xref: /openbmc/qemu/include/exec/memory.h (revision ec150c7e)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 extern bool global_dirty_log;
50 
51 typedef struct MemoryRegionOps MemoryRegionOps;
52 typedef struct MemoryRegionMmio MemoryRegionMmio;
53 
54 struct MemoryRegionMmio {
55     CPUReadMemoryFunc *read[3];
56     CPUWriteMemoryFunc *write[3];
57 };
58 
59 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
60 
61 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
62 typedef enum {
63     IOMMU_NONE = 0,
64     IOMMU_RO   = 1,
65     IOMMU_WO   = 2,
66     IOMMU_RW   = 3,
67 } IOMMUAccessFlags;
68 
69 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
70 
71 struct IOMMUTLBEntry {
72     AddressSpace    *target_as;
73     hwaddr           iova;
74     hwaddr           translated_addr;
75     hwaddr           addr_mask;  /* 0xfff = 4k translation */
76     IOMMUAccessFlags perm;
77 };
78 
79 /*
80  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
81  * register with one or multiple IOMMU Notifier capability bit(s).
82  */
83 typedef enum {
84     IOMMU_NOTIFIER_NONE = 0,
85     /* Notify cache invalidations */
86     IOMMU_NOTIFIER_UNMAP = 0x1,
87     /* Notify entry changes (newly created entries) */
88     IOMMU_NOTIFIER_MAP = 0x2,
89 } IOMMUNotifierFlag;
90 
91 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
92 
93 struct IOMMUNotifier;
94 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
95                             IOMMUTLBEntry *data);
96 
97 struct IOMMUNotifier {
98     IOMMUNotify notify;
99     IOMMUNotifierFlag notifier_flags;
100     /* Notify for address space range start <= addr <= end */
101     hwaddr start;
102     hwaddr end;
103     int iommu_idx;
104     QLIST_ENTRY(IOMMUNotifier) node;
105 };
106 typedef struct IOMMUNotifier IOMMUNotifier;
107 
108 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
109 #define RAM_PREALLOC   (1 << 0)
110 
111 /* RAM is mmap-ed with MAP_SHARED */
112 #define RAM_SHARED     (1 << 1)
113 
114 /* Only a portion of RAM (used_length) is actually used, and migrated.
115  * This used_length size can change across reboots.
116  */
117 #define RAM_RESIZEABLE (1 << 2)
118 
119 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
120  * zero the page and wake waiting processes.
121  * (Set during postcopy)
122  */
123 #define RAM_UF_ZEROPAGE (1 << 3)
124 
125 /* RAM can be migrated */
126 #define RAM_MIGRATABLE (1 << 4)
127 
128 /* RAM is a persistent kind memory */
129 #define RAM_PMEM (1 << 5)
130 
131 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
132                                        IOMMUNotifierFlag flags,
133                                        hwaddr start, hwaddr end,
134                                        int iommu_idx)
135 {
136     n->notify = fn;
137     n->notifier_flags = flags;
138     n->start = start;
139     n->end = end;
140     n->iommu_idx = iommu_idx;
141 }
142 
143 /*
144  * Memory region callbacks
145  */
146 struct MemoryRegionOps {
147     /* Read from the memory region. @addr is relative to @mr; @size is
148      * in bytes. */
149     uint64_t (*read)(void *opaque,
150                      hwaddr addr,
151                      unsigned size);
152     /* Write to the memory region. @addr is relative to @mr; @size is
153      * in bytes. */
154     void (*write)(void *opaque,
155                   hwaddr addr,
156                   uint64_t data,
157                   unsigned size);
158 
159     MemTxResult (*read_with_attrs)(void *opaque,
160                                    hwaddr addr,
161                                    uint64_t *data,
162                                    unsigned size,
163                                    MemTxAttrs attrs);
164     MemTxResult (*write_with_attrs)(void *opaque,
165                                     hwaddr addr,
166                                     uint64_t data,
167                                     unsigned size,
168                                     MemTxAttrs attrs);
169 
170     enum device_endian endianness;
171     /* Guest-visible constraints: */
172     struct {
173         /* If nonzero, specify bounds on access sizes beyond which a machine
174          * check is thrown.
