xref: /openbmc/qemu/include/exec/memory.h (revision f6a51c84)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36 
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 
47 struct MemoryRegionMmio {
48     CPUReadMemoryFunc *read[3];
49     CPUWriteMemoryFunc *write[3];
50 };
51 
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 
54 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
55 typedef enum {
56     IOMMU_NONE = 0,
57     IOMMU_RO   = 1,
58     IOMMU_WO   = 2,
59     IOMMU_RW   = 3,
60 } IOMMUAccessFlags;
61 
62 struct IOMMUTLBEntry {
63     AddressSpace    *target_as;
64     hwaddr           iova;
65     hwaddr           translated_addr;
66     hwaddr           addr_mask;  /* 0xfff = 4k translation */
67     IOMMUAccessFlags perm;
68 };
69 
70 /*
71  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
72  * register with one or multiple IOMMU Notifier capability bit(s).
73  */
74 typedef enum {
75     IOMMU_NOTIFIER_NONE = 0,
76     /* Notify cache invalidations */
77     IOMMU_NOTIFIER_UNMAP = 0x1,
78     /* Notify entry changes (newly created entries) */
79     IOMMU_NOTIFIER_MAP = 0x2,
80 } IOMMUNotifierFlag;
81 
82 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
83 
84 struct IOMMUNotifier {
85     void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
86     IOMMUNotifierFlag notifier_flags;
87     QLIST_ENTRY(IOMMUNotifier) node;
88 };
89 typedef struct IOMMUNotifier IOMMUNotifier;
90 
91 /* New-style MMIO accessors can indicate that the transaction failed.
92  * A zero (MEMTX_OK) response means success; anything else is a failure
93  * of some kind. The memory subsystem will bitwise-OR together results
94  * if it is synthesizing an operation from multiple smaller accesses.
95  */
96 #define MEMTX_OK 0
97 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
98 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
99 typedef uint32_t MemTxResult;
100 
101 /*
102  * Memory region callbacks
103  */
104 struct MemoryRegionOps {
105     /* Read from the memory region. @addr is relative to @mr; @size is
106      * in bytes. */
107     uint64_t (*read)(void *opaque,
108                      hwaddr addr,
109                      unsigned size);
110     /* Write to the memory region. @addr is relative to @mr; @size is
111      * in bytes. */
112     void (*write)(void *opaque,
113                   hwaddr addr,
114                   uint64_t data,
115                   unsigned size);
116 
117     MemTxResult (*read_with_attrs)(void *opaque,
118                                    hwaddr addr,
119                                    uint64_t *data,
120                                    unsigned size,
121                                    MemTxAttrs attrs);
122     MemTxResult (*write_with_attrs)(void *opaque,
123                                     hwaddr addr,
124                                     uint64_t data,
125                                     unsigned size,
126                                     MemTxAttrs attrs);
127 
128     enum device_endian endianness;
129     /* Guest-visible constraints: */
130     struct {
131         /* If nonzero, specify bounds on access sizes beyond which a machine
132          * check is thrown.
133          */
134         unsigned min_access_size;
135         unsigned max_access_size;
136         /* If true, unaligned accesses are supported.  Otherwise unaligned
137          * accesses throw machine checks.
138          */
139          bool unaligned;
140         /*
141          * If present, and returns #false, the transaction is not accepted
142          * by the device (and results in machine dependent behaviour such
143          * as a machine check exception).
144          */
145         bool (*accepts)(void *opaque, hwaddr addr,
146                         unsigned size, bool is_write);
147     } valid;
148     /* Internal implementation constraints: */
149     struct {
150         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
151          * will be rounded upwards and a partial result will be returned.
152          */
153         unsigned min_access_size;
154         /* If nonzero, specifies the maximum size implemented.  Larger sizes
155          * will be done as a series of accesses with smaller sizes.
156          */
157         unsigned max_access_size;
158         /* If true, unaligned accesses are supported.  Otherwise all accesses
159          * are converted to (possibly multiple) naturally aligned accesses.
160          */
161         bool unaligned;
162     } impl;
163 
164     /* If .read and .write are not present, old_mmio may be used for
165      * backwards compatibility with old mmio registration
166      */
167     const MemoryRegionMmio old_mmio;
168 };
169 
170 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
171 
172 struct MemoryRegionIOMMUOps {
173     /* Return a TLB entry that contains a given address. */
174     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
175     /* Returns minimum supported page size */
176     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
177     /* Called when IOMMU Notifier flag changed */
178     void (*notify_flag_changed)(MemoryRegion *iommu,
179                                 IOMMUNotifierFlag old_flags,
180                                 IOMMUNotifierFlag new_flags);
181 };
182 
183 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
184 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
185 
186 struct MemoryRegion {
187     Object parent_obj;
188 
189     /* All fields are private - violators will be prosecuted */
190 
191     /* The following fields should fit in a cache line */
192     bool romd_mode;
193     bool ram;
194     bool subpage;
195     bool readonly; /* For RAM regions */
196     bool rom_device;
197     bool flush_coalesced_mmio;
198     bool global_locking;
199     uint8_t dirty_log_mask;
200     RAMBlock *ram_block;
201     Object *owner;
202     const MemoryRegionIOMMUOps *iommu_ops;
203 
204     const MemoryRegionOps *ops;
205     void *opaque;
206     MemoryRegion *container;
207     Int128 size;
208     hwaddr addr;
209     void (*destructor)(MemoryRegion *mr);
210     uint64_t align;
211     bool terminates;
212     bool ram_device;
213     bool enabled;
214     bool warning_printed; /* For reservations */
215     uint8_t vga_logging_count;
216     MemoryRegion *alias;
217     hwaddr alias_offset;
218     int32_t priority;
219     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
220     QTAILQ_ENTRY(MemoryRegion) subregions_link;
221     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
222     const char *name;
223     unsigned ioeventfd_nb;
224     MemoryRegionIoeventfd *ioeventfds;
225     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
226     IOMMUNotifierFlag iommu_notify_flags;
227 };
228 
229 /**
230  * MemoryListener: callbacks structure for updates to the physical memory map
231  *
232  * Allows a component to adjust to changes in the guest-visible memory map.
233  * Use with memory_listener_register() and memory_listener_unregister().
