xref: /openbmc/qemu/include/exec/memory.h (revision effd60c8)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31 
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39                          TYPE_MEMORY_REGION)
40 
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54                       size_t len,
55                       MemoryRegion *mr);
56 #else
57 static inline void fuzz_dma_read_cb(size_t addr,
58                                     size_t len,
59                                     MemoryRegion *mr)
60 {
61     /* Do Nothing */
62 }
63 #endif
64 
65 /* Possible bits for global_dirty_log_{start|stop} */
66 
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
69 
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
75 
76 #define GLOBAL_DIRTY_MASK  (0x7)
77 
78 extern unsigned int global_dirty_tracking;
79 
80 typedef struct MemoryRegionOps MemoryRegionOps;
81 
82 struct ReservedRegion {
83     Range range;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  * @unmergeable: this section should not get merged with adjacent sections
99  */
100 struct MemoryRegionSection {
101     Int128 size;
102     MemoryRegion *mr;
103     FlatView *fv;
104     hwaddr offset_within_region;
105     hwaddr offset_within_address_space;
106     bool readonly;
107     bool nonvolatile;
108     bool unmergeable;
109 };
110 
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112 
113 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
114 typedef enum {
115     IOMMU_NONE = 0,
116     IOMMU_RO   = 1,
117     IOMMU_WO   = 2,
118     IOMMU_RW   = 3,
119 } IOMMUAccessFlags;
120 
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122 
123 struct IOMMUTLBEntry {
124     AddressSpace    *target_as;
125     hwaddr           iova;
126     hwaddr           translated_addr;
127     hwaddr           addr_mask;  /* 0xfff = 4k translation */
128     IOMMUAccessFlags perm;
129 };
130 
131 /*
132  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133  * register with one or multiple IOMMU Notifier capability bit(s).
134  *
135  * Normally there're two use cases for the notifiers:
136  *
137  *   (1) When the device needs accurate synchronizations of the vIOMMU page
138  *       tables, it needs to register with both MAP|UNMAP notifies (which
139  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140  *
141  *       Regarding to accurate synchronization, it's when the notified
142  *       device maintains a shadow page table and must be notified on each
143  *       guest MAP (page table entry creation) and UNMAP (invalidation)
144  *       events (e.g. VFIO). Both notifications must be accurate so that
145  *       the shadow page table is fully in sync with the guest view.
146  *
147  *   (2) When the device doesn't need accurate synchronizations of the
148  *       vIOMMU page tables, it needs to register only with UNMAP or
149  *       DEVIOTLB_UNMAP notifies.
150  *
151  *       It's when the device maintains a cache of IOMMU translations
152  *       (IOTLB) and is able to fill that cache by requesting translations
153  *       from the vIOMMU through a protocol similar to ATS (Address
154  *       Translation Service).
155  *
156  *       Note that in this mode the vIOMMU will not maintain a shadowed
157  *       page table for the address space, and the UNMAP messages can cover
158  *       more than the pages that used to get mapped.  The IOMMU notifiee
159  *       should be able to take care of over-sized invalidations.
160  */
161 typedef enum {
162     IOMMU_NOTIFIER_NONE = 0,
163     /* Notify cache invalidations */
164     IOMMU_NOTIFIER_UNMAP = 0x1,
165     /* Notify entry changes (newly created entries) */
166     IOMMU_NOTIFIER_MAP = 0x2,
167     /* Notify changes on device IOTLB entries */
168     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170 
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175 
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178                             IOMMUTLBEntry *data);
179 
180 struct IOMMUNotifier {
181     IOMMUNotify notify;
182     IOMMUNotifierFlag notifier_flags;
183     /* Notify for address space range start <= addr <= end */
184     hwaddr start;
185     hwaddr end;
186     int iommu_idx;
187     QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190 
191 typedef struct IOMMUTLBEvent {
192     IOMMUNotifierFlag type;
193     IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195 
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC   (1 << 0)
198 
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED     (1 << 1)
201 
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203  * Resizing RAM while migrating can result in the migration being canceled.
204  */
205 #define RAM_RESIZEABLE (1 << 2)
206 
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208  * zero the page and wake waiting processes.
209  * (Set during postcopy)
210  */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212 
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215 
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218 
219 
220 /*
221  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222  * support 'write-tracking' migration type.
223  * Implies ram_state->ram_wt_enabled.
224  */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226 
227 /*
228  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229  * pages if applicable) is skipped: will bail out if not supported. When not
230  * set, the OS will do the reservation, if supported for the memory type.
231  */
232 #define RAM_NORESERVE (1 << 7)
233 
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236 
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239 
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242 
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245 
246 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
247                                        IOMMUNotifierFlag flags,
248                                        hwaddr start, hwaddr end,
249                                        int iommu_idx)
250 {
251     n->notify = fn;
252     n->notifier_flags = flags;
253     n->start = start;
254     n->end = end;
255     n->iommu_idx = iommu_idx;
256 }
257 
258 /*
259  * Memory region callbacks
260  */
261 struct MemoryRegionOps {
262     /* Read from the memory region. @addr is relative to @mr; @size is
263      * in bytes. */
264     uint64_t (*read)(void *opaque,
265                      hwaddr addr,
266                      unsigned size);
267     /* Write to the memory region. @addr is relative to @mr; @size is
268      * in bytes. */
269     void (*write)(void *opaque,
270                   hwaddr addr,
271                   uint64_t data,
272                   unsigned size);
273 
274     MemTxResult (*read_with_attrs)(void *opaque,
275                                    hwaddr addr,
276                                    uint64_t *data,
277                                    unsigned size,
278                                    MemTxAttrs attrs);
279     MemTxResult (*write_with_attrs)(void *opaque,
280                                     hwaddr addr,
281                                     uint64_t data,
282                                     unsigned size,
283                                     MemTxAttrs attrs);
284 
285     enum device_endian endianness;
286     /* Guest-visible constraints: */
287     struct {
288         /* If nonzero, specify bounds on access sizes beyond which a machine
289          * check is thrown.
290          */
291         unsigned min_access_size;
292         unsigned max_access_size;
293         /* If true, unaligned accesses are supported.  Otherwise unaligned
294          * accesses throw machine checks.
295          */
296          bool unaligned;
297         /*
298          * If present, and returns #false, the transaction is not accepted
299          * by the device (and results in machine dependent behaviour such
300          * as a machine check exception).
301          */
302         bool (*accepts)(void *opaque, hwaddr addr,
303                         unsigned size, bool is_write,
304                         MemTxAttrs attrs);
305     } valid;
306     /* Internal implementation constraints: */
307     struct {
308         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
309          * will be rounded upwards and a partial result will be returned.
310          */
311         unsigned min_access_size;
312         /* If nonzero, specifies the maximum size implemented.  Larger sizes
313          * will be done as a series of accesses with smaller sizes.
314          */
315         unsigned max_access_size;
316         /* If true, unaligned accesses are supported.  Otherwise all accesses
317          * are converted to (possibly multiple) naturally aligned accesses.
318          */
319         bool unaligned;
320     } impl;
321 };
322 
323 typedef struct MemoryRegionClass {
324     /* private */
325     ObjectClass parent_class;
326 } MemoryRegionClass;
327 
328 
329 enum IOMMUMemoryRegionAttr {
330     IOMMU_ATTR_SPAPR_TCE_FD
331 };
332 
333 /*
334  * IOMMUMemoryRegionClass:
335  *
336  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
337  * and provide an implementation of at least the @translate method here
338  * to handle requests to the memory region. Other methods are optional.
339  *
340  * The IOMMU implementation must use the IOMMU notifier infrastructure
341  * to report whenever mappings are changed, by calling
342  * memory_region_notify_iommu() (or, if necessary, by calling
343  * memory_region_notify_iommu_one() for each registered notifier).
344  *
345  * Conceptually an IOMMU provides a mapping from input address
346  * to an output TLB entry. If the IOMMU is aware of memory transaction
347  * attributes and the output TLB entry depends on the transaction
348  * attributes, we represent this using IOMMU indexes. Each index
349  * selects a particular translation table that the IOMMU has:
350  *
351  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
352  *
353  *   @translate takes an input address and an IOMMU index
354  *
355  * and the mapping returned can only depend on the input address and the
356  * IOMMU index.
357  *
358  * Most IOMMUs don't care about the transaction attributes and support
359  * only a single IOMMU index. A more complex IOMMU might have one index
360  * for secure transactions and one for non-secure transactions.
361  */
362 struct IOMMUMemoryRegionClass {
363     /* private: */
364     MemoryRegionClass parent_class;
365 
366     /* public: */
367     /**
368      * @translate:
369      *
370      * Return a TLB entry that contains a given address.
371      *
372      * The IOMMUAccessFlags indicated via @flag are optional and may
373      * be specified as IOMMU_NONE to indicate that the caller needs
374      * the full translation information for both reads and writes. If
375      * the access flags are specified then the IOMMU implementation
376      * may use this as an optimization, to stop doing a page table
377      * walk as soon as it knows that the requested permissions are not
378      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
379      * full page table walk and report the permissions in the returned
380      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
381      * return different mappings for reads and writes.)
382      *
383      * The returned information remains valid while the caller is
384      * holding the big QEMU lock or is inside an RCU critical section;
385      * if the caller wishes to cache the mapping beyond that it must
386      * register an IOMMU notifier so it can invalidate its cached
387      * information when the IOMMU mapping changes.
388      *
389      * @iommu: the IOMMUMemoryRegion
390      *
391      * @hwaddr: address to be translated within the memory region
392      *
393      * @flag: requested access permission
394      *
395      * @iommu_idx: IOMMU index for the translation
396      */
397     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
398                                IOMMUAccessFlags flag, int iommu_idx);
399     /**
400      * @get_min_page_size:
401      *
402      * Returns minimum supported page size in bytes.
403      *
404      * If this method is not provided then the minimum is assumed to
405      * be TARGET_PAGE_SIZE.
406      *
407      * @iommu: the IOMMUMemoryRegion
408      */
409     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
410     /**
411      * @notify_flag_changed:
412      *
413      * Called when IOMMU Notifier flag changes (ie when the set of
414      * events which IOMMU users are requesting notification for changes).
415      * Optional method -- need not be provided if the IOMMU does not
416      * need to know exactly which events must be notified.
417      *
418      * @iommu: the IOMMUMemoryRegion
419      *
420      * @old_flags: events which previously needed to be notified
421      *
422      * @new_flags: events which now need to be notified
423      *
424      * Returns 0 on success, or a negative errno; in particular
425      * returns -EINVAL if the new flag bitmap is not supported by the
426      * IOMMU memory region. In case of failure, the error object
427      * must be created
428      */
429     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
430                                IOMMUNotifierFlag old_flags,
431                                IOMMUNotifierFlag new_flags,
432                                Error **errp);
433     /**
434      * @replay:
435      *
436      * Called to handle memory_region_iommu_replay().
437      *
438      * The default implementation of memory_region_iommu_replay() is to
439      * call the IOMMU translate method for every page in the address space
440      * with flag == IOMMU_NONE and then call the notifier if translate
441      * returns a valid mapping. If this method is implemented then it
442      * overrides the default behaviour, and must provide the full semantics
443      * of memory_region_iommu_replay(), by calling @notifier for every
444      * translation present in the IOMMU.
445      *
446      * Optional method -- an IOMMU only needs to provide this method
447      * if the default is inefficient or produces undesirable side effects.
448      *
449      * Note: this is not related to record-and-replay functionality.
450      */
451     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
452 
453     /**
454      * @get_attr:
455      *
456      * Get IOMMU misc attributes. This is an optional method that
457      * can be used to allow users of the IOMMU to get implementation-specific
458      * information. The IOMMU implements this method to handle calls
459      * by IOMMU users to memory_region_iommu_get_attr() by filling in
460      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
461      * the IOMMU supports. If the method is unimplemented then
462      * memory_region_iommu_get_attr() will always return -EINVAL.
463      *
464      * @iommu: the IOMMUMemoryRegion
465      *
466      * @attr: attribute being queried
467      *
468      * @data: memory to fill in with the attribute data
469      *
470      * Returns 0 on success, or a negative errno; in particular
471      * returns -EINVAL for unrecognized or unimplemented attribute types.
472      */
473     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
474                     void *data);
475 
476     /**
477      * @attrs_to_index:
478      *
479      * Return the IOMMU index to use for a given set of transaction attributes.
480      *
481      * Optional method: if an IOMMU only supports a single IOMMU index then
482      * the default implementation of memory_region_iommu_attrs_to_index()
483      * will return 0.