175          */
176         unsigned min_access_size;
177         unsigned max_access_size;
178         /* If true, unaligned accesses are supported.  Otherwise unaligned
179          * accesses throw machine checks.
180          */
181          bool unaligned;
182         /*
183          * If present, and returns #false, the transaction is not accepted
184          * by the device (and results in machine dependent behaviour such
185          * as a machine check exception).
186          */
187         bool (*accepts)(void *opaque, hwaddr addr,
188                         unsigned size, bool is_write,
189                         MemTxAttrs attrs);
190     } valid;
191     /* Internal implementation constraints: */
192     struct {
193         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
194          * will be rounded upwards and a partial result will be returned.
195          */
196         unsigned min_access_size;
197         /* If nonzero, specifies the maximum size implemented.  Larger sizes
198          * will be done as a series of accesses with smaller sizes.
199          */
200         unsigned max_access_size;
201         /* If true, unaligned accesses are supported.  Otherwise all accesses
202          * are converted to (possibly multiple) naturally aligned accesses.
203          */
204         bool unaligned;
205     } impl;
206 };
207 
208 enum IOMMUMemoryRegionAttr {
209     IOMMU_ATTR_SPAPR_TCE_FD
210 };
211 
212 /**
213  * IOMMUMemoryRegionClass:
214  *
215  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
216  * and provide an implementation of at least the @translate method here
217  * to handle requests to the memory region. Other methods are optional.
218  *
219  * The IOMMU implementation must use the IOMMU notifier infrastructure
220  * to report whenever mappings are changed, by calling
221  * memory_region_notify_iommu() (or, if necessary, by calling
222  * memory_region_notify_one() for each registered notifier).
223  *
224  * Conceptually an IOMMU provides a mapping from input address
225  * to an output TLB entry. If the IOMMU is aware of memory transaction
226  * attributes and the output TLB entry depends on the transaction
227  * attributes, we represent this using IOMMU indexes. Each index
228  * selects a particular translation table that the IOMMU has:
229  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
230  *   @translate takes an input address and an IOMMU index
231  * and the mapping returned can only depend on the input address and the
232  * IOMMU index.
233  *
234  * Most IOMMUs don't care about the transaction attributes and support
235  * only a single IOMMU index. A more complex IOMMU might have one index
236  * for secure transactions and one for non-secure transactions.
237  */
238 typedef struct IOMMUMemoryRegionClass {
239     /* private */
240     struct DeviceClass parent_class;
241 
242     /*
243      * Return a TLB entry that contains a given address.
244      *
245      * The IOMMUAccessFlags indicated via @flag are optional and may
246      * be specified as IOMMU_NONE to indicate that the caller needs
247      * the full translation information for both reads and writes. If
248      * the access flags are specified then the IOMMU implementation
249      * may use this as an optimization, to stop doing a page table
250      * walk as soon as it knows that the requested permissions are not
251      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
252      * full page table walk and report the permissions in the returned
253      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
254      * return different mappings for reads and writes.)
255      *
256      * The returned information remains valid while the caller is
257      * holding the big QEMU lock or is inside an RCU critical section;
258      * if the caller wishes to cache the mapping beyond that it must
259      * register an IOMMU notifier so it can invalidate its cached
260      * information when the IOMMU mapping changes.
261      *
262      * @iommu: the IOMMUMemoryRegion
263      * @hwaddr: address to be translated within the memory region
264      * @flag: requested access permissions
265      * @iommu_idx: IOMMU index for the translation
266      */
267     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
268                                IOMMUAccessFlags flag, int iommu_idx);
269     /* Returns minimum supported page size in bytes.
270      * If this method is not provided then the minimum is assumed to
271      * be TARGET_PAGE_SIZE.
272      *
273      * @iommu: the IOMMUMemoryRegion
274      */
275     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
276     /* Called when IOMMU Notifier flag changes (ie when the set of
277      * events which IOMMU users are requesting notification for changes).
278      * Optional method -- need not be provided if the IOMMU does not
279      * need to know exactly which events must be notified.
280      *
281      * @iommu: the IOMMUMemoryRegion
282      * @old_flags: events which previously needed to be notified
283      * @new_flags: events which now need to be notified
284      */
285     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
286                                 IOMMUNotifierFlag old_flags,
287                                 IOMMUNotifierFlag new_flags);
288     /* Called to handle memory_region_iommu_replay().
