1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/range.h" 28 #include "qemu/notify.h" 29 #include "qom/object.h" 30 #include "qemu/rcu.h" 31 32 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 33 34 #define MAX_PHYS_ADDR_SPACE_BITS 62 35 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 36 37 #define TYPE_MEMORY_REGION "memory-region" 38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 39 TYPE_MEMORY_REGION) 40 41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 44 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 45 46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager" 47 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 48 typedef struct RamDiscardManager RamDiscardManager; 49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 50 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 51 52 #ifdef CONFIG_FUZZ 53 void fuzz_dma_read_cb(size_t addr, 54 size_t len, 55 MemoryRegion *mr); 56 #else 57 static inline void fuzz_dma_read_cb(size_t addr, 58 size_t len, 59 MemoryRegion *mr) 60 { 61 /* Do Nothing */ 62 } 63 #endif 64 65 /* Possible bits for global_dirty_log_{start|stop} */ 66 67 /* Dirty tracking enabled because migration is running */ 68 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 69 70 /* Dirty tracking enabled because measuring dirty rate */ 71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 72 73 /* Dirty tracking enabled because dirty limit */ 74 #define GLOBAL_DIRTY_LIMIT (1U << 2) 75 76 #define GLOBAL_DIRTY_MASK (0x7) 77 78 extern unsigned int global_dirty_tracking; 79 80 typedef struct MemoryRegionOps MemoryRegionOps; 81 82 struct ReservedRegion { 83 Range range; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 * @unmergeable: this section should not get merged with adjacent sections 99 */ 100 struct MemoryRegionSection { 101 Int128 size; 102 MemoryRegion *mr; 103 FlatView *fv; 104 hwaddr offset_within_region; 105 hwaddr offset_within_address_space; 106 bool readonly; 107 bool nonvolatile; 108 bool unmergeable; 109 }; 110 111 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 112 113 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 114 typedef enum { 115 IOMMU_NONE = 0, 116 IOMMU_RO = 1, 117 IOMMU_WO = 2, 118 IOMMU_RW = 3, 119 } IOMMUAccessFlags; 120 121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 122 123 struct IOMMUTLBEntry { 124 AddressSpace *target_as; 125 hwaddr iova; 126 hwaddr translated_addr; 127 hwaddr addr_mask; /* 0xfff = 4k translation */ 128 IOMMUAccessFlags perm; 129 }; 130 131 /* 132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 133 * register with one or multiple IOMMU Notifier capability bit(s). 134 * 135 * Normally there're two use cases for the notifiers: 136 * 137 * (1) When the device needs accurate synchronizations of the vIOMMU page 138 * tables, it needs to register with both MAP|UNMAP notifies (which 139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 140 * 141 * Regarding to accurate synchronization, it's when the notified 142 * device maintains a shadow page table and must be notified on each 143 * guest MAP (page table entry creation) and UNMAP (invalidation) 144 * events (e.g. VFIO). Both notifications must be accurate so that 145 * the shadow page table is fully in sync with the guest view. 146 * 147 * (2) When the device doesn't need accurate synchronizations of the 148 * vIOMMU page tables, it needs to register only with UNMAP or 149 * DEVIOTLB_UNMAP notifies. 150 * 151 * It's when the device maintains a cache of IOMMU translations 152 * (IOTLB) and is able to fill that cache by requesting translations 153 * from the vIOMMU through a protocol similar to ATS (Address 154 * Translation Service). 155 * 156 * Note that in this mode the vIOMMU will not maintain a shadowed 157 * page table for the address space, and the UNMAP messages can cover 158 * more than the pages that used to get mapped. The IOMMU notifiee 159 * should be able to take care of over-sized invalidations. 160 */ 161 typedef enum { 162 IOMMU_NOTIFIER_NONE = 0, 163 /* Notify cache invalidations */ 164 IOMMU_NOTIFIER_UNMAP = 0x1, 165 /* Notify entry changes (newly created entries) */ 166 IOMMU_NOTIFIER_MAP = 0x2, 167 /* Notify changes on device IOTLB entries */ 168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 169 } IOMMUNotifierFlag; 170 171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 175 176 struct IOMMUNotifier; 177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 178 IOMMUTLBEntry *data); 179 180 struct IOMMUNotifier { 181 IOMMUNotify notify; 182 IOMMUNotifierFlag notifier_flags; 183 /* Notify for address space range start <= addr <= end */ 184 hwaddr start; 185 hwaddr end; 186 int iommu_idx; 187 QLIST_ENTRY(IOMMUNotifier) node; 188 }; 189 typedef struct IOMMUNotifier IOMMUNotifier; 190 191 typedef struct IOMMUTLBEvent { 192 IOMMUNotifierFlag type; 193 IOMMUTLBEntry entry; 194 } IOMMUTLBEvent; 195 196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 197 #define RAM_PREALLOC (1 << 0) 198 199 /* RAM is mmap-ed with MAP_SHARED */ 200 #define RAM_SHARED (1 << 1) 201 202 /* Only a portion of RAM (used_length) is actually used, and migrated. 203 * Resizing RAM while migrating can result in the migration being canceled. 204 */ 205 #define RAM_RESIZEABLE (1 << 2) 206 207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 208 * zero the page and wake waiting processes. 209 * (Set during postcopy) 210 */ 211 #define RAM_UF_ZEROPAGE (1 << 3) 212 213 /* RAM can be migrated */ 214 #define RAM_MIGRATABLE (1 << 4) 215 216 /* RAM is a persistent kind memory */ 217 #define RAM_PMEM (1 << 5) 218 219 220 /* 221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 222 * support 'write-tracking' migration type. 223 * Implies ram_state->ram_wt_enabled. 224 */ 225 #define RAM_UF_WRITEPROTECT (1 << 6) 226 227 /* 228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 229 * pages if applicable) is skipped: will bail out if not supported. When not 230 * set, the OS will do the reservation, if supported for the memory type. 231 */ 232 #define RAM_NORESERVE (1 << 7) 233 234 /* RAM that isn't accessible through normal means. */ 235 #define RAM_PROTECTED (1 << 8) 236 237 /* RAM is an mmap-ed named file */ 238 #define RAM_NAMED_FILE (1 << 9) 239 240 /* RAM is mmap-ed read-only */ 241 #define RAM_READONLY (1 << 10) 242 243 /* RAM FD is opened read-only */ 244 #define RAM_READONLY_FD (1 << 11) 245 246 /* RAM can be private that has kvm guest memfd backend */ 247 #define RAM_GUEST_MEMFD (1 << 12) 248 249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 250 IOMMUNotifierFlag flags, 251 hwaddr start, hwaddr end, 252 int iommu_idx) 253 { 254 n->notify = fn; 255 n->notifier_flags = flags; 256 n->start = start; 257 n->end = end; 258 n->iommu_idx = iommu_idx; 259 } 260 261 /* 262 * Memory region callbacks 263 */ 264 struct MemoryRegionOps { 265 /* Read from the memory region. @addr is relative to @mr; @size is 266 * in bytes. */ 267 uint64_t (*read)(void *opaque, 268 hwaddr addr, 269 unsigned size); 270 /* Write to the memory region. @addr is relative to @mr; @size is 271 * in bytes. */ 272 void (*write)(void *opaque, 273 hwaddr addr, 274 uint64_t data, 275 unsigned size); 276 277 MemTxResult (*read_with_attrs)(void *opaque, 278 hwaddr addr, 279 uint64_t *data, 280 unsigned size, 281 MemTxAttrs attrs); 282 MemTxResult (*write_with_attrs)(void *opaque, 283 hwaddr addr, 284 uint64_t data, 285 unsigned size, 286 MemTxAttrs attrs); 287 288 enum device_endian endianness; 289 /* Guest-visible constraints: */ 290 struct { 291 /* If nonzero, specify bounds on access sizes beyond which a machine 292 * check is thrown. 293 */ 294 unsigned min_access_size; 295 unsigned max_access_size; 296 /* If true, unaligned accesses are supported. Otherwise unaligned 297 * accesses throw machine checks. 298 */ 299 bool unaligned; 300 /* 301 * If present, and returns #false, the transaction is not accepted 302 * by the device (and results in machine dependent behaviour such 303 * as a machine check exception). 304 */ 305 bool (*accepts)(void *opaque, hwaddr addr, 306 unsigned size, bool is_write, 307 MemTxAttrs attrs); 308 } valid; 309 /* Internal implementation constraints: */ 310 struct { 311 /* If nonzero, specifies the minimum size implemented. Smaller sizes 312 * will be rounded upwards and a partial result will be returned. 313 */ 314 unsigned min_access_size; 315 /* If nonzero, specifies the maximum size implemented. Larger sizes 316 * will be done as a series of accesses with smaller sizes. 317 */ 318 unsigned max_access_size; 319 /* If true, unaligned accesses are supported. Otherwise all accesses 320 * are converted to (possibly multiple) naturally aligned accesses. 321 */ 322 bool unaligned; 323 } impl; 324 }; 325 326 typedef struct MemoryRegionClass { 327 /* private */ 328 ObjectClass parent_class; 329 } MemoryRegionClass; 330 331 332 enum IOMMUMemoryRegionAttr { 333 IOMMU_ATTR_SPAPR_TCE_FD 334 }; 335 336 /* 337 * IOMMUMemoryRegionClass: 338 * 339 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 340 * and provide an implementation of at least the @translate method here 341 * to handle requests to the memory region. Other methods are optional. 342 * 343 * The IOMMU implementation must use the IOMMU notifier infrastructure 344 * to report whenever mappings are changed, by calling 345 * memory_region_notify_iommu() (or, if necessary, by calling 346 * memory_region_notify_iommu_one() for each registered notifier). 347 * 348 * Conceptually an IOMMU provides a mapping from input address 349 * to an output TLB entry. If the IOMMU is aware of memory transaction 350 * attributes and the output TLB entry depends on the transaction 351 * attributes, we represent this using IOMMU indexes. Each index 352 * selects a particular translation table that the IOMMU has: 353 * 354 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 355 * 356 * @translate takes an input address and an IOMMU index 357 * 358 * and the mapping returned can only depend on the input address and the 359 * IOMMU index. 360 * 361 * Most IOMMUs don't care about the transaction attributes and support 362 * only a single IOMMU index. A more complex IOMMU might have one index 363 * for secure transactions and one for non-secure transactions. 364 */ 365 struct IOMMUMemoryRegionClass { 366 /* private: */ 367 MemoryRegionClass parent_class; 368 369 /* public: */ 370 /** 371 * @translate: 372 * 373 * Return a TLB entry that contains a given address. 374 * 375 * The IOMMUAccessFlags indicated via @flag are optional and may 376 * be specified as IOMMU_NONE to indicate that the caller needs 377 * the full translation information for both reads and writes. If 378 * the access flags are specified then the IOMMU implementation 379 * may use this as an optimization, to stop doing a page table 380 * walk as soon as it knows that the requested permissions are not 381 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 382 * full page table walk and report the permissions in the returned 383 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 384 * return different mappings for reads and writes.) 385 * 386 * The returned information remains valid while the caller is 387 * holding the big QEMU lock or is inside an RCU critical section; 388 * if the caller wishes to cache the mapping beyond that it must 389 * register an IOMMU notifier so it can invalidate its cached 390 * information when the IOMMU mapping changes. 391 * 392 * @iommu: the IOMMUMemoryRegion 393 * 394 * @hwaddr: address to be translated within the memory region 395 * 396 * @flag: requested access permission 397 * 398 * @iommu_idx: IOMMU index for the translation 399 */ 400 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 401 IOMMUAccessFlags flag, int iommu_idx); 402 /** 403 * @get_min_page_size: 404 * 405 * Returns minimum supported page size in bytes. 406 * 407 * If this method is not provided then the minimum is assumed to 408 * be TARGET_PAGE_SIZE. 409 * 410 * @iommu: the IOMMUMemoryRegion 411 */ 412 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 413 /** 414 * @notify_flag_changed: 415 * 416 * Called when IOMMU Notifier flag changes (ie when the set of 417 * events which IOMMU users are requesting notification for changes). 418 * Optional method -- need not be provided if the IOMMU does not 419 * need to know exactly which events must be notified. 420 * 421 * @iommu: the IOMMUMemoryRegion 422 * 423 * @old_flags: events which previously needed to be notified 424 * 425 * @new_flags: events which now need to be notified 426 * 427 * Returns 0 on success, or a negative errno; in particular 428 * returns -EINVAL if the new flag bitmap is not supported by the 429 * IOMMU memory region. In case of failure, the error object 430 * must be created 431 */ 432 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 433 IOMMUNotifierFlag old_flags, 434 IOMMUNotifierFlag new_flags, 435 Error **errp); 436 /** 437 * @replay: 438 * 439 * Called to handle memory_region_iommu_replay(). 440 * 441 * The default implementation of memory_region_iommu_replay() is to 442 * call the IOMMU translate method for every page in the address space 443 * with flag == IOMMU_NONE and then call the notifier if translate 444 * returns a valid mapping. If this method is implemented then it 445 * overrides the default behaviour, and must provide the full semantics 446 * of memory_region_iommu_replay(), by calling @notifier for every 447 * translation present in the IOMMU. 448 * 449 * Optional method -- an IOMMU only needs to provide this method 450 * if the default is inefficient or produces undesirable side effects. 451 * 452 * Note: this is not related to record-and-replay functionality. 