1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #define DIRTY_MEMORY_VGA 0 20 #define DIRTY_MEMORY_CODE 1 21 #define DIRTY_MEMORY_MIGRATION 2 22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */ 23 24 #include <stdint.h> 25 #include <stdbool.h> 26 #include "qemu-common.h" 27 #include "exec/cpu-common.h" 28 #ifndef CONFIG_USER_ONLY 29 #include "exec/hwaddr.h" 30 #endif 31 #include "qemu/queue.h" 32 #include "qemu/int128.h" 33 #include "qemu/notify.h" 34 #include "qapi/error.h" 35 #include "qom/object.h" 36 37 #define MAX_PHYS_ADDR_SPACE_BITS 62 38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 39 40 #define TYPE_MEMORY_REGION "qemu:memory-region" 41 #define MEMORY_REGION(obj) \ 42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 43 44 typedef struct MemoryRegionOps MemoryRegionOps; 45 typedef struct MemoryRegionMmio MemoryRegionMmio; 46 47 struct MemoryRegionMmio { 48 CPUReadMemoryFunc *read[3]; 49 CPUWriteMemoryFunc *write[3]; 50 }; 51 52 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 53 54 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 55 typedef enum { 56 IOMMU_NONE = 0, 57 IOMMU_RO = 1, 58 IOMMU_WO = 2, 59 IOMMU_RW = 3, 60 } IOMMUAccessFlags; 61 62 struct IOMMUTLBEntry { 63 AddressSpace *target_as; 64 hwaddr iova; 65 hwaddr translated_addr; 66 hwaddr addr_mask; /* 0xfff = 4k translation */ 67 IOMMUAccessFlags perm; 68 }; 69 70 /* 71 * Memory region callbacks 72 */ 73 struct MemoryRegionOps { 74 /* Read from the memory region. @addr is relative to @mr; @size is 75 * in bytes. */ 76 uint64_t (*read)(void *opaque, 77 hwaddr addr, 78 unsigned size); 79 /* Write to the memory region. @addr is relative to @mr; @size is 80 * in bytes. */ 81 void (*write)(void *opaque, 82 hwaddr addr, 83 uint64_t data, 84 unsigned size); 85 86 enum device_endian endianness; 87 /* Guest-visible constraints: */ 88 struct { 89 /* If nonzero, specify bounds on access sizes beyond which a machine 90 * check is thrown. 91 */ 92 unsigned min_access_size; 93 unsigned max_access_size; 94 /* If true, unaligned accesses are supported. Otherwise unaligned 95 * accesses throw machine checks. 96 */ 97 bool unaligned; 98 /* 99 * If present, and returns #false, the transaction is not accepted 100 * by the device (and results in machine dependent behaviour such 101 * as a machine check exception). 102 */ 103 bool (*accepts)(void *opaque, hwaddr addr, 104 unsigned size, bool is_write); 105 } valid; 106 /* Internal implementation constraints: */ 107 struct { 108 /* If nonzero, specifies the minimum size implemented. Smaller sizes 109 * will be rounded upwards and a partial result will be returned. 110 */ 111 unsigned min_access_size; 112 /* If nonzero, specifies the maximum size implemented. Larger sizes 113 * will be done as a series of accesses with smaller sizes. 114 */ 115 unsigned max_access_size; 116 /* If true, unaligned accesses are supported. Otherwise all accesses 117 * are converted to (possibly multiple) naturally aligned accesses. 118 */ 119 bool unaligned; 120 } impl; 121 122 /* If .read and .write are not present, old_mmio may be used for 123 * backwards compatibility with old mmio registration 124 */ 125 const MemoryRegionMmio old_mmio; 126 }; 127 128 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 129 130 struct MemoryRegionIOMMUOps { 131 /* Return a TLB entry that contains a given address. */ 132 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr); 133 }; 134 135 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 136 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 137 138 struct MemoryRegion { 139 Object parent_obj; 140 /* All fields are private - violators will be prosecuted */ 141 const MemoryRegionOps *ops; 142 const MemoryRegionIOMMUOps *iommu_ops; 143 void *opaque; 144 MemoryRegion *container; 145 Int128 size; 146 hwaddr addr; 147 void (*destructor)(MemoryRegion *mr); 148 ram_addr_t ram_addr; 149 bool subpage; 150 bool terminates; 151 bool romd_mode; 152 bool ram; 153 bool readonly; /* For RAM regions */ 154 bool enabled; 155 bool rom_device; 156 bool warning_printed; /* For reservations */ 157 bool flush_coalesced_mmio; 158 MemoryRegion *alias; 159 hwaddr alias_offset; 160 int32_t priority; 161 bool may_overlap; 162 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 163 QTAILQ_ENTRY(MemoryRegion) subregions_link; 164 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 165 const char *name; 166 uint8_t dirty_log_mask; 167 unsigned ioeventfd_nb; 168 MemoryRegionIoeventfd *ioeventfds; 169 NotifierList iommu_notify; 170 }; 171 172 /** 173 * MemoryListener: callbacks structure for updates to the physical memory map 174 * 175 * Allows a component to adjust to changes in the guest-visible memory map. 176 * Use with memory_listener_register() and memory_listener_unregister(). 