289      *
290      * The default implementation of memory_region_iommu_replay() is to
291      * call the IOMMU translate method for every page in the address space
292      * with flag == IOMMU_NONE and then call the notifier if translate
293      * returns a valid mapping. If this method is implemented then it
294      * overrides the default behaviour, and must provide the full semantics
295      * of memory_region_iommu_replay(), by calling @notifier for every
296      * translation present in the IOMMU.
297      *
298      * Optional method -- an IOMMU only needs to provide this method
299      * if the default is inefficient or produces undesirable side effects.
300      *
301      * Note: this is not related to record-and-replay functionality.
302      */
303     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
304 
305     /* Get IOMMU misc attributes. This is an optional method that
306      * can be used to allow users of the IOMMU to get implementation-specific
307      * information. The IOMMU implements this method to handle calls
308      * by IOMMU users to memory_region_iommu_get_attr() by filling in
309      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
310      * the IOMMU supports. If the method is unimplemented then
311      * memory_region_iommu_get_attr() will always return -EINVAL.
312      *
313      * @iommu: the IOMMUMemoryRegion
314      * @attr: attribute being queried
315      * @data: memory to fill in with the attribute data
316      *
317      * Returns 0 on success, or a negative errno; in particular
318      * returns -EINVAL for unrecognized or unimplemented attribute types.
319      */
320     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
321                     void *data);
322 
323     /* Return the IOMMU index to use for a given set of transaction attributes.
324      *
325      * Optional method: if an IOMMU only supports a single IOMMU index then
326      * the default implementation of memory_region_iommu_attrs_to_index()
327      * will return 0.
328      *
329      * The indexes supported by an IOMMU must be contiguous, starting at 0.
330      *
331      * @iommu: the IOMMUMemoryRegion
332      * @attrs: memory transaction attributes
333      */
334     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
335 
336     /* Return the number of IOMMU indexes this IOMMU supports.
337      *
338      * Optional method: if this method is not provided, then
339      * memory_region_iommu_num_indexes() will return 1, indicating that
340      * only a single IOMMU index is supported.
341      *
342      * @iommu: the IOMMUMemoryRegion
343      */
344     int (*num_indexes)(IOMMUMemoryRegion *iommu);
345 } IOMMUMemoryRegionClass;
346 
347 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
348 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
349 
350 struct MemoryRegion {
351     Object parent_obj;
352 
353     /* All fields are private - violators will be prosecuted */
354 
355     /* The following fields should fit in a cache line */
356     bool romd_mode;
357     bool ram;
358     bool subpage;
359     bool readonly; /* For RAM regions */
360     bool nonvolatile;
361     bool rom_device;
362     bool flush_coalesced_mmio;
363     bool global_locking;
364     uint8_t dirty_log_mask;
365     bool is_iommu;
366     RAMBlock *ram_block;
367     Object *owner;
368 
369     const MemoryRegionOps *ops;
370     void *opaque;
371     MemoryRegion *container;
372     Int128 size;
373     hwaddr addr;
374     void (*destructor)(MemoryRegion *mr);
375     uint64_t align;
376     bool terminates;
377     bool ram_device;
378     bool enabled;
379     bool warning_printed; /* For reservations */
380     uint8_t vga_logging_count;
381     MemoryRegion *alias;
382     hwaddr alias_offset;
383     int32_t priority;
384     QTAILQ_HEAD(, MemoryRegion) subregions;
385     QTAILQ_ENTRY(MemoryRegion) subregions_link;
386     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
387     const char *name;
388     unsigned ioeventfd_nb;
389     MemoryRegionIoeventfd *ioeventfds;
390 };
391 
392 struct IOMMUMemoryRegion {
393     MemoryRegion parent_obj;
394 
395     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
396     IOMMUNotifierFlag iommu_notify_flags;
397 };
398 
399 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
400     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
401 
402 /**
403  * MemoryListener: callbacks structure for updates to the physical memory map
404  *
405  * Allows a component to adjust to changes in the guest-visible memory map.
406  * Use with memory_listener_register() and memory_listener_unregister().