453 */ 454 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 455 456 /** 457 * @get_attr: 458 * 459 * Get IOMMU misc attributes. This is an optional method that 460 * can be used to allow users of the IOMMU to get implementation-specific 461 * information. The IOMMU implements this method to handle calls 462 * by IOMMU users to memory_region_iommu_get_attr() by filling in 463 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 464 * the IOMMU supports. If the method is unimplemented then 465 * memory_region_iommu_get_attr() will always return -EINVAL. 466 * 467 * @iommu: the IOMMUMemoryRegion 468 * 469 * @attr: attribute being queried 470 * 471 * @data: memory to fill in with the attribute data 472 * 473 * Returns 0 on success, or a negative errno; in particular 474 * returns -EINVAL for unrecognized or unimplemented attribute types. 475 */ 476 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 477 void *data); 478 479 /** 480 * @attrs_to_index: 481 * 482 * Return the IOMMU index to use for a given set of transaction attributes. 483 * 484 * Optional method: if an IOMMU only supports a single IOMMU index then 485 * the default implementation of memory_region_iommu_attrs_to_index() 486 * will return 0. 487 * 488 * The indexes supported by an IOMMU must be contiguous, starting at 0. 489 * 490 * @iommu: the IOMMUMemoryRegion 491 * @attrs: memory transaction attributes 492 */ 493 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 494 495 /** 496 * @num_indexes: 497 * 498 * Return the number of IOMMU indexes this IOMMU supports. 499 * 500 * Optional method: if this method is not provided, then 501 * memory_region_iommu_num_indexes() will return 1, indicating that 502 * only a single IOMMU index is supported. 503 * 504 * @iommu: the IOMMUMemoryRegion 505 */ 506 int (*num_indexes)(IOMMUMemoryRegion *iommu); 507 }; 508 509 typedef struct RamDiscardListener RamDiscardListener; 510 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 511 MemoryRegionSection *section); 512 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 513 MemoryRegionSection *section); 514 515 struct RamDiscardListener { 516 /* 517 * @notify_populate: 518 * 519 * Notification that previously discarded memory is about to get populated. 520 * Listeners are able to object. If any listener objects, already 521 * successfully notified listeners are notified about a discard again. 522 * 523 * @rdl: the #RamDiscardListener getting notified 524 * @section: the #MemoryRegionSection to get populated. The section 525 * is aligned within the memory region to the minimum granularity 526 * unless it would exceed the registered section. 527 * 528 * Returns 0 on success. If the notification is rejected by the listener, 529 * an error is returned. 530 */ 531 NotifyRamPopulate notify_populate; 532 533 /* 534 * @notify_discard: 535 * 536 * Notification that previously populated memory was discarded successfully 537 * and listeners should drop all references to such memory and prevent 538 * new population (e.g., unmap). 539 * 540 * @rdl: the #RamDiscardListener getting notified 541 * @section: the #MemoryRegionSection to get populated. The section 542 * is aligned within the memory region to the minimum granularity 543 * unless it would exceed the registered section. 544 */ 545 NotifyRamDiscard notify_discard; 546 547 /* 548 * @double_discard_supported: 549 * 550 * The listener suppors getting @notify_discard notifications that span 551 * already discarded parts. 552 */ 553 bool double_discard_supported; 554 555 MemoryRegionSection *section; 556 QLIST_ENTRY(RamDiscardListener) next; 557 }; 558 559 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 560 NotifyRamPopulate populate_fn, 561 NotifyRamDiscard discard_fn, 562 bool double_discard_supported) 563 { 564 rdl->notify_populate = populate_fn; 565 rdl->notify_discard = discard_fn; 566 rdl->double_discard_supported = double_discard_supported; 567 } 568 569 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 570 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 571 572 /* 573 * RamDiscardManagerClass: 574 * 575 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 576 * regions are currently populated to be used/accessed by the VM, notifying 577 * after parts were discarded (freeing up memory) and before parts will be 578 * populated (consuming memory), to be used/accessed by the VM. 579 * 580 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 581 * #MemoryRegion isn't mapped into an address space yet (either directly 582 * or via an alias); it cannot change while the #MemoryRegion is 583 * mapped into an address space. 584 * 585 * The #RamDiscardManager is intended to be used by technologies that are 586 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 587 * memory inside a #MemoryRegion), and require proper coordination to only 588 * map the currently populated parts, to hinder parts that are expected to 589 * remain discarded from silently getting populated and consuming memory. 590 * Technologies that support discarding of RAM don't have to bother and can 591 * simply map the whole #MemoryRegion. 592 * 593 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 594 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 595 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 596 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 597 * properly coordinate with listeners before memory is plugged (populated), 598 * and after memory is unplugged (discarded). 599 * 600 * Listeners are called in multiples of the minimum granularity (unless it 601 * would exceed the registered range) and changes are aligned to the minimum 602 * granularity within the #MemoryRegion. Listeners have to prepare for memory 603 * becoming discarded in a different granularity than it was populated and the 604 * other way around. 605 */ 606 struct RamDiscardManagerClass { 607 /* private */ 608 InterfaceClass parent_class; 609 610 /* public */ 611 612 /** 613 * @get_min_granularity: 614 * 615 * Get the minimum granularity in which listeners will get notified 616 * about changes within the #MemoryRegion via the #RamDiscardManager. 617 * 618 * @rdm: the #RamDiscardManager 619 * @mr: the #MemoryRegion 620 * 621 * Returns the minimum granularity. 622 */ 623 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 624 const MemoryRegion *mr); 625 626 /** 627 * @is_populated: 628 * 629 * Check whether the given #MemoryRegionSection is completely populated 630 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 631 * There are no alignment requirements. 632 * 633 * @rdm: the #RamDiscardManager 634 * @section: the #MemoryRegionSection 635 * 636 * Returns whether the given range is completely populated. 637 */ 638 bool (*is_populated)(const RamDiscardManager *rdm, 639 const MemoryRegionSection *section); 640 641 /** 642 * @replay_populated: 643 * 644 * Call the #ReplayRamPopulate callback for all populated parts within the 645 * #MemoryRegionSection via the #RamDiscardManager. 646 * 647 * In case any call fails, no further calls are made. 648 * 649 * @rdm: the #RamDiscardManager 650 * @section: the #MemoryRegionSection 651 * @replay_fn: the #ReplayRamPopulate callback 652 * @opaque: pointer to forward to the callback 653 * 654 * Returns 0 on success, or a negative error if any notification failed. 655 */ 656 int (*replay_populated)(const RamDiscardManager *rdm, 657 MemoryRegionSection *section, 658 ReplayRamPopulate replay_fn, void *opaque); 659 660 /** 661 * @replay_discarded: 662 * 663 * Call the #ReplayRamDiscard callback for all discarded parts within the 664 * #MemoryRegionSection via the #RamDiscardManager. 665 * 666 * @rdm: the #RamDiscardManager 667 * @section: the #MemoryRegionSection 668 * @replay_fn: the #ReplayRamDiscard callback 669 * @opaque: pointer to forward to the callback 670 */ 671 void (*replay_discarded)(const RamDiscardManager *rdm, 672 MemoryRegionSection *section, 673 ReplayRamDiscard replay_fn, void *opaque); 674 675 /** 676 * @register_listener: 677 * 678 * Register a #RamDiscardListener for the given #MemoryRegionSection and 679 * immediately notify the #RamDiscardListener about all populated parts 680 * within the #MemoryRegionSection via the #RamDiscardManager. 681 * 682 * In case any notification fails, no further notifications are triggered 683 * and an error is logged. 684 * 685 * @rdm: the #RamDiscardManager 686 * @rdl: the #RamDiscardListener 687 * @section: the #MemoryRegionSection 688 */ 689 void (*register_listener)(RamDiscardManager *rdm, 690 RamDiscardListener *rdl, 691 MemoryRegionSection *section); 692 693 /** 694 * @unregister_listener: 695 * 696 * Unregister a previously registered #RamDiscardListener via the 697 * #RamDiscardManager after notifying the #RamDiscardListener about all 698 * populated parts becoming unpopulated within the registered 699 * #MemoryRegionSection. 700 * 701 * @rdm: the #RamDiscardManager 702 * @rdl: the #RamDiscardListener 703 */ 704 void (*unregister_listener)(RamDiscardManager *rdm, 705 RamDiscardListener *rdl); 706 }; 707 708 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 709 const MemoryRegion *mr); 710 711 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 712 const MemoryRegionSection *section); 713 714 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 715 MemoryRegionSection *section, 716 ReplayRamPopulate replay_fn, 717 void *opaque); 718 719 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 720 MemoryRegionSection *section, 721 ReplayRamDiscard replay_fn, 722 void *opaque); 723 724 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 725 RamDiscardListener *rdl, 726 MemoryRegionSection *section); 727 728 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 729 RamDiscardListener *rdl); 730 731 /** 732 * memory_get_xlat_addr: Extract addresses from a TLB entry 733 * 734 * @iotlb: pointer to an #IOMMUTLBEntry 735 * @vaddr: virtual address 736 * @ram_addr: RAM address 737 * @read_only: indicates if writes are allowed 738 * @mr_has_discard_manager: indicates memory is controlled by a 739 * RamDiscardManager 740 * @errp: pointer to Error*, to store an error if it happens. 741 * 742 * Return: true on success, else false setting @errp with error. 743 */ 744 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 745 ram_addr_t *ram_addr, bool *read_only, 746 bool *mr_has_discard_manager, Error **errp); 747 748 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 749 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 750 751 /** MemoryRegion: 752 * 753 * A struct representing a memory region. 754 */ 755 struct MemoryRegion { 756 Object parent_obj; 757 758 /* private: */ 759 760 /* The following fields should fit in a cache line */ 761 bool romd_mode; 762 bool ram; 763 bool subpage; 764 bool readonly; /* For RAM regions */ 765 bool nonvolatile; 766 bool rom_device; 767 bool flush_coalesced_mmio; 768 bool unmergeable; 769 uint8_t dirty_log_mask; 770 bool is_iommu; 771 RAMBlock *ram_block; 772 Object *owner; 773 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 774 DeviceState *dev; 775 776 const MemoryRegionOps *ops; 777 void *opaque; 778 MemoryRegion *container; 779 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 780 Int128 size; 781 hwaddr addr; 782 void (*destructor)(MemoryRegion *mr); 783 uint64_t align; 784 bool terminates; 785 bool ram_device; 786 bool enabled; 787 bool warning_printed; /* For reservations */ 788 uint8_t vga_logging_count; 789 MemoryRegion *alias; 790 hwaddr alias_offset; 791 int32_t priority; 792 QTAILQ_HEAD(, MemoryRegion) subregions; 793 QTAILQ_ENTRY(MemoryRegion) subregions_link; 794 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 795 const char *name; 796 unsigned ioeventfd_nb; 797 MemoryRegionIoeventfd *ioeventfds; 798 RamDiscardManager *rdm; /* Only for RAM */ 799 800 /* For devices designed to perform re-entrant IO into their own IO MRs */ 801 bool disable_reentrancy_guard; 802 }; 803 804 struct IOMMUMemoryRegion { 805 MemoryRegion parent_obj; 806 807 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 808 IOMMUNotifierFlag iommu_notify_flags; 809 }; 810 811 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 812 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 813 814 #define MEMORY_LISTENER_PRIORITY_MIN 0 815 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 816 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 817 818 /** 819 * struct MemoryListener: callbacks structure for updates to the physical memory map 820 * 821 * Allows a component to adjust to changes in the guest-visible memory map. 822 * Use with memory_listener_register() and memory_listener_unregister(). 823 */ 824 struct MemoryListener { 825 /** 826 * @begin: 827 * 828 * Called at the beginning of an address space update transaction. 829 * Followed by calls to #MemoryListener.region_add(), 830 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 831 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 832 * increasing address order. 833 * 834 * @listener: The #MemoryListener. 835 */ 836 void (*begin)(MemoryListener *listener); 837 838 /** 839 * @commit: 840 * 841 * Called at the end of an address space update transaction, 842 * after the last call to #MemoryListener.region_add(), 843 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 844 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 845 * 846 * @listener: The #MemoryListener. 847 */ 848 void (*commit)(MemoryListener *listener); 849 850 /** 851 * @region_add: 852 * 853 * Called during an address space update transaction, 854 * for a section of the address space that is new in this address space 855 * space since the last transaction. 856 * 857 * @listener: The #MemoryListener. 858 * @section: The new #MemoryRegionSection. 859 */ 860 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 861 862 /** 863 * @region_del: 864 * 865 * Called during an address space update transaction, 866 * for a section of the address space that has disappeared in the address 867 * space since the last transaction. 868 * 869 * @listener: The #MemoryListener. 870 * @section: The old #MemoryRegionSection. 