177 */ 178 struct MemoryListener { 179 void (*begin)(MemoryListener *listener); 180 void (*commit)(MemoryListener *listener); 181 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 182 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 183 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 184 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section); 185 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section); 186 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 187 void (*log_global_start)(MemoryListener *listener); 188 void (*log_global_stop)(MemoryListener *listener); 189 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 190 bool match_data, uint64_t data, EventNotifier *e); 191 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 192 bool match_data, uint64_t data, EventNotifier *e); 193 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 194 hwaddr addr, hwaddr len); 195 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 196 hwaddr addr, hwaddr len); 197 /* Lower = earlier (during add), later (during del) */ 198 unsigned priority; 199 AddressSpace *address_space_filter; 200 QTAILQ_ENTRY(MemoryListener) link; 201 }; 202 203 /** 204 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 205 */ 206 struct AddressSpace { 207 /* All fields are private. */ 208 char *name; 209 MemoryRegion *root; 210 struct FlatView *current_map; 211 int ioeventfd_nb; 212 struct MemoryRegionIoeventfd *ioeventfds; 213 struct AddressSpaceDispatch *dispatch; 214 struct AddressSpaceDispatch *next_dispatch; 215 MemoryListener dispatch_listener; 216 217 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 218 }; 219 220 /** 221 * MemoryRegionSection: describes a fragment of a #MemoryRegion 222 * 223 * @mr: the region, or %NULL if empty 224 * @address_space: the address space the region is mapped in 225 * @offset_within_region: the beginning of the section, relative to @mr's start 226 * @size: the size of the section; will not exceed @mr's boundaries 227 * @offset_within_address_space: the address of the first byte of the section 228 * relative to the region's address space 229 * @readonly: writes to this section are ignored 230 */ 231 struct MemoryRegionSection { 232 MemoryRegion *mr; 233 AddressSpace *address_space; 234 hwaddr offset_within_region; 235 Int128 size; 236 hwaddr offset_within_address_space; 237 bool readonly; 238 }; 239 240 /** 241 * memory_region_init: Initialize a memory region 242 * 243 * The region typically acts as a container for other memory regions. Use 244 * memory_region_add_subregion() to add subregions. 245 * 246 * @mr: the #MemoryRegion to be initialized 247 * @owner: the object that tracks the region's reference count 248 * @name: used for debugging; not visible to the user or ABI 249 * @size: size of the region; any subregions beyond this size will be clipped 250 */ 251 void memory_region_init(MemoryRegion *mr, 252 struct Object *owner, 253 const char *name, 254 uint64_t size); 255 256 /** 257 * memory_region_ref: Add 1 to a memory region's reference count 258 * 259 * Whenever memory regions are accessed outside the BQL, they need to be 260 * preserved against hot-unplug. MemoryRegions actually do not have their 261 * own reference count; they piggyback on a QOM object, their "owner". 262 * This function adds a reference to the owner. 263 * 264 * All MemoryRegions must have an owner if they can disappear, even if the 265 * device they belong to operates exclusively under the BQL. This is because 266 * the region could be returned at any time by memory_region_find, and this 267 * is usually under guest control. 268 * 269 * @mr: the #MemoryRegion 270 */ 271 void memory_region_ref(MemoryRegion *mr); 272 273 /** 274 * memory_region_unref: Remove 1 to a memory region's reference count 275 * 276 * Whenever memory regions are accessed outside the BQL, they need to be 277 * preserved against hot-unplug. MemoryRegions actually do not have their 278 * own reference count; they piggyback on a QOM object, their "owner". 279 * This function removes a reference to the owner and possibly destroys it. 280 * 281 * @mr: the #MemoryRegion 282 */ 283 void memory_region_unref(MemoryRegion *mr); 284 285 /** 286 * memory_region_init_io: Initialize an I/O memory region. 287 * 288 * Accesses into the region will cause the callbacks in @ops to be called. 289 * if @size is nonzero, subregions will be clipped to @size. 290 * 291 * @mr: the #MemoryRegion to be initialized. 292 * @owner: the object that tracks the region's reference count 293 * @ops: a structure containing read and write callbacks to be used when 294 * I/O is performed on the region. 