484      *
485      * The indexes supported by an IOMMU must be contiguous, starting at 0.
486      *
487      * @iommu: the IOMMUMemoryRegion
488      * @attrs: memory transaction attributes
489      */
490     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
491 
492     /**
493      * @num_indexes:
494      *
495      * Return the number of IOMMU indexes this IOMMU supports.
496      *
497      * Optional method: if this method is not provided, then
498      * memory_region_iommu_num_indexes() will return 1, indicating that
499      * only a single IOMMU index is supported.
500      *
501      * @iommu: the IOMMUMemoryRegion
502      */
503     int (*num_indexes)(IOMMUMemoryRegion *iommu);
504 
505     /**
506      * @iommu_set_page_size_mask:
507      *
508      * Restrict the page size mask that can be supported with a given IOMMU
509      * memory region. Used for example to propagate host physical IOMMU page
510      * size mask limitations to the virtual IOMMU.
511      *
512      * Optional method: if this method is not provided, then the default global
513      * page mask is used.
514      *
515      * @iommu: the IOMMUMemoryRegion
516      *
517      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
518      * representing the smallest page size, must be set. Additional set bits
519      * represent supported block sizes. For example a host physical IOMMU that
520      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
521      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
522      * block sizes is specified with mask 0xfffffffffffff000.
523      *
524      * Returns 0 on success, or a negative error. In case of failure, the error
525      * object must be created.
526      */
527      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
528                                      uint64_t page_size_mask,
529                                      Error **errp);
530     /**
531      * @iommu_set_iova_ranges:
532      *
533      * Propagate information about the usable IOVA ranges for a given IOMMU
534      * memory region. Used for example to propagate host physical device
535      * reserved memory region constraints to the virtual IOMMU.
536      *
537      * Optional method: if this method is not provided, then the default IOVA
538      * aperture is used.
539      *
540      * @iommu: the IOMMUMemoryRegion
541      *
542      * @iova_ranges: list of ordered IOVA ranges (at least one range)
543      *
544      * Returns 0 on success, or a negative error. In case of failure, the error
545      * object must be created.
546      */
547      int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu,
548                                   GList *iova_ranges,
549                                   Error **errp);
550 };
551 
552 typedef struct RamDiscardListener RamDiscardListener;
553 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
554                                  MemoryRegionSection *section);
555 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
556                                  MemoryRegionSection *section);
557 
558 struct RamDiscardListener {
559     /*
560      * @notify_populate:
561      *
562      * Notification that previously discarded memory is about to get populated.
563      * Listeners are able to object. If any listener objects, already
564      * successfully notified listeners are notified about a discard again.
565      *
566      * @rdl: the #RamDiscardListener getting notified
567      * @section: the #MemoryRegionSection to get populated. The section
568      *           is aligned within the memory region to the minimum granularity
569      *           unless it would exceed the registered section.
570      *
571      * Returns 0 on success. If the notification is rejected by the listener,
572      * an error is returned.
573      */
574     NotifyRamPopulate notify_populate;
575 
576     /*
577      * @notify_discard:
578      *
579      * Notification that previously populated memory was discarded successfully
580      * and listeners should drop all references to such memory and prevent
581      * new population (e.g., unmap).
582      *
583      * @rdl: the #RamDiscardListener getting notified
584      * @section: the #MemoryRegionSection to get populated. The section
585      *           is aligned within the memory region to the minimum granularity
586      *           unless it would exceed the registered section.
587      */
588     NotifyRamDiscard notify_discard;
589 
590     /*
591      * @double_discard_supported:
592      *
593      * The listener suppors getting @notify_discard notifications that span
594      * already discarded parts.
595      */
596     bool double_discard_supported;
597 
598     MemoryRegionSection *section;
599     QLIST_ENTRY(RamDiscardListener) next;
600 };
601 
602 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
603                                              NotifyRamPopulate populate_fn,
604                                              NotifyRamDiscard discard_fn,
605                                              bool double_discard_supported)
606 {
607     rdl->notify_populate = populate_fn;
608     rdl->notify_discard = discard_fn;
609     rdl->double_discard_supported = double_discard_supported;
610 }
611 
612 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
613 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
614 
615 /*
616  * RamDiscardManagerClass:
617  *
618  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
619  * regions are currently populated to be used/accessed by the VM, notifying
620  * after parts were discarded (freeing up memory) and before parts will be
621  * populated (consuming memory), to be used/accessed by the VM.
622  *
623  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
624  * #MemoryRegion isn't mapped into an address space yet (either directly
625  * or via an alias); it cannot change while the #MemoryRegion is
626  * mapped into an address space.
627  *
628  * The #RamDiscardManager is intended to be used by technologies that are
629  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
630  * memory inside a #MemoryRegion), and require proper coordination to only
631  * map the currently populated parts, to hinder parts that are expected to
632  * remain discarded from silently getting populated and consuming memory.
633  * Technologies that support discarding of RAM don't have to bother and can
634  * simply map the whole #MemoryRegion.
635  *
636  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
637  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
638  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
639  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
640  * properly coordinate with listeners before memory is plugged (populated),
641  * and after memory is unplugged (discarded).
642  *
643  * Listeners are called in multiples of the minimum granularity (unless it
644  * would exceed the registered range) and changes are aligned to the minimum
645  * granularity within the #MemoryRegion. Listeners have to prepare for memory
646  * becoming discarded in a different granularity than it was populated and the
647  * other way around.
648  */
649 struct RamDiscardManagerClass {
650     /* private */
651     InterfaceClass parent_class;
652 
653     /* public */
654 
655     /**
656      * @get_min_granularity:
657      *
658      * Get the minimum granularity in which listeners will get notified
659      * about changes within the #MemoryRegion via the #RamDiscardManager.
660      *
661      * @rdm: the #RamDiscardManager
662      * @mr: the #MemoryRegion
663      *
664      * Returns the minimum granularity.
665      */
666     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
667                                     const MemoryRegion *mr);
668 
669     /**
670      * @is_populated:
671      *
672      * Check whether the given #MemoryRegionSection is completely populated
673      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
674      * There are no alignment requirements.
675      *
676      * @rdm: the #RamDiscardManager
677      * @section: the #MemoryRegionSection
678      *
679      * Returns whether the given range is completely populated.
680      */
681     bool (*is_populated)(const RamDiscardManager *rdm,
682                          const MemoryRegionSection *section);
683 
684     /**
685      * @replay_populated:
686      *
687      * Call the #ReplayRamPopulate callback for all populated parts within the
688      * #MemoryRegionSection via the #RamDiscardManager.
689      *
690      * In case any call fails, no further calls are made.
691      *
692      * @rdm: the #RamDiscardManager
693      * @section: the #MemoryRegionSection
694      * @replay_fn: the #ReplayRamPopulate callback
695      * @opaque: pointer to forward to the callback
696      *
697      * Returns 0 on success, or a negative error if any notification failed.
698      */
699     int (*replay_populated)(const RamDiscardManager *rdm,
700                             MemoryRegionSection *section,
701                             ReplayRamPopulate replay_fn, void *opaque);
702 
703     /**
704      * @replay_discarded:
705      *
706      * Call the #ReplayRamDiscard callback for all discarded parts within the
707      * #MemoryRegionSection via the #RamDiscardManager.
708      *
709      * @rdm: the #RamDiscardManager
710      * @section: the #MemoryRegionSection
711      * @replay_fn: the #ReplayRamDiscard callback
712      * @opaque: pointer to forward to the callback
713      */
714     void (*replay_discarded)(const RamDiscardManager *rdm,
715                              MemoryRegionSection *section,
716                              ReplayRamDiscard replay_fn, void *opaque);
717 
718     /**
719      * @register_listener:
720      *
721      * Register a #RamDiscardListener for the given #MemoryRegionSection and
722      * immediately notify the #RamDiscardListener about all populated parts
723      * within the #MemoryRegionSection via the #RamDiscardManager.
724      *
725      * In case any notification fails, no further notifications are triggered
726      * and an error is logged.
727      *
728      * @rdm: the #RamDiscardManager
729      * @rdl: the #RamDiscardListener
730      * @section: the #MemoryRegionSection
731      */
732     void (*register_listener)(RamDiscardManager *rdm,
733                               RamDiscardListener *rdl,
734                               MemoryRegionSection *section);
735 
736     /**
737      * @unregister_listener:
738      *
739      * Unregister a previously registered #RamDiscardListener via the
740      * #RamDiscardManager after notifying the #RamDiscardListener about all
741      * populated parts becoming unpopulated within the registered
742      * #MemoryRegionSection.
743      *
744      * @rdm: the #RamDiscardManager
745      * @rdl: the #RamDiscardListener
746      */
747     void (*unregister_listener)(RamDiscardManager *rdm,
748                                 RamDiscardListener *rdl);
749 };
750 
751 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
752                                                  const MemoryRegion *mr);
753 
754 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
755                                       const MemoryRegionSection *section);
756 
757 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
758                                          MemoryRegionSection *section,
759                                          ReplayRamPopulate replay_fn,
760                                          void *opaque);
761 
762 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
763                                           MemoryRegionSection *section,
764                                           ReplayRamDiscard replay_fn,
765                                           void *opaque);
766 
767 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
768                                            RamDiscardListener *rdl,
769                                            MemoryRegionSection *section);
770 
771 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
772                                              RamDiscardListener *rdl);
773 
774 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
775                           ram_addr_t *ram_addr, bool *read_only,
776                           bool *mr_has_discard_manager);
777 
778 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
779 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
780 
781 /** MemoryRegion:
782  *
783  * A struct representing a memory region.
784  */
785 struct MemoryRegion {
786     Object parent_obj;
787 
788     /* private: */
789 
790     /* The following fields should fit in a cache line */
791     bool romd_mode;
792     bool ram;
793     bool subpage;
794     bool readonly; /* For RAM regions */
795     bool nonvolatile;
796     bool rom_device;
797     bool flush_coalesced_mmio;
798     bool unmergeable;
799     uint8_t dirty_log_mask;
800     bool is_iommu;
801     RAMBlock *ram_block;
802     Object *owner;
803     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
804     DeviceState *dev;
805 
806     const MemoryRegionOps *ops;
807     void *opaque;
808     MemoryRegion *container;
809     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
810     Int128 size;
811     hwaddr addr;
812     void (*destructor)(MemoryRegion *mr);
813     uint64_t align;
814     bool terminates;
815     bool ram_device;
816     bool enabled;
817     bool warning_printed; /* For reservations */
818     uint8_t vga_logging_count;
819     MemoryRegion *alias;
820     hwaddr alias_offset;
821     int32_t priority;
822     QTAILQ_HEAD(, MemoryRegion) subregions;
823     QTAILQ_ENTRY(MemoryRegion) subregions_link;
824     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
825     const char *name;
826     unsigned ioeventfd_nb;
827     MemoryRegionIoeventfd *ioeventfds;
828     RamDiscardManager *rdm; /* Only for RAM */
829 
830     /* For devices designed to perform re-entrant IO into their own IO MRs */
831     bool disable_reentrancy_guard;
832 };
833 
834 struct IOMMUMemoryRegion {
835     MemoryRegion parent_obj;
836 
837     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
838     IOMMUNotifierFlag iommu_notify_flags;
839 };
840 
841 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
842     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
843 
844 #define MEMORY_LISTENER_PRIORITY_MIN            0
845 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
846 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
847 
848 /**
849  * struct MemoryListener: callbacks structure for updates to the physical memory map
850  *
851  * Allows a component to adjust to changes in the guest-visible memory map.
852  * Use with memory_listener_register() and memory_listener_unregister().
853  */
854 struct MemoryListener {
855     /**
856      * @begin:
857      *
858      * Called at the beginning of an address space update transaction.
859      * Followed by calls to #MemoryListener.region_add(),
860      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
861      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
862      * increasing address order.
863      *
864      * @listener: The #MemoryListener.
865      */
866     void (*begin)(MemoryListener *listener);
867 
868     /**
869      * @commit:
870      *
871      * Called at the end of an address space update transaction,
872      * after the last call to #MemoryListener.region_add(),
873      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
874      * #MemoryListener.log_start() and #MemoryListener.log_stop().
875      *
876      * @listener: The #MemoryListener.
877      */
878     void (*commit)(MemoryListener *listener);
879 
880     /**
881      * @region_add:
882      *
883      * Called during an address space update transaction,
884      * for a section of the address space that is new in this address space
885      * space since the last transaction.
886      *
887      * @listener: The #MemoryListener.
888      * @section: The new #MemoryRegionSection.