871 */ 872 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 873 874 /** 875 * @region_nop: 876 * 877 * Called during an address space update transaction, 878 * for a section of the address space that is in the same place in the address 879 * space as in the last transaction. 880 * 881 * @listener: The #MemoryListener. 882 * @section: The #MemoryRegionSection. 883 */ 884 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 885 886 /** 887 * @log_start: 888 * 889 * Called during an address space update transaction, after 890 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 891 * #MemoryListener.region_nop(), if dirty memory logging clients have 892 * become active since the last transaction. 893 * 894 * @listener: The #MemoryListener. 895 * @section: The #MemoryRegionSection. 896 * @old: A bitmap of dirty memory logging clients that were active in 897 * the previous transaction. 898 * @new: A bitmap of dirty memory logging clients that are active in 899 * the current transaction. 900 */ 901 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 902 int old_val, int new_val); 903 904 /** 905 * @log_stop: 906 * 907 * Called during an address space update transaction, after 908 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 909 * #MemoryListener.region_nop() and possibly after 910 * #MemoryListener.log_start(), if dirty memory logging clients have 911 * become inactive since the last transaction. 912 * 913 * @listener: The #MemoryListener. 914 * @section: The #MemoryRegionSection. 915 * @old: A bitmap of dirty memory logging clients that were active in 916 * the previous transaction. 917 * @new: A bitmap of dirty memory logging clients that are active in 918 * the current transaction. 919 */ 920 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 921 int old_val, int new_val); 922 923 /** 924 * @log_sync: 925 * 926 * Called by memory_region_snapshot_and_clear_dirty() and 927 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 928 * copy of the dirty memory bitmap for a #MemoryRegionSection. 929 * 930 * @listener: The #MemoryListener. 931 * @section: The #MemoryRegionSection. 932 */ 933 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 934 935 /** 936 * @log_sync_global: 937 * 938 * This is the global version of @log_sync when the listener does 939 * not have a way to synchronize the log with finer granularity. 940 * When the listener registers with @log_sync_global defined, then 941 * its @log_sync must be NULL. Vice versa. 942 * 943 * @listener: The #MemoryListener. 944 * @last_stage: The last stage to synchronize the log during migration. 945 * The caller should guarantee that the synchronization with true for 946 * @last_stage is triggered for once after all VCPUs have been stopped. 947 */ 948 void (*log_sync_global)(MemoryListener *listener, bool last_stage); 949 950 /** 951 * @log_clear: 952 * 953 * Called before reading the dirty memory bitmap for a 954 * #MemoryRegionSection. 955 * 956 * @listener: The #MemoryListener. 957 * @section: The #MemoryRegionSection. 958 */ 959 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 960 961 /** 962 * @log_global_start: 963 * 964 * Called by memory_global_dirty_log_start(), which 965 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 966 * the address space. #MemoryListener.log_global_start() is also 967 * called when a #MemoryListener is added, if global dirty logging is 968 * active at that time. 969 * 970 * @listener: The #MemoryListener. 971 * @errp: pointer to Error*, to store an error if it happens. 972 * 973 * Return: true on success, else false setting @errp with error. 974 */ 975 bool (*log_global_start)(MemoryListener *listener, Error **errp); 976 977 /** 978 * @log_global_stop: 979 * 980 * Called by memory_global_dirty_log_stop(), which 981 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 982 * the address space. 983 * 984 * @listener: The #MemoryListener. 985 */ 986 void (*log_global_stop)(MemoryListener *listener); 987 988 /** 989 * @log_global_after_sync: 990 * 991 * Called after reading the dirty memory bitmap 992 * for any #MemoryRegionSection. 993 * 994 * @listener: The #MemoryListener. 995 */ 996 void (*log_global_after_sync)(MemoryListener *listener); 997 998 /** 999 * @eventfd_add: 1000 * 1001 * Called during an address space update transaction, 1002 * for a section of the address space that has had a new ioeventfd 1003 * registration since the last transaction. 1004 * 1005 * @listener: The #MemoryListener. 1006 * @section: The new #MemoryRegionSection. 1007 * @match_data: The @match_data parameter for the new ioeventfd. 1008 * @data: The @data parameter for the new ioeventfd. 1009 * @e: The #EventNotifier parameter for the new ioeventfd. 1010 */ 1011 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 1012 bool match_data, uint64_t data, EventNotifier *e); 1013 1014 /** 1015 * @eventfd_del: 1016 * 1017 * Called during an address space update transaction, 1018 * for a section of the address space that has dropped an ioeventfd 1019 * registration since the last transaction. 1020 * 1021 * @listener: The #MemoryListener. 1022 * @section: The new #MemoryRegionSection. 1023 * @match_data: The @match_data parameter for the dropped ioeventfd. 1024 * @data: The @data parameter for the dropped ioeventfd. 1025 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1026 */ 1027 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1028 bool match_data, uint64_t data, EventNotifier *e); 1029 1030 /** 1031 * @coalesced_io_add: 1032 * 1033 * Called during an address space update transaction, 1034 * for a section of the address space that has had a new coalesced 1035 * MMIO range registration since the last transaction. 1036 * 1037 * @listener: The #MemoryListener. 1038 * @section: The new #MemoryRegionSection. 1039 * @addr: The starting address for the coalesced MMIO range. 1040 * @len: The length of the coalesced MMIO range. 1041 */ 1042 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1043 hwaddr addr, hwaddr len); 1044 1045 /** 1046 * @coalesced_io_del: 1047 * 1048 * Called during an address space update transaction, 1049 * for a section of the address space that has dropped a coalesced 1050 * MMIO range since the last transaction. 1051 * 1052 * @listener: The #MemoryListener. 1053 * @section: The new #MemoryRegionSection. 1054 * @addr: The starting address for the coalesced MMIO range. 1055 * @len: The length of the coalesced MMIO range. 1056 */ 1057 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1058 hwaddr addr, hwaddr len); 1059 /** 1060 * @priority: 1061 * 1062 * Govern the order in which memory listeners are invoked. Lower priorities 1063 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1064 * or "stop" callbacks. 1065 */ 1066 unsigned priority; 1067 1068 /** 1069 * @name: 1070 * 1071 * Name of the listener. It can be used in contexts where we'd like to 1072 * identify one memory listener with the rest. 1073 */ 1074 const char *name; 1075 1076 /* private: */ 1077 AddressSpace *address_space; 1078 QTAILQ_ENTRY(MemoryListener) link; 1079 QTAILQ_ENTRY(MemoryListener) link_as; 1080 }; 1081 1082 typedef struct AddressSpaceMapClient { 1083 QEMUBH *bh; 1084 QLIST_ENTRY(AddressSpaceMapClient) link; 1085 } AddressSpaceMapClient; 1086 1087 typedef struct { 1088 MemoryRegion *mr; 1089 void *buffer; 1090 hwaddr addr; 1091 hwaddr len; 1092 bool in_use; 1093 } BounceBuffer; 1094 1095 /** 1096 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1097 */ 1098 struct AddressSpace { 1099 /* private: */ 1100 struct rcu_head rcu; 1101 char *name; 1102 MemoryRegion *root; 1103 1104 /* Accessed via RCU. */ 1105 struct FlatView *current_map; 1106 1107 int ioeventfd_nb; 1108 int ioeventfd_notifiers; 1109 struct MemoryRegionIoeventfd *ioeventfds; 1110 QTAILQ_HEAD(, MemoryListener) listeners; 1111 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1112 1113 /* Bounce buffer to use for this address space. */ 1114 BounceBuffer bounce; 1115 /* List of callbacks to invoke when buffers free up */ 1116 QemuMutex map_client_list_lock; 1117 QLIST_HEAD(, AddressSpaceMapClient) map_client_list; 1118 }; 1119 1120 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1121 typedef struct FlatRange FlatRange; 1122 1123 /* Flattened global view of current active memory hierarchy. Kept in sorted 1124 * order. 1125 */ 1126 struct FlatView { 1127 struct rcu_head rcu; 1128 unsigned ref; 1129 FlatRange *ranges; 1130 unsigned nr; 1131 unsigned nr_allocated; 1132 struct AddressSpaceDispatch *dispatch; 1133 MemoryRegion *root; 1134 }; 1135 1136 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1137 { 1138 return qatomic_rcu_read(&as->current_map); 1139 } 1140 1141 /** 1142 * typedef flatview_cb: callback for flatview_for_each_range() 1143 * 1144 * @start: start address of the range within the FlatView 1145 * @len: length of the range in bytes 1146 * @mr: MemoryRegion covering this range 1147 * @offset_in_region: offset of the first byte of the range within @mr 1148 * @opaque: data pointer passed to flatview_for_each_range() 1149 * 1150 * Returns: true to stop the iteration, false to keep going. 1151 */ 1152 typedef bool (*flatview_cb)(Int128 start, 1153 Int128 len, 1154 const MemoryRegion *mr, 1155 hwaddr offset_in_region, 1156 void *opaque); 1157 1158 /** 1159 * flatview_for_each_range: Iterate through a FlatView 1160 * @fv: the FlatView to iterate through 1161 * @cb: function to call for each range 1162 * @opaque: opaque data pointer to pass to @cb 1163 * 1164 * A FlatView is made up of a list of non-overlapping ranges, each of 1165 * which is a slice of a MemoryRegion. This function iterates through 1166 * each range in @fv, calling @cb. The callback function can terminate 1167 * iteration early by returning 'true'. 1168 */ 1169 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1170 1171 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1172 MemoryRegionSection *b) 1173 { 1174 return a->mr == b->mr && 1175 a->fv == b->fv && 1176 a->offset_within_region == b->offset_within_region && 1177 a->offset_within_address_space == b->offset_within_address_space && 1178 int128_eq(a->size, b->size) && 1179 a->readonly == b->readonly && 1180 a->nonvolatile == b->nonvolatile; 1181 } 1182 1183 /** 1184 * memory_region_section_new_copy: Copy a memory region section 1185 * 1186 * Allocate memory for a new copy, copy the memory region section, and 1187 * properly take a reference on all relevant members. 1188 * 1189 * @s: the #MemoryRegionSection to copy 1190 */ 1191 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1192 1193 /** 1194 * memory_region_section_new_copy: Free a copied memory region section 1195 * 1196 * Free a copy of a memory section created via memory_region_section_new_copy(). 1197 * properly dropping references on all relevant members. 1198 * 1199 * @s: the #MemoryRegionSection to copy 1200 */ 1201 void memory_region_section_free_copy(MemoryRegionSection *s); 1202 1203 /** 1204 * memory_region_init: Initialize a memory region 1205 * 1206 * The region typically acts as a container for other memory regions. Use 1207 * memory_region_add_subregion() to add subregions. 1208 * 1209 * @mr: the #MemoryRegion to be initialized 1210 * @owner: the object that tracks the region's reference count 1211 * @name: used for debugging; not visible to the user or ABI 1212 * @size: size of the region; any subregions beyond this size will be clipped 1213 */ 1214 void memory_region_init(MemoryRegion *mr, 1215 Object *owner, 1216 const char *name, 1217 uint64_t size); 1218 1219 /** 1220 * memory_region_ref: Add 1 to a memory region's reference count 1221 * 1222 * Whenever memory regions are accessed outside the BQL, they need to be 1223 * preserved against hot-unplug. MemoryRegions actually do not have their 1224 * own reference count; they piggyback on a QOM object, their "owner". 1225 * This function adds a reference to the owner. 1226 * 1227 * All MemoryRegions must have an owner if they can disappear, even if the 1228 * device they belong to operates exclusively under the BQL. This is because 1229 * the region could be returned at any time by memory_region_find, and this 1230 * is usually under guest control. 1231 * 1232 * @mr: the #MemoryRegion 1233 */ 1234 void memory_region_ref(MemoryRegion *mr); 1235 1236 /** 1237 * memory_region_unref: Remove 1 to a memory region's reference count 1238 * 1239 * Whenever memory regions are accessed outside the BQL, they need to be 1240 * preserved against hot-unplug. MemoryRegions actually do not have their 1241 * own reference count; they piggyback on a QOM object, their "owner". 1242 * This function removes a reference to the owner and possibly destroys it. 1243 * 1244 * @mr: the #MemoryRegion 1245 */ 1246 void memory_region_unref(MemoryRegion *mr); 1247 1248 /** 1249 * memory_region_init_io: Initialize an I/O memory region. 1250 * 1251 * Accesses into the region will cause the callbacks in @ops to be called. 1252 * if @size is nonzero, subregions will be clipped to @size. 1253 * 1254 * @mr: the #MemoryRegion to be initialized. 1255 * @owner: the object that tracks the region's reference count 1256 * @ops: a structure containing read and write callbacks to be used when 1257 * I/O is performed on the region. 1258 * @opaque: passed to the read and write callbacks of the @ops structure. 1259 * @name: used for debugging; not visible to the user or ABI 1260 * @size: size of the region. 1261 */ 1262 void memory_region_init_io(MemoryRegion *mr, 1263 Object *owner, 1264 const MemoryRegionOps *ops, 1265 void *opaque, 1266 const char *name, 1267 uint64_t size); 1268 1269 /** 1270 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1271 * into the region will modify memory 1272 * directly. 1273 * 1274 * @mr: the #MemoryRegion to be initialized. 1275 * @owner: the object that tracks the region's reference count 1276 * @name: Region name, becomes part of RAMBlock name used in migration stream 1277 * must be unique within any device 1278 * @size: size of the region. 1279 * @errp: pointer to Error*, to store an error if it happens. 