295 * @opaque: passed to to the read and write callbacks of the @ops structure. 296 * @name: used for debugging; not visible to the user or ABI 297 * @size: size of the region. 298 */ 299 void memory_region_init_io(MemoryRegion *mr, 300 struct Object *owner, 301 const MemoryRegionOps *ops, 302 void *opaque, 303 const char *name, 304 uint64_t size); 305 306 /** 307 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 308 * region will modify memory directly. 309 * 310 * @mr: the #MemoryRegion to be initialized. 311 * @owner: the object that tracks the region's reference count 312 * @name: the name of the region. 313 * @size: size of the region. 314 */ 315 void memory_region_init_ram(MemoryRegion *mr, 316 struct Object *owner, 317 const char *name, 318 uint64_t size); 319 320 #ifdef __linux__ 321 /** 322 * memory_region_init_ram_from_file: Initialize RAM memory region with a 323 * mmap-ed backend. 324 * 325 * @mr: the #MemoryRegion to be initialized. 326 * @owner: the object that tracks the region's reference count 327 * @name: the name of the region. 328 * @size: size of the region. 329 * @share: %true if memory must be mmaped with the MAP_SHARED flag 330 * @path: the path in which to allocate the RAM. 331 * @errp: pointer to Error*, to store an error if it happens. 332 */ 333 void memory_region_init_ram_from_file(MemoryRegion *mr, 334 struct Object *owner, 335 const char *name, 336 uint64_t size, 337 bool share, 338 const char *path, 339 Error **errp); 340 #endif 341 342 /** 343 * memory_region_init_ram_ptr: Initialize RAM memory region from a 344 * user-provided pointer. Accesses into the 345 * region will modify memory directly. 346 * 347 * @mr: the #MemoryRegion to be initialized. 348 * @owner: the object that tracks the region's reference count 349 * @name: the name of the region. 350 * @size: size of the region. 351 * @ptr: memory to be mapped; must contain at least @size bytes. 352 */ 353 void memory_region_init_ram_ptr(MemoryRegion *mr, 354 struct Object *owner, 355 const char *name, 356 uint64_t size, 357 void *ptr); 358 359 /** 360 * memory_region_init_alias: Initialize a memory region that aliases all or a 361 * part of another memory region. 362 * 363 * @mr: the #MemoryRegion to be initialized. 364 * @owner: the object that tracks the region's reference count 365 * @name: used for debugging; not visible to the user or ABI 366 * @orig: the region to be referenced; @mr will be equivalent to 367 * @orig between @offset and @offset + @size - 1. 368 * @offset: start of the section in @orig to be referenced. 369 * @size: size of the region. 370 */ 371 void memory_region_init_alias(MemoryRegion *mr, 372 struct Object *owner, 373 const char *name, 374 MemoryRegion *orig, 375 hwaddr offset, 376 uint64_t size); 377 378 /** 379 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 380 * handled via callbacks. 381 * 382 * @mr: the #MemoryRegion to be initialized. 383 * @owner: the object that tracks the region's reference count 384 * @ops: callbacks for write access handling. 385 * @name: the name of the region. 386 * @size: size of the region. 387 */ 388 void memory_region_init_rom_device(MemoryRegion *mr, 389 struct Object *owner, 390 const MemoryRegionOps *ops, 391 void *opaque, 392 const char *name, 393 uint64_t size); 394 395 /** 396 * memory_region_init_reservation: Initialize a memory region that reserves 397 * I/O space. 398 * 399 * A reservation region primariy serves debugging purposes. It claims I/O 400 * space that is not supposed to be handled by QEMU itself. Any access via 401 * the memory API will cause an abort(). 402 * 403 * @mr: the #MemoryRegion to be initialized 404 * @owner: the object that tracks the region's reference count 405 * @name: used for debugging; not visible to the user or ABI 406 * @size: size of the region. 407 */ 408 void memory_region_init_reservation(MemoryRegion *mr, 409 struct Object *owner, 410 const char *name, 411 uint64_t size); 412 413 /** 414 * memory_region_init_iommu: Initialize a memory region that translates 415 * addresses 416 * 417 * An IOMMU region translates addresses and forwards accesses to a target 418 * memory region. 419 * 420 * @mr: the #MemoryRegion to be initialized 421 * @owner: the object that tracks the region's reference count 422 * @ops: a function that translates addresses into the @target region 423 * @name: used for debugging; not visible to the user or ABI 424 * @size: size of the region. 425 */ 426 void memory_region_init_iommu(MemoryRegion *mr, 427 struct Object *owner, 428 const MemoryRegionIOMMUOps *ops, 429 const char *name, 430 uint64_t size); 431 432 /** 433 * memory_region_destroy: Destroy a memory region and reclaim all resources. 