234  */
235 struct MemoryListener {
236     void (*begin)(MemoryListener *listener);
237     void (*commit)(MemoryListener *listener);
238     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
239     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
240     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
241     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
242                       int old, int new);
243     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
244                      int old, int new);
245     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
246     void (*log_global_start)(MemoryListener *listener);
247     void (*log_global_stop)(MemoryListener *listener);
248     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
249                         bool match_data, uint64_t data, EventNotifier *e);
250     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
251                         bool match_data, uint64_t data, EventNotifier *e);
252     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
253                                hwaddr addr, hwaddr len);
254     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
255                                hwaddr addr, hwaddr len);
256     /* Lower = earlier (during add), later (during del) */
257     unsigned priority;
258     AddressSpace *address_space;
259     QTAILQ_ENTRY(MemoryListener) link;
260     QTAILQ_ENTRY(MemoryListener) link_as;
261 };
262 
263 /**
264  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
265  */
266 struct AddressSpace {
267     /* All fields are private. */
268     struct rcu_head rcu;
269     char *name;
270     MemoryRegion *root;
271     int ref_count;
272     bool malloced;
273 
274     /* Accessed via RCU.  */
275     struct FlatView *current_map;
276 
277     int ioeventfd_nb;
278     struct MemoryRegionIoeventfd *ioeventfds;
279     struct AddressSpaceDispatch *dispatch;
280     struct AddressSpaceDispatch *next_dispatch;
281     MemoryListener dispatch_listener;
282     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
283     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
284 };
285 
286 /**
287  * MemoryRegionSection: describes a fragment of a #MemoryRegion
288  *
289  * @mr: the region, or %NULL if empty
290  * @address_space: the address space the region is mapped in
291  * @offset_within_region: the beginning of the section, relative to @mr's start
292  * @size: the size of the section; will not exceed @mr's boundaries
293  * @offset_within_address_space: the address of the first byte of the section
294  *     relative to the region's address space
295  * @readonly: writes to this section are ignored
296  */
297 struct MemoryRegionSection {
298     MemoryRegion *mr;
299     AddressSpace *address_space;
300     hwaddr offset_within_region;
301     Int128 size;
302     hwaddr offset_within_address_space;
303     bool readonly;
304 };
305 
306 /**
307  * memory_region_init: Initialize a memory region
308  *
309  * The region typically acts as a container for other memory regions.  Use
310  * memory_region_add_subregion() to add subregions.
311  *
312  * @mr: the #MemoryRegion to be initialized
313  * @owner: the object that tracks the region's reference count
314  * @name: used for debugging; not visible to the user or ABI
315  * @size: size of the region; any subregions beyond this size will be clipped
316  */
317 void memory_region_init(MemoryRegion *mr,
318                         struct Object *owner,
319                         const char *name,
320                         uint64_t size);
321 
322 /**
323  * memory_region_ref: Add 1 to a memory region's reference count
324  *
325  * Whenever memory regions are accessed outside the BQL, they need to be
326  * preserved against hot-unplug.  MemoryRegions actually do not have their
327  * own reference count; they piggyback on a QOM object, their "owner".
328  * This function adds a reference to the owner.
329  *
330  * All MemoryRegions must have an owner if they can disappear, even if the
331  * device they belong to operates exclusively under the BQL.  This is because
332  * the region could be returned at any time by memory_region_find, and this
333  * is usually under guest control.
334  *
335  * @mr: the #MemoryRegion
336  */
337 void memory_region_ref(MemoryRegion *mr);
338 
339 /**
340  * memory_region_unref: Remove 1 to a memory region's reference count
341  *
342  * Whenever memory regions are accessed outside the BQL, they need to be
343  * preserved against hot-unplug.  MemoryRegions actually do not have their
344  * own reference count; they piggyback on a QOM object, their "owner".
345  * This function removes a reference to the owner and possibly destroys it.
346  *
347  * @mr: the #MemoryRegion
348  */
349 void memory_region_unref(MemoryRegion *mr);
350 
351 /**
352  * memory_region_init_io: Initialize an I/O memory region.
353  *
354  * Accesses into the region will cause the callbacks in @ops to be called.
355  * if @size is nonzero, subregions will be clipped to @size.
356  *
357  * @mr: the #MemoryRegion to be initialized.
358  * @owner: the object that tracks the region's reference count
359  * @ops: a structure containing read and write callbacks to be used when
360  *       I/O is performed on the region.
361  * @opaque: passed to the read and write callbacks of the @ops structure.
362  * @name: used for debugging; not visible to the user or ABI
363  * @size: size of the region.
364  */
365 void memory_region_init_io(MemoryRegion *mr,
366                            struct Object *owner,
367                            const MemoryRegionOps *ops,
368                            void *opaque,
369                            const char *name,
370                            uint64_t size);
371 
372 /**
373  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
374  *                          region will modify memory directly.
375  *
376  * @mr: the #MemoryRegion to be initialized.
377  * @owner: the object that tracks the region's reference count
378  * @name: the name of the region.
379  * @size: size of the region.
380  * @errp: pointer to Error*, to store an error if it happens.
381  */
382 void memory_region_init_ram(MemoryRegion *mr,
383                             struct Object *owner,
384                             const char *name,
385                             uint64_t size,
386                             Error **errp);
387 
388 /**
389  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
390  *                                     RAM.  Accesses into the region will
391  *                                     modify memory directly.  Only an initial
392  *                                     portion of this RAM is actually used.
393  *                                     The used size can change across reboots.
394  *
395  * @mr: the #MemoryRegion to be initialized.
396  * @owner: the object that tracks the region's reference count
397  * @name: the name of the region.
398  * @size: used size of the region.
399  * @max_size: max size of the region.
400  * @resized: callback to notify owner about used size change.
401  * @errp: pointer to Error*, to store an error if it happens.
402  */
403 void memory_region_init_resizeable_ram(MemoryRegion *mr,
404                                        struct Object *owner,
405                                        const char *name,
406                                        uint64_t size,
407                                        uint64_t max_size,
408                                        void (*resized)(const char*,
409                                                        uint64_t length,
410                                                        void *host),
411                                        Error **errp);
412 #ifdef __linux__
413 /**
414  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
415  *                                    mmap-ed backend.
416  *
417  * @mr: the #MemoryRegion to be initialized.
418  * @owner: the object that tracks the region's reference count
419  * @name: the name of the region.
420  * @size: size of the region.
421  * @share: %true if memory must be mmaped with the MAP_SHARED flag
422  * @path: the path in which to allocate the RAM.
423  * @errp: pointer to Error*, to store an error if it happens.
424  */
425 void memory_region_init_ram_from_file(MemoryRegion *mr,
426                                       struct Object *owner,
427                                       const char *name,
428                                       uint64_t size,
429                                       bool share,
430                                       const char *path,
431                                       Error **errp);
432 #endif
433 
434 /**
435  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
436  *                              user-provided pointer.  Accesses into the
437  *                              region will modify memory directly.
438  *
439  * @mr: the #MemoryRegion to be initialized.
440  * @owner: the object that tracks the region's reference count
441  * @name: the name of the region.
442  * @size: size of the region.
443  * @ptr: memory to be mapped; must contain at least @size bytes.
444  */
445 void memory_region_init_ram_ptr(MemoryRegion *mr,
446                                 struct Object *owner,
447                                 const char *name,
448                                 uint64_t size,
449                                 void *ptr);
450 
451 /**
452  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
453  *                                     a user-provided pointer.