1280 * 1281 * Note that this function does not do anything to cause the data in the 1282 * RAM memory region to be migrated; that is the responsibility of the caller. 1283 * 1284 * Return: true on success, else false setting @errp with error. 1285 */ 1286 bool memory_region_init_ram_nomigrate(MemoryRegion *mr, 1287 Object *owner, 1288 const char *name, 1289 uint64_t size, 1290 Error **errp); 1291 1292 /** 1293 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1294 * Accesses into the region will 1295 * modify memory directly. 1296 * 1297 * @mr: the #MemoryRegion to be initialized. 1298 * @owner: the object that tracks the region's reference count 1299 * @name: Region name, becomes part of RAMBlock name used in migration stream 1300 * must be unique within any device 1301 * @size: size of the region. 1302 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE, 1303 * RAM_GUEST_MEMFD. 1304 * @errp: pointer to Error*, to store an error if it happens. 1305 * 1306 * Note that this function does not do anything to cause the data in the 1307 * RAM memory region to be migrated; that is the responsibility of the caller. 1308 * 1309 * Return: true on success, else false setting @errp with error. 1310 */ 1311 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1312 Object *owner, 1313 const char *name, 1314 uint64_t size, 1315 uint32_t ram_flags, 1316 Error **errp); 1317 1318 /** 1319 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1320 * RAM. Accesses into the region will 1321 * modify memory directly. Only an initial 1322 * portion of this RAM is actually used. 1323 * Changing the size while migrating 1324 * can result in the migration being 1325 * canceled. 1326 * 1327 * @mr: the #MemoryRegion to be initialized. 1328 * @owner: the object that tracks the region's reference count 1329 * @name: Region name, becomes part of RAMBlock name used in migration stream 1330 * must be unique within any device 1331 * @size: used size of the region. 1332 * @max_size: max size of the region. 1333 * @resized: callback to notify owner about used size change. 1334 * @errp: pointer to Error*, to store an error if it happens. 1335 * 1336 * Note that this function does not do anything to cause the data in the 1337 * RAM memory region to be migrated; that is the responsibility of the caller. 1338 * 1339 * Return: true on success, else false setting @errp with error. 1340 */ 1341 bool memory_region_init_resizeable_ram(MemoryRegion *mr, 1342 Object *owner, 1343 const char *name, 1344 uint64_t size, 1345 uint64_t max_size, 1346 void (*resized)(const char*, 1347 uint64_t length, 1348 void *host), 1349 Error **errp); 1350 #ifdef CONFIG_POSIX 1351 1352 /** 1353 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1354 * mmap-ed backend. 1355 * 1356 * @mr: the #MemoryRegion to be initialized. 1357 * @owner: the object that tracks the region's reference count 1358 * @name: Region name, becomes part of RAMBlock name used in migration stream 1359 * must be unique within any device 1360 * @size: size of the region. 1361 * @align: alignment of the region base address; if 0, the default alignment 1362 * (getpagesize()) will be used. 1363 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1364 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1365 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1366 * @path: the path in which to allocate the RAM. 1367 * @offset: offset within the file referenced by path 1368 * @errp: pointer to Error*, to store an error if it happens. 1369 * 1370 * Note that this function does not do anything to cause the data in the 1371 * RAM memory region to be migrated; that is the responsibility of the caller. 1372 * 1373 * Return: true on success, else false setting @errp with error. 1374 */ 1375 bool memory_region_init_ram_from_file(MemoryRegion *mr, 1376 Object *owner, 1377 const char *name, 1378 uint64_t size, 1379 uint64_t align, 1380 uint32_t ram_flags, 1381 const char *path, 1382 ram_addr_t offset, 1383 Error **errp); 1384 1385 /** 1386 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1387 * mmap-ed backend. 1388 * 1389 * @mr: the #MemoryRegion to be initialized. 1390 * @owner: the object that tracks the region's reference count 1391 * @name: the name of the region. 1392 * @size: size of the region. 1393 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1394 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, 1395 * RAM_READONLY_FD, RAM_GUEST_MEMFD 1396 * @fd: the fd to mmap. 1397 * @offset: offset within the file referenced by fd 1398 * @errp: pointer to Error*, to store an error if it happens. 1399 * 1400 * Note that this function does not do anything to cause the data in the 1401 * RAM memory region to be migrated; that is the responsibility of the caller. 1402 * 1403 * Return: true on success, else false setting @errp with error. 1404 */ 1405 bool memory_region_init_ram_from_fd(MemoryRegion *mr, 1406 Object *owner, 1407 const char *name, 1408 uint64_t size, 1409 uint32_t ram_flags, 1410 int fd, 1411 ram_addr_t offset, 1412 Error **errp); 1413 #endif 1414 1415 /** 1416 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1417 * user-provided pointer. Accesses into the 1418 * region will modify memory directly. 1419 * 1420 * @mr: the #MemoryRegion to be initialized. 1421 * @owner: the object that tracks the region's reference count 1422 * @name: Region name, becomes part of RAMBlock name used in migration stream 1423 * must be unique within any device 1424 * @size: size of the region. 1425 * @ptr: memory to be mapped; must contain at least @size bytes. 1426 * 1427 * Note that this function does not do anything to cause the data in the 1428 * RAM memory region to be migrated; that is the responsibility of the caller. 1429 */ 1430 void memory_region_init_ram_ptr(MemoryRegion *mr, 1431 Object *owner, 1432 const char *name, 1433 uint64_t size, 1434 void *ptr); 1435 1436 /** 1437 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1438 * a user-provided pointer. 1439 * 1440 * A RAM device represents a mapping to a physical device, such as to a PCI 1441 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1442 * into the VM address space and access to the region will modify memory 1443 * directly. However, the memory region should not be included in a memory 1444 * dump (device may not be enabled/mapped at the time of the dump), and 1445 * operations incompatible with manipulating MMIO should be avoided. Replaces 1446 * skip_dump flag. 1447 * 1448 * @mr: the #MemoryRegion to be initialized. 1449 * @owner: the object that tracks the region's reference count 1450 * @name: the name of the region. 1451 * @size: size of the region. 1452 * @ptr: memory to be mapped; must contain at least @size bytes. 1453 * 1454 * Note that this function does not do anything to cause the data in the 1455 * RAM memory region to be migrated; that is the responsibility of the caller. 1456 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1457 */ 1458 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1459 Object *owner, 1460 const char *name, 1461 uint64_t size, 1462 void *ptr); 1463 1464 /** 1465 * memory_region_init_alias: Initialize a memory region that aliases all or a 1466 * part of another memory region. 1467 * 1468 * @mr: the #MemoryRegion to be initialized. 1469 * @owner: the object that tracks the region's reference count 1470 * @name: used for debugging; not visible to the user or ABI 1471 * @orig: the region to be referenced; @mr will be equivalent to 1472 * @orig between @offset and @offset + @size - 1. 1473 * @offset: start of the section in @orig to be referenced. 1474 * @size: size of the region. 1475 */ 1476 void memory_region_init_alias(MemoryRegion *mr, 1477 Object *owner, 1478 const char *name, 1479 MemoryRegion *orig, 1480 hwaddr offset, 1481 uint64_t size); 1482 1483 /** 1484 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1485 * 1486 * This has the same effect as calling memory_region_init_ram_nomigrate() 1487 * and then marking the resulting region read-only with 1488 * memory_region_set_readonly(). 1489 * 1490 * Note that this function does not do anything to cause the data in the 1491 * RAM side of the memory region to be migrated; that is the responsibility 1492 * of the caller. 1493 * 1494 * @mr: the #MemoryRegion to be initialized. 1495 * @owner: the object that tracks the region's reference count 1496 * @name: Region name, becomes part of RAMBlock name used in migration stream 1497 * must be unique within any device 1498 * @size: size of the region. 1499 * @errp: pointer to Error*, to store an error if it happens. 1500 * 1501 * Return: true on success, else false setting @errp with error. 1502 */ 1503 bool memory_region_init_rom_nomigrate(MemoryRegion *mr, 1504 Object *owner, 1505 const char *name, 1506 uint64_t size, 1507 Error **errp); 1508 1509 /** 1510 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1511 * Writes are handled via callbacks. 1512 * 1513 * Note that this function does not do anything to cause the data in the 1514 * RAM side of the memory region to be migrated; that is the responsibility 1515 * of the caller. 1516 * 1517 * @mr: the #MemoryRegion to be initialized. 1518 * @owner: the object that tracks the region's reference count 1519 * @ops: callbacks for write access handling (must not be NULL). 1520 * @opaque: passed to the read and write callbacks of the @ops structure. 1521 * @name: Region name, becomes part of RAMBlock name used in migration stream 1522 * must be unique within any device 1523 * @size: size of the region. 1524 * @errp: pointer to Error*, to store an error if it happens. 1525 * 1526 * Return: true on success, else false setting @errp with error. 1527 */ 1528 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1529 Object *owner, 1530 const MemoryRegionOps *ops, 1531 void *opaque, 1532 const char *name, 1533 uint64_t size, 1534 Error **errp); 1535 1536 /** 1537 * memory_region_init_iommu: Initialize a memory region of a custom type 1538 * that translates addresses 1539 * 1540 * An IOMMU region translates addresses and forwards accesses to a target 1541 * memory region. 1542 * 1543 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1544 * @_iommu_mr should be a pointer to enough memory for an instance of 1545 * that subclass, @instance_size is the size of that subclass, and 1546 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1547 * instance of the subclass, and its methods will then be called to handle 1548 * accesses to the memory region. See the documentation of 1549 * #IOMMUMemoryRegionClass for further details. 1550 * 1551 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1552 * @instance_size: the IOMMUMemoryRegion subclass instance size 1553 * @mrtypename: the type name of the #IOMMUMemoryRegion 1554 * @owner: the object that tracks the region's reference count 1555 * @name: used for debugging; not visible to the user or ABI 1556 * @size: size of the region. 1557 */ 1558 void memory_region_init_iommu(void *_iommu_mr, 1559 size_t instance_size, 1560 const char *mrtypename, 1561 Object *owner, 1562 const char *name, 1563 uint64_t size); 1564 1565 /** 1566 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1567 * region will modify memory directly. 1568 * 1569 * @mr: the #MemoryRegion to be initialized 1570 * @owner: the object that tracks the region's reference count (must be 1571 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1572 * @name: name of the memory region 1573 * @size: size of the region in bytes 1574 * @errp: pointer to Error*, to store an error if it happens. 1575 * 1576 * This function allocates RAM for a board model or device, and 1577 * arranges for it to be migrated (by calling vmstate_register_ram() 1578 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1579 * @owner is NULL). 1580 * 1581 * TODO: Currently we restrict @owner to being either NULL (for 1582 * global RAM regions with no owner) or devices, so that we can 1583 * give the RAM block a unique name for migration purposes. 1584 * We should lift this restriction and allow arbitrary Objects. 1585 * If you pass a non-NULL non-device @owner then we will assert. 1586 * 1587 * Return: true on success, else false setting @errp with error. 1588 */ 1589 bool memory_region_init_ram(MemoryRegion *mr, 1590 Object *owner, 1591 const char *name, 1592 uint64_t size, 1593 Error **errp); 1594 1595 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr, 1596 Object *owner, 1597 const char *name, 1598 uint64_t size, 1599 Error **errp); 1600 1601 /** 1602 * memory_region_init_rom: Initialize a ROM memory region. 1603 * 1604 * This has the same effect as calling memory_region_init_ram() 1605 * and then marking the resulting region read-only with 1606 * memory_region_set_readonly(). This includes arranging for the 1607 * contents to be migrated. 1608 * 1609 * TODO: Currently we restrict @owner to being either NULL (for 1610 * global RAM regions with no owner) or devices, so that we can 1611 * give the RAM block a unique name for migration purposes. 1612 * We should lift this restriction and allow arbitrary Objects. 1613 * If you pass a non-NULL non-device @owner then we will assert. 1614 * 1615 * @mr: the #MemoryRegion to be initialized. 1616 * @owner: the object that tracks the region's reference count 1617 * @name: Region name, becomes part of RAMBlock name used in migration stream 1618 * must be unique within any device 1619 * @size: size of the region. 1620 * @errp: pointer to Error*, to store an error if it happens. 1621 * 1622 * Return: true on success, else false setting @errp with error. 1623 */ 1624 bool memory_region_init_rom(MemoryRegion *mr, 1625 Object *owner, 1626 const char *name, 1627 uint64_t size, 1628 Error **errp); 1629 1630 /** 1631 * memory_region_init_rom_device: Initialize a ROM memory region. 1632 * Writes are handled via callbacks. 