
1955 {
1956     MemTxResult result = MEMTX_OK;
1957     hwaddr l, addr1;
1958     void *ptr;
1959     MemoryRegion *mr;
1960     FlatView *fv;
1961 
1962     if (__builtin_constant_p(len)) {
1963         if (len) {
1964             rcu_read_lock();
1965             fv = address_space_to_flatview(as);
1966             l = len;
1967             mr = flatview_translate(fv, addr, &addr1, &l, false);
1968             if (len == l && memory_access_is_direct(mr, false)) {
1969                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1970                 memcpy(buf, ptr, len);
1971             } else {
1972                 result = flatview_read_continue(fv, addr, attrs, buf, len,
1973                                                 addr1, l, mr);
1974             }
1975             rcu_read_unlock();
1976         }
1977     } else {
1978         result = address_space_read_full(as, addr, attrs, buf, len);
1979     }
1980     return result;
1981 }
1982 
1983 /**
1984  * address_space_read_cached: read from a cached RAM region
1985  *
1986  * @cache: Cached region to be addressed
1987  * @addr: address relative to the base of the RAM region
1988  * @buf: buffer with the data transferred
1989  * @len: length of the data transferred
1990  */
1991 static inline void
1992 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1993                           void *buf, int len)
1994 {
1995     assert(addr < cache->len && len <= cache->len - addr);
1996     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1997 }
1998 
1999 /**
2000  * address_space_write_cached: write to a cached RAM region
2001  *
2002  * @cache: Cached region to be addressed
2003  * @addr: address relative to the base of the RAM region
2004  * @buf: buffer with the data transferred
2005  * @len: length of the data transferred
2006  */
2007 static inline void
2008 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2009                            void *buf, int len)
2010 {
2011     assert(addr < cache->len && len <= cache->len - addr);
2012     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2013 }
2014 
2015 #endif
2016 
2017 #endif
2018