407  */
408 struct MemoryListener {
409     void (*begin)(MemoryListener *listener);
410     void (*commit)(MemoryListener *listener);
411     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
412     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
413     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
414     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
415                       int old, int new);
416     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
417                      int old, int new);
418     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
419     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
420     void (*log_global_start)(MemoryListener *listener);
421     void (*log_global_stop)(MemoryListener *listener);
422     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
423                         bool match_data, uint64_t data, EventNotifier *e);
424     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
425                         bool match_data, uint64_t data, EventNotifier *e);
426     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
427                                hwaddr addr, hwaddr len);
428     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
429                                hwaddr addr, hwaddr len);
430     /* Lower = earlier (during add), later (during del) */
431     unsigned priority;
432     AddressSpace *address_space;
433     QTAILQ_ENTRY(MemoryListener) link;
434     QTAILQ_ENTRY(MemoryListener) link_as;
435 };
436 
437 /**
438  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
439  */
440 struct AddressSpace {
441     /* All fields are private. */
442     struct rcu_head rcu;
443     char *name;
444     MemoryRegion *root;
445 
446     /* Accessed via RCU.  */
447     struct FlatView *current_map;
448 
449     int ioeventfd_nb;
450     struct MemoryRegionIoeventfd *ioeventfds;
451     QTAILQ_HEAD(, MemoryListener) listeners;
452     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
453 };
454 
455 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
456 typedef struct FlatRange FlatRange;
457 
458 /* Flattened global view of current active memory hierarchy.  Kept in sorted
459  * order.
460  */
461 struct FlatView {
462     struct rcu_head rcu;
463     unsigned ref;
464     FlatRange *ranges;
465     unsigned nr;
466     unsigned nr_allocated;
467     struct AddressSpaceDispatch *dispatch;
468     MemoryRegion *root;
469 };
470 
471 static inline FlatView *address_space_to_flatview(AddressSpace *as)
472 {
473     return atomic_rcu_read(&as->current_map);
474 }
475 
476 
477 /**
478  * MemoryRegionSection: describes a fragment of a #MemoryRegion
479  *
480  * @mr: the region, or %NULL if empty
481  * @fv: the flat view of the address space the region is mapped in
482  * @offset_within_region: the beginning of the section, relative to @mr's start
483  * @size: the size of the section; will not exceed @mr's boundaries
484  * @offset_within_address_space: the address of the first byte of the section
485  *     relative to the region's address space
486  * @readonly: writes to this section are ignored
487  * @nonvolatile: this section is non-volatile
488  */
489 struct MemoryRegionSection {
490     MemoryRegion *mr;
491     FlatView *fv;
492     hwaddr offset_within_region;
493     Int128 size;
494     hwaddr offset_within_address_space;
495     bool readonly;
496     bool nonvolatile;
497 };
498 
499 /**
500  * memory_region_init: Initialize a memory region
501  *
502  * The region typically acts as a container for other memory regions.  Use
503  * memory_region_add_subregion() to add subregions.
504  *
505  * @mr: the #MemoryRegion to be initialized
506  * @owner: the object that tracks the region's reference count
507  * @name: used for debugging; not visible to the user or ABI
508  * @size: size of the region; any subregions beyond this size will be clipped
509  */
510 void memory_region_init(MemoryRegion *mr,
511                         struct Object *owner,
512                         const char *name,
513                         uint64_t size);
514 
515 /**
516  * memory_region_ref: Add 1 to a memory region's reference count
517  *
518  * Whenever memory regions are accessed outside the BQL, they need to be
519  * preserved against hot-unplug.  MemoryRegions actually do not have their
520  * own reference count; they piggyback on a QOM object, their "owner".
521  * This function adds a reference to the owner.
522  *
523  * All MemoryRegions must have an owner if they can disappear, even if the
524  * device they belong to operates exclusively under the BQL.  This is because
525  * the region could be returned at any time by memory_region_find, and this
526  * is usually under guest control.
527  *
528  * @mr: the #MemoryRegion
529  */
530 void memory_region_ref(MemoryRegion *mr);
531 
532 /**
533  * memory_region_unref: Remove 1 to a memory region's reference count
534  *
535  * Whenever memory regions are accessed outside the BQL, they need to be
536  * preserved against hot-unplug.  MemoryRegions actually do not have their
537  * own reference count; they piggyback on a QOM object, their "owner".
538  * This function removes a reference to the owner and possibly destroys it.