1633 * 1634 * This function initializes a memory region backed by RAM for reads 1635 * and callbacks for writes, and arranges for the RAM backing to 1636 * be migrated (by calling vmstate_register_ram() 1637 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1638 * @owner is NULL). 1639 * 1640 * TODO: Currently we restrict @owner to being either NULL (for 1641 * global RAM regions with no owner) or devices, so that we can 1642 * give the RAM block a unique name for migration purposes. 1643 * We should lift this restriction and allow arbitrary Objects. 1644 * If you pass a non-NULL non-device @owner then we will assert. 1645 * 1646 * @mr: the #MemoryRegion to be initialized. 1647 * @owner: the object that tracks the region's reference count 1648 * @ops: callbacks for write access handling (must not be NULL). 1649 * @opaque: passed to the read and write callbacks of the @ops structure. 1650 * @name: Region name, becomes part of RAMBlock name used in migration stream 1651 * must be unique within any device 1652 * @size: size of the region. 1653 * @errp: pointer to Error*, to store an error if it happens. 1654 * 1655 * Return: true on success, else false setting @errp with error. 1656 */ 1657 bool memory_region_init_rom_device(MemoryRegion *mr, 1658 Object *owner, 1659 const MemoryRegionOps *ops, 1660 void *opaque, 1661 const char *name, 1662 uint64_t size, 1663 Error **errp); 1664 1665 1666 /** 1667 * memory_region_owner: get a memory region's owner. 1668 * 1669 * @mr: the memory region being queried. 1670 */ 1671 Object *memory_region_owner(MemoryRegion *mr); 1672 1673 /** 1674 * memory_region_size: get a memory region's size. 1675 * 1676 * @mr: the memory region being queried. 1677 */ 1678 uint64_t memory_region_size(MemoryRegion *mr); 1679 1680 /** 1681 * memory_region_is_ram: check whether a memory region is random access 1682 * 1683 * Returns %true if a memory region is random access. 1684 * 1685 * @mr: the memory region being queried 1686 */ 1687 static inline bool memory_region_is_ram(MemoryRegion *mr) 1688 { 1689 return mr->ram; 1690 } 1691 1692 /** 1693 * memory_region_is_ram_device: check whether a memory region is a ram device 1694 * 1695 * Returns %true if a memory region is a device backed ram region 1696 * 1697 * @mr: the memory region being queried 1698 */ 1699 bool memory_region_is_ram_device(MemoryRegion *mr); 1700 1701 /** 1702 * memory_region_is_romd: check whether a memory region is in ROMD mode 1703 * 1704 * Returns %true if a memory region is a ROM device and currently set to allow 1705 * direct reads. 1706 * 1707 * @mr: the memory region being queried 1708 */ 1709 static inline bool memory_region_is_romd(MemoryRegion *mr) 1710 { 1711 return mr->rom_device && mr->romd_mode; 1712 } 1713 1714 /** 1715 * memory_region_is_protected: check whether a memory region is protected 1716 * 1717 * Returns %true if a memory region is protected RAM and cannot be accessed 1718 * via standard mechanisms, e.g. DMA. 1719 * 1720 * @mr: the memory region being queried 1721 */ 1722 bool memory_region_is_protected(MemoryRegion *mr); 1723 1724 /** 1725 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd 1726 * associated 1727 * 1728 * Returns %true if a memory region's ram_block has valid guest_memfd assigned. 1729 * 1730 * @mr: the memory region being queried 1731 */ 1732 bool memory_region_has_guest_memfd(MemoryRegion *mr); 1733 1734 /** 1735 * memory_region_get_iommu: check whether a memory region is an iommu 1736 * 1737 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1738 * otherwise NULL. 1739 * 1740 * @mr: the memory region being queried 1741 */ 1742 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1743 { 1744 if (mr->alias) { 1745 return memory_region_get_iommu(mr->alias); 1746 } 1747 if (mr->is_iommu) { 1748 return (IOMMUMemoryRegion *) mr; 1749 } 1750 return NULL; 1751 } 1752 1753 /** 1754 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1755 * if an iommu or NULL if not 1756 * 1757 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1758 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1759 * 1760 * @iommu_mr: the memory region being queried 1761 */ 1762 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1763 IOMMUMemoryRegion *iommu_mr) 1764 { 1765 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1766 } 1767 1768 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1769 1770 /** 1771 * memory_region_iommu_get_min_page_size: get minimum supported page size 1772 * for an iommu 1773 * 1774 * Returns minimum supported page size for an iommu. 1775 * 1776 * @iommu_mr: the memory region being queried 1777 */ 1778 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1779 1780 /** 1781 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1782 * 1783 * Note: for any IOMMU implementation, an in-place mapping change 1784 * should be notified with an UNMAP followed by a MAP. 1785 * 1786 * @iommu_mr: the memory region that was changed 1787 * @iommu_idx: the IOMMU index for the translation table which has changed 1788 * @event: TLB event with the new entry in the IOMMU translation table. 1789 * The entry replaces all old entries for the same virtual I/O address 1790 * range. 1791 */ 1792 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1793 int iommu_idx, 1794 const IOMMUTLBEvent event); 1795 1796 /** 1797 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1798 * entry to a single notifier 1799 * 1800 * This works just like memory_region_notify_iommu(), but it only 1801 * notifies a specific notifier, not all of them. 1802 * 1803 * @notifier: the notifier to be notified 1804 * @event: TLB event with the new entry in the IOMMU translation table. 1805 * The entry replaces all old entries for the same virtual I/O address 1806 * range. 1807 */ 1808 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1809 const IOMMUTLBEvent *event); 1810 1811 /** 1812 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1813 * translation that covers the 1814 * range of a notifier 1815 * 1816 * @notifier: the notifier to be notified 1817 */ 1818 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1819 1820 1821 /** 1822 * memory_region_register_iommu_notifier: register a notifier for changes to 1823 * IOMMU translation entries. 1824 * 1825 * Returns 0 on success, or a negative errno otherwise. In particular, 1826 * -EINVAL indicates that at least one of the attributes of the notifier 1827 * is not supported (flag/range) by the IOMMU memory region. In case of error 1828 * the error object must be created. 1829 * 1830 * @mr: the memory region to observe 1831 * @n: the IOMMUNotifier to be added; the notify callback receives a 1832 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1833 * ceases to be valid on exit from the notifier. 1834 * @errp: pointer to Error*, to store an error if it happens. 1835 */ 1836 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1837 IOMMUNotifier *n, Error **errp); 1838 1839 /** 1840 * memory_region_iommu_replay: replay existing IOMMU translations to 1841 * a notifier with the minimum page granularity returned by 1842 * mr->iommu_ops->get_page_size(). 1843 * 1844 * Note: this is not related to record-and-replay functionality. 1845 * 1846 * @iommu_mr: the memory region to observe 1847 * @n: the notifier to which to replay iommu mappings 1848 */ 1849 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1850 1851 /** 1852 * memory_region_unregister_iommu_notifier: unregister a notifier for 1853 * changes to IOMMU translation entries. 1854 * 1855 * @mr: the memory region which was observed and for which notity_stopped() 1856 * needs to be called 1857 * @n: the notifier to be removed. 1858 */ 1859 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1860 IOMMUNotifier *n); 1861 1862 /** 1863 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1864 * defined on the IOMMU. 1865 * 1866 * Returns 0 on success, or a negative errno otherwise. In particular, 1867 * -EINVAL indicates that the IOMMU does not support the requested 1868 * attribute. 1869 * 1870 * @iommu_mr: the memory region 1871 * @attr: the requested attribute 1872 * @data: a pointer to the requested attribute data 1873 */ 1874 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1875 enum IOMMUMemoryRegionAttr attr, 1876 void *data); 1877 1878 /** 1879 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1880 * use for translations with the given memory transaction attributes. 1881 * 1882 * @iommu_mr: the memory region 1883 * @attrs: the memory transaction attributes 1884 */ 1885 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1886 MemTxAttrs attrs); 1887 1888 /** 1889 * memory_region_iommu_num_indexes: return the total number of IOMMU 1890 * indexes that this IOMMU supports. 1891 * 1892 * @iommu_mr: the memory region 1893 */ 1894 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1895 1896 /** 1897 * memory_region_name: get a memory region's name 1898 * 1899 * Returns the string that was used to initialize the memory region. 1900 * 1901 * @mr: the memory region being queried 1902 */ 1903 const char *memory_region_name(const MemoryRegion *mr); 1904 1905 /** 1906 * memory_region_is_logging: return whether a memory region is logging writes 1907 * 1908 * Returns %true if the memory region is logging writes for the given client 1909 * 1910 * @mr: the memory region being queried 1911 * @client: the client being queried 1912 */ 1913 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1914 1915 /** 1916 * memory_region_get_dirty_log_mask: return the clients for which a 1917 * memory region is logging writes. 1918 * 1919 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1920 * are the bit indices. 1921 * 1922 * @mr: the memory region being queried 1923 */ 1924 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1925 1926 /** 1927 * memory_region_is_rom: check whether a memory region is ROM 1928 * 1929 * Returns %true if a memory region is read-only memory. 1930 * 1931 * @mr: the memory region being queried 1932 */ 1933 static inline bool memory_region_is_rom(MemoryRegion *mr) 1934 { 1935 return mr->ram && mr->readonly; 1936 } 1937 1938 /** 1939 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1940 * 1941 * Returns %true is a memory region is non-volatile memory. 1942 * 1943 * @mr: the memory region being queried 1944 */ 1945 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1946 { 1947 return mr->nonvolatile; 1948 } 1949 1950 /** 1951 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1952 * 1953 * Returns a file descriptor backing a file-based RAM memory region, 1954 * or -1 if the region is not a file-based RAM memory region. 1955 * 1956 * @mr: the RAM or alias memory region being queried. 1957 */ 1958 int memory_region_get_fd(MemoryRegion *mr); 1959 1960 /** 1961 * memory_region_from_host: Convert a pointer into a RAM memory region 1962 * and an offset within it. 1963 * 1964 * Given a host pointer inside a RAM memory region (created with 1965 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1966 * the MemoryRegion and the offset within it. 1967 * 1968 * Use with care; by the time this function returns, the returned pointer is 1969 * not protected by RCU anymore. If the caller is not within an RCU critical 1970 * section and does not hold the BQL, it must have other means of 1971 * protecting the pointer, such as a reference to the region that includes 1972 * the incoming ram_addr_t. 1973 * 1974 * @ptr: the host pointer to be converted 1975 * @offset: the offset within memory region 1976 */ 1977 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1978 1979 /** 1980 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1981 * 1982 * Returns a host pointer to a RAM memory region (created with 1983 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1984 * 1985 * Use with care; by the time this function returns, the returned pointer is 1986 * not protected by RCU anymore. If the caller is not within an RCU critical 1987 * section and does not hold the BQL, it must have other means of 1988 * protecting the pointer, such as a reference to the region that includes 1989 * the incoming ram_addr_t. 1990 * 1991 * @mr: the memory region being queried. 1992 */ 1993 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1994 1995 /* memory_region_ram_resize: Resize a RAM region. 1996 * 1997 * Resizing RAM while migrating can result in the migration being canceled. 1998 * Care has to be taken if the guest might have already detected the memory. 1999 * 2000 * @mr: a memory region created with @memory_region_init_resizeable_ram. 2001 * @newsize: the new size the region 2002 * @errp: pointer to Error*, to store an error if it happens. 2003 */ 2004 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 2005 Error **errp); 2006 2007 /** 2008 * memory_region_msync: Synchronize selected address range of 2009 * a memory mapped region 2010 * 2011 * @mr: the memory region to be msync 2012 * @addr: the initial address of the range to be sync 2013 * @size: the size of the range to be sync 2014 */ 2015 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 2016 2017 /** 2018 * memory_region_writeback: Trigger cache writeback for 2019 * selected address range 2020 * 2021 * @mr: the memory region to be updated 2022 * @addr: the initial address of the range to be written back 2023 * @size: the size of the range to be written back 2024 */ 2025 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 2026 2027 /** 2028 * memory_region_set_log: Turn dirty logging on or off for a region. 2029 * 2030 * Turns dirty logging on or off for a specified client (display, migration). 2031 * Only meaningful for RAM regions. 2032 * 2033 * @mr: the memory region being updated. 2034 * @log: whether dirty logging is to be enabled or disabled. 2035 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 2036 */ 2037 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 2038 2039 /** 2040 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 2041 * 2042 * Marks a range of bytes as dirty, after it has been dirtied outside 2043 * guest code. 2044 * 2045 * @mr: the memory region being dirtied. 