889      */
890     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
891 
892     /**
893      * @region_del:
894      *
895      * Called during an address space update transaction,
896      * for a section of the address space that has disappeared in the address
897      * space since the last transaction.
898      *
899      * @listener: The #MemoryListener.
900      * @section: The old #MemoryRegionSection.
901      */
902     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
903 
904     /**
905      * @region_nop:
906      *
907      * Called during an address space update transaction,
908      * for a section of the address space that is in the same place in the address
909      * space as in the last transaction.
910      *
911      * @listener: The #MemoryListener.
912      * @section: The #MemoryRegionSection.
913      */
914     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
915 
916     /**
917      * @log_start:
918      *
919      * Called during an address space update transaction, after
920      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
921      * #MemoryListener.region_nop(), if dirty memory logging clients have
922      * become active since the last transaction.
923      *
924      * @listener: The #MemoryListener.
925      * @section: The #MemoryRegionSection.
926      * @old: A bitmap of dirty memory logging clients that were active in
927      * the previous transaction.
928      * @new: A bitmap of dirty memory logging clients that are active in
929      * the current transaction.
930      */
931     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
932                       int old, int new);
933 
934     /**
935      * @log_stop:
936      *
937      * Called during an address space update transaction, after
938      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
939      * #MemoryListener.region_nop() and possibly after
940      * #MemoryListener.log_start(), if dirty memory logging clients have
941      * become inactive since the last transaction.
942      *
943      * @listener: The #MemoryListener.
944      * @section: The #MemoryRegionSection.
945      * @old: A bitmap of dirty memory logging clients that were active in
946      * the previous transaction.
947      * @new: A bitmap of dirty memory logging clients that are active in
948      * the current transaction.
949      */
950     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
951                      int old, int new);
952 
953     /**
954      * @log_sync:
955      *
956      * Called by memory_region_snapshot_and_clear_dirty() and
957      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
958      * copy of the dirty memory bitmap for a #MemoryRegionSection.
959      *
960      * @listener: The #MemoryListener.
961      * @section: The #MemoryRegionSection.
962      */
963     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
964 
965     /**
966      * @log_sync_global:
967      *
968      * This is the global version of @log_sync when the listener does
969      * not have a way to synchronize the log with finer granularity.
970      * When the listener registers with @log_sync_global defined, then
971      * its @log_sync must be NULL.  Vice versa.
972      *
973      * @listener: The #MemoryListener.
974      * @last_stage: The last stage to synchronize the log during migration.
975      * The caller should guarantee that the synchronization with true for
976      * @last_stage is triggered for once after all VCPUs have been stopped.
977      */
978     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
979 
980     /**
981      * @log_clear:
982      *
983      * Called before reading the dirty memory bitmap for a
984      * #MemoryRegionSection.
985      *
986      * @listener: The #MemoryListener.
987      * @section: The #MemoryRegionSection.
988      */
989     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
990 
991     /**
992      * @log_global_start:
993      *
994      * Called by memory_global_dirty_log_start(), which
995      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
996      * the address space.  #MemoryListener.log_global_start() is also
997      * called when a #MemoryListener is added, if global dirty logging is
998      * active at that time.
999      *
1000      * @listener: The #MemoryListener.
1001      */
1002     void (*log_global_start)(MemoryListener *listener);
1003 
1004     /**
1005      * @log_global_stop:
1006      *
1007      * Called by memory_global_dirty_log_stop(), which
1008      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1009      * the address space.
1010      *
1011      * @listener: The #MemoryListener.
1012      */
1013     void (*log_global_stop)(MemoryListener *listener);
1014 
1015     /**
1016      * @log_global_after_sync:
1017      *
1018      * Called after reading the dirty memory bitmap
1019      * for any #MemoryRegionSection.
1020      *
1021      * @listener: The #MemoryListener.
1022      */
1023     void (*log_global_after_sync)(MemoryListener *listener);
1024 
1025     /**
1026      * @eventfd_add:
1027      *
1028      * Called during an address space update transaction,
1029      * for a section of the address space that has had a new ioeventfd
1030      * registration since the last transaction.
1031      *
1032      * @listener: The #MemoryListener.
1033      * @section: The new #MemoryRegionSection.
1034      * @match_data: The @match_data parameter for the new ioeventfd.
1035      * @data: The @data parameter for the new ioeventfd.
1036      * @e: The #EventNotifier parameter for the new ioeventfd.
1037      */
1038     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1039                         bool match_data, uint64_t data, EventNotifier *e);
1040 
1041     /**
1042      * @eventfd_del:
1043      *
1044      * Called during an address space update transaction,
1045      * for a section of the address space that has dropped an ioeventfd
1046      * registration since the last transaction.
1047      *
1048      * @listener: The #MemoryListener.
1049      * @section: The new #MemoryRegionSection.
1050      * @match_data: The @match_data parameter for the dropped ioeventfd.
1051      * @data: The @data parameter for the dropped ioeventfd.
1052      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1053      */
1054     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1055                         bool match_data, uint64_t data, EventNotifier *e);
1056 
1057     /**
1058      * @coalesced_io_add:
1059      *
1060      * Called during an address space update transaction,
1061      * for a section of the address space that has had a new coalesced
1062      * MMIO range registration since the last transaction.
1063      *
1064      * @listener: The #MemoryListener.
1065      * @section: The new #MemoryRegionSection.
1066      * @addr: The starting address for the coalesced MMIO range.
1067      * @len: The length of the coalesced MMIO range.
1068      */
1069     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1070                                hwaddr addr, hwaddr len);
1071 
1072     /**
1073      * @coalesced_io_del:
1074      *
1075      * Called during an address space update transaction,
1076      * for a section of the address space that has dropped a coalesced
1077      * MMIO range since the last transaction.
1078      *
1079      * @listener: The #MemoryListener.
1080      * @section: The new #MemoryRegionSection.
1081      * @addr: The starting address for the coalesced MMIO range.
1082      * @len: The length of the coalesced MMIO range.
1083      */
1084     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1085                                hwaddr addr, hwaddr len);
1086     /**
1087      * @priority:
1088      *
1089      * Govern the order in which memory listeners are invoked. Lower priorities
1090      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1091      * or "stop" callbacks.
1092      */
1093     unsigned priority;
1094 
1095     /**
1096      * @name:
1097      *
1098      * Name of the listener.  It can be used in contexts where we'd like to
1099      * identify one memory listener with the rest.
1100      */
1101     const char *name;
1102 
1103     /* private: */
1104     AddressSpace *address_space;
1105     QTAILQ_ENTRY(MemoryListener) link;
1106     QTAILQ_ENTRY(MemoryListener) link_as;
1107 };
1108 
1109 /**
1110  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1111  */
1112 struct AddressSpace {
1113     /* private: */
1114     struct rcu_head rcu;
1115     char *name;
1116     MemoryRegion *root;
1117 
1118     /* Accessed via RCU.  */
1119     struct FlatView *current_map;
1120 
1121     int ioeventfd_nb;
1122     int ioeventfd_notifiers;
1123     struct MemoryRegionIoeventfd *ioeventfds;
1124     QTAILQ_HEAD(, MemoryListener) listeners;
1125     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1126 };
1127 
1128 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1129 typedef struct FlatRange FlatRange;
1130 
1131 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1132  * order.
1133  */
1134 struct FlatView {
1135     struct rcu_head rcu;
1136     unsigned ref;
1137     FlatRange *ranges;
1138     unsigned nr;
1139     unsigned nr_allocated;
1140     struct AddressSpaceDispatch *dispatch;
1141     MemoryRegion *root;
1142 };
1143 
1144 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1145 {
1146     return qatomic_rcu_read(&as->current_map);
1147 }
1148 
1149 /**
1150  * typedef flatview_cb: callback for flatview_for_each_range()
1151  *
1152  * @start: start address of the range within the FlatView
1153  * @len: length of the range in bytes
1154  * @mr: MemoryRegion covering this range
1155  * @offset_in_region: offset of the first byte of the range within @mr
1156  * @opaque: data pointer passed to flatview_for_each_range()
1157  *
1158  * Returns: true to stop the iteration, false to keep going.
1159  */
1160 typedef bool (*flatview_cb)(Int128 start,
1161                             Int128 len,
1162                             const MemoryRegion *mr,
1163                             hwaddr offset_in_region,
1164                             void *opaque);
1165 
1166 /**
1167  * flatview_for_each_range: Iterate through a FlatView
1168  * @fv: the FlatView to iterate through
1169  * @cb: function to call for each range
1170  * @opaque: opaque data pointer to pass to @cb
1171  *
1172  * A FlatView is made up of a list of non-overlapping ranges, each of
1173  * which is a slice of a MemoryRegion. This function iterates through
1174  * each range in @fv, calling @cb. The callback function can terminate
1175  * iteration early by returning 'true'.
1176  */
1177 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1178 
1179 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1180                                           MemoryRegionSection *b)
1181 {
1182     return a->mr == b->mr &&
1183            a->fv == b->fv &&
1184            a->offset_within_region == b->offset_within_region &&
1185            a->offset_within_address_space == b->offset_within_address_space &&
1186            int128_eq(a->size, b->size) &&
1187            a->readonly == b->readonly &&
1188            a->nonvolatile == b->nonvolatile;
1189 }
1190 
1191 /**
1192  * memory_region_section_new_copy: Copy a memory region section
1193  *
1194  * Allocate memory for a new copy, copy the memory region section, and
1195  * properly take a reference on all relevant members.
1196  *
1197  * @s: the #MemoryRegionSection to copy
1198  */
1199 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1200 
1201 /**
1202  * memory_region_section_new_copy: Free a copied memory region section
1203  *
1204  * Free a copy of a memory section created via memory_region_section_new_copy().
1205  * properly dropping references on all relevant members.
1206  *
1207  * @s: the #MemoryRegionSection to copy
1208  */
1209 void memory_region_section_free_copy(MemoryRegionSection *s);
1210 
1211 /**
1212  * memory_region_init: Initialize a memory region
1213  *
1214  * The region typically acts as a container for other memory regions.  Use
1215  * memory_region_add_subregion() to add subregions.
1216  *
1217  * @mr: the #MemoryRegion to be initialized
1218  * @owner: the object that tracks the region's reference count
1219  * @name: used for debugging; not visible to the user or ABI
1220  * @size: size of the region; any subregions beyond this size will be clipped
1221  */
1222 void memory_region_init(MemoryRegion *mr,
1223                         Object *owner,
1224                         const char *name,
1225                         uint64_t size);
1226 
1227 /**
1228  * memory_region_ref: Add 1 to a memory region's reference count
1229  *
1230  * Whenever memory regions are accessed outside the BQL, they need to be
1231  * preserved against hot-unplug.  MemoryRegions actually do not have their
1232  * own reference count; they piggyback on a QOM object, their "owner".
1233  * This function adds a reference to the owner.
1234  *
1235  * All MemoryRegions must have an owner if they can disappear, even if the
1236  * device they belong to operates exclusively under the BQL.  This is because
1237  * the region could be returned at any time by memory_region_find, and this
1238  * is usually under guest control.
1239  *
1240  * @mr: the #MemoryRegion
1241  */
1242 void memory_region_ref(MemoryRegion *mr);
1243 
1244 /**
1245  * memory_region_unref: Remove 1 to a memory region's reference count
1246  *
1247  * Whenever memory regions are accessed outside the BQL, they need to be
1248  * preserved against hot-unplug.  MemoryRegions actually do not have their
1249  * own reference count; they piggyback on a QOM object, their "owner".
1250  * This function removes a reference to the owner and possibly destroys it.
1251  *
1252  * @mr: the #MemoryRegion
1253  */
1254 void memory_region_unref(MemoryRegion *mr);
1255 
1256 /**
1257  * memory_region_init_io: Initialize an I/O memory region.
1258  *
1259  * Accesses into the region will cause the callbacks in @ops to be called.
1260  * if @size is nonzero, subregions will be clipped to @size.
1261  *
1262  * @mr: the #MemoryRegion to be initialized.
1263  * @owner: the object that tracks the region's reference count
1264  * @ops: a structure containing read and write callbacks to be used when
1265  *       I/O is performed on the region.
1266  * @opaque: passed to the read and write callbacks of the @ops structure.
1267  * @name: used for debugging; not visible to the user or ABI
1268  * @size: size of the region.
1269  */
1270 void memory_region_init_io(MemoryRegion *mr,
1271                            Object *owner,
1272                            const MemoryRegionOps *ops,
1273                            void *opaque,
1274                            const char *name,
1275                            uint64_t size);
1276 
1277 /**
1278  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1279  *                                    into the region will modify memory
1280  *                                    directly.