454  *
455  * A RAM device represents a mapping to a physical device, such as to a PCI
456  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
457  * into the VM address space and access to the region will modify memory
458  * directly.  However, the memory region should not be included in a memory
459  * dump (device may not be enabled/mapped at the time of the dump), and
460  * operations incompatible with manipulating MMIO should be avoided.  Replaces
461  * skip_dump flag.
462  *
463  * @mr: the #MemoryRegion to be initialized.
464  * @owner: the object that tracks the region's reference count
465  * @name: the name of the region.
466  * @size: size of the region.
467  * @ptr: memory to be mapped; must contain at least @size bytes.
468  */
469 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
470                                        struct Object *owner,
471                                        const char *name,
472                                        uint64_t size,
473                                        void *ptr);
474 
475 /**
476  * memory_region_init_alias: Initialize a memory region that aliases all or a
477  *                           part of another memory region.
478  *
479  * @mr: the #MemoryRegion to be initialized.
480  * @owner: the object that tracks the region's reference count
481  * @name: used for debugging; not visible to the user or ABI
482  * @orig: the region to be referenced; @mr will be equivalent to
483  *        @orig between @offset and @offset + @size - 1.
484  * @offset: start of the section in @orig to be referenced.
485  * @size: size of the region.
486  */
487 void memory_region_init_alias(MemoryRegion *mr,
488                               struct Object *owner,
489                               const char *name,
490                               MemoryRegion *orig,
491                               hwaddr offset,
492                               uint64_t size);
493 
494 /**
495  * memory_region_init_rom: Initialize a ROM memory region.
496  *
497  * This has the same effect as calling memory_region_init_ram()
498  * and then marking the resulting region read-only with
499  * memory_region_set_readonly().
500  *
501  * @mr: the #MemoryRegion to be initialized.
502  * @owner: the object that tracks the region's reference count
503  * @name: the name of the region.
504  * @size: size of the region.
505  * @errp: pointer to Error*, to store an error if it happens.
506  */
507 void memory_region_init_rom(MemoryRegion *mr,
508                             struct Object *owner,
509                             const char *name,
510                             uint64_t size,
511                             Error **errp);
512 
513 /**
514  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
515  *                                 handled via callbacks.
516  *
517  * @mr: the #MemoryRegion to be initialized.
518  * @owner: the object that tracks the region's reference count
519  * @ops: callbacks for write access handling (must not be NULL).
520  * @name: the name of the region.
521  * @size: size of the region.
522  * @errp: pointer to Error*, to store an error if it happens.
523  */
524 void memory_region_init_rom_device(MemoryRegion *mr,
525                                    struct Object *owner,
526                                    const MemoryRegionOps *ops,
527                                    void *opaque,
528                                    const char *name,
529                                    uint64_t size,
530                                    Error **errp);
531 
532 /**
533  * memory_region_init_reservation: Initialize a memory region that reserves
534  *                                 I/O space.
535  *
536  * A reservation region primariy serves debugging purposes.  It claims I/O
537  * space that is not supposed to be handled by QEMU itself.  Any access via
538  * the memory API will cause an abort().
539  * This function is deprecated. Use memory_region_init_io() with NULL
540  * callbacks instead.
541  *
542  * @mr: the #MemoryRegion to be initialized
543  * @owner: the object that tracks the region's reference count
544  * @name: used for debugging; not visible to the user or ABI
545  * @size: size of the region.
546  */
547 static inline void memory_region_init_reservation(MemoryRegion *mr,
548                                     Object *owner,
549                                     const char *name,
550                                     uint64_t size)
551 {
552     memory_region_init_io(mr, owner, NULL, mr, name, size);
553 }
554 
555 /**
556  * memory_region_init_iommu: Initialize a memory region that translates
557  * addresses
558  *
559  * An IOMMU region translates addresses and forwards accesses to a target
560  * memory region.
561  *
562  * @mr: the #MemoryRegion to be initialized
563  * @owner: the object that tracks the region's reference count
564  * @ops: a function that translates addresses into the @target region
565  * @name: used for debugging; not visible to the user or ABI
566  * @size: size of the region.
567  */
568 void memory_region_init_iommu(MemoryRegion *mr,
569                               struct Object *owner,
570                               const MemoryRegionIOMMUOps *ops,
571                               const char *name,
572                               uint64_t size);
573 
574 /**
575  * memory_region_owner: get a memory region's owner.
576  *
577  * @mr: the memory region being queried.
578  */
579 struct Object *memory_region_owner(MemoryRegion *mr);
580 
581 /**
582  * memory_region_size: get a memory region's size.
583  *
584  * @mr: the memory region being queried.
585  */
586 uint64_t memory_region_size(MemoryRegion *mr);
587 
588 /**
589  * memory_region_is_ram: check whether a memory region is random access
590  *
591  * Returns %true is a memory region is random access.
592  *
593  * @mr: the memory region being queried
594  */
595 static inline bool memory_region_is_ram(MemoryRegion *mr)
596 {
597     return mr->ram;
598 }
599 
600 /**
601  * memory_region_is_ram_device: check whether a memory region is a ram device
602  *
603  * Returns %true is a memory region is a device backed ram region
604  *
605  * @mr: the memory region being queried
606  */
607 bool memory_region_is_ram_device(MemoryRegion *mr);
608 
609 /**
610  * memory_region_is_romd: check whether a memory region is in ROMD mode
611  *
612  * Returns %true if a memory region is a ROM device and currently set to allow
613  * direct reads.
614  *
615  * @mr: the memory region being queried
616  */
617 static inline bool memory_region_is_romd(MemoryRegion *mr)
618 {
619     return mr->rom_device && mr->romd_mode;
620 }
621 
622 /**
623  * memory_region_is_iommu: check whether a memory region is an iommu
624  *
625  * Returns %true is a memory region is an iommu.
626  *
627  * @mr: the memory region being queried
628  */
629 static inline bool memory_region_is_iommu(MemoryRegion *mr)
630 {
631     return mr->iommu_ops;
632 }
633 
634 
635 /**
636  * memory_region_iommu_get_min_page_size: get minimum supported page size
637  * for an iommu
638  *
639  * Returns minimum supported page size for an iommu.
640  *
641  * @mr: the memory region being queried
642  */
643 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
644 
645 /**
646  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
647  *
648  * The notification type will be decided by entry.perm bits:
649  *
650  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
651  * - For MAP (newly added entry) notifies: set entry.perm to the
652  *   permission of the page (which is definitely !IOMMU_NONE).
653  *
654  * Note: for any IOMMU implementation, an in-place mapping change
655  * should be notified with an UNMAP followed by a MAP.
656  *
657  * @mr: the memory region that was changed
658  * @entry: the new entry in the IOMMU translation table.  The entry
659  *         replaces all old entries for the same virtual I/O address range.
660  *         Deleted entries have .@perm == 0.