2046 * @addr: the address (relative to the start of the region) being dirtied. 2047 * @size: size of the range being dirtied. 2048 */ 2049 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2050 hwaddr size); 2051 2052 /** 2053 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 2054 * 2055 * This function is called when the caller wants to clear the remote 2056 * dirty bitmap of a memory range within the memory region. This can 2057 * be used by e.g. KVM to manually clear dirty log when 2058 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 2059 * kernel. 2060 * 2061 * @mr: the memory region to clear the dirty log upon 2062 * @start: start address offset within the memory region 2063 * @len: length of the memory region to clear dirty bitmap 2064 */ 2065 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2066 hwaddr len); 2067 2068 /** 2069 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2070 * bitmap and clear it. 2071 * 2072 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2073 * returns the snapshot. The snapshot can then be used to query dirty 2074 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2075 * querying the same page multiple times, which is especially useful for 2076 * display updates where the scanlines often are not page aligned. 2077 * 2078 * The dirty bitmap region which gets copied into the snapshot (and 2079 * cleared afterwards) can be larger than requested. The boundaries 2080 * are rounded up/down so complete bitmap longs (covering 64 pages on 2081 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2082 * isn't a problem for display updates as the extra pages are outside 2083 * the visible area, and in case the visible area changes a full 2084 * display redraw is due anyway. Should other use cases for this 2085 * function emerge we might have to revisit this implementation 2086 * detail. 2087 * 2088 * Use g_free to release DirtyBitmapSnapshot. 2089 * 2090 * @mr: the memory region being queried. 2091 * @addr: the address (relative to the start of the region) being queried. 2092 * @size: the size of the range being queried. 2093 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2094 */ 2095 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2096 hwaddr addr, 2097 hwaddr size, 2098 unsigned client); 2099 2100 /** 2101 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2102 * in the specified dirty bitmap snapshot. 2103 * 2104 * @mr: the memory region being queried. 2105 * @snap: the dirty bitmap snapshot 2106 * @addr: the address (relative to the start of the region) being queried. 2107 * @size: the size of the range being queried. 2108 */ 2109 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2110 DirtyBitmapSnapshot *snap, 2111 hwaddr addr, hwaddr size); 2112 2113 /** 2114 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2115 * client. 2116 * 2117 * Marks a range of pages as no longer dirty. 2118 * 2119 * @mr: the region being updated. 2120 * @addr: the start of the subrange being cleaned. 2121 * @size: the size of the subrange being cleaned. 2122 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2123 * %DIRTY_MEMORY_VGA. 2124 */ 2125 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2126 hwaddr size, unsigned client); 2127 2128 /** 2129 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2130 * TBs (for self-modifying code). 2131 * 2132 * The MemoryRegionOps->write() callback of a ROM device must use this function 2133 * to mark byte ranges that have been modified internally, such as by directly 2134 * accessing the memory returned by memory_region_get_ram_ptr(). 2135 * 2136 * This function marks the range dirty and invalidates TBs so that TCG can 2137 * detect self-modifying code. 2138 * 2139 * @mr: the region being flushed. 2140 * @addr: the start, relative to the start of the region, of the range being 2141 * flushed. 2142 * @size: the size, in bytes, of the range being flushed. 2143 */ 2144 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2145 2146 /** 2147 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2148 * 2149 * Allows a memory region to be marked as read-only (turning it into a ROM). 2150 * only useful on RAM regions. 2151 * 2152 * @mr: the region being updated. 2153 * @readonly: whether rhe region is to be ROM or RAM. 2154 */ 2155 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2156 2157 /** 2158 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2159 * 2160 * Allows a memory region to be marked as non-volatile. 2161 * only useful on RAM regions. 2162 * 2163 * @mr: the region being updated. 2164 * @nonvolatile: whether rhe region is to be non-volatile. 2165 */ 2166 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2167 2168 /** 2169 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2170 * 2171 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2172 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2173 * device is mapped to guest memory and satisfies read access directly. 2174 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2175 * Writes are always handled by the #MemoryRegion.write function. 2176 * 2177 * @mr: the memory region to be updated 2178 * @romd_mode: %true to put the region into ROMD mode 2179 */ 2180 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2181 2182 /** 2183 * memory_region_set_coalescing: Enable memory coalescing for the region. 2184 * 2185 * Enabled writes to a region to be queued for later processing. MMIO ->write 2186 * callbacks may be delayed until a non-coalesced MMIO is issued. 2187 * Only useful for IO regions. Roughly similar to write-combining hardware. 2188 * 2189 * @mr: the memory region to be write coalesced 2190 */ 2191 void memory_region_set_coalescing(MemoryRegion *mr); 2192 2193 /** 2194 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2195 * a region. 2196 * 2197 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2198 * Multiple calls can be issued coalesced disjoint ranges. 2199 * 2200 * @mr: the memory region to be updated. 2201 * @offset: the start of the range within the region to be coalesced. 2202 * @size: the size of the subrange to be coalesced. 2203 */ 2204 void memory_region_add_coalescing(MemoryRegion *mr, 2205 hwaddr offset, 2206 uint64_t size); 2207 2208 /** 2209 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2210 * 2211 * Disables any coalescing caused by memory_region_set_coalescing() or 2212 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2213 * hardware. 2214 * 2215 * @mr: the memory region to be updated. 2216 */ 2217 void memory_region_clear_coalescing(MemoryRegion *mr); 2218 2219 /** 2220 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2221 * accesses. 2222 * 2223 * Ensure that pending coalesced MMIO request are flushed before the memory 2224 * region is accessed. This property is automatically enabled for all regions 2225 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2226 * 2227 * @mr: the memory region to be updated. 2228 */ 2229 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2230 2231 /** 2232 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2233 * accesses. 2234 * 2235 * Clear the automatic coalesced MMIO flushing enabled via 2236 * memory_region_set_flush_coalesced. Note that this service has no effect on 2237 * memory regions that have MMIO coalescing enabled for themselves. For them, 2238 * automatic flushing will stop once coalescing is disabled. 2239 * 2240 * @mr: the memory region to be updated. 2241 */ 2242 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2243 2244 /** 2245 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2246 * is written to a location. 2247 * 2248 * Marks a word in an IO region (initialized with memory_region_init_io()) 2249 * as a trigger for an eventfd event. The I/O callback will not be called. 2250 * The caller must be prepared to handle failure (that is, take the required 2251 * action if the callback _is_ called). 2252 * 2253 * @mr: the memory region being updated. 2254 * @addr: the address within @mr that is to be monitored 2255 * @size: the size of the access to trigger the eventfd 2256 * @match_data: whether to match against @data, instead of just @addr 2257 * @data: the data to match against the guest write 2258 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2259 **/ 2260 void memory_region_add_eventfd(MemoryRegion *mr, 2261 hwaddr addr, 2262 unsigned size, 2263 bool match_data, 2264 uint64_t data, 2265 EventNotifier *e); 2266 2267 /** 2268 * memory_region_del_eventfd: Cancel an eventfd. 2269 * 2270 * Cancels an eventfd trigger requested by a previous 2271 * memory_region_add_eventfd() call. 2272 * 2273 * @mr: the memory region being updated. 2274 * @addr: the address within @mr that is to be monitored 2275 * @size: the size of the access to trigger the eventfd 2276 * @match_data: whether to match against @data, instead of just @addr 2277 * @data: the data to match against the guest write 2278 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2279 */ 2280 void memory_region_del_eventfd(MemoryRegion *mr, 2281 hwaddr addr, 2282 unsigned size, 2283 bool match_data, 2284 uint64_t data, 2285 EventNotifier *e); 2286 2287 /** 2288 * memory_region_add_subregion: Add a subregion to a container. 2289 * 2290 * Adds a subregion at @offset. The subregion may not overlap with other 2291 * subregions (except for those explicitly marked as overlapping). A region 2292 * may only be added once as a subregion (unless removed with 2293 * memory_region_del_subregion()); use memory_region_init_alias() if you 2294 * want a region to be a subregion in multiple locations. 2295 * 2296 * @mr: the region to contain the new subregion; must be a container 2297 * initialized with memory_region_init(). 2298 * @offset: the offset relative to @mr where @subregion is added. 2299 * @subregion: the subregion to be added. 2300 */ 2301 void memory_region_add_subregion(MemoryRegion *mr, 2302 hwaddr offset, 2303 MemoryRegion *subregion); 2304 /** 2305 * memory_region_add_subregion_overlap: Add a subregion to a container 2306 * with overlap. 2307 * 2308 * Adds a subregion at @offset. The subregion may overlap with other 2309 * subregions. Conflicts are resolved by having a higher @priority hide a 2310 * lower @priority. Subregions without priority are taken as @priority 0. 2311 * A region may only be added once as a subregion (unless removed with 2312 * memory_region_del_subregion()); use memory_region_init_alias() if you 2313 * want a region to be a subregion in multiple locations. 2314 * 2315 * @mr: the region to contain the new subregion; must be a container 2316 * initialized with memory_region_init(). 2317 * @offset: the offset relative to @mr where @subregion is added. 2318 * @subregion: the subregion to be added. 2319 * @priority: used for resolving overlaps; highest priority wins. 2320 */ 2321 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2322 hwaddr offset, 2323 MemoryRegion *subregion, 2324 int priority); 2325 2326 /** 2327 * memory_region_get_ram_addr: Get the ram address associated with a memory 2328 * region 2329 * 2330 * @mr: the region to be queried 2331 */ 2332 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2333 2334 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2335 /** 2336 * memory_region_del_subregion: Remove a subregion. 2337 * 2338 * Removes a subregion from its container. 2339 * 2340 * @mr: the container to be updated. 2341 * @subregion: the region being removed; must be a current subregion of @mr. 2342 */ 2343 void memory_region_del_subregion(MemoryRegion *mr, 2344 MemoryRegion *subregion); 2345 2346 /* 2347 * memory_region_set_enabled: dynamically enable or disable a region 2348 * 2349 * Enables or disables a memory region. A disabled memory region 2350 * ignores all accesses to itself and its subregions. It does not 2351 * obscure sibling subregions with lower priority - it simply behaves as 2352 * if it was removed from the hierarchy. 2353 * 2354 * Regions default to being enabled. 2355 * 2356 * @mr: the region to be updated 2357 * @enabled: whether to enable or disable the region 2358 */ 2359 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2360 2361 /* 2362 * memory_region_set_address: dynamically update the address of a region 2363 * 2364 * Dynamically updates the address of a region, relative to its container. 2365 * May be used on regions are currently part of a memory hierarchy. 2366 * 2367 * @mr: the region to be updated 2368 * @addr: new address, relative to container region 2369 */ 2370 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2371 2372 /* 2373 * memory_region_set_size: dynamically update the size of a region. 2374 * 2375 * Dynamically updates the size of a region. 2376 * 2377 * @mr: the region to be updated 2378 * @size: used size of the region. 2379 */ 2380 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2381 2382 /* 2383 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2384 * 2385 * Dynamically updates the offset into the target region that an alias points 2386 * to, as if the fourth argument to memory_region_init_alias() has changed. 2387 * 2388 * @mr: the #MemoryRegion to be updated; should be an alias. 2389 * @offset: the new offset into the target memory region 2390 */ 2391 void memory_region_set_alias_offset(MemoryRegion *mr, 2392 hwaddr offset); 2393 2394 /* 2395 * memory_region_set_unmergeable: Set a memory region unmergeable 2396 * 2397 * Mark a memory region unmergeable, resulting in the memory region (or 2398 * everything contained in a memory region container) not getting merged when 2399 * simplifying the address space and notifying memory listeners. Consequently, 2400 * memory listeners will never get notified about ranges that are larger than 2401 * the original memory regions. 