434 * 435 * @mr: the region to be destroyed. May not currently be a subregion 436 * (see memory_region_add_subregion()) or referenced in an alias 437 * (see memory_region_init_alias()). 438 */ 439 void memory_region_destroy(MemoryRegion *mr); 440 441 /** 442 * memory_region_owner: get a memory region's owner. 443 * 444 * @mr: the memory region being queried. 445 */ 446 struct Object *memory_region_owner(MemoryRegion *mr); 447 448 /** 449 * memory_region_size: get a memory region's size. 450 * 451 * @mr: the memory region being queried. 452 */ 453 uint64_t memory_region_size(MemoryRegion *mr); 454 455 /** 456 * memory_region_is_ram: check whether a memory region is random access 457 * 458 * Returns %true is a memory region is random access. 459 * 460 * @mr: the memory region being queried 461 */ 462 bool memory_region_is_ram(MemoryRegion *mr); 463 464 /** 465 * memory_region_is_romd: check whether a memory region is in ROMD mode 466 * 467 * Returns %true if a memory region is a ROM device and currently set to allow 468 * direct reads. 469 * 470 * @mr: the memory region being queried 471 */ 472 static inline bool memory_region_is_romd(MemoryRegion *mr) 473 { 474 return mr->rom_device && mr->romd_mode; 475 } 476 477 /** 478 * memory_region_is_iommu: check whether a memory region is an iommu 479 * 480 * Returns %true is a memory region is an iommu. 481 * 482 * @mr: the memory region being queried 483 */ 484 bool memory_region_is_iommu(MemoryRegion *mr); 485 486 /** 487 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 488 * 489 * @mr: the memory region that was changed 490 * @entry: the new entry in the IOMMU translation table. The entry 491 * replaces all old entries for the same virtual I/O address range. 492 * Deleted entries have .@perm == 0. 493 */ 494 void memory_region_notify_iommu(MemoryRegion *mr, 495 IOMMUTLBEntry entry); 496 497 /** 498 * memory_region_register_iommu_notifier: register a notifier for changes to 499 * IOMMU translation entries. 500 * 501 * @mr: the memory region to observe 502 * @n: the notifier to be added; the notifier receives a pointer to an 503 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be 504 * valid on exit from the notifier. 505 */ 506 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n); 507 508 /** 509 * memory_region_unregister_iommu_notifier: unregister a notifier for 510 * changes to IOMMU translation entries. 511 * 512 * @n: the notifier to be removed. 513 */ 514 void memory_region_unregister_iommu_notifier(Notifier *n); 515 516 /** 517 * memory_region_name: get a memory region's name 518 * 519 * Returns the string that was used to initialize the memory region. 520 * 521 * @mr: the memory region being queried 522 */ 523 const char *memory_region_name(MemoryRegion *mr); 524 525 /** 526 * memory_region_is_logging: return whether a memory region is logging writes 527 * 528 * Returns %true if the memory region is logging writes 529 * 530 * @mr: the memory region being queried 531 */ 532 bool memory_region_is_logging(MemoryRegion *mr); 533 534 /** 535 * memory_region_is_rom: check whether a memory region is ROM 536 * 537 * Returns %true is a memory region is read-only memory. 538 * 539 * @mr: the memory region being queried 540 */ 541 bool memory_region_is_rom(MemoryRegion *mr); 542 543 /** 544 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 545 * 546 * Returns a file descriptor backing a file-based RAM memory region, 547 * or -1 if the region is not a file-based RAM memory region. 548 * 549 * @mr: the RAM or alias memory region being queried. 550 */ 551 int memory_region_get_fd(MemoryRegion *mr); 552 553 /** 554 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 555 * 556 * Returns a host pointer to a RAM memory region (created with 557 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with 558 * care. 559 * 560 * @mr: the memory region being queried. 561 */ 562 void *memory_region_get_ram_ptr(MemoryRegion *mr); 563 564 /** 565 * memory_region_set_log: Turn dirty logging on or off for a region. 566 * 567 * Turns dirty logging on or off for a specified client (display, migration). 568 * Only meaningful for RAM regions. 569 * 570 * @mr: the memory region being updated. 571 * @log: whether dirty logging is to be enabled or disabled. 572 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 573 * %DIRTY_MEMORY_VGA. 574 */ 575 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 576 577 /** 578 * memory_region_get_dirty: Check whether a range of bytes is dirty 579 * for a specified client. 580 * 581 * Checks whether a range of bytes has been written to since the last 582 * call to memory_region_reset_dirty() with the same @client. Dirty logging 583 * must be enabled. 584 * 585 * @mr: the memory region being queried. 