661  */
662 void memory_region_notify_iommu(MemoryRegion *mr,
663                                 IOMMUTLBEntry entry);
664 
665 /**
666  * memory_region_register_iommu_notifier: register a notifier for changes to
667  * IOMMU translation entries.
668  *
669  * @mr: the memory region to observe
670  * @n: the IOMMUNotifier to be added; the notify callback receives a
671  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
672  *     ceases to be valid on exit from the notifier.
673  */
674 void memory_region_register_iommu_notifier(MemoryRegion *mr,
675                                            IOMMUNotifier *n);
676 
677 /**
678  * memory_region_iommu_replay: replay existing IOMMU translations to
679  * a notifier with the minimum page granularity returned by
680  * mr->iommu_ops->get_page_size().
681  *
682  * @mr: the memory region to observe
683  * @n: the notifier to which to replay iommu mappings
684  * @is_write: Whether to treat the replay as a translate "write"
685  *     through the iommu
686  */
687 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
688                                 bool is_write);
689 
690 /**
691  * memory_region_unregister_iommu_notifier: unregister a notifier for
692  * changes to IOMMU translation entries.
693  *
694  * @mr: the memory region which was observed and for which notity_stopped()
695  *      needs to be called
696  * @n: the notifier to be removed.
697  */
698 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
699                                              IOMMUNotifier *n);
700 
701 /**
702  * memory_region_name: get a memory region's name
703  *
704  * Returns the string that was used to initialize the memory region.
705  *
706  * @mr: the memory region being queried
707  */
708 const char *memory_region_name(const MemoryRegion *mr);
709 
710 /**
711  * memory_region_is_logging: return whether a memory region is logging writes
712  *
713  * Returns %true if the memory region is logging writes for the given client
714  *
715  * @mr: the memory region being queried
716  * @client: the client being queried
717  */
718 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
719 
720 /**
721  * memory_region_get_dirty_log_mask: return the clients for which a
722  * memory region is logging writes.
723  *
724  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
725  * are the bit indices.
726  *
727  * @mr: the memory region being queried
728  */
729 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
730 
731 /**
732  * memory_region_is_rom: check whether a memory region is ROM
733  *
734  * Returns %true is a memory region is read-only memory.
735  *
736  * @mr: the memory region being queried
737  */
738 static inline bool memory_region_is_rom(MemoryRegion *mr)
739 {
740     return mr->ram && mr->readonly;
741 }
742 
743 
744 /**
745  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
746  *
747  * Returns a file descriptor backing a file-based RAM memory region,
748  * or -1 if the region is not a file-based RAM memory region.
749  *
750  * @mr: the RAM or alias memory region being queried.
751  */
752 int memory_region_get_fd(MemoryRegion *mr);
753 
754 /**
755  * memory_region_set_fd: Mark a RAM memory region as backed by a
756  * file descriptor.
757  *
758  * This function is typically used after memory_region_init_ram_ptr().
759  *
760  * @mr: the memory region being queried.
761  * @fd: the file descriptor that backs @mr.
762  */
763 void memory_region_set_fd(MemoryRegion *mr, int fd);
764 
765 /**
766  * memory_region_from_host: Convert a pointer into a RAM memory region
767  * and an offset within it.
768  *
769  * Given a host pointer inside a RAM memory region (created with
770  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
771  * the MemoryRegion and the offset within it.
772  *
773  * Use with care; by the time this function returns, the returned pointer is
774  * not protected by RCU anymore.  If the caller is not within an RCU critical
775  * section and does not hold the iothread lock, it must have other means of
776  * protecting the pointer, such as a reference to the region that includes
777  * the incoming ram_addr_t.
778  *
779  * @mr: the memory region being queried.
780  */
781 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
782 
783 /**
784  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
785  *
786  * Returns a host pointer to a RAM memory region (created with
787  * memory_region_init_ram() or memory_region_init_ram_ptr()).
788  *
789  * Use with care; by the time this function returns, the returned pointer is
790  * not protected by RCU anymore.  If the caller is not within an RCU critical
791  * section and does not hold the iothread lock, it must have other means of
792  * protecting the pointer, such as a reference to the region that includes
793  * the incoming ram_addr_t.
794  *
795  * @mr: the memory region being queried.
796  */
797 void *memory_region_get_ram_ptr(MemoryRegion *mr);
798 
799 /* memory_region_ram_resize: Resize a RAM region.
800  *
801  * Only legal before guest might have detected the memory size: e.g. on
802  * incoming migration, or right after reset.
803  *
804  * @mr: a memory region created with @memory_region_init_resizeable_ram.
805  * @newsize: the new size the region
806  * @errp: pointer to Error*, to store an error if it happens.
807  */
808 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
809                               Error **errp);
810 
811 /**
812  * memory_region_set_log: Turn dirty logging on or off for a region.
813  *
814  * Turns dirty logging on or off for a specified client (display, migration).
815  * Only meaningful for RAM regions.
816  *
817  * @mr: the memory region being updated.
818  * @log: whether dirty logging is to be enabled or disabled.
819  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
820  */
821 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
822 
823 /**
824  * memory_region_get_dirty: Check whether a range of bytes is dirty
825  *                          for a specified client.
826  *
827  * Checks whether a range of bytes has been written to since the last
828  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
829  * must be enabled.
830  *
831  * @mr: the memory region being queried.
832  * @addr: the address (relative to the start of the region) being queried.
833  * @size: the size of the range being queried.
834  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
835  *          %DIRTY_MEMORY_VGA.
836  */
837 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
838                              hwaddr size, unsigned client);
839 
840 /**
841  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
842  *
843  * Marks a range of bytes as dirty, after it has been dirtied outside
844  * guest code.
845  *
846  * @mr: the memory region being dirtied.
847  * @addr: the address (relative to the start of the region) being dirtied.
848  * @size: size of the range being dirtied.
849  */
850 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
851                              hwaddr size);
852 
853 /**
854  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
855  *                                     for a specified client. It clears them.
856  *
857  * Checks whether a range of bytes has been written to since the last
858  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
859  * must be enabled.
860  *
861  * @mr: the memory region being queried.
862  * @addr: the address (relative to the start of the region) being queried.
863  * @size: the size of the range being queried.
864  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
865  *          %DIRTY_MEMORY_VGA.
866  */
867 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
868                                         hwaddr size, unsigned client);
869 /**
870  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
871  *                                  any external TLBs (e.g. kvm)
872  *
873  * Flushes dirty information from accelerators such as kvm and vhost-net
874  * and makes it available to users of the memory API.
875  *
876  * @mr: the region being flushed.
877  */
878 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
879 
880 /**
881  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
882  *                            client.
883  *
884  * Marks a range of pages as no longer dirty.
885  *
886  * @mr: the region being updated.
887  * @addr: the start of the subrange being cleaned.
888  * @size: the size of the subrange being cleaned.