2402 * 2403 * This is primarily useful when multiple aliases to a RAM memory region are 2404 * mapped into a memory region container, and updates (e.g., enable/disable or 2405 * map/unmap) of individual memory region aliases are not supposed to affect 2406 * other memory regions in the same container. 2407 * 2408 * @mr: the #MemoryRegion to be updated 2409 * @unmergeable: whether to mark the #MemoryRegion unmergeable 2410 */ 2411 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); 2412 2413 /** 2414 * memory_region_present: checks if an address relative to a @container 2415 * translates into #MemoryRegion within @container 2416 * 2417 * Answer whether a #MemoryRegion within @container covers the address 2418 * @addr. 2419 * 2420 * @container: a #MemoryRegion within which @addr is a relative address 2421 * @addr: the area within @container to be searched 2422 */ 2423 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2424 2425 /** 2426 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2427 * into another memory region, which does not necessarily imply that it is 2428 * mapped into an address space. 2429 * 2430 * @mr: a #MemoryRegion which should be checked if it's mapped 2431 */ 2432 bool memory_region_is_mapped(MemoryRegion *mr); 2433 2434 /** 2435 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2436 * #MemoryRegion 2437 * 2438 * The #RamDiscardManager cannot change while a memory region is mapped. 2439 * 2440 * @mr: the #MemoryRegion 2441 */ 2442 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2443 2444 /** 2445 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2446 * #RamDiscardManager assigned 2447 * 2448 * @mr: the #MemoryRegion 2449 */ 2450 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2451 { 2452 return !!memory_region_get_ram_discard_manager(mr); 2453 } 2454 2455 /** 2456 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2457 * #MemoryRegion 2458 * 2459 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2460 * that does not cover RAM, or a #MemoryRegion that already has a 2461 * #RamDiscardManager assigned. 2462 * 2463 * @mr: the #MemoryRegion 2464 * @rdm: #RamDiscardManager to set 2465 */ 2466 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2467 RamDiscardManager *rdm); 2468 2469 /** 2470 * memory_region_find: translate an address/size relative to a 2471 * MemoryRegion into a #MemoryRegionSection. 2472 * 2473 * Locates the first #MemoryRegion within @mr that overlaps the range 2474 * given by @addr and @size. 2475 * 2476 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2477 * It will have the following characteristics: 2478 * - @size = 0 iff no overlap was found 2479 * - @mr is non-%NULL iff an overlap was found 2480 * 2481 * Remember that in the return value the @offset_within_region is 2482 * relative to the returned region (in the .@mr field), not to the 2483 * @mr argument. 2484 * 2485 * Similarly, the .@offset_within_address_space is relative to the 2486 * address space that contains both regions, the passed and the 2487 * returned one. However, in the special case where the @mr argument 2488 * has no container (and thus is the root of the address space), the 2489 * following will hold: 2490 * - @offset_within_address_space >= @addr 2491 * - @offset_within_address_space + .@size <= @addr + @size 2492 * 2493 * @mr: a MemoryRegion within which @addr is a relative address 2494 * @addr: start of the area within @as to be searched 2495 * @size: size of the area to be searched 2496 */ 2497 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2498 hwaddr addr, uint64_t size); 2499 2500 /** 2501 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2502 * 2503 * Synchronizes the dirty page log for all address spaces. 2504 * 2505 * @last_stage: whether this is the last stage of live migration 2506 */ 2507 void memory_global_dirty_log_sync(bool last_stage); 2508 2509 /** 2510 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2511 * 2512 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2513 * This function must be called after the dirty log bitmap is cleared, and 2514 * before dirty guest memory pages are read. If you are using 2515 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2516 * care of doing this. 2517 */ 2518 void memory_global_after_dirty_log_sync(void); 2519 2520 /** 2521 * memory_region_transaction_begin: Start a transaction. 2522 * 2523 * During a transaction, changes will be accumulated and made visible 2524 * only when the transaction ends (is committed). 2525 */ 2526 void memory_region_transaction_begin(void); 2527 2528 /** 2529 * memory_region_transaction_commit: Commit a transaction and make changes 2530 * visible to the guest. 2531 */ 2532 void memory_region_transaction_commit(void); 2533 2534 /** 2535 * memory_listener_register: register callbacks to be called when memory 2536 * sections are mapped or unmapped into an address 2537 * space 2538 * 2539 * @listener: an object containing the callbacks to be called 2540 * @filter: if non-%NULL, only regions in this address space will be observed 2541 */ 2542 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2543 2544 /** 2545 * memory_listener_unregister: undo the effect of memory_listener_register() 2546 * 2547 * @listener: an object containing the callbacks to be removed 2548 */ 2549 void memory_listener_unregister(MemoryListener *listener); 2550 2551 /** 2552 * memory_global_dirty_log_start: begin dirty logging for all regions 2553 * 2554 * @flags: purpose of starting dirty log, migration or dirty rate 2555 * @errp: pointer to Error*, to store an error if it happens. 2556 * 2557 * Return: true on success, else false setting @errp with error. 2558 */ 2559 bool memory_global_dirty_log_start(unsigned int flags, Error **errp); 2560 2561 /** 2562 * memory_global_dirty_log_stop: end dirty logging for all regions 2563 * 2564 * @flags: purpose of stopping dirty log, migration or dirty rate 2565 */ 2566 void memory_global_dirty_log_stop(unsigned int flags); 2567 2568 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2569 2570 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2571 unsigned size, bool is_write, 2572 MemTxAttrs attrs); 2573 2574 /** 2575 * memory_region_dispatch_read: perform a read directly to the specified 2576 * MemoryRegion. 2577 * 2578 * @mr: #MemoryRegion to access 2579 * @addr: address within that region 2580 * @pval: pointer to uint64_t which the data is written to 2581 * @op: size, sign, and endianness of the memory operation 2582 * @attrs: memory transaction attributes to use for the access 2583 */ 2584 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2585 hwaddr addr, 2586 uint64_t *pval, 2587 MemOp op, 2588 MemTxAttrs attrs); 2589 /** 2590 * memory_region_dispatch_write: perform a write directly to the specified 2591 * MemoryRegion. 2592 * 2593 * @mr: #MemoryRegion to access 2594 * @addr: address within that region 2595 * @data: data to write 2596 * @op: size, sign, and endianness of the memory operation 2597 * @attrs: memory transaction attributes to use for the access 2598 */ 2599 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2600 hwaddr addr, 2601 uint64_t data, 2602 MemOp op, 2603 MemTxAttrs attrs); 2604 2605 /** 2606 * address_space_init: initializes an address space 2607 * 2608 * @as: an uninitialized #AddressSpace 2609 * @root: a #MemoryRegion that routes addresses for the address space 2610 * @name: an address space name. The name is only used for debugging 2611 * output. 2612 */ 2613 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2614 2615 /** 2616 * address_space_destroy: destroy an address space 2617 * 2618 * Releases all resources associated with an address space. After an address space 2619 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2620 * as well. 2621 * 2622 * @as: address space to be destroyed 2623 */ 2624 void address_space_destroy(AddressSpace *as); 2625 2626 /** 2627 * address_space_remove_listeners: unregister all listeners of an address space 2628 * 2629 * Removes all callbacks previously registered with memory_listener_register() 2630 * for @as. 2631 * 2632 * @as: an initialized #AddressSpace 2633 */ 2634 void address_space_remove_listeners(AddressSpace *as); 2635 2636 /** 2637 * address_space_rw: read from or write to an address space. 2638 * 2639 * Return a MemTxResult indicating whether the operation succeeded 2640 * or failed (eg unassigned memory, device rejected the transaction, 2641 * IOMMU fault). 2642 * 2643 * @as: #AddressSpace to be accessed 2644 * @addr: address within that address space 2645 * @attrs: memory transaction attributes 2646 * @buf: buffer with the data transferred 2647 * @len: the number of bytes to read or write 2648 * @is_write: indicates the transfer direction 2649 */ 2650 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2651 MemTxAttrs attrs, void *buf, 2652 hwaddr len, bool is_write); 2653 2654 /** 2655 * address_space_write: write to address space. 2656 * 2657 * Return a MemTxResult indicating whether the operation succeeded 2658 * or failed (eg unassigned memory, device rejected the transaction, 2659 * IOMMU fault). 2660 * 2661 * @as: #AddressSpace to be accessed 2662 * @addr: address within that address space 2663 * @attrs: memory transaction attributes 2664 * @buf: buffer with the data transferred 2665 * @len: the number of bytes to write 2666 */ 2667 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2668 MemTxAttrs attrs, 2669 const void *buf, hwaddr len); 2670 2671 /** 2672 * address_space_write_rom: write to address space, including ROM. 2673 * 2674 * This function writes to the specified address space, but will 2675 * write data to both ROM and RAM. This is used for non-guest 2676 * writes like writes from the gdb debug stub or initial loading 2677 * of ROM contents. 2678 * 2679 * Note that portions of the write which attempt to write data to 2680 * a device will be silently ignored -- only real RAM and ROM will 2681 * be written to. 2682 * 2683 * Return a MemTxResult indicating whether the operation succeeded 2684 * or failed (eg unassigned memory, device rejected the transaction, 2685 * IOMMU fault). 2686 * 2687 * @as: #AddressSpace to be accessed 2688 * @addr: address within that address space 2689 * @attrs: memory transaction attributes 2690 * @buf: buffer with the data transferred 2691 * @len: the number of bytes to write 2692 */ 2693 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2694 MemTxAttrs attrs, 2695 const void *buf, hwaddr len); 2696 2697 /* address_space_ld*: load from an address space 2698 * address_space_st*: store to an address space 2699 * 2700 * These functions perform a load or store of the byte, word, 2701 * longword or quad to the specified address within the AddressSpace. 2702 * The _le suffixed functions treat the data as little endian; 2703 * _be indicates big endian; no suffix indicates "same endianness 2704 * as guest CPU". 2705 * 2706 * The "guest CPU endianness" accessors are deprecated for use outside 2707 * target-* code; devices should be CPU-agnostic and use either the LE 2708 * or the BE accessors. 2709 * 2710 * @as #AddressSpace to be accessed 2711 * @addr: address within that address space 2712 * @val: data value, for stores 2713 * @attrs: memory transaction attributes 2714 * @result: location to write the success/failure of the transaction; 2715 * if NULL, this information is discarded 2716 */ 2717 2718 #define SUFFIX 2719 #define ARG1 as 2720 #define ARG1_DECL AddressSpace *as 2721 #include "exec/memory_ldst.h.inc" 2722 2723 #define SUFFIX 2724 #define ARG1 as 2725 #define ARG1_DECL AddressSpace *as 2726 #include "exec/memory_ldst_phys.h.inc" 2727 2728 struct MemoryRegionCache { 2729 uint8_t *ptr; 2730 hwaddr xlat; 2731 hwaddr len; 2732 FlatView *fv; 2733 MemoryRegionSection mrs; 2734 bool is_write; 2735 }; 2736 2737 /* address_space_ld*_cached: load from a cached #MemoryRegion 2738 * address_space_st*_cached: store into a cached #MemoryRegion 2739 * 2740 * These functions perform a load or store of the byte, word, 2741 * longword or quad to the specified address. The address is 2742 * a physical address in the AddressSpace, but it must lie within 2743 * a #MemoryRegion that was mapped with address_space_cache_init. 2744 * 2745 * The _le suffixed functions treat the data as little endian; 2746 * _be indicates big endian; no suffix indicates "same endianness 2747 * as guest CPU". 2748 * 2749 * The "guest CPU endianness" accessors are deprecated for use outside 2750 * target-* code; devices should be CPU-agnostic and use either the LE 2751 * or the BE accessors. 2752 * 2753 * @cache: previously initialized #MemoryRegionCache to be accessed 2754 * @addr: address within the address space 2755 * @val: data value, for stores 2756 * @attrs: memory transaction attributes 2757 * @result: location to write the success/failure of the transaction; 2758 * if NULL, this information is discarded 2759 */ 2760 2761 #define SUFFIX _cached_slow 2762 #define ARG1 cache 2763 #define ARG1_DECL MemoryRegionCache *cache 2764 #include "exec/memory_ldst.h.inc" 2765 2766 /* Inline fast path for direct RAM access. */ 2767 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2768 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2769 { 2770 assert(addr < cache->len); 2771 if (likely(cache->ptr)) { 2772 return ldub_p(cache->ptr + addr); 2773 } else { 2774 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2775 } 2776 } 2777 2778 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2779 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2780 { 2781 assert(addr < cache->len); 2782 if (likely(cache->ptr)) { 2783 stb_p(cache->ptr + addr, val); 2784 } else { 2785 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2786 } 2787 } 2788 2789 #define ENDIANNESS _le 2790 #include "exec/memory_ldst_cached.h.inc" 2791 2792 #define ENDIANNESS _be 2793 #include "exec/memory_ldst_cached.h.inc" 2794 2795 #define SUFFIX _cached 2796 #define ARG1 cache 2797 #define ARG1_DECL MemoryRegionCache *cache 2798 #include "exec/memory_ldst_phys.h.inc" 2799 2800 /* address_space_cache_init: prepare for repeated access to a physical 2801 * memory region 2802 * 2803 * @cache: #MemoryRegionCache to be filled 2804 * @as: #AddressSpace to be accessed 2805 * @addr: address within that address space 2806 * @len: length of buffer 2807 * @is_write: indicates the transfer direction 2808 * 2809 * Will only work with RAM, and may map a subset of the requested range by 2810 * returning a value that is less than @len. On failure, return a negative 2811 * errno value. 