586 * @addr: the address (relative to the start of the region) being queried. 587 * @size: the size of the range being queried. 588 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 589 * %DIRTY_MEMORY_VGA. 590 */ 591 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 592 hwaddr size, unsigned client); 593 594 /** 595 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 596 * 597 * Marks a range of bytes as dirty, after it has been dirtied outside 598 * guest code. 599 * 600 * @mr: the memory region being dirtied. 601 * @addr: the address (relative to the start of the region) being dirtied. 602 * @size: size of the range being dirtied. 603 */ 604 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 605 hwaddr size); 606 607 /** 608 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 609 * for a specified client. It clears them. 610 * 611 * Checks whether a range of bytes has been written to since the last 612 * call to memory_region_reset_dirty() with the same @client. Dirty logging 613 * must be enabled. 614 * 615 * @mr: the memory region being queried. 616 * @addr: the address (relative to the start of the region) being queried. 617 * @size: the size of the range being queried. 618 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 619 * %DIRTY_MEMORY_VGA. 620 */ 621 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 622 hwaddr size, unsigned client); 623 /** 624 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 625 * any external TLBs (e.g. kvm) 626 * 627 * Flushes dirty information from accelerators such as kvm and vhost-net 628 * and makes it available to users of the memory API. 629 * 630 * @mr: the region being flushed. 631 */ 632 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 633 634 /** 635 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 636 * client. 637 * 638 * Marks a range of pages as no longer dirty. 639 * 640 * @mr: the region being updated. 641 * @addr: the start of the subrange being cleaned. 642 * @size: the size of the subrange being cleaned. 643 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 644 * %DIRTY_MEMORY_VGA. 645 */ 646 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 647 hwaddr size, unsigned client); 648 649 /** 650 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 651 * 652 * Allows a memory region to be marked as read-only (turning it into a ROM). 653 * only useful on RAM regions. 654 * 655 * @mr: the region being updated. 656 * @readonly: whether rhe region is to be ROM or RAM. 657 */ 658 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 659 660 /** 661 * memory_region_rom_device_set_romd: enable/disable ROMD mode 662 * 663 * Allows a ROM device (initialized with memory_region_init_rom_device() to 664 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 665 * device is mapped to guest memory and satisfies read access directly. 666 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 667 * Writes are always handled by the #MemoryRegion.write function. 668 * 669 * @mr: the memory region to be updated 670 * @romd_mode: %true to put the region into ROMD mode 671 */ 672 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 673 674 /** 675 * memory_region_set_coalescing: Enable memory coalescing for the region. 676 * 677 * Enabled writes to a region to be queued for later processing. MMIO ->write 678 * callbacks may be delayed until a non-coalesced MMIO is issued. 679 * Only useful for IO regions. Roughly similar to write-combining hardware. 680 * 681 * @mr: the memory region to be write coalesced 682 */ 683 void memory_region_set_coalescing(MemoryRegion *mr); 684 685 /** 686 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 687 * a region. 688 * 689 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 690 * Multiple calls can be issued coalesced disjoint ranges. 691 * 692 * @mr: the memory region to be updated. 693 * @offset: the start of the range within the region to be coalesced. 694 * @size: the size of the subrange to be coalesced. 695 */ 696 void memory_region_add_coalescing(MemoryRegion *mr, 697 hwaddr offset, 698 uint64_t size); 699 700 /** 701 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 702 * 703 * Disables any coalescing caused by memory_region_set_coalescing() or 704 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 705 * hardware. 706 * 707 * @mr: the memory region to be updated. 708 */ 709 void memory_region_clear_coalescing(MemoryRegion *mr); 710 711 /** 712 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 713 * accesses. 714 * 715 * Ensure that pending coalesced MMIO request are flushed before the memory 716 * region is accessed. This property is automatically enabled for all regions 717 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 718 * 719 * @mr: the memory region to be updated. 