1281  *
1282  * @mr: the #MemoryRegion to be initialized.
1283  * @owner: the object that tracks the region's reference count
1284  * @name: Region name, becomes part of RAMBlock name used in migration stream
1285  *        must be unique within any device
1286  * @size: size of the region.
1287  * @errp: pointer to Error*, to store an error if it happens.
1288  *
1289  * Note that this function does not do anything to cause the data in the
1290  * RAM memory region to be migrated; that is the responsibility of the caller.
1291  *
1292  * Return: true on success, else false setting @errp with error.
1293  */
1294 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1295                                       Object *owner,
1296                                       const char *name,
1297                                       uint64_t size,
1298                                       Error **errp);
1299 
1300 /**
1301  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1302  *                                          Accesses into the region will
1303  *                                          modify memory directly.
1304  *
1305  * @mr: the #MemoryRegion to be initialized.
1306  * @owner: the object that tracks the region's reference count
1307  * @name: Region name, becomes part of RAMBlock name used in migration stream
1308  *        must be unique within any device
1309  * @size: size of the region.
1310  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1311  * @errp: pointer to Error*, to store an error if it happens.
1312  *
1313  * Note that this function does not do anything to cause the data in the
1314  * RAM memory region to be migrated; that is the responsibility of the caller.
1315  *
1316  * Return: true on success, else false setting @errp with error.
1317  */
1318 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1319                                             Object *owner,
1320                                             const char *name,
1321                                             uint64_t size,
1322                                             uint32_t ram_flags,
1323                                             Error **errp);
1324 
1325 /**
1326  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1327  *                                     RAM.  Accesses into the region will
1328  *                                     modify memory directly.  Only an initial
1329  *                                     portion of this RAM is actually used.
1330  *                                     Changing the size while migrating
1331  *                                     can result in the migration being
1332  *                                     canceled.
1333  *
1334  * @mr: the #MemoryRegion to be initialized.
1335  * @owner: the object that tracks the region's reference count
1336  * @name: Region name, becomes part of RAMBlock name used in migration stream
1337  *        must be unique within any device
1338  * @size: used size of the region.
1339  * @max_size: max size of the region.
1340  * @resized: callback to notify owner about used size change.
1341  * @errp: pointer to Error*, to store an error if it happens.
1342  *
1343  * Note that this function does not do anything to cause the data in the
1344  * RAM memory region to be migrated; that is the responsibility of the caller.
1345  *
1346  * Return: true on success, else false setting @errp with error.
1347  */
1348 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1349                                        Object *owner,
1350                                        const char *name,
1351                                        uint64_t size,
1352                                        uint64_t max_size,
1353                                        void (*resized)(const char*,
1354                                                        uint64_t length,
1355                                                        void *host),
1356                                        Error **errp);
1357 #ifdef CONFIG_POSIX
1358 
1359 /**
1360  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1361  *                                    mmap-ed backend.
1362  *
1363  * @mr: the #MemoryRegion to be initialized.
1364  * @owner: the object that tracks the region's reference count
1365  * @name: Region name, becomes part of RAMBlock name used in migration stream
1366  *        must be unique within any device
1367  * @size: size of the region.
1368  * @align: alignment of the region base address; if 0, the default alignment
1369  *         (getpagesize()) will be used.
1370  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1371  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1372  *             RAM_READONLY_FD
1373  * @path: the path in which to allocate the RAM.
1374  * @offset: offset within the file referenced by path
1375  * @errp: pointer to Error*, to store an error if it happens.
1376  *
1377  * Note that this function does not do anything to cause the data in the
1378  * RAM memory region to be migrated; that is the responsibility of the caller.
1379  *
1380  * Return: true on success, else false setting @errp with error.
1381  */
1382 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1383                                       Object *owner,
1384                                       const char *name,
1385                                       uint64_t size,
1386                                       uint64_t align,
1387                                       uint32_t ram_flags,
1388                                       const char *path,
1389                                       ram_addr_t offset,
1390                                       Error **errp);
1391 
1392 /**
1393  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1394  *                                  mmap-ed backend.
1395  *
1396  * @mr: the #MemoryRegion to be initialized.
1397  * @owner: the object that tracks the region's reference count
1398  * @name: the name of the region.
1399  * @size: size of the region.
1400  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1401  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1402  *             RAM_READONLY_FD
1403  * @fd: the fd to mmap.
1404  * @offset: offset within the file referenced by fd
1405  * @errp: pointer to Error*, to store an error if it happens.
1406  *
1407  * Note that this function does not do anything to cause the data in the
1408  * RAM memory region to be migrated; that is the responsibility of the caller.
1409  *
1410  * Return: true on success, else false setting @errp with error.
1411  */
1412 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1413                                     Object *owner,
1414                                     const char *name,
1415                                     uint64_t size,
1416                                     uint32_t ram_flags,
1417                                     int fd,
1418                                     ram_addr_t offset,
1419                                     Error **errp);
1420 #endif
1421 
1422 /**
1423  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1424  *                              user-provided pointer.  Accesses into the
1425  *                              region will modify memory directly.
1426  *
1427  * @mr: the #MemoryRegion to be initialized.
1428  * @owner: the object that tracks the region's reference count
1429  * @name: Region name, becomes part of RAMBlock name used in migration stream
1430  *        must be unique within any device
1431  * @size: size of the region.
1432  * @ptr: memory to be mapped; must contain at least @size bytes.
1433  *
1434  * Note that this function does not do anything to cause the data in the
1435  * RAM memory region to be migrated; that is the responsibility of the caller.
1436  */
1437 void memory_region_init_ram_ptr(MemoryRegion *mr,
1438                                 Object *owner,
1439                                 const char *name,
1440                                 uint64_t size,
1441                                 void *ptr);
1442 
1443 /**
1444  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1445  *                                     a user-provided pointer.
1446  *
1447  * A RAM device represents a mapping to a physical device, such as to a PCI
1448  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1449  * into the VM address space and access to the region will modify memory
1450  * directly.  However, the memory region should not be included in a memory
1451  * dump (device may not be enabled/mapped at the time of the dump), and
1452  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1453  * skip_dump flag.
1454  *
1455  * @mr: the #MemoryRegion to be initialized.
1456  * @owner: the object that tracks the region's reference count
1457  * @name: the name of the region.
1458  * @size: size of the region.
1459  * @ptr: memory to be mapped; must contain at least @size bytes.
1460  *
1461  * Note that this function does not do anything to cause the data in the
1462  * RAM memory region to be migrated; that is the responsibility of the caller.
1463  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1464  */
1465 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1466                                        Object *owner,
1467                                        const char *name,
1468                                        uint64_t size,
1469                                        void *ptr);
1470 
1471 /**
1472  * memory_region_init_alias: Initialize a memory region that aliases all or a
1473  *                           part of another memory region.
1474  *
1475  * @mr: the #MemoryRegion to be initialized.
1476  * @owner: the object that tracks the region's reference count
1477  * @name: used for debugging; not visible to the user or ABI
1478  * @orig: the region to be referenced; @mr will be equivalent to
1479  *        @orig between @offset and @offset + @size - 1.
1480  * @offset: start of the section in @orig to be referenced.
1481  * @size: size of the region.
1482  */
1483 void memory_region_init_alias(MemoryRegion *mr,
1484                               Object *owner,
1485                               const char *name,
1486                               MemoryRegion *orig,
1487                               hwaddr offset,
1488                               uint64_t size);
1489 
1490 /**
1491  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1492  *
1493  * This has the same effect as calling memory_region_init_ram_nomigrate()
1494  * and then marking the resulting region read-only with
1495  * memory_region_set_readonly().
1496  *
1497  * Note that this function does not do anything to cause the data in the
1498  * RAM side of the memory region to be migrated; that is the responsibility
1499  * of the caller.
1500  *
1501  * @mr: the #MemoryRegion to be initialized.
1502  * @owner: the object that tracks the region's reference count
1503  * @name: Region name, becomes part of RAMBlock name used in migration stream
1504  *        must be unique within any device
1505  * @size: size of the region.
1506  * @errp: pointer to Error*, to store an error if it happens.
1507  *
1508  * Return: true on success, else false setting @errp with error.
1509  */
1510 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1511                                       Object *owner,
1512                                       const char *name,
1513                                       uint64_t size,
1514                                       Error **errp);
1515 
1516 /**
1517  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1518  *                                 Writes are handled via callbacks.
1519  *
1520  * Note that this function does not do anything to cause the data in the
1521  * RAM side of the memory region to be migrated; that is the responsibility
1522  * of the caller.
1523  *
1524  * @mr: the #MemoryRegion to be initialized.
1525  * @owner: the object that tracks the region's reference count
1526  * @ops: callbacks for write access handling (must not be NULL).
1527  * @opaque: passed to the read and write callbacks of the @ops structure.
1528  * @name: Region name, becomes part of RAMBlock name used in migration stream
1529  *        must be unique within any device
1530  * @size: size of the region.
1531  * @errp: pointer to Error*, to store an error if it happens.
1532  *
1533  * Return: true on success, else false setting @errp with error.
1534  */
1535 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1536                                              Object *owner,
1537                                              const MemoryRegionOps *ops,
1538                                              void *opaque,
1539                                              const char *name,
1540                                              uint64_t size,
1541                                              Error **errp);
1542 
1543 /**
1544  * memory_region_init_iommu: Initialize a memory region of a custom type
1545  * that translates addresses
1546  *
1547  * An IOMMU region translates addresses and forwards accesses to a target
1548  * memory region.
1549  *
1550  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1551  * @_iommu_mr should be a pointer to enough memory for an instance of
1552  * that subclass, @instance_size is the size of that subclass, and
1553  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1554  * instance of the subclass, and its methods will then be called to handle
1555  * accesses to the memory region. See the documentation of
1556  * #IOMMUMemoryRegionClass for further details.
1557  *
1558  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1559  * @instance_size: the IOMMUMemoryRegion subclass instance size
1560  * @mrtypename: the type name of the #IOMMUMemoryRegion
1561  * @owner: the object that tracks the region's reference count
1562  * @name: used for debugging; not visible to the user or ABI
1563  * @size: size of the region.
1564  */
1565 void memory_region_init_iommu(void *_iommu_mr,
1566                               size_t instance_size,
1567                               const char *mrtypename,
1568                               Object *owner,
1569                               const char *name,
1570                               uint64_t size);
1571 
1572 /**
1573  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1574  *                          region will modify memory directly.
1575  *
1576  * @mr: the #MemoryRegion to be initialized
1577  * @owner: the object that tracks the region's reference count (must be
1578  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1579  * @name: name of the memory region
1580  * @size: size of the region in bytes
1581  * @errp: pointer to Error*, to store an error if it happens.
1582  *
1583  * This function allocates RAM for a board model or device, and
1584  * arranges for it to be migrated (by calling vmstate_register_ram()
1585  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1586  * @owner is NULL).
1587  *
1588  * TODO: Currently we restrict @owner to being either NULL (for
1589  * global RAM regions with no owner) or devices, so that we can
1590  * give the RAM block a unique name for migration purposes.
1591  * We should lift this restriction and allow arbitrary Objects.
1592  * If you pass a non-NULL non-device @owner then we will assert.
1593  *
1594  * Return: true on success, else false setting @errp with error.
1595  */
1596 bool memory_region_init_ram(MemoryRegion *mr,
1597                             Object *owner,
1598                             const char *name,
1599                             uint64_t size,
1600                             Error **errp);
1601 
1602 /**
1603  * memory_region_init_rom: Initialize a ROM memory region.
1604  *
1605  * This has the same effect as calling memory_region_init_ram()
1606  * and then marking the resulting region read-only with
1607  * memory_region_set_readonly(). This includes arranging for the
1608  * contents to be migrated.
1609  *
1610  * TODO: Currently we restrict @owner to being either NULL (for
1611  * global RAM regions with no owner) or devices, so that we can
1612  * give the RAM block a unique name for migration purposes.
1613  * We should lift this restriction and allow arbitrary Objects.
1614  * If you pass a non-NULL non-device @owner then we will assert.
1615  *
1616  * @mr: the #MemoryRegion to be initialized.
1617  * @owner: the object that tracks the region's reference count
1618  * @name: Region name, becomes part of RAMBlock name used in migration stream
1619  *        must be unique within any device
1620  * @size: size of the region.
1621  * @errp: pointer to Error*, to store an error if it happens.
1622  *
1623  * Return: true on success, else false setting @errp with error.