889  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
890  *          %DIRTY_MEMORY_VGA.
891  */
892 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
893                                hwaddr size, unsigned client);
894 
895 /**
896  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
897  *
898  * Allows a memory region to be marked as read-only (turning it into a ROM).
899  * only useful on RAM regions.
900  *
901  * @mr: the region being updated.
902  * @readonly: whether rhe region is to be ROM or RAM.
903  */
904 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
905 
906 /**
907  * memory_region_rom_device_set_romd: enable/disable ROMD mode
908  *
909  * Allows a ROM device (initialized with memory_region_init_rom_device() to
910  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
911  * device is mapped to guest memory and satisfies read access directly.
912  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
913  * Writes are always handled by the #MemoryRegion.write function.
914  *
915  * @mr: the memory region to be updated
916  * @romd_mode: %true to put the region into ROMD mode
917  */
918 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
919 
920 /**
921  * memory_region_set_coalescing: Enable memory coalescing for the region.
922  *
923  * Enabled writes to a region to be queued for later processing. MMIO ->write
924  * callbacks may be delayed until a non-coalesced MMIO is issued.
925  * Only useful for IO regions.  Roughly similar to write-combining hardware.
926  *
927  * @mr: the memory region to be write coalesced
928  */
929 void memory_region_set_coalescing(MemoryRegion *mr);
930 
931 /**
932  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
933  *                               a region.
934  *
935  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
936  * Multiple calls can be issued coalesced disjoint ranges.
937  *
938  * @mr: the memory region to be updated.
939  * @offset: the start of the range within the region to be coalesced.
940  * @size: the size of the subrange to be coalesced.
941  */
942 void memory_region_add_coalescing(MemoryRegion *mr,
943                                   hwaddr offset,
944                                   uint64_t size);
945 
946 /**
947  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
948  *
949  * Disables any coalescing caused by memory_region_set_coalescing() or
950  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
951  * hardware.
952  *
953  * @mr: the memory region to be updated.
954  */
955 void memory_region_clear_coalescing(MemoryRegion *mr);
956 
957 /**
958  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
959  *                                    accesses.
960  *
961  * Ensure that pending coalesced MMIO request are flushed before the memory
962  * region is accessed. This property is automatically enabled for all regions
963  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
964  *
965  * @mr: the memory region to be updated.
966  */
967 void memory_region_set_flush_coalesced(MemoryRegion *mr);
968 
969 /**
970  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
971  *                                      accesses.
972  *
973  * Clear the automatic coalesced MMIO flushing enabled via
974  * memory_region_set_flush_coalesced. Note that this service has no effect on
975  * memory regions that have MMIO coalescing enabled for themselves. For them,
976  * automatic flushing will stop once coalescing is disabled.
977  *
978  * @mr: the memory region to be updated.
979  */
980 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
981 
982 /**
983  * memory_region_set_global_locking: Declares the access processing requires
984  *                                   QEMU's global lock.
985  *
986  * When this is invoked, accesses to the memory region will be processed while
987  * holding the global lock of QEMU. This is the default behavior of memory
988  * regions.
989  *
990  * @mr: the memory region to be updated.
991  */
992 void memory_region_set_global_locking(MemoryRegion *mr);
993 
994 /**
995  * memory_region_clear_global_locking: Declares that access processing does
996  *                                     not depend on the QEMU global lock.
997  *
998  * By clearing this property, accesses to the memory region will be processed
999  * outside of QEMU's global lock (unless the lock is held on when issuing the
1000  * access request). In this case, the device model implementing the access
1001  * handlers is responsible for synchronization of concurrency.
1002  *
1003  * @mr: the memory region to be updated.
1004  */
1005 void memory_region_clear_global_locking(MemoryRegion *mr);
1006 
1007 /**
1008  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1009  *                            is written to a location.
1010  *
1011  * Marks a word in an IO region (initialized with memory_region_init_io())
1012  * as a trigger for an eventfd event.  The I/O callback will not be called.
1013  * The caller must be prepared to handle failure (that is, take the required
1014  * action if the callback _is_ called).
1015  *
1016  * @mr: the memory region being updated.
1017  * @addr: the address within @mr that is to be monitored
1018  * @size: the size of the access to trigger the eventfd
1019  * @match_data: whether to match against @data, instead of just @addr
1020  * @data: the data to match against the guest write
1021  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1022  **/
1023 void memory_region_add_eventfd(MemoryRegion *mr,
1024                                hwaddr addr,
1025                                unsigned size,
1026                                bool match_data,
1027                                uint64_t data,
1028                                EventNotifier *e);
1029 
1030 /**
1031  * memory_region_del_eventfd: Cancel an eventfd.
1032  *
1033  * Cancels an eventfd trigger requested by a previous
1034  * memory_region_add_eventfd() call.
1035  *
1036  * @mr: the memory region being updated.
1037  * @addr: the address within @mr that is to be monitored
1038  * @size: the size of the access to trigger the eventfd
1039  * @match_data: whether to match against @data, instead of just @addr
1040  * @data: the data to match against the guest write
1041  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1042  */
1043 void memory_region_del_eventfd(MemoryRegion *mr,
1044                                hwaddr addr,
1045                                unsigned size,
1046                                bool match_data,
1047                                uint64_t data,
1048                                EventNotifier *e);
1049 
1050 /**
1051  * memory_region_add_subregion: Add a subregion to a container.
1052  *
1053  * Adds a subregion at @offset.  The subregion may not overlap with other
1054  * subregions (except for those explicitly marked as overlapping).  A region
1055  * may only be added once as a subregion (unless removed with
1056  * memory_region_del_subregion()); use memory_region_init_alias() if you
1057  * want a region to be a subregion in multiple locations.
1058  *
1059  * @mr: the region to contain the new subregion; must be a container
1060  *      initialized with memory_region_init().
1061  * @offset: the offset relative to @mr where @subregion is added.
1062  * @subregion: the subregion to be added.
1063  */
1064 void memory_region_add_subregion(MemoryRegion *mr,
1065                                  hwaddr offset,
1066                                  MemoryRegion *subregion);
1067 /**
1068  * memory_region_add_subregion_overlap: Add a subregion to a container
1069  *                                      with overlap.
1070  *
1071  * Adds a subregion at @offset.  The subregion may overlap with other
1072  * subregions.  Conflicts are resolved by having a higher @priority hide a
1073  * lower @priority. Subregions without priority are taken as @priority 0.
1074  * A region may only be added once as a subregion (unless removed with
1075  * memory_region_del_subregion()); use memory_region_init_alias() if you
1076  * want a region to be a subregion in multiple locations.
1077  *
1078  * @mr: the region to contain the new subregion; must be a container
1079  *      initialized with memory_region_init().
1080  * @offset: the offset relative to @mr where @subregion is added.
1081  * @subregion: the subregion to be added.
1082  * @priority: used for resolving overlaps; highest priority wins.