539  *
540  * @mr: the #MemoryRegion
541  */
542 void memory_region_unref(MemoryRegion *mr);
543 
544 /**
545  * memory_region_init_io: Initialize an I/O memory region.
546  *
547  * Accesses into the region will cause the callbacks in @ops to be called.
548  * if @size is nonzero, subregions will be clipped to @size.
549  *
550  * @mr: the #MemoryRegion to be initialized.
551  * @owner: the object that tracks the region's reference count
552  * @ops: a structure containing read and write callbacks to be used when
553  *       I/O is performed on the region.
554  * @opaque: passed to the read and write callbacks of the @ops structure.
555  * @name: used for debugging; not visible to the user or ABI
556  * @size: size of the region.
557  */
558 void memory_region_init_io(MemoryRegion *mr,
559                            struct Object *owner,
560                            const MemoryRegionOps *ops,
561                            void *opaque,
562                            const char *name,
563                            uint64_t size);
564 
565 /**
566  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
567  *                                    into the region will modify memory
568  *                                    directly.
569  *
570  * @mr: the #MemoryRegion to be initialized.
571  * @owner: the object that tracks the region's reference count
572  * @name: Region name, becomes part of RAMBlock name used in migration stream
573  *        must be unique within any device
574  * @size: size of the region.
575  * @errp: pointer to Error*, to store an error if it happens.
576  *
577  * Note that this function does not do anything to cause the data in the
578  * RAM memory region to be migrated; that is the responsibility of the caller.
579  */
580 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
581                                       struct Object *owner,
582                                       const char *name,
583                                       uint64_t size,
584                                       Error **errp);
585 
586 /**
587  * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
588  *                                           Accesses into the region will
589  *                                           modify memory directly.
590  *
591  * @mr: the #MemoryRegion to be initialized.
592  * @owner: the object that tracks the region's reference count
593  * @name: Region name, becomes part of RAMBlock name used in migration stream
594  *        must be unique within any device
595  * @size: size of the region.
596  * @share: allow remapping RAM to different addresses
597  * @errp: pointer to Error*, to store an error if it happens.
598  *
599  * Note that this function is similar to memory_region_init_ram_nomigrate.
600  * The only difference is part of the RAM region can be remapped.
601  */
602 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
603                                              struct Object *owner,
604                                              const char *name,
605                                              uint64_t size,
606                                              bool share,
607                                              Error **errp);
608 
609 /**
610  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
611  *                                     RAM.  Accesses into the region will
612  *                                     modify memory directly.  Only an initial
613  *                                     portion of this RAM is actually used.
614  *                                     The used size can change across reboots.
615  *
616  * @mr: the #MemoryRegion to be initialized.
617  * @owner: the object that tracks the region's reference count
618  * @name: Region name, becomes part of RAMBlock name used in migration stream
619  *        must be unique within any device
620  * @size: used size of the region.
621  * @max_size: max size of the region.
622  * @resized: callback to notify owner about used size change.
623  * @errp: pointer to Error*, to store an error if it happens.
624  *
625  * Note that this function does not do anything to cause the data in the
626  * RAM memory region to be migrated; that is the responsibility of the caller.
627  */
628 void memory_region_init_resizeable_ram(MemoryRegion *mr,
629                                        struct Object *owner,
630                                        const char *name,
631                                        uint64_t size,
632                                        uint64_t max_size,
633                                        void (*resized)(const char*,
634                                                        uint64_t length,
635                                                        void *host),
636                                        Error **errp);
637 #ifdef CONFIG_POSIX
638 
639 /**
640  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
641  *                                    mmap-ed backend.
642  *
643  * @mr: the #MemoryRegion to be initialized.
644  * @owner: the object that tracks the region's reference count
645  * @name: Region name, becomes part of RAMBlock name used in migration stream
646  *        must be unique within any device
647  * @size: size of the region.
648  * @align: alignment of the region base address; if 0, the default alignment
649  *         (getpagesize()) will be used.
650  * @ram_flags: Memory region features:
651  *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
652  *             - RAM_PMEM: the memory is persistent memory
653  *             Other bits are ignored now.
654  * @path: the path in which to allocate the RAM.
655  * @errp: pointer to Error*, to store an error if it happens.