1624  */
1625 bool memory_region_init_rom(MemoryRegion *mr,
1626                             Object *owner,
1627                             const char *name,
1628                             uint64_t size,
1629                             Error **errp);
1630 
1631 /**
1632  * memory_region_init_rom_device:  Initialize a ROM memory region.
1633  *                                 Writes are handled via callbacks.
1634  *
1635  * This function initializes a memory region backed by RAM for reads
1636  * and callbacks for writes, and arranges for the RAM backing to
1637  * be migrated (by calling vmstate_register_ram()
1638  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1639  * @owner is NULL).
1640  *
1641  * TODO: Currently we restrict @owner to being either NULL (for
1642  * global RAM regions with no owner) or devices, so that we can
1643  * give the RAM block a unique name for migration purposes.
1644  * We should lift this restriction and allow arbitrary Objects.
1645  * If you pass a non-NULL non-device @owner then we will assert.
1646  *
1647  * @mr: the #MemoryRegion to be initialized.
1648  * @owner: the object that tracks the region's reference count
1649  * @ops: callbacks for write access handling (must not be NULL).
1650  * @opaque: passed to the read and write callbacks of the @ops structure.
1651  * @name: Region name, becomes part of RAMBlock name used in migration stream
1652  *        must be unique within any device
1653  * @size: size of the region.
1654  * @errp: pointer to Error*, to store an error if it happens.
1655  *
1656  * Return: true on success, else false setting @errp with error.
1657  */
1658 bool memory_region_init_rom_device(MemoryRegion *mr,
1659                                    Object *owner,
1660                                    const MemoryRegionOps *ops,
1661                                    void *opaque,
1662                                    const char *name,
1663                                    uint64_t size,
1664                                    Error **errp);
1665 
1666 
1667 /**
1668  * memory_region_owner: get a memory region's owner.
1669  *
1670  * @mr: the memory region being queried.
1671  */
1672 Object *memory_region_owner(MemoryRegion *mr);
1673 
1674 /**
1675  * memory_region_size: get a memory region's size.
1676  *
1677  * @mr: the memory region being queried.
1678  */
1679 uint64_t memory_region_size(MemoryRegion *mr);
1680 
1681 /**
1682  * memory_region_is_ram: check whether a memory region is random access
1683  *
1684  * Returns %true if a memory region is random access.
1685  *
1686  * @mr: the memory region being queried
1687  */
1688 static inline bool memory_region_is_ram(MemoryRegion *mr)
1689 {
1690     return mr->ram;
1691 }
1692 
1693 /**
1694  * memory_region_is_ram_device: check whether a memory region is a ram device
1695  *
1696  * Returns %true if a memory region is a device backed ram region
1697  *
1698  * @mr: the memory region being queried
1699  */
1700 bool memory_region_is_ram_device(MemoryRegion *mr);
1701 
1702 /**
1703  * memory_region_is_romd: check whether a memory region is in ROMD mode
1704  *
1705  * Returns %true if a memory region is a ROM device and currently set to allow
1706  * direct reads.
1707  *
1708  * @mr: the memory region being queried
1709  */
1710 static inline bool memory_region_is_romd(MemoryRegion *mr)
1711 {
1712     return mr->rom_device && mr->romd_mode;
1713 }
1714 
1715 /**
1716  * memory_region_is_protected: check whether a memory region is protected
1717  *
1718  * Returns %true if a memory region is protected RAM and cannot be accessed
1719  * via standard mechanisms, e.g. DMA.
1720  *
1721  * @mr: the memory region being queried
1722  */
1723 bool memory_region_is_protected(MemoryRegion *mr);
1724 
1725 /**
1726  * memory_region_get_iommu: check whether a memory region is an iommu
1727  *
1728  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1729  * otherwise NULL.
1730  *
1731  * @mr: the memory region being queried
1732  */
1733 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1734 {
1735     if (mr->alias) {
1736         return memory_region_get_iommu(mr->alias);
1737     }
1738     if (mr->is_iommu) {
1739         return (IOMMUMemoryRegion *) mr;
1740     }
1741     return NULL;
1742 }
1743 
1744 /**
1745  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1746  *   if an iommu or NULL if not
1747  *
1748  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1749  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1750  *
1751  * @iommu_mr: the memory region being queried
1752  */
1753 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1754         IOMMUMemoryRegion *iommu_mr)
1755 {
1756     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1757 }
1758 
1759 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1760 
1761 /**
1762  * memory_region_iommu_get_min_page_size: get minimum supported page size
1763  * for an iommu
1764  *
1765  * Returns minimum supported page size for an iommu.
1766  *
1767  * @iommu_mr: the memory region being queried
1768  */
1769 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1770 
1771 /**
1772  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1773  *
1774  * Note: for any IOMMU implementation, an in-place mapping change
1775  * should be notified with an UNMAP followed by a MAP.
1776  *
1777  * @iommu_mr: the memory region that was changed
1778  * @iommu_idx: the IOMMU index for the translation table which has changed
1779  * @event: TLB event with the new entry in the IOMMU translation table.
1780  *         The entry replaces all old entries for the same virtual I/O address
1781  *         range.
1782  */
1783 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1784                                 int iommu_idx,
1785                                 IOMMUTLBEvent event);
1786 
1787 /**
1788  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1789  *                           entry to a single notifier
1790  *
1791  * This works just like memory_region_notify_iommu(), but it only
1792  * notifies a specific notifier, not all of them.
1793  *
1794  * @notifier: the notifier to be notified
1795  * @event: TLB event with the new entry in the IOMMU translation table.
1796  *         The entry replaces all old entries for the same virtual I/O address
1797  *         range.
1798  */
1799 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1800                                     IOMMUTLBEvent *event);
1801 
1802 /**
1803  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1804  *                                           translation that covers the
1805  *                                           range of a notifier
1806  *
1807  * @notifier: the notifier to be notified
1808  */
1809 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1810 
1811 
1812 /**
1813  * memory_region_register_iommu_notifier: register a notifier for changes to
1814  * IOMMU translation entries.
1815  *
1816  * Returns 0 on success, or a negative errno otherwise. In particular,
1817  * -EINVAL indicates that at least one of the attributes of the notifier
1818  * is not supported (flag/range) by the IOMMU memory region. In case of error
1819  * the error object must be created.
1820  *
1821  * @mr: the memory region to observe
1822  * @n: the IOMMUNotifier to be added; the notify callback receives a
1823  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1824  *     ceases to be valid on exit from the notifier.
1825  * @errp: pointer to Error*, to store an error if it happens.
1826  */
1827 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1828                                           IOMMUNotifier *n, Error **errp);
1829 
1830 /**
1831  * memory_region_iommu_replay: replay existing IOMMU translations to
1832  * a notifier with the minimum page granularity returned by
1833  * mr->iommu_ops->get_page_size().
1834  *
1835  * Note: this is not related to record-and-replay functionality.
1836  *
1837  * @iommu_mr: the memory region to observe
1838  * @n: the notifier to which to replay iommu mappings
1839  */
1840 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1841 
1842 /**
1843  * memory_region_unregister_iommu_notifier: unregister a notifier for
1844  * changes to IOMMU translation entries.
1845  *
1846  * @mr: the memory region which was observed and for which notity_stopped()
1847  *      needs to be called
1848  * @n: the notifier to be removed.
1849  */
1850 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1851                                              IOMMUNotifier *n);
1852 
1853 /**
1854  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1855  * defined on the IOMMU.
1856  *
1857  * Returns 0 on success, or a negative errno otherwise. In particular,
1858  * -EINVAL indicates that the IOMMU does not support the requested
1859  * attribute.
1860  *
1861  * @iommu_mr: the memory region
1862  * @attr: the requested attribute
1863  * @data: a pointer to the requested attribute data
1864  */
1865 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1866                                  enum IOMMUMemoryRegionAttr attr,
1867                                  void *data);
1868 
1869 /**
1870  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1871  * use for translations with the given memory transaction attributes.
1872  *
1873  * @iommu_mr: the memory region
1874  * @attrs: the memory transaction attributes
1875  */
1876 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1877                                        MemTxAttrs attrs);
1878 
1879 /**
1880  * memory_region_iommu_num_indexes: return the total number of IOMMU
1881  * indexes that this IOMMU supports.
1882  *
1883  * @iommu_mr: the memory region
1884  */
1885 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1886 
1887 /**
1888  * memory_region_iommu_set_page_size_mask: set the supported page
1889  * sizes for a given IOMMU memory region
1890  *
1891  * @iommu_mr: IOMMU memory region
1892  * @page_size_mask: supported page size mask
1893  * @errp: pointer to Error*, to store an error if it happens.
1894  */
1895 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1896                                            uint64_t page_size_mask,
1897                                            Error **errp);
1898 
1899 /**
1900  * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges
1901  * for a given IOMMU MR region
1902  *
1903  * @iommu: IOMMU memory region
1904  * @iova_ranges: list of ordered IOVA ranges (at least one range)
1905  * @errp: pointer to Error*, to store an error if it happens.
1906  */
1907 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu,
1908                                         GList *iova_ranges,
1909                                         Error **errp);
1910 
1911 /**
1912  * memory_region_name: get a memory region's name
1913  *
1914  * Returns the string that was used to initialize the memory region.
1915  *
1916  * @mr: the memory region being queried
1917  */
1918 const char *memory_region_name(const MemoryRegion *mr);
1919 
1920 /**
1921  * memory_region_is_logging: return whether a memory region is logging writes
1922  *
1923  * Returns %true if the memory region is logging writes for the given client
1924  *
1925  * @mr: the memory region being queried
1926  * @client: the client being queried
1927  */
1928 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1929 
1930 /**
1931  * memory_region_get_dirty_log_mask: return the clients for which a
1932  * memory region is logging writes.
1933  *
1934  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1935  * are the bit indices.
1936  *
1937  * @mr: the memory region being queried
1938  */
1939 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1940 
1941 /**
1942  * memory_region_is_rom: check whether a memory region is ROM
1943  *
1944  * Returns %true if a memory region is read-only memory.
1945  *
1946  * @mr: the memory region being queried
1947  */
1948 static inline bool memory_region_is_rom(MemoryRegion *mr)
1949 {
1950     return mr->ram && mr->readonly;
1951 }
1952 
1953 /**
1954  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1955  *
1956  * Returns %true is a memory region is non-volatile memory.
1957  *
1958  * @mr: the memory region being queried
1959  */
1960 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1961 {
1962     return mr->nonvolatile;
1963 }
1964 
1965 /**
1966  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1967  *
1968  * Returns a file descriptor backing a file-based RAM memory region,
1969  * or -1 if the region is not a file-based RAM memory region.
1970  *
1971  * @mr: the RAM or alias memory region being queried.
1972  */
1973 int memory_region_get_fd(MemoryRegion *mr);
1974 
1975 /**
1976  * memory_region_from_host: Convert a pointer into a RAM memory region
1977  * and an offset within it.
1978  *
1979  * Given a host pointer inside a RAM memory region (created with
1980  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1981  * the MemoryRegion and the offset within it.
1982  *
1983  * Use with care; by the time this function returns, the returned pointer is
1984  * not protected by RCU anymore.  If the caller is not within an RCU critical
1985  * section and does not hold the BQL, it must have other means of
1986  * protecting the pointer, such as a reference to the region that includes
1987  * the incoming ram_addr_t.
1988  *
1989  * @ptr: the host pointer to be converted
1990  * @offset: the offset within memory region
1991  */
1992 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1993 
1994 /**
1995  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1996  *
1997  * Returns a host pointer to a RAM memory region (created with
1998  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1999  *
2000  * Use with care; by the time this function returns, the returned pointer is
2001  * not protected by RCU anymore.  If the caller is not within an RCU critical
2002  * section and does not hold the BQL, it must have other means of
2003  * protecting the pointer, such as a reference to the region that includes
2004  * the incoming ram_addr_t.
2005  *
2006  * @mr: the memory region being queried.
2007  */
2008 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2009 
2010 /* memory_region_ram_resize: Resize a RAM region.
2011  *
2012  * Resizing RAM while migrating can result in the migration being canceled.
2013  * Care has to be taken if the guest might have already detected the memory.
2014  *
2015  * @mr: a memory region created with @memory_region_init_resizeable_ram.
2016  * @newsize: the new size the region
2017  * @errp: pointer to Error*, to store an error if it happens.