2812 * 2813 * Because it only works with RAM, this function can be used for 2814 * read-modify-write operations. In this case, is_write should be %true. 2815 * 2816 * Note that addresses passed to the address_space_*_cached functions 2817 * are relative to @addr. 2818 */ 2819 int64_t address_space_cache_init(MemoryRegionCache *cache, 2820 AddressSpace *as, 2821 hwaddr addr, 2822 hwaddr len, 2823 bool is_write); 2824 2825 /** 2826 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache 2827 * 2828 * @cache: The #MemoryRegionCache to operate on. 2829 * 2830 * Initializes #MemoryRegionCache structure without memory region attached. 2831 * Cache initialized this way can only be safely destroyed, but not used. 2832 */ 2833 static inline void address_space_cache_init_empty(MemoryRegionCache *cache) 2834 { 2835 cache->mrs.mr = NULL; 2836 /* There is no real need to initialize fv, but it makes Coverity happy. */ 2837 cache->fv = NULL; 2838 } 2839 2840 /** 2841 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2842 * 2843 * @cache: The #MemoryRegionCache to operate on. 2844 * @addr: The first physical address that was written, relative to the 2845 * address that was passed to @address_space_cache_init. 2846 * @access_len: The number of bytes that were written starting at @addr. 2847 */ 2848 void address_space_cache_invalidate(MemoryRegionCache *cache, 2849 hwaddr addr, 2850 hwaddr access_len); 2851 2852 /** 2853 * address_space_cache_destroy: free a #MemoryRegionCache 2854 * 2855 * @cache: The #MemoryRegionCache whose memory should be released. 2856 */ 2857 void address_space_cache_destroy(MemoryRegionCache *cache); 2858 2859 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2860 * entry. Should be called from an RCU critical section. 2861 */ 2862 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2863 bool is_write, MemTxAttrs attrs); 2864 2865 /* address_space_translate: translate an address range into an address space 2866 * into a MemoryRegion and an address range into that section. Should be 2867 * called from an RCU critical section, to avoid that the last reference 2868 * to the returned region disappears after address_space_translate returns. 2869 * 2870 * @fv: #FlatView to be accessed 2871 * @addr: address within that address space 2872 * @xlat: pointer to address within the returned memory region section's 2873 * #MemoryRegion. 2874 * @len: pointer to length 2875 * @is_write: indicates the transfer direction 2876 * @attrs: memory attributes 2877 */ 2878 MemoryRegion *flatview_translate(FlatView *fv, 2879 hwaddr addr, hwaddr *xlat, 2880 hwaddr *len, bool is_write, 2881 MemTxAttrs attrs); 2882 2883 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2884 hwaddr addr, hwaddr *xlat, 2885 hwaddr *len, bool is_write, 2886 MemTxAttrs attrs) 2887 { 2888 return flatview_translate(address_space_to_flatview(as), 2889 addr, xlat, len, is_write, attrs); 2890 } 2891 2892 /* address_space_access_valid: check for validity of accessing an address 2893 * space range 2894 * 2895 * Check whether memory is assigned to the given address space range, and 2896 * access is permitted by any IOMMU regions that are active for the address 2897 * space. 2898 * 2899 * For now, addr and len should be aligned to a page size. This limitation 2900 * will be lifted in the future. 2901 * 2902 * @as: #AddressSpace to be accessed 2903 * @addr: address within that address space 2904 * @len: length of the area to be checked 2905 * @is_write: indicates the transfer direction 2906 * @attrs: memory attributes 2907 */ 2908 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2909 bool is_write, MemTxAttrs attrs); 2910 2911 /* address_space_map: map a physical memory region into a host virtual address 2912 * 2913 * May map a subset of the requested range, given by and returned in @plen. 2914 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2915 * the mapping are exhausted. 2916 * Use only for reads OR writes - not for read-modify-write operations. 2917 * Use address_space_register_map_client() to know when retrying the map 2918 * operation is likely to succeed. 2919 * 2920 * @as: #AddressSpace to be accessed 2921 * @addr: address within that address space 2922 * @plen: pointer to length of buffer; updated on return 2923 * @is_write: indicates the transfer direction 2924 * @attrs: memory attributes 2925 */ 2926 void *address_space_map(AddressSpace *as, hwaddr addr, 2927 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2928 2929 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2930 * 2931 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2932 * the amount of memory that was actually read or written by the caller. 2933 * 2934 * @as: #AddressSpace used 2935 * @buffer: host pointer as returned by address_space_map() 2936 * @len: buffer length as returned by address_space_map() 2937 * @access_len: amount of data actually transferred 2938 * @is_write: indicates the transfer direction 2939 */ 2940 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2941 bool is_write, hwaddr access_len); 2942 2943 /* 2944 * address_space_register_map_client: Register a callback to invoke when 2945 * resources for address_space_map() are available again. 2946 * 2947 * address_space_map may fail when there are not enough resources available, 2948 * such as when bounce buffer memory would exceed the limit. The callback can 2949 * be used to retry the address_space_map operation. Note that the callback 2950 * gets automatically removed after firing. 2951 * 2952 * @as: #AddressSpace to be accessed 2953 * @bh: callback to invoke when address_space_map() retry is appropriate 2954 */ 2955 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh); 2956 2957 /* 2958 * address_space_unregister_map_client: Unregister a callback that has 2959 * previously been registered and not fired yet. 2960 * 2961 * @as: #AddressSpace to be accessed 2962 * @bh: callback to unregister 2963 */ 2964 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh); 2965 2966 /* Internal functions, part of the implementation of address_space_read. */ 2967 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2968 MemTxAttrs attrs, void *buf, hwaddr len); 2969 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2970 MemTxAttrs attrs, void *buf, 2971 hwaddr len, hwaddr addr1, hwaddr l, 2972 MemoryRegion *mr); 2973 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2974 2975 /* Internal functions, part of the implementation of address_space_read_cached 2976 * and address_space_write_cached. */ 2977 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2978 hwaddr addr, void *buf, hwaddr len); 2979 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2980 hwaddr addr, const void *buf, 2981 hwaddr len); 2982 2983 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2984 bool prepare_mmio_access(MemoryRegion *mr); 2985 2986 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2987 { 2988 if (is_write) { 2989 return memory_region_is_ram(mr) && !mr->readonly && 2990 !mr->rom_device && !memory_region_is_ram_device(mr); 2991 } else { 2992 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2993 memory_region_is_romd(mr); 2994 } 2995 } 2996 2997 /** 2998 * address_space_read: read from an address space. 2999 * 3000 * Return a MemTxResult indicating whether the operation succeeded 3001 * or failed (eg unassigned memory, device rejected the transaction, 3002 * IOMMU fault). Called within RCU critical section. 3003 * 3004 * @as: #AddressSpace to be accessed 3005 * @addr: address within that address space 3006 * @attrs: memory transaction attributes 3007 * @buf: buffer with the data transferred 3008 * @len: length of the data transferred 3009 */ 3010 static inline __attribute__((__always_inline__)) 3011 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 3012 MemTxAttrs attrs, void *buf, 3013 hwaddr len) 3014 { 3015 MemTxResult result = MEMTX_OK; 3016 hwaddr l, addr1; 3017 void *ptr; 3018 MemoryRegion *mr; 3019 FlatView *fv; 3020 3021 if (__builtin_constant_p(len)) { 3022 if (len) { 3023 RCU_READ_LOCK_GUARD(); 3024 fv = address_space_to_flatview(as); 3025 l = len; 3026 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 3027 if (len == l && memory_access_is_direct(mr, false)) { 3028 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3029 memcpy(buf, ptr, len); 3030 } else { 3031 result = flatview_read_continue(fv, addr, attrs, buf, len, 3032 addr1, l, mr); 3033 } 3034 } 3035 } else { 3036 result = address_space_read_full(as, addr, attrs, buf, len); 3037 } 3038 return result; 3039 } 3040 3041 /** 3042 * address_space_read_cached: read from a cached RAM region 3043 * 3044 * @cache: Cached region to be addressed 3045 * @addr: address relative to the base of the RAM region 3046 * @buf: buffer with the data transferred 3047 * @len: length of the data transferred 3048 */ 3049 static inline MemTxResult 3050 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 3051 void *buf, hwaddr len) 3052 { 3053 assert(addr < cache->len && len <= cache->len - addr); 3054 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 3055 if (likely(cache->ptr)) { 3056 memcpy(buf, cache->ptr + addr, len); 3057 return MEMTX_OK; 3058 } else { 3059 return address_space_read_cached_slow(cache, addr, buf, len); 3060 } 3061 } 3062 3063 /** 3064 * address_space_write_cached: write to a cached RAM region 3065 * 3066 * @cache: Cached region to be addressed 3067 * @addr: address relative to the base of the RAM region 3068 * @buf: buffer with the data transferred 3069 * @len: length of the data transferred 3070 */ 3071 static inline MemTxResult 3072 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 3073 const void *buf, hwaddr len) 3074 { 3075 assert(addr < cache->len && len <= cache->len - addr); 3076 if (likely(cache->ptr)) { 3077 memcpy(cache->ptr + addr, buf, len); 3078 return MEMTX_OK; 3079 } else { 3080 return address_space_write_cached_slow(cache, addr, buf, len); 3081 } 3082 } 3083 3084 /** 3085 * address_space_set: Fill address space with a constant byte. 3086 * 3087 * Return a MemTxResult indicating whether the operation succeeded 3088 * or failed (eg unassigned memory, device rejected the transaction, 3089 * IOMMU fault). 3090 * 3091 * @as: #AddressSpace to be accessed 3092 * @addr: address within that address space 3093 * @c: constant byte to fill the memory 3094 * @len: the number of bytes to fill with the constant byte 3095 * @attrs: memory transaction attributes 3096 */ 3097 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3098 uint8_t c, hwaddr len, MemTxAttrs attrs); 3099 3100 #ifdef COMPILING_PER_TARGET 3101 /* enum device_endian to MemOp. */ 3102 static inline MemOp devend_memop(enum device_endian end) 3103 { 3104 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 3105 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 3106 3107 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 3108 /* Swap if non-host endianness or native (target) endianness */ 3109 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 3110 #else 3111 const int non_host_endianness = 3112 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 3113 3114 /* In this case, native (target) endianness needs no swap. */ 3115 return (end == non_host_endianness) ? MO_BSWAP : 0; 3116 #endif 3117 } 3118 #endif /* COMPILING_PER_TARGET */ 3119 3120 /* 3121 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3122 * to manage the actual amount of memory consumed by the VM (then, the memory 3123 * provided by RAM blocks might be bigger than the desired memory consumption). 3124 * This *must* be set if: 3125 * - Discarding parts of a RAM blocks does not result in the change being 3126 * reflected in the VM and the pages getting freed. 3127 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3128 * discards blindly. 3129 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3130 * encrypted VMs). 3131 * Technologies that only temporarily pin the current working set of a 3132 * driver are fine, because we don't expect such pages to be discarded 3133 * (esp. based on guest action like balloon inflation). 3134 * 3135 * This is *not* to be used to protect from concurrent discards (esp., 3136 * postcopy). 3137 * 3138 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3139 * discards to work reliably is active. 3140 */ 3141 int ram_block_discard_disable(bool state); 3142 3143 /* 3144 * See ram_block_discard_disable(): only disable uncoordinated discards, 3145 * keeping coordinated discards (via the RamDiscardManager) enabled. 3146 */ 3147 int ram_block_uncoordinated_discard_disable(bool state); 3148 3149 /* 3150 * Inhibit technologies that disable discarding of pages in RAM blocks. 3151 * 3152 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3153 * broken. 3154 */ 3155 int ram_block_discard_require(bool state); 3156 3157 /* 3158 * See ram_block_discard_require(): only inhibit technologies that disable 3159 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with 3160 * technologies that only inhibit uncoordinated discards (via the 3161 * RamDiscardManager). 3162 */ 3163 int ram_block_coordinated_discard_require(bool state); 3164 3165 /* 3166 * Test if any discarding of memory in ram blocks is disabled. 3167 */ 3168 bool ram_block_discard_is_disabled(void); 3169 3170 /* 3171 * Test if any discarding of memory in ram blocks is required to work reliably. 3172 */ 3173 bool ram_block_discard_is_required(void); 3174 3175 #endif 3176 3177 #endif 3178