656  *
657  * Note that this function does not do anything to cause the data in the
658  * RAM memory region to be migrated; that is the responsibility of the caller.
659  */
660 void memory_region_init_ram_from_file(MemoryRegion *mr,
661                                       struct Object *owner,
662                                       const char *name,
663                                       uint64_t size,
664                                       uint64_t align,
665                                       uint32_t ram_flags,
666                                       const char *path,
667                                       Error **errp);
668 
669 /**
670  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
671  *                                  mmap-ed backend.
672  *
673  * @mr: the #MemoryRegion to be initialized.
674  * @owner: the object that tracks the region's reference count
675  * @name: the name of the region.
676  * @size: size of the region.
677  * @share: %true if memory must be mmaped with the MAP_SHARED flag
678  * @fd: the fd to mmap.
679  * @errp: pointer to Error*, to store an error if it happens.
680  *
681  * Note that this function does not do anything to cause the data in the
682  * RAM memory region to be migrated; that is the responsibility of the caller.
683  */
684 void memory_region_init_ram_from_fd(MemoryRegion *mr,
685                                     struct Object *owner,
686                                     const char *name,
687                                     uint64_t size,
688                                     bool share,
689                                     int fd,
690                                     Error **errp);
691 #endif
692 
693 /**
694  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
695  *                              user-provided pointer.  Accesses into the
696  *                              region will modify memory directly.
697  *
698  * @mr: the #MemoryRegion to be initialized.
699  * @owner: the object that tracks the region's reference count
700  * @name: Region name, becomes part of RAMBlock name used in migration stream
701  *        must be unique within any device
702  * @size: size of the region.
703  * @ptr: memory to be mapped; must contain at least @size bytes.
704  *
705  * Note that this function does not do anything to cause the data in the
706  * RAM memory region to be migrated; that is the responsibility of the caller.
707  */
708 void memory_region_init_ram_ptr(MemoryRegion *mr,
709                                 struct Object *owner,
710                                 const char *name,
711                                 uint64_t size,
712                                 void *ptr);
713 
714 /**
715  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
716  *                                     a user-provided pointer.
717  *
718  * A RAM device represents a mapping to a physical device, such as to a PCI
719  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
720  * into the VM address space and access to the region will modify memory
721  * directly.  However, the memory region should not be included in a memory
722  * dump (device may not be enabled/mapped at the time of the dump), and
723  * operations incompatible with manipulating MMIO should be avoided.  Replaces
724  * skip_dump flag.
725  *
726  * @mr: the #MemoryRegion to be initialized.
727  * @owner: the object that tracks the region's reference count
728  * @name: the name of the region.
729  * @size: size of the region.
730  * @ptr: memory to be mapped; must contain at least @size bytes.
731  *
732  * Note that this function does not do anything to cause the data in the
733  * RAM memory region to be migrated; that is the responsibility of the caller.
734  * (For RAM device memory regions, migrating the contents rarely makes sense.)
735  */
736 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
737                                        struct Object *owner,
738                                        const char *name,
739                                        uint64_t size,
740                                        void *ptr);
741 
742 /**
743  * memory_region_init_alias: Initialize a memory region that aliases all or a
744  *                           part of another memory region.
745  *
746  * @mr: the #MemoryRegion to be initialized.
747  * @owner: the object that tracks the region's reference count
748  * @name: used for debugging; not visible to the user or ABI
749  * @orig: the region to be referenced; @mr will be equivalent to
750  *        @orig between @offset and @offset + @size - 1.
751  * @offset: start of the section in @orig to be referenced.
752  * @size: size of the region.
753  */
754 void memory_region_init_alias(MemoryRegion *mr,
755                               struct Object *owner,
756                               const char *name,
757                               MemoryRegion *orig,
758                               hwaddr offset,
759                               uint64_t size);
760 
761 /**
762  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
763  *
764  * This has the same effect as calling memory_region_init_ram_nomigrate()
765  * and then marking the resulting region read-only with
766  * memory_region_set_readonly().
767  *
768  * Note that this function does not do anything to cause the data in the
769  * RAM side of the memory region to be migrated; that is the responsibility
770  * of the caller.
771  *
772  * @mr: the #MemoryRegion to be initialized.