2018  */
2019 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2020                               Error **errp);
2021 
2022 /**
2023  * memory_region_msync: Synchronize selected address range of
2024  * a memory mapped region
2025  *
2026  * @mr: the memory region to be msync
2027  * @addr: the initial address of the range to be sync
2028  * @size: the size of the range to be sync
2029  */
2030 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2031 
2032 /**
2033  * memory_region_writeback: Trigger cache writeback for
2034  * selected address range
2035  *
2036  * @mr: the memory region to be updated
2037  * @addr: the initial address of the range to be written back
2038  * @size: the size of the range to be written back
2039  */
2040 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2041 
2042 /**
2043  * memory_region_set_log: Turn dirty logging on or off for a region.
2044  *
2045  * Turns dirty logging on or off for a specified client (display, migration).
2046  * Only meaningful for RAM regions.
2047  *
2048  * @mr: the memory region being updated.
2049  * @log: whether dirty logging is to be enabled or disabled.
2050  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2051  */
2052 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2053 
2054 /**
2055  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2056  *
2057  * Marks a range of bytes as dirty, after it has been dirtied outside
2058  * guest code.
2059  *
2060  * @mr: the memory region being dirtied.
2061  * @addr: the address (relative to the start of the region) being dirtied.
2062  * @size: size of the range being dirtied.
2063  */
2064 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2065                              hwaddr size);
2066 
2067 /**
2068  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2069  *
2070  * This function is called when the caller wants to clear the remote
2071  * dirty bitmap of a memory range within the memory region.  This can
2072  * be used by e.g. KVM to manually clear dirty log when
2073  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2074  * kernel.
2075  *
2076  * @mr:     the memory region to clear the dirty log upon
2077  * @start:  start address offset within the memory region
2078  * @len:    length of the memory region to clear dirty bitmap
2079  */
2080 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2081                                       hwaddr len);
2082 
2083 /**
2084  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2085  *                                         bitmap and clear it.
2086  *
2087  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2088  * returns the snapshot.  The snapshot can then be used to query dirty
2089  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2090  * querying the same page multiple times, which is especially useful for
2091  * display updates where the scanlines often are not page aligned.
2092  *
2093  * The dirty bitmap region which gets copied into the snapshot (and
2094  * cleared afterwards) can be larger than requested.  The boundaries
2095  * are rounded up/down so complete bitmap longs (covering 64 pages on
2096  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2097  * isn't a problem for display updates as the extra pages are outside
2098  * the visible area, and in case the visible area changes a full
2099  * display redraw is due anyway.  Should other use cases for this
2100  * function emerge we might have to revisit this implementation
2101  * detail.
2102  *
2103  * Use g_free to release DirtyBitmapSnapshot.
2104  *
2105  * @mr: the memory region being queried.
2106  * @addr: the address (relative to the start of the region) being queried.
2107  * @size: the size of the range being queried.
2108  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2109  */
2110 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2111                                                             hwaddr addr,
2112                                                             hwaddr size,
2113                                                             unsigned client);
2114 
2115 /**
2116  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2117  *                                   in the specified dirty bitmap snapshot.
2118  *
2119  * @mr: the memory region being queried.
2120  * @snap: the dirty bitmap snapshot
2121  * @addr: the address (relative to the start of the region) being queried.
2122  * @size: the size of the range being queried.
2123  */
2124 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2125                                       DirtyBitmapSnapshot *snap,
2126                                       hwaddr addr, hwaddr size);
2127 
2128 /**
2129  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2130  *                            client.
2131  *
2132  * Marks a range of pages as no longer dirty.
2133  *
2134  * @mr: the region being updated.
2135  * @addr: the start of the subrange being cleaned.
2136  * @size: the size of the subrange being cleaned.
2137  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2138  *          %DIRTY_MEMORY_VGA.
2139  */
2140 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2141                                hwaddr size, unsigned client);
2142 
2143 /**
2144  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2145  *                                 TBs (for self-modifying code).
2146  *
2147  * The MemoryRegionOps->write() callback of a ROM device must use this function
2148  * to mark byte ranges that have been modified internally, such as by directly
2149  * accessing the memory returned by memory_region_get_ram_ptr().
2150  *
2151  * This function marks the range dirty and invalidates TBs so that TCG can
2152  * detect self-modifying code.
2153  *
2154  * @mr: the region being flushed.
2155  * @addr: the start, relative to the start of the region, of the range being
2156  *        flushed.
2157  * @size: the size, in bytes, of the range being flushed.
2158  */
2159 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2160 
2161 /**
2162  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2163  *
2164  * Allows a memory region to be marked as read-only (turning it into a ROM).
2165  * only useful on RAM regions.
2166  *
2167  * @mr: the region being updated.
2168  * @readonly: whether rhe region is to be ROM or RAM.
2169  */
2170 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2171 
2172 /**
2173  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2174  *
2175  * Allows a memory region to be marked as non-volatile.
2176  * only useful on RAM regions.
2177  *
2178  * @mr: the region being updated.
2179  * @nonvolatile: whether rhe region is to be non-volatile.
2180  */
2181 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2182 
2183 /**
2184  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2185  *
2186  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2187  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2188  * device is mapped to guest memory and satisfies read access directly.
2189  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2190  * Writes are always handled by the #MemoryRegion.write function.
2191  *
2192  * @mr: the memory region to be updated
2193  * @romd_mode: %true to put the region into ROMD mode
2194  */
2195 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2196 
2197 /**
2198  * memory_region_set_coalescing: Enable memory coalescing for the region.
2199  *
2200  * Enabled writes to a region to be queued for later processing. MMIO ->write
2201  * callbacks may be delayed until a non-coalesced MMIO is issued.
2202  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2203  *
2204  * @mr: the memory region to be write coalesced
2205  */
2206 void memory_region_set_coalescing(MemoryRegion *mr);
2207 
2208 /**
2209  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2210  *                               a region.
2211  *
2212  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2213  * Multiple calls can be issued coalesced disjoint ranges.
2214  *
2215  * @mr: the memory region to be updated.
2216  * @offset: the start of the range within the region to be coalesced.
2217  * @size: the size of the subrange to be coalesced.
2218  */
2219 void memory_region_add_coalescing(MemoryRegion *mr,
2220                                   hwaddr offset,
2221                                   uint64_t size);
2222 
2223 /**
2224  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2225  *
2226  * Disables any coalescing caused by memory_region_set_coalescing() or
2227  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2228  * hardware.
2229  *
2230  * @mr: the memory region to be updated.
2231  */
2232 void memory_region_clear_coalescing(MemoryRegion *mr);
2233 
2234 /**
2235  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2236  *                                    accesses.
2237  *
2238  * Ensure that pending coalesced MMIO request are flushed before the memory
2239  * region is accessed. This property is automatically enabled for all regions
2240  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2241  *
2242  * @mr: the memory region to be updated.
2243  */
2244 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2245 
2246 /**
2247  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2248  *                                      accesses.
2249  *
2250  * Clear the automatic coalesced MMIO flushing enabled via
2251  * memory_region_set_flush_coalesced. Note that this service has no effect on
2252  * memory regions that have MMIO coalescing enabled for themselves. For them,
2253  * automatic flushing will stop once coalescing is disabled.
2254  *
2255  * @mr: the memory region to be updated.
2256  */
2257 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2258 
2259 /**
2260  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2261  *                            is written to a location.
2262  *
2263  * Marks a word in an IO region (initialized with memory_region_init_io())
2264  * as a trigger for an eventfd event.  The I/O callback will not be called.
2265  * The caller must be prepared to handle failure (that is, take the required
2266  * action if the callback _is_ called).
2267  *
2268  * @mr: the memory region being updated.
2269  * @addr: the address within @mr that is to be monitored
2270  * @size: the size of the access to trigger the eventfd
2271  * @match_data: whether to match against @data, instead of just @addr
2272  * @data: the data to match against the guest write
2273  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2274  **/
2275 void memory_region_add_eventfd(MemoryRegion *mr,
2276                                hwaddr addr,
2277                                unsigned size,
2278                                bool match_data,
2279                                uint64_t data,
2280                                EventNotifier *e);
2281 
2282 /**
2283  * memory_region_del_eventfd: Cancel an eventfd.
2284  *
2285  * Cancels an eventfd trigger requested by a previous
2286  * memory_region_add_eventfd() call.
2287  *
2288  * @mr: the memory region being updated.
2289  * @addr: the address within @mr that is to be monitored
2290  * @size: the size of the access to trigger the eventfd
2291  * @match_data: whether to match against @data, instead of just @addr
2292  * @data: the data to match against the guest write
2293  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2294  */
2295 void memory_region_del_eventfd(MemoryRegion *mr,
2296                                hwaddr addr,
2297                                unsigned size,
2298                                bool match_data,
2299                                uint64_t data,
2300                                EventNotifier *e);
2301 
2302 /**
2303  * memory_region_add_subregion: Add a subregion to a container.
2304  *
2305  * Adds a subregion at @offset.  The subregion may not overlap with other
2306  * subregions (except for those explicitly marked as overlapping).  A region
2307  * may only be added once as a subregion (unless removed with
2308  * memory_region_del_subregion()); use memory_region_init_alias() if you
2309  * want a region to be a subregion in multiple locations.
2310  *
2311  * @mr: the region to contain the new subregion; must be a container
2312  *      initialized with memory_region_init().
2313  * @offset: the offset relative to @mr where @subregion is added.
2314  * @subregion: the subregion to be added.
2315  */
2316 void memory_region_add_subregion(MemoryRegion *mr,
2317                                  hwaddr offset,
2318                                  MemoryRegion *subregion);
2319 /**
2320  * memory_region_add_subregion_overlap: Add a subregion to a container
2321  *                                      with overlap.
2322  *
2323  * Adds a subregion at @offset.  The subregion may overlap with other
2324  * subregions.  Conflicts are resolved by having a higher @priority hide a
2325  * lower @priority. Subregions without priority are taken as @priority 0.
2326  * A region may only be added once as a subregion (unless removed with
2327  * memory_region_del_subregion()); use memory_region_init_alias() if you
2328  * want a region to be a subregion in multiple locations.
2329  *
2330  * @mr: the region to contain the new subregion; must be a container
2331  *      initialized with memory_region_init().
2332  * @offset: the offset relative to @mr where @subregion is added.
2333  * @subregion: the subregion to be added.
2334  * @priority: used for resolving overlaps; highest priority wins.
2335  */
2336 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2337                                          hwaddr offset,
2338                                          MemoryRegion *subregion,
2339                                          int priority);
2340 
2341 /**
2342  * memory_region_get_ram_addr: Get the ram address associated with a memory
2343  *                             region
2344  *
2345  * @mr: the region to be queried
2346  */
2347 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2348 
2349 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2350 /**
2351  * memory_region_del_subregion: Remove a subregion.
2352  *
2353  * Removes a subregion from its container.
2354  *
2355  * @mr: the container to be updated.
2356  * @subregion: the region being removed; must be a current subregion of @mr.
2357  */
2358 void memory_region_del_subregion(MemoryRegion *mr,
2359                                  MemoryRegion *subregion);
2360 
2361 /*
2362  * memory_region_set_enabled: dynamically enable or disable a region
2363  *
2364  * Enables or disables a memory region.  A disabled memory region
2365  * ignores all accesses to itself and its subregions.  It does not
2366  * obscure sibling subregions with lower priority - it simply behaves as
2367  * if it was removed from the hierarchy.
2368  *
2369  * Regions default to being enabled.
2370  *
2371  * @mr: the region to be updated
2372  * @enabled: whether to enable or disable the region
2373  */
2374 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2375 
2376 /*
2377  * memory_region_set_address: dynamically update the address of a region
2378  *
2379  * Dynamically updates the address of a region, relative to its container.
2380  * May be used on regions are currently part of a memory hierarchy.
2381  *
2382  * @mr: the region to be updated
2383  * @addr: new address, relative to container region
2384  */
2385 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2386 
2387 /*
2388  * memory_region_set_size: dynamically update the size of a region.
2389  *
2390  * Dynamically updates the size of a region.
2391  *
2392  * @mr: the region to be updated
2393  * @size: used size of the region.
2394  */
2395 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2396 
2397 /*
2398  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2399  *
2400  * Dynamically updates the offset into the target region that an alias points
2401  * to, as if the fourth argument to memory_region_init_alias() has changed.
2402  *
2403  * @mr: the #MemoryRegion to be updated; should be an alias.
2404  * @offset: the new offset into the target memory region
2405  */
2406 void memory_region_set_alias_offset(MemoryRegion *mr,
2407                                     hwaddr offset);
2408 
2409 /*
2410  * memory_region_set_unmergeable: Set a memory region unmergeable
2411  *
2412  * Mark a memory region unmergeable, resulting in the memory region (or
2413  * everything contained in a memory region container) not getting merged when
2414  * simplifying the address space and notifying memory listeners. Consequently,
2415  * memory listeners will never get notified about ranges that are larger than
2416  * the original memory regions.