720 */ 721 void memory_region_set_flush_coalesced(MemoryRegion *mr); 722 723 /** 724 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 725 * accesses. 726 * 727 * Clear the automatic coalesced MMIO flushing enabled via 728 * memory_region_set_flush_coalesced. Note that this service has no effect on 729 * memory regions that have MMIO coalescing enabled for themselves. For them, 730 * automatic flushing will stop once coalescing is disabled. 731 * 732 * @mr: the memory region to be updated. 733 */ 734 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 735 736 /** 737 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 738 * is written to a location. 739 * 740 * Marks a word in an IO region (initialized with memory_region_init_io()) 741 * as a trigger for an eventfd event. The I/O callback will not be called. 742 * The caller must be prepared to handle failure (that is, take the required 743 * action if the callback _is_ called). 744 * 745 * @mr: the memory region being updated. 746 * @addr: the address within @mr that is to be monitored 747 * @size: the size of the access to trigger the eventfd 748 * @match_data: whether to match against @data, instead of just @addr 749 * @data: the data to match against the guest write 750 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 751 **/ 752 void memory_region_add_eventfd(MemoryRegion *mr, 753 hwaddr addr, 754 unsigned size, 755 bool match_data, 756 uint64_t data, 757 EventNotifier *e); 758 759 /** 760 * memory_region_del_eventfd: Cancel an eventfd. 761 * 762 * Cancels an eventfd trigger requested by a previous 763 * memory_region_add_eventfd() call. 764 * 765 * @mr: the memory region being updated. 766 * @addr: the address within @mr that is to be monitored 767 * @size: the size of the access to trigger the eventfd 768 * @match_data: whether to match against @data, instead of just @addr 769 * @data: the data to match against the guest write 770 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 771 */ 772 void memory_region_del_eventfd(MemoryRegion *mr, 773 hwaddr addr, 774 unsigned size, 775 bool match_data, 776 uint64_t data, 777 EventNotifier *e); 778 779 /** 780 * memory_region_add_subregion: Add a subregion to a container. 781 * 782 * Adds a subregion at @offset. The subregion may not overlap with other 783 * subregions (except for those explicitly marked as overlapping). A region 784 * may only be added once as a subregion (unless removed with 785 * memory_region_del_subregion()); use memory_region_init_alias() if you 786 * want a region to be a subregion in multiple locations. 787 * 788 * @mr: the region to contain the new subregion; must be a container 789 * initialized with memory_region_init(). 790 * @offset: the offset relative to @mr where @subregion is added. 791 * @subregion: the subregion to be added. 792 */ 793 void memory_region_add_subregion(MemoryRegion *mr, 794 hwaddr offset, 795 MemoryRegion *subregion); 796 /** 797 * memory_region_add_subregion_overlap: Add a subregion to a container 798 * with overlap. 799 * 800 * Adds a subregion at @offset. The subregion may overlap with other 801 * subregions. Conflicts are resolved by having a higher @priority hide a 802 * lower @priority. Subregions without priority are taken as @priority 0. 803 * A region may only be added once as a subregion (unless removed with 804 * memory_region_del_subregion()); use memory_region_init_alias() if you 805 * want a region to be a subregion in multiple locations. 806 * 807 * @mr: the region to contain the new subregion; must be a container 808 * initialized with memory_region_init(). 809 * @offset: the offset relative to @mr where @subregion is added. 810 * @subregion: the subregion to be added. 811 * @priority: used for resolving overlaps; highest priority wins. 812 */ 813 void memory_region_add_subregion_overlap(MemoryRegion *mr, 814 hwaddr offset, 815 MemoryRegion *subregion, 816 int priority); 817 818 /** 819 * memory_region_get_ram_addr: Get the ram address associated with a memory 820 * region 821 * 822 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 823 * code is being reworked. 824 */ 825 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 826 827 /** 828 * memory_region_del_subregion: Remove a subregion. 829 * 830 * Removes a subregion from its container. 831 * 832 * @mr: the container to be updated. 833 * @subregion: the region being removed; must be a current subregion of @mr. 834 */ 835 void memory_region_del_subregion(MemoryRegion *mr, 836 MemoryRegion *subregion); 837 838 /* 839 * memory_region_set_enabled: dynamically enable or disable a region 840 * 841 * Enables or disables a memory region. A disabled memory region 842 * ignores all accesses to itself and its subregions. It does not 843 * obscure sibling subregions with lower priority - it simply behaves as 844 * if it was removed from the hierarchy. 