1083  */
1084 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1085                                          hwaddr offset,
1086                                          MemoryRegion *subregion,
1087                                          int priority);
1088 
1089 /**
1090  * memory_region_get_ram_addr: Get the ram address associated with a memory
1091  *                             region
1092  */
1093 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1094 
1095 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1096 /**
1097  * memory_region_del_subregion: Remove a subregion.
1098  *
1099  * Removes a subregion from its container.
1100  *
1101  * @mr: the container to be updated.
1102  * @subregion: the region being removed; must be a current subregion of @mr.
1103  */
1104 void memory_region_del_subregion(MemoryRegion *mr,
1105                                  MemoryRegion *subregion);
1106 
1107 /*
1108  * memory_region_set_enabled: dynamically enable or disable a region
1109  *
1110  * Enables or disables a memory region.  A disabled memory region
1111  * ignores all accesses to itself and its subregions.  It does not
1112  * obscure sibling subregions with lower priority - it simply behaves as
1113  * if it was removed from the hierarchy.
1114  *
1115  * Regions default to being enabled.
1116  *
1117  * @mr: the region to be updated
1118  * @enabled: whether to enable or disable the region
1119  */
1120 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1121 
1122 /*
1123  * memory_region_set_address: dynamically update the address of a region
1124  *
1125  * Dynamically updates the address of a region, relative to its container.
1126  * May be used on regions are currently part of a memory hierarchy.
1127  *
1128  * @mr: the region to be updated
1129  * @addr: new address, relative to container region
1130  */
1131 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1132 
1133 /*
1134  * memory_region_set_size: dynamically update the size of a region.
1135  *
1136  * Dynamically updates the size of a region.
1137  *
1138  * @mr: the region to be updated
1139  * @size: used size of the region.
1140  */
1141 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1142 
1143 /*
1144  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1145  *
1146  * Dynamically updates the offset into the target region that an alias points
1147  * to, as if the fourth argument to memory_region_init_alias() has changed.
1148  *
1149  * @mr: the #MemoryRegion to be updated; should be an alias.
1150  * @offset: the new offset into the target memory region
1151  */
1152 void memory_region_set_alias_offset(MemoryRegion *mr,
1153                                     hwaddr offset);
1154 
1155 /**
1156  * memory_region_present: checks if an address relative to a @container
1157  * translates into #MemoryRegion within @container
1158  *
1159  * Answer whether a #MemoryRegion within @container covers the address
1160  * @addr.
1161  *
1162  * @container: a #MemoryRegion within which @addr is a relative address
1163  * @addr: the area within @container to be searched
1164  */
1165 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1166 
1167 /**
1168  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1169  * into any address space.
1170  *
1171  * @mr: a #MemoryRegion which should be checked if it's mapped
1172  */
1173 bool memory_region_is_mapped(MemoryRegion *mr);
1174 
1175 /**
1176  * memory_region_find: translate an address/size relative to a
1177  * MemoryRegion into a #MemoryRegionSection.
1178  *
1179  * Locates the first #MemoryRegion within @mr that overlaps the range
1180  * given by @addr and @size.
1181  *
1182  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1183  * It will have the following characteristics:
1184  *    .@size = 0 iff no overlap was found
1185  *    .@mr is non-%NULL iff an overlap was found
1186  *
1187  * Remember that in the return value the @offset_within_region is
1188  * relative to the returned region (in the .@mr field), not to the
1189  * @mr argument.
1190  *
1191  * Similarly, the .@offset_within_address_space is relative to the
1192  * address space that contains both regions, the passed and the
1193  * returned one.  However, in the special case where the @mr argument
1194  * has no container (and thus is the root of the address space), the
1195  * following will hold:
1196  *    .@offset_within_address_space >= @addr
1197  *    .@offset_within_address_space + .@size <= @addr + @size
1198  *
1199  * @mr: a MemoryRegion within which @addr is a relative address
1200  * @addr: start of the area within @as to be searched
1201  * @size: size of the area to be searched
1202  */
1203 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1204                                        hwaddr addr, uint64_t size);
1205 
1206 /**
1207  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1208  *
1209  * Synchronizes the dirty page log for all address spaces.
1210  */
1211 void memory_global_dirty_log_sync(void);
1212 
1213 /**
1214  * memory_region_transaction_begin: Start a transaction.
1215  *
1216  * During a transaction, changes will be accumulated and made visible
1217  * only when the transaction ends (is committed).
1218  */
1219 void memory_region_transaction_begin(void);
1220 
1221 /**
1222  * memory_region_transaction_commit: Commit a transaction and make changes
1223  *                                   visible to the guest.
1224  */
1225 void memory_region_transaction_commit(void);
1226 
1227 /**
1228  * memory_listener_register: register callbacks to be called when memory
1229  *                           sections are mapped or unmapped into an address
1230  *                           space
1231  *
1232  * @listener: an object containing the callbacks to be called
1233  * @filter: if non-%NULL, only regions in this address space will be observed
1234  */
1235 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1236 
1237 /**
1238  * memory_listener_unregister: undo the effect of memory_listener_register()
1239  *
1240  * @listener: an object containing the callbacks to be removed
1241  */
1242 void memory_listener_unregister(MemoryListener *listener);
1243 
1244 /**
1245  * memory_global_dirty_log_start: begin dirty logging for all regions
1246  */
1247 void memory_global_dirty_log_start(void);
1248 
1249 /**
1250  * memory_global_dirty_log_stop: end dirty logging for all regions
1251  */
1252 void memory_global_dirty_log_stop(void);
1253 
1254 void mtree_info(fprintf_function mon_printf, void *f);
1255 
1256 /**
1257  * memory_region_dispatch_read: perform a read directly to the specified
1258  * MemoryRegion.
1259  *
1260  * @mr: #MemoryRegion to access
1261  * @addr: address within that region
1262  * @pval: pointer to uint64_t which the data is written to
1263  * @size: size of the access in bytes
1264  * @attrs: memory transaction attributes to use for the access
1265  */
1266 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1267                                         hwaddr addr,
1268                                         uint64_t *pval,
1269                                         unsigned size,
1270                                         MemTxAttrs attrs);
1271 /**
1272  * memory_region_dispatch_write: perform a write directly to the specified
1273  * MemoryRegion.
1274  *
1275  * @mr: #MemoryRegion to access
1276  * @addr: address within that region
1277  * @data: data to write
1278  * @size: size of the access in bytes
1279  * @attrs: memory transaction attributes to use for the access
1280  */
1281 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1282                                          hwaddr addr,
1283                                          uint64_t data,
1284                                          unsigned size,
1285                                          MemTxAttrs attrs);
1286 
1287 /**
1288  * address_space_init: initializes an address space
1289  *
1290  * @as: an uninitialized #AddressSpace
1291  * @root: a #MemoryRegion that routes addresses for the address space
1292  * @name: an address space name.  The name is only used for debugging
1293  *        output.