2417  *
2418  * This is primarily useful when multiple aliases to a RAM memory region are
2419  * mapped into a memory region container, and updates (e.g., enable/disable or
2420  * map/unmap) of individual memory region aliases are not supposed to affect
2421  * other memory regions in the same container.
2422  *
2423  * @mr: the #MemoryRegion to be updated
2424  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2425  */
2426 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2427 
2428 /**
2429  * memory_region_present: checks if an address relative to a @container
2430  * translates into #MemoryRegion within @container
2431  *
2432  * Answer whether a #MemoryRegion within @container covers the address
2433  * @addr.
2434  *
2435  * @container: a #MemoryRegion within which @addr is a relative address
2436  * @addr: the area within @container to be searched
2437  */
2438 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2439 
2440 /**
2441  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2442  * into another memory region, which does not necessarily imply that it is
2443  * mapped into an address space.
2444  *
2445  * @mr: a #MemoryRegion which should be checked if it's mapped
2446  */
2447 bool memory_region_is_mapped(MemoryRegion *mr);
2448 
2449 /**
2450  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2451  * #MemoryRegion
2452  *
2453  * The #RamDiscardManager cannot change while a memory region is mapped.
2454  *
2455  * @mr: the #MemoryRegion
2456  */
2457 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2458 
2459 /**
2460  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2461  * #RamDiscardManager assigned
2462  *
2463  * @mr: the #MemoryRegion
2464  */
2465 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2466 {
2467     return !!memory_region_get_ram_discard_manager(mr);
2468 }
2469 
2470 /**
2471  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2472  * #MemoryRegion
2473  *
2474  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2475  * that does not cover RAM, or a #MemoryRegion that already has a
2476  * #RamDiscardManager assigned.
2477  *
2478  * @mr: the #MemoryRegion
2479  * @rdm: #RamDiscardManager to set
2480  */
2481 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2482                                            RamDiscardManager *rdm);
2483 
2484 /**
2485  * memory_region_find: translate an address/size relative to a
2486  * MemoryRegion into a #MemoryRegionSection.
2487  *
2488  * Locates the first #MemoryRegion within @mr that overlaps the range
2489  * given by @addr and @size.
2490  *
2491  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2492  * It will have the following characteristics:
2493  * - @size = 0 iff no overlap was found
2494  * - @mr is non-%NULL iff an overlap was found
2495  *
2496  * Remember that in the return value the @offset_within_region is
2497  * relative to the returned region (in the .@mr field), not to the
2498  * @mr argument.
2499  *
2500  * Similarly, the .@offset_within_address_space is relative to the
2501  * address space that contains both regions, the passed and the
2502  * returned one.  However, in the special case where the @mr argument
2503  * has no container (and thus is the root of the address space), the
2504  * following will hold:
2505  * - @offset_within_address_space >= @addr
2506  * - @offset_within_address_space + .@size <= @addr + @size
2507  *
2508  * @mr: a MemoryRegion within which @addr is a relative address
2509  * @addr: start of the area within @as to be searched
2510  * @size: size of the area to be searched
2511  */
2512 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2513                                        hwaddr addr, uint64_t size);
2514 
2515 /**
2516  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2517  *
2518  * Synchronizes the dirty page log for all address spaces.
2519  *
2520  * @last_stage: whether this is the last stage of live migration
2521  */
2522 void memory_global_dirty_log_sync(bool last_stage);
2523 
2524 /**
2525  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2526  *
2527  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2528  * This function must be called after the dirty log bitmap is cleared, and
2529  * before dirty guest memory pages are read.  If you are using
2530  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2531  * care of doing this.
2532  */
2533 void memory_global_after_dirty_log_sync(void);
2534 
2535 /**
2536  * memory_region_transaction_begin: Start a transaction.
2537  *
2538  * During a transaction, changes will be accumulated and made visible
2539  * only when the transaction ends (is committed).
2540  */
2541 void memory_region_transaction_begin(void);
2542 
2543 /**
2544  * memory_region_transaction_commit: Commit a transaction and make changes
2545  *                                   visible to the guest.
2546  */
2547 void memory_region_transaction_commit(void);
2548 
2549 /**
2550  * memory_listener_register: register callbacks to be called when memory
2551  *                           sections are mapped or unmapped into an address
2552  *                           space
2553  *
2554  * @listener: an object containing the callbacks to be called
2555  * @filter: if non-%NULL, only regions in this address space will be observed
2556  */
2557 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2558 
2559 /**
2560  * memory_listener_unregister: undo the effect of memory_listener_register()
2561  *
2562  * @listener: an object containing the callbacks to be removed
2563  */
2564 void memory_listener_unregister(MemoryListener *listener);
2565 
2566 /**
2567  * memory_global_dirty_log_start: begin dirty logging for all regions
2568  *
2569  * @flags: purpose of starting dirty log, migration or dirty rate
2570  */
2571 void memory_global_dirty_log_start(unsigned int flags);
2572 
2573 /**
2574  * memory_global_dirty_log_stop: end dirty logging for all regions
2575  *
2576  * @flags: purpose of stopping dirty log, migration or dirty rate
2577  */
2578 void memory_global_dirty_log_stop(unsigned int flags);
2579 
2580 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2581 
2582 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2583                                 unsigned size, bool is_write,
2584                                 MemTxAttrs attrs);
2585 
2586 /**
2587  * memory_region_dispatch_read: perform a read directly to the specified
2588  * MemoryRegion.
2589  *
2590  * @mr: #MemoryRegion to access
2591  * @addr: address within that region
2592  * @pval: pointer to uint64_t which the data is written to
2593  * @op: size, sign, and endianness of the memory operation
2594  * @attrs: memory transaction attributes to use for the access
2595  */
2596 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2597                                         hwaddr addr,
2598                                         uint64_t *pval,
2599                                         MemOp op,
2600                                         MemTxAttrs attrs);
2601 /**
2602  * memory_region_dispatch_write: perform a write directly to the specified
2603  * MemoryRegion.
2604  *
2605  * @mr: #MemoryRegion to access
2606  * @addr: address within that region
2607  * @data: data to write
2608  * @op: size, sign, and endianness of the memory operation
2609  * @attrs: memory transaction attributes to use for the access
2610  */
2611 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2612                                          hwaddr addr,
2613                                          uint64_t data,
2614                                          MemOp op,
2615                                          MemTxAttrs attrs);
2616 
2617 /**
2618  * address_space_init: initializes an address space
2619  *
2620  * @as: an uninitialized #AddressSpace
2621  * @root: a #MemoryRegion that routes addresses for the address space
2622  * @name: an address space name.  The name is only used for debugging
2623  *        output.
2624  */
2625 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2626 
2627 /**
2628  * address_space_destroy: destroy an address space
2629  *
2630  * Releases all resources associated with an address space.  After an address space
2631  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2632  * as well.
2633  *
2634  * @as: address space to be destroyed
2635  */
2636 void address_space_destroy(AddressSpace *as);
2637 
2638 /**
2639  * address_space_remove_listeners: unregister all listeners of an address space
2640  *
2641  * Removes all callbacks previously registered with memory_listener_register()
2642  * for @as.
2643  *
2644  * @as: an initialized #AddressSpace
2645  */
2646 void address_space_remove_listeners(AddressSpace *as);
2647 
2648 /**
2649  * address_space_rw: read from or write to an address space.
2650  *
2651  * Return a MemTxResult indicating whether the operation succeeded
2652  * or failed (eg unassigned memory, device rejected the transaction,
2653  * IOMMU fault).
2654  *
2655  * @as: #AddressSpace to be accessed
2656  * @addr: address within that address space
2657  * @attrs: memory transaction attributes
2658  * @buf: buffer with the data transferred
2659  * @len: the number of bytes to read or write
2660  * @is_write: indicates the transfer direction
2661  */
2662 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2663                              MemTxAttrs attrs, void *buf,
2664                              hwaddr len, bool is_write);
2665 
2666 /**
2667  * address_space_write: write to address space.
2668  *
2669  * Return a MemTxResult indicating whether the operation succeeded
2670  * or failed (eg unassigned memory, device rejected the transaction,
2671  * IOMMU fault).
2672  *
2673  * @as: #AddressSpace to be accessed
2674  * @addr: address within that address space
2675  * @attrs: memory transaction attributes
2676  * @buf: buffer with the data transferred
2677  * @len: the number of bytes to write
2678  */
2679 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2680                                 MemTxAttrs attrs,
2681                                 const void *buf, hwaddr len);
2682 
2683 /**
2684  * address_space_write_rom: write to address space, including ROM.
2685  *
2686  * This function writes to the specified address space, but will
2687  * write data to both ROM and RAM. This is used for non-guest
2688  * writes like writes from the gdb debug stub or initial loading
2689  * of ROM contents.
2690  *
2691  * Note that portions of the write which attempt to write data to
2692  * a device will be silently ignored -- only real RAM and ROM will
2693  * be written to.
2694  *
2695  * Return a MemTxResult indicating whether the operation succeeded
2696  * or failed (eg unassigned memory, device rejected the transaction,
2697  * IOMMU fault).
2698  *
2699  * @as: #AddressSpace to be accessed
2700  * @addr: address within that address space
2701  * @attrs: memory transaction attributes
2702  * @buf: buffer with the data transferred
2703  * @len: the number of bytes to write
2704  */
2705 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2706                                     MemTxAttrs attrs,
2707                                     const void *buf, hwaddr len);
2708 
2709 /* address_space_ld*: load from an address space
2710  * address_space_st*: store to an address space
2711  *
2712  * These functions perform a load or store of the byte, word,
2713  * longword or quad to the specified address within the AddressSpace.
2714  * The _le suffixed functions treat the data as little endian;
2715  * _be indicates big endian; no suffix indicates "same endianness
2716  * as guest CPU".
2717  *
2718  * The "guest CPU endianness" accessors are deprecated for use outside
2719  * target-* code; devices should be CPU-agnostic and use either the LE
2720  * or the BE accessors.
2721  *
2722  * @as #AddressSpace to be accessed
2723  * @addr: address within that address space
2724  * @val: data value, for stores
2725  * @attrs: memory transaction attributes
2726  * @result: location to write the success/failure of the transaction;
2727  *   if NULL, this information is discarded
2728  */
2729 
2730 #define SUFFIX
2731 #define ARG1         as
2732 #define ARG1_DECL    AddressSpace *as
2733 #include "exec/memory_ldst.h.inc"
2734 
2735 #define SUFFIX
2736 #define ARG1         as
2737 #define ARG1_DECL    AddressSpace *as
2738 #include "exec/memory_ldst_phys.h.inc"
2739 
2740 struct MemoryRegionCache {
2741     void *ptr;
2742     hwaddr xlat;
2743     hwaddr len;
2744     FlatView *fv;
2745     MemoryRegionSection mrs;
2746     bool is_write;
2747 };
2748 
2749 /* address_space_ld*_cached: load from a cached #MemoryRegion
2750  * address_space_st*_cached: store into a cached #MemoryRegion
2751  *
2752  * These functions perform a load or store of the byte, word,
2753  * longword or quad to the specified address.  The address is
2754  * a physical address in the AddressSpace, but it must lie within
2755  * a #MemoryRegion that was mapped with address_space_cache_init.
2756  *
2757  * The _le suffixed functions treat the data as little endian;
2758  * _be indicates big endian; no suffix indicates "same endianness
2759  * as guest CPU".
2760  *
2761  * The "guest CPU endianness" accessors are deprecated for use outside
2762  * target-* code; devices should be CPU-agnostic and use either the LE
2763  * or the BE accessors.