845 * 846 * Regions default to being enabled. 847 * 848 * @mr: the region to be updated 849 * @enabled: whether to enable or disable the region 850 */ 851 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 852 853 /* 854 * memory_region_set_address: dynamically update the address of a region 855 * 856 * Dynamically updates the address of a region, relative to its container. 857 * May be used on regions are currently part of a memory hierarchy. 858 * 859 * @mr: the region to be updated 860 * @addr: new address, relative to container region 861 */ 862 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 863 864 /* 865 * memory_region_set_alias_offset: dynamically update a memory alias's offset 866 * 867 * Dynamically updates the offset into the target region that an alias points 868 * to, as if the fourth argument to memory_region_init_alias() has changed. 869 * 870 * @mr: the #MemoryRegion to be updated; should be an alias. 871 * @offset: the new offset into the target memory region 872 */ 873 void memory_region_set_alias_offset(MemoryRegion *mr, 874 hwaddr offset); 875 876 /** 877 * memory_region_present: checks if an address relative to a @container 878 * translates into #MemoryRegion within @container 879 * 880 * Answer whether a #MemoryRegion within @container covers the address 881 * @addr. 882 * 883 * @container: a #MemoryRegion within which @addr is a relative address 884 * @addr: the area within @container to be searched 885 */ 886 bool memory_region_present(MemoryRegion *container, hwaddr addr); 887 888 /** 889 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 890 * into any address space. 891 * 892 * @mr: a #MemoryRegion which should be checked if it's mapped 893 */ 894 bool memory_region_is_mapped(MemoryRegion *mr); 895 896 /** 897 * memory_region_find: translate an address/size relative to a 898 * MemoryRegion into a #MemoryRegionSection. 899 * 900 * Locates the first #MemoryRegion within @mr that overlaps the range 901 * given by @addr and @size. 902 * 903 * Returns a #MemoryRegionSection that describes a contiguous overlap. 904 * It will have the following characteristics: 905 * .@size = 0 iff no overlap was found 906 * .@mr is non-%NULL iff an overlap was found 907 * 908 * Remember that in the return value the @offset_within_region is 909 * relative to the returned region (in the .@mr field), not to the 910 * @mr argument. 911 * 912 * Similarly, the .@offset_within_address_space is relative to the 913 * address space that contains both regions, the passed and the 914 * returned one. However, in the special case where the @mr argument 915 * has no container (and thus is the root of the address space), the 916 * following will hold: 917 * .@offset_within_address_space >= @addr 918 * .@offset_within_address_space + .@size <= @addr + @size 919 * 920 * @mr: a MemoryRegion within which @addr is a relative address 921 * @addr: start of the area within @as to be searched 922 * @size: size of the area to be searched 923 */ 924 MemoryRegionSection memory_region_find(MemoryRegion *mr, 925 hwaddr addr, uint64_t size); 926 927 /** 928 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory 929 * 930 * Synchronizes the dirty page log for an entire address space. 931 * @as: the address space that contains the memory being synchronized 932 */ 933 void address_space_sync_dirty_bitmap(AddressSpace *as); 934 935 /** 936 * memory_region_transaction_begin: Start a transaction. 937 * 938 * During a transaction, changes will be accumulated and made visible 939 * only when the transaction ends (is committed). 940 */ 941 void memory_region_transaction_begin(void); 942 943 /** 944 * memory_region_transaction_commit: Commit a transaction and make changes 945 * visible to the guest. 946 */ 947 void memory_region_transaction_commit(void); 948 949 /** 950 * memory_listener_register: register callbacks to be called when memory 951 * sections are mapped or unmapped into an address 952 * space 953 * 954 * @listener: an object containing the callbacks to be called 955 * @filter: if non-%NULL, only regions in this address space will be observed 956 */ 957 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 958 959 /** 960 * memory_listener_unregister: undo the effect of memory_listener_register() 961 * 962 * @listener: an object containing the callbacks to be removed 963 */ 964 void memory_listener_unregister(MemoryListener *listener); 965 966 /** 967 * memory_global_dirty_log_start: begin dirty logging for all regions 968 */ 969 void memory_global_dirty_log_start(void); 970 971 /** 972 * memory_global_dirty_log_stop: end dirty logging for all regions 973 */ 974 void memory_global_dirty_log_stop(void); 975 976 void mtree_info(fprintf_function mon_printf, void *f); 977 978 /** 979 * address_space_init: initializes an address space 980 * 981 * @as: an uninitialized #AddressSpace 982 * @root: a #MemoryRegion that routes addesses for the address space 983 * @name: an address space name. The name is only used for debugging 984 * output. 