1294  */
1295 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1296 
1297 /**
1298  * address_space_init_shareable: return an address space for a memory region,
1299  *                               creating it if it does not already exist
1300  *
1301  * @root: a #MemoryRegion that routes addresses for the address space
1302  * @name: an address space name.  The name is only used for debugging
1303  *        output.
1304  *
1305  * This function will return a pointer to an existing AddressSpace
1306  * which was initialized with the specified MemoryRegion, or it will
1307  * create and initialize one if it does not already exist. The ASes
1308  * are reference-counted, so the memory will be freed automatically
1309  * when the AddressSpace is destroyed via address_space_destroy.
1310  */
1311 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1312                                            const char *name);
1313 
1314 /**
1315  * address_space_destroy: destroy an address space
1316  *
1317  * Releases all resources associated with an address space.  After an address space
1318  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1319  * as well.
1320  *
1321  * @as: address space to be destroyed
1322  */
1323 void address_space_destroy(AddressSpace *as);
1324 
1325 /**
1326  * address_space_rw: read from or write to an address space.
1327  *
1328  * Return a MemTxResult indicating whether the operation succeeded
1329  * or failed (eg unassigned memory, device rejected the transaction,
1330  * IOMMU fault).
1331  *
1332  * @as: #AddressSpace to be accessed
1333  * @addr: address within that address space
1334  * @attrs: memory transaction attributes
1335  * @buf: buffer with the data transferred
1336  * @is_write: indicates the transfer direction
1337  */
1338 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1339                              MemTxAttrs attrs, uint8_t *buf,
1340                              int len, bool is_write);
1341 
1342 /**
1343  * address_space_write: write to address space.
1344  *
1345  * Return a MemTxResult indicating whether the operation succeeded
1346  * or failed (eg unassigned memory, device rejected the transaction,
1347  * IOMMU fault).
1348  *
1349  * @as: #AddressSpace to be accessed
1350  * @addr: address within that address space
1351  * @attrs: memory transaction attributes
1352  * @buf: buffer with the data transferred
1353  */
1354 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1355                                 MemTxAttrs attrs,
1356                                 const uint8_t *buf, int len);
1357 
1358 /* address_space_ld*: load from an address space
1359  * address_space_st*: store to an address space
1360  *
1361  * These functions perform a load or store of the byte, word,
1362  * longword or quad to the specified address within the AddressSpace.
1363  * The _le suffixed functions treat the data as little endian;
1364  * _be indicates big endian; no suffix indicates "same endianness
1365  * as guest CPU".
1366  *
1367  * The "guest CPU endianness" accessors are deprecated for use outside
1368  * target-* code; devices should be CPU-agnostic and use either the LE
1369  * or the BE accessors.
1370  *
1371  * @as #AddressSpace to be accessed
1372  * @addr: address within that address space
1373  * @val: data value, for stores
1374  * @attrs: memory transaction attributes
1375  * @result: location to write the success/failure of the transaction;
1376  *   if NULL, this information is discarded
1377  */
1378 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1379                             MemTxAttrs attrs, MemTxResult *result);
1380 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1381                             MemTxAttrs attrs, MemTxResult *result);
1382 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1383                             MemTxAttrs attrs, MemTxResult *result);
1384 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1385                             MemTxAttrs attrs, MemTxResult *result);
1386 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1387                             MemTxAttrs attrs, MemTxResult *result);
1388 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1389                             MemTxAttrs attrs, MemTxResult *result);
1390 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1391                             MemTxAttrs attrs, MemTxResult *result);
1392 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1393                             MemTxAttrs attrs, MemTxResult *result);
1394 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1395                             MemTxAttrs attrs, MemTxResult *result);
1396 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1397                             MemTxAttrs attrs, MemTxResult *result);
1398 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1399                             MemTxAttrs attrs, MemTxResult *result);
1400 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1401                             MemTxAttrs attrs, MemTxResult *result);
1402 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1403                             MemTxAttrs attrs, MemTxResult *result);
1404 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1405                             MemTxAttrs attrs, MemTxResult *result);
1406 
1407 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1408 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1409 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1410 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1411 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1412 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1413 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1414 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1415 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1416 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1417 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1418 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1419 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1420 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1421 
1422 struct MemoryRegionCache {
1423     hwaddr xlat;
1424     void *ptr;
1425     hwaddr len;
1426     MemoryRegion *mr;
1427     bool is_write;
1428 };
1429 
1430 /* address_space_cache_init: prepare for repeated access to a physical
1431  * memory region
1432  *
1433  * @cache: #MemoryRegionCache to be filled
1434  * @as: #AddressSpace to be accessed
1435  * @addr: address within that address space
1436  * @len: length of buffer
1437  * @is_write: indicates the transfer direction
1438  *
1439  * Will only work with RAM, and may map a subset of the requested range by
1440  * returning a value that is less than @len.  On failure, return a negative
1441  * errno value.
1442  *
1443  * Because it only works with RAM, this function can be used for
1444  * read-modify-write operations.  In this case, is_write should be %true.
1445  *
1446  * Note that addresses passed to the address_space_*_cached functions
1447  * are relative to @addr.
1448  */
1449 int64_t address_space_cache_init(MemoryRegionCache *cache,
1450                                  AddressSpace *as,
1451                                  hwaddr addr,
1452                                  hwaddr len,
1453                                  bool is_write);
1454 
1455 /**
1456  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1457  *
1458  * @cache: The #MemoryRegionCache to operate on.
1459  * @addr: The first physical address that was written, relative to the
1460  * address that was passed to @address_space_cache_init.
1461  * @access_len: The number of bytes that were written starting at @addr.
1462  */
1463 void address_space_cache_invalidate(MemoryRegionCache *cache,
1464                                     hwaddr addr,
1465                                     hwaddr access_len);
1466 
1467 /**
1468  * address_space_cache_destroy: free a #MemoryRegionCache
1469  *
1470  * @cache: The #MemoryRegionCache whose memory should be released.
1471  */
1472 void address_space_cache_destroy(MemoryRegionCache *cache);
1473 
1474 /* address_space_ld*_cached: load from a cached #MemoryRegion
1475  * address_space_st*_cached: store into a cached #MemoryRegion
1476  *
1477  * These functions perform a load or store of the byte, word,
1478  * longword or quad to the specified address.  The address is
1479  * a physical address in the AddressSpace, but it must lie within
1480  * a #MemoryRegion that was mapped with address_space_cache_init.
1481  *
1482  * The _le suffixed functions treat the data as little endian;
1483  * _be indicates big endian; no suffix indicates "same endianness
1484  * as guest CPU".
1485  *
1486  * The "guest CPU endianness" accessors are deprecated for use outside
1487  * target-* code; devices should be CPU-agnostic and use either the LE
1488  * or the BE accessors.