2764  *
2765  * @cache: previously initialized #MemoryRegionCache to be accessed
2766  * @addr: address within the address space
2767  * @val: data value, for stores
2768  * @attrs: memory transaction attributes
2769  * @result: location to write the success/failure of the transaction;
2770  *   if NULL, this information is discarded
2771  */
2772 
2773 #define SUFFIX       _cached_slow
2774 #define ARG1         cache
2775 #define ARG1_DECL    MemoryRegionCache *cache
2776 #include "exec/memory_ldst.h.inc"
2777 
2778 /* Inline fast path for direct RAM access.  */
2779 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2780     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2781 {
2782     assert(addr < cache->len);
2783     if (likely(cache->ptr)) {
2784         return ldub_p(cache->ptr + addr);
2785     } else {
2786         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2787     }
2788 }
2789 
2790 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2791     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2792 {
2793     assert(addr < cache->len);
2794     if (likely(cache->ptr)) {
2795         stb_p(cache->ptr + addr, val);
2796     } else {
2797         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2798     }
2799 }
2800 
2801 #define ENDIANNESS   _le
2802 #include "exec/memory_ldst_cached.h.inc"
2803 
2804 #define ENDIANNESS   _be
2805 #include "exec/memory_ldst_cached.h.inc"
2806 
2807 #define SUFFIX       _cached
2808 #define ARG1         cache
2809 #define ARG1_DECL    MemoryRegionCache *cache
2810 #include "exec/memory_ldst_phys.h.inc"
2811 
2812 /* address_space_cache_init: prepare for repeated access to a physical
2813  * memory region
2814  *
2815  * @cache: #MemoryRegionCache to be filled
2816  * @as: #AddressSpace to be accessed
2817  * @addr: address within that address space
2818  * @len: length of buffer
2819  * @is_write: indicates the transfer direction
2820  *
2821  * Will only work with RAM, and may map a subset of the requested range by
2822  * returning a value that is less than @len.  On failure, return a negative
2823  * errno value.
2824  *
2825  * Because it only works with RAM, this function can be used for
2826  * read-modify-write operations.  In this case, is_write should be %true.
2827  *
2828  * Note that addresses passed to the address_space_*_cached functions
2829  * are relative to @addr.
2830  */
2831 int64_t address_space_cache_init(MemoryRegionCache *cache,
2832                                  AddressSpace *as,
2833                                  hwaddr addr,
2834                                  hwaddr len,
2835                                  bool is_write);
2836 
2837 /**
2838  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2839  *
2840  * @cache: The #MemoryRegionCache to operate on.
2841  *
2842  * Initializes #MemoryRegionCache structure without memory region attached.
2843  * Cache initialized this way can only be safely destroyed, but not used.
2844  */
2845 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2846 {
2847     cache->mrs.mr = NULL;
2848     /* There is no real need to initialize fv, but it makes Coverity happy. */
2849     cache->fv = NULL;
2850 }
2851 
2852 /**
2853  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2854  *
2855  * @cache: The #MemoryRegionCache to operate on.
2856  * @addr: The first physical address that was written, relative to the
2857  * address that was passed to @address_space_cache_init.
2858  * @access_len: The number of bytes that were written starting at @addr.
2859  */
2860 void address_space_cache_invalidate(MemoryRegionCache *cache,
2861                                     hwaddr addr,
2862                                     hwaddr access_len);
2863 
2864 /**
2865  * address_space_cache_destroy: free a #MemoryRegionCache
2866  *
2867  * @cache: The #MemoryRegionCache whose memory should be released.
2868  */
2869 void address_space_cache_destroy(MemoryRegionCache *cache);
2870 
2871 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2872  * entry. Should be called from an RCU critical section.
2873  */
2874 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2875                                             bool is_write, MemTxAttrs attrs);
2876 
2877 /* address_space_translate: translate an address range into an address space
2878  * into a MemoryRegion and an address range into that section.  Should be
2879  * called from an RCU critical section, to avoid that the last reference
2880  * to the returned region disappears after address_space_translate returns.
2881  *
2882  * @fv: #FlatView to be accessed
2883  * @addr: address within that address space
2884  * @xlat: pointer to address within the returned memory region section's
2885  * #MemoryRegion.
2886  * @len: pointer to length
2887  * @is_write: indicates the transfer direction
2888  * @attrs: memory attributes
2889  */
2890 MemoryRegion *flatview_translate(FlatView *fv,
2891                                  hwaddr addr, hwaddr *xlat,
2892                                  hwaddr *len, bool is_write,
2893                                  MemTxAttrs attrs);
2894 
2895 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2896                                                     hwaddr addr, hwaddr *xlat,
2897                                                     hwaddr *len, bool is_write,
2898                                                     MemTxAttrs attrs)
2899 {
2900     return flatview_translate(address_space_to_flatview(as),
2901                               addr, xlat, len, is_write, attrs);
2902 }
2903 
2904 /* address_space_access_valid: check for validity of accessing an address
2905  * space range
2906  *
2907  * Check whether memory is assigned to the given address space range, and
2908  * access is permitted by any IOMMU regions that are active for the address
2909  * space.
2910  *
2911  * For now, addr and len should be aligned to a page size.  This limitation
2912  * will be lifted in the future.
2913  *
2914  * @as: #AddressSpace to be accessed
2915  * @addr: address within that address space
2916  * @len: length of the area to be checked
2917  * @is_write: indicates the transfer direction
2918  * @attrs: memory attributes
2919  */
2920 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2921                                 bool is_write, MemTxAttrs attrs);
2922 
2923 /* address_space_map: map a physical memory region into a host virtual address
2924  *
2925  * May map a subset of the requested range, given by and returned in @plen.
2926  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2927  * the mapping are exhausted.
2928  * Use only for reads OR writes - not for read-modify-write operations.
2929  * Use cpu_register_map_client() to know when retrying the map operation is
2930  * likely to succeed.
2931  *
2932  * @as: #AddressSpace to be accessed
2933  * @addr: address within that address space
2934  * @plen: pointer to length of buffer; updated on return
2935  * @is_write: indicates the transfer direction
2936  * @attrs: memory attributes
2937  */
2938 void *address_space_map(AddressSpace *as, hwaddr addr,
2939                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2940 
2941 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2942  *
2943  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2944  * the amount of memory that was actually read or written by the caller.
2945  *
2946  * @as: #AddressSpace used
2947  * @buffer: host pointer as returned by address_space_map()
2948  * @len: buffer length as returned by address_space_map()
2949  * @access_len: amount of data actually transferred
2950  * @is_write: indicates the transfer direction
2951  */
2952 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2953                          bool is_write, hwaddr access_len);
2954 
2955 
2956 /* Internal functions, part of the implementation of address_space_read.  */
2957 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2958                                     MemTxAttrs attrs, void *buf, hwaddr len);
2959 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2960                                    MemTxAttrs attrs, void *buf,
2961                                    hwaddr len, hwaddr addr1, hwaddr l,
2962                                    MemoryRegion *mr);
2963 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2964 
2965 /* Internal functions, part of the implementation of address_space_read_cached
2966  * and address_space_write_cached.  */
2967 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2968                                            hwaddr addr, void *buf, hwaddr len);
2969 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2970                                             hwaddr addr, const void *buf,
2971                                             hwaddr len);
2972 
2973 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2974 bool prepare_mmio_access(MemoryRegion *mr);
2975 
2976 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2977 {
2978     if (is_write) {
2979         return memory_region_is_ram(mr) && !mr->readonly &&
2980                !mr->rom_device && !memory_region_is_ram_device(mr);
2981     } else {
2982         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2983                memory_region_is_romd(mr);
2984     }
2985 }
2986 
2987 /**
2988  * address_space_read: read from an address space.
2989  *
2990  * Return a MemTxResult indicating whether the operation succeeded
2991  * or failed (eg unassigned memory, device rejected the transaction,
2992  * IOMMU fault).  Called within RCU critical section.
2993  *
2994  * @as: #AddressSpace to be accessed
2995  * @addr: address within that address space
2996  * @attrs: memory transaction attributes
2997  * @buf: buffer with the data transferred
2998  * @len: length of the data transferred
2999  */
3000 static inline __attribute__((__always_inline__))
3001 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3002                                MemTxAttrs attrs, void *buf,
3003                                hwaddr len)
3004 {
3005     MemTxResult result = MEMTX_OK;
3006     hwaddr l, addr1;
3007     void *ptr;
3008     MemoryRegion *mr;
3009     FlatView *fv;
3010 
3011     if (__builtin_constant_p(len)) {
3012         if (len) {
3013             RCU_READ_LOCK_GUARD();
3014             fv = address_space_to_flatview(as);
3015             l = len;
3016             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3017             if (len == l && memory_access_is_direct(mr, false)) {
3018                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3019                 memcpy(buf, ptr, len);
3020             } else {
3021                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3022                                                 addr1, l, mr);
3023             }
3024         }
3025     } else {
3026         result = address_space_read_full(as, addr, attrs, buf, len);
3027     }
3028     return result;
3029 }
3030 
3031 /**
3032  * address_space_read_cached: read from a cached RAM region
3033  *
3034  * @cache: Cached region to be addressed
3035  * @addr: address relative to the base of the RAM region
3036  * @buf: buffer with the data transferred
3037  * @len: length of the data transferred
3038  */
3039 static inline MemTxResult
3040 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3041                           void *buf, hwaddr len)
3042 {
3043     assert(addr < cache->len && len <= cache->len - addr);
3044     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3045     if (likely(cache->ptr)) {
3046         memcpy(buf, cache->ptr + addr, len);
3047         return MEMTX_OK;
3048     } else {
3049         return address_space_read_cached_slow(cache, addr, buf, len);
3050     }
3051 }
3052 
3053 /**
3054  * address_space_write_cached: write to a cached RAM region
3055  *
3056  * @cache: Cached region to be addressed
3057  * @addr: address relative to the base of the RAM region
3058  * @buf: buffer with the data transferred
3059  * @len: length of the data transferred
3060  */
3061 static inline MemTxResult
3062 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3063                            const void *buf, hwaddr len)
3064 {
3065     assert(addr < cache->len && len <= cache->len - addr);
3066     if (likely(cache->ptr)) {
3067         memcpy(cache->ptr + addr, buf, len);
3068         return MEMTX_OK;
3069     } else {
3070         return address_space_write_cached_slow(cache, addr, buf, len);
3071     }
3072 }
3073 
3074 /**
3075  * address_space_set: Fill address space with a constant byte.
3076  *
3077  * Return a MemTxResult indicating whether the operation succeeded
3078  * or failed (eg unassigned memory, device rejected the transaction,
3079  * IOMMU fault).
3080  *
3081  * @as: #AddressSpace to be accessed
3082  * @addr: address within that address space
3083  * @c: constant byte to fill the memory
3084  * @len: the number of bytes to fill with the constant byte
3085  * @attrs: memory transaction attributes
3086  */
3087 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3088                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3089 
3090 #ifdef NEED_CPU_H
3091 /* enum device_endian to MemOp.  */
3092 static inline MemOp devend_memop(enum device_endian end)
3093 {
3094     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3095                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3096 
3097 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3098     /* Swap if non-host endianness or native (target) endianness */
3099     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3100 #else
3101     const int non_host_endianness =
3102         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3103 
3104     /* In this case, native (target) endianness needs no swap.  */
3105     return (end == non_host_endianness) ? MO_BSWAP : 0;
3106 #endif
3107 }
3108 #endif
3109 
3110 /*
3111  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3112  * to manage the actual amount of memory consumed by the VM (then, the memory
3113  * provided by RAM blocks might be bigger than the desired memory consumption).
3114  * This *must* be set if:
3115  * - Discarding parts of a RAM blocks does not result in the change being
3116  *   reflected in the VM and the pages getting freed.
3117  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3118  *   discards blindly.
3119  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3120  *   encrypted VMs).
3121  * Technologies that only temporarily pin the current working set of a
3122  * driver are fine, because we don't expect such pages to be discarded
3123  * (esp. based on guest action like balloon inflation).
3124  *
3125  * This is *not* to be used to protect from concurrent discards (esp.,
3126  * postcopy).
3127  *
3128  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3129  * discards to work reliably is active.
3130  */
3131 int ram_block_discard_disable(bool state);
3132 
3133 /*
3134  * See ram_block_discard_disable(): only disable uncoordinated discards,
3135  * keeping coordinated discards (via the RamDiscardManager) enabled.
3136  */
3137 int ram_block_uncoordinated_discard_disable(bool state);
3138 
3139 /*
3140  * Inhibit technologies that disable discarding of pages in RAM blocks.
3141  *
3142  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3143  * broken.
3144  */
3145 int ram_block_discard_require(bool state);
3146 
3147 /*
3148  * See ram_block_discard_require(): only inhibit technologies that disable
3149  * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3150  * technologies that only inhibit uncoordinated discards (via the
3151  * RamDiscardManager).
3152  */
3153 int ram_block_coordinated_discard_require(bool state);
3154 
3155 /*
3156  * Test if any discarding of memory in ram blocks is disabled.
3157  */
3158 bool ram_block_discard_is_disabled(void);
3159 
3160 /*
3161  * Test if any discarding of memory in ram blocks is required to work reliably.
3162  */
3163 bool ram_block_discard_is_required(void);
3164 
3165 #endif
3166 
3167 #endif
3168