985 */ 986 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 987 988 989 /** 990 * address_space_destroy: destroy an address space 991 * 992 * Releases all resources associated with an address space. After an address space 993 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 994 * as well. 995 * 996 * @as: address space to be destroyed 997 */ 998 void address_space_destroy(AddressSpace *as); 999 1000 /** 1001 * address_space_rw: read from or write to an address space. 1002 * 1003 * Return true if the operation hit any unassigned memory or encountered an 1004 * IOMMU fault. 1005 * 1006 * @as: #AddressSpace to be accessed 1007 * @addr: address within that address space 1008 * @buf: buffer with the data transferred 1009 * @is_write: indicates the transfer direction 1010 */ 1011 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, 1012 int len, bool is_write); 1013 1014 /** 1015 * address_space_write: write to address space. 1016 * 1017 * Return true if the operation hit any unassigned memory or encountered an 1018 * IOMMU fault. 1019 * 1020 * @as: #AddressSpace to be accessed 1021 * @addr: address within that address space 1022 * @buf: buffer with the data transferred 1023 */ 1024 bool address_space_write(AddressSpace *as, hwaddr addr, 1025 const uint8_t *buf, int len); 1026 1027 /** 1028 * address_space_read: read from an address space. 1029 * 1030 * Return true if the operation hit any unassigned memory or encountered an 1031 * IOMMU fault. 1032 * 1033 * @as: #AddressSpace to be accessed 1034 * @addr: address within that address space 1035 * @buf: buffer with the data transferred 1036 */ 1037 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len); 1038 1039 /* address_space_translate: translate an address range into an address space 1040 * into a MemoryRegion and an address range into that section 1041 * 1042 * @as: #AddressSpace to be accessed 1043 * @addr: address within that address space 1044 * @xlat: pointer to address within the returned memory region section's 1045 * #MemoryRegion. 1046 * @len: pointer to length 1047 * @is_write: indicates the transfer direction 1048 */ 1049 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1050 hwaddr *xlat, hwaddr *len, 1051 bool is_write); 1052 1053 /* address_space_access_valid: check for validity of accessing an address 1054 * space range 1055 * 1056 * Check whether memory is assigned to the given address space range, and 1057 * access is permitted by any IOMMU regions that are active for the address 1058 * space. 1059 * 1060 * For now, addr and len should be aligned to a page size. This limitation 1061 * will be lifted in the future. 1062 * 1063 * @as: #AddressSpace to be accessed 1064 * @addr: address within that address space 1065 * @len: length of the area to be checked 1066 * @is_write: indicates the transfer direction 1067 */ 1068 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1069 1070 /* address_space_map: map a physical memory region into a host virtual address 1071 * 1072 * May map a subset of the requested range, given by and returned in @plen. 1073 * May return %NULL if resources needed to perform the mapping are exhausted. 1074 * Use only for reads OR writes - not for read-modify-write operations. 1075 * Use cpu_register_map_client() to know when retrying the map operation is 1076 * likely to succeed. 1077 * 1078 * @as: #AddressSpace to be accessed 1079 * @addr: address within that address space 1080 * @plen: pointer to length of buffer; updated on return 1081 * @is_write: indicates the transfer direction 1082 */ 1083 void *address_space_map(AddressSpace *as, hwaddr addr, 1084 hwaddr *plen, bool is_write); 1085 1086 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1087 * 1088 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1089 * the amount of memory that was actually read or written by the caller. 1090 * 1091 * @as: #AddressSpace used 1092 * @addr: address within that address space 1093 * @len: buffer length as returned by address_space_map() 1094 * @access_len: amount of data actually transferred 1095 * @is_write: indicates the transfer direction 1096 */ 1097 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1098 int is_write, hwaddr access_len); 1099 1100 1101 #endif 1102 1103 #endif 1104