1489  *
1490  * @cache: previously initialized #MemoryRegionCache to be accessed
1491  * @addr: address within the address space
1492  * @val: data value, for stores
1493  * @attrs: memory transaction attributes
1494  * @result: location to write the success/failure of the transaction;
1495  *   if NULL, this information is discarded
1496  */
1497 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1498                             MemTxAttrs attrs, MemTxResult *result);
1499 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1500                             MemTxAttrs attrs, MemTxResult *result);
1501 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1502                             MemTxAttrs attrs, MemTxResult *result);
1503 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1504                             MemTxAttrs attrs, MemTxResult *result);
1505 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1506                             MemTxAttrs attrs, MemTxResult *result);
1507 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1508                             MemTxAttrs attrs, MemTxResult *result);
1509 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1510                             MemTxAttrs attrs, MemTxResult *result);
1511 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1512                             MemTxAttrs attrs, MemTxResult *result);
1513 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1514                             MemTxAttrs attrs, MemTxResult *result);
1515 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1516                             MemTxAttrs attrs, MemTxResult *result);
1517 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1518                             MemTxAttrs attrs, MemTxResult *result);
1519 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1520                             MemTxAttrs attrs, MemTxResult *result);
1521 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1522                             MemTxAttrs attrs, MemTxResult *result);
1523 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1524                             MemTxAttrs attrs, MemTxResult *result);
1525 
1526 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1527 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1528 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1529 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1530 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1531 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1532 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1533 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1534 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1535 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1536 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1537 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1538 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1539 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1540 
1541 /* address_space_translate: translate an address range into an address space
1542  * into a MemoryRegion and an address range into that section.  Should be
1543  * called from an RCU critical section, to avoid that the last reference
1544  * to the returned region disappears after address_space_translate returns.
1545  *
1546  * @as: #AddressSpace to be accessed
1547  * @addr: address within that address space
1548  * @xlat: pointer to address within the returned memory region section's
1549  * #MemoryRegion.
1550  * @len: pointer to length
1551  * @is_write: indicates the transfer direction
1552  */
1553 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1554                                       hwaddr *xlat, hwaddr *len,
1555                                       bool is_write);
1556 
1557 /* address_space_access_valid: check for validity of accessing an address
1558  * space range
1559  *
1560  * Check whether memory is assigned to the given address space range, and
1561  * access is permitted by any IOMMU regions that are active for the address
1562  * space.
1563  *
1564  * For now, addr and len should be aligned to a page size.  This limitation
1565  * will be lifted in the future.
1566  *
1567  * @as: #AddressSpace to be accessed
1568  * @addr: address within that address space
1569  * @len: length of the area to be checked
1570  * @is_write: indicates the transfer direction
1571  */
1572 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1573 
1574 /* address_space_map: map a physical memory region into a host virtual address
1575  *
1576  * May map a subset of the requested range, given by and returned in @plen.
1577  * May return %NULL if resources needed to perform the mapping are exhausted.
1578  * Use only for reads OR writes - not for read-modify-write operations.
1579  * Use cpu_register_map_client() to know when retrying the map operation is
1580  * likely to succeed.
1581  *
1582  * @as: #AddressSpace to be accessed
1583  * @addr: address within that address space
1584  * @plen: pointer to length of buffer; updated on return
1585  * @is_write: indicates the transfer direction
1586  */
1587 void *address_space_map(AddressSpace *as, hwaddr addr,
1588                         hwaddr *plen, bool is_write);
1589 
1590 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1591  *
1592  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1593  * the amount of memory that was actually read or written by the caller.
1594  *
1595  * @as: #AddressSpace used
1596  * @addr: address within that address space
1597  * @len: buffer length as returned by address_space_map()
1598  * @access_len: amount of data actually transferred
1599  * @is_write: indicates the transfer direction
1600  */
1601 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1602                          int is_write, hwaddr access_len);
1603 
1604 
1605 /* Internal functions, part of the implementation of address_space_read.  */
1606 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1607                                         MemTxAttrs attrs, uint8_t *buf,
1608                                         int len, hwaddr addr1, hwaddr l,
1609 					MemoryRegion *mr);
1610 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1611                                     MemTxAttrs attrs, uint8_t *buf, int len);
1612 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1613 
1614 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1615 {
1616     if (is_write) {
1617         return memory_region_is_ram(mr) &&
1618                !mr->readonly && !memory_region_is_ram_device(mr);
1619     } else {
1620         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1621                memory_region_is_romd(mr);
1622     }
1623 }
1624 
1625 /**
1626  * address_space_read: read from an address space.
1627  *
1628  * Return a MemTxResult indicating whether the operation succeeded
1629  * or failed (eg unassigned memory, device rejected the transaction,
1630  * IOMMU fault).
1631  *
1632  * @as: #AddressSpace to be accessed
1633  * @addr: address within that address space
1634  * @attrs: memory transaction attributes
1635  * @buf: buffer with the data transferred
1636  */
1637 static inline __attribute__((__always_inline__))
1638 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1639                                uint8_t *buf, int len)
1640 {
1641     MemTxResult result = MEMTX_OK;
1642     hwaddr l, addr1;
1643     void *ptr;
1644     MemoryRegion *mr;
1645 
1646     if (__builtin_constant_p(len)) {
1647         if (len) {
1648             rcu_read_lock();
1649             l = len;
1650             mr = address_space_translate(as, addr, &addr1, &l, false);
1651             if (len == l && memory_access_is_direct(mr, false)) {
1652                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1653                 memcpy(buf, ptr, len);
1654             } else {
1655                 result = address_space_read_continue(as, addr, attrs, buf, len,
1656                                                      addr1, l, mr);
1657             }
1658             rcu_read_unlock();
1659         }
1660     } else {
1661         result = address_space_read_full(as, addr, attrs, buf, len);
1662     }
1663     return result;
1664 }
1665 
1666 /**
1667  * address_space_read_cached: read from a cached RAM region
1668  *
1669  * @cache: Cached region to be addressed
1670  * @addr: address relative to the base of the RAM region
1671  * @buf: buffer with the data transferred
1672  * @len: length of the data transferred
1673  */
1674 static inline void
1675 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1676                           void *buf, int len)
1677 {
1678     assert(addr < cache->len && len <= cache->len - addr);
1679     memcpy(buf, cache->ptr + addr, len);
1680 }
1681 
1682 /**
1683  * address_space_write_cached: write to a cached RAM region
1684  *
1685  * @cache: Cached region to be addressed
1686  * @addr: address relative to the base of the RAM region
1687  * @buf: buffer with the data transferred
1688  * @len: length of the data transferred
1689  */
1690 static inline void
1691 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1692                            void *buf, int len)
1693 {
1694     assert(addr < cache->len && len <= cache->len - addr);
1695     memcpy(cache->ptr + addr, buf, len);
1696 }
1697 
1698 #endif
1699 
1700 #endif
1701