773  * @owner: the object that tracks the region's reference count
774  * @name: Region name, becomes part of RAMBlock name used in migration stream
775  *        must be unique within any device
776  * @size: size of the region.
777  * @errp: pointer to Error*, to store an error if it happens.
778  */
779 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
780                                       struct Object *owner,
781                                       const char *name,
782                                       uint64_t size,
783                                       Error **errp);
784 
785 /**
786  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
787  *                                 Writes are handled via callbacks.
788  *
789  * Note that this function does not do anything to cause the data in the
790  * RAM side of the memory region to be migrated; that is the responsibility
791  * of the caller.
792  *
793  * @mr: the #MemoryRegion to be initialized.
794  * @owner: the object that tracks the region's reference count
795  * @ops: callbacks for write access handling (must not be NULL).
796  * @opaque: passed to the read and write callbacks of the @ops structure.
797  * @name: Region name, becomes part of RAMBlock name used in migration stream
798  *        must be unique within any device
799  * @size: size of the region.
800  * @errp: pointer to Error*, to store an error if it happens.
801  */
802 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
803                                              struct Object *owner,
804                                              const MemoryRegionOps *ops,
805                                              void *opaque,
806                                              const char *name,
807                                              uint64_t size,
808                                              Error **errp);
809 
810 /**
811  * memory_region_init_iommu: Initialize a memory region of a custom type
812  * that translates addresses
813  *
814  * An IOMMU region translates addresses and forwards accesses to a target
815  * memory region.
816  *
817  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
818  * @_iommu_mr should be a pointer to enough memory for an instance of
819  * that subclass, @instance_size is the size of that subclass, and
820  * @mrtypename is its name. This function will initialize @_iommu_mr as an
821  * instance of the subclass, and its methods will then be called to handle
822  * accesses to the memory region. See the documentation of
823  * #IOMMUMemoryRegionClass for further details.
824  *
825  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
826  * @instance_size: the IOMMUMemoryRegion subclass instance size
827  * @mrtypename: the type name of the #IOMMUMemoryRegion
828  * @owner: the object that tracks the region's reference count
829  * @name: used for debugging; not visible to the user or ABI
830  * @size: size of the region.
831  */
832 void memory_region_init_iommu(void *_iommu_mr,
833                               size_t instance_size,
834                               const char *mrtypename,
835                               Object *owner,
836                               const char *name,
837                               uint64_t size);
838 
839 /**
840  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
841  *                          region will modify memory directly.
842  *
843  * @mr: the #MemoryRegion to be initialized
844  * @owner: the object that tracks the region's reference count (must be
845  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
846  * @name: name of the memory region
847  * @size: size of the region in bytes
848  * @errp: pointer to Error*, to store an error if it happens.
849  *
850  * This function allocates RAM for a board model or device, and
851  * arranges for it to be migrated (by calling vmstate_register_ram()
852  * if @owner is a DeviceState, or vmstate_register_ram_global() if
853  * @owner is NULL).
854  *
855  * TODO: Currently we restrict @owner to being either NULL (for
856  * global RAM regions with no owner) or devices, so that we can
857  * give the RAM block a unique name for migration purposes.
858  * We should lift this restriction and allow arbitrary Objects.
859  * If you pass a non-NULL non-device @owner then we will assert.
860  */
861 void memory_region_init_ram(MemoryRegion *mr,
862                             struct Object *owner,
863                             const char *name,
864                             uint64_t size,
865                             Error **errp);
866 
867 /**
868  * memory_region_init_rom: Initialize a ROM memory region.
869  *
870  * This has the same effect as calling memory_region_init_ram()
871  * and then marking the resulting region read-only with
872  * memory_region_set_readonly(). This includes arranging for the
873  * contents to be migrated.
874  *
875  * TODO: Currently we restrict @owner to being either NULL (for
876  * global RAM regions with no owner) or devices, so that we can
877  * give the RAM block a unique name for migration purposes.
878  * We should lift this restriction and allow arbitrary Objects.
879  * If you pass a non-NULL non-device @owner then we will assert.
880  *
881  * @mr: the #MemoryRegion to be initialized.
882  * @owner: the object that tracks the region's reference count
883  * @name: Region name, becomes part of RAMBlock name used in migration stream
884  *        must be unique within any device
885  * @size: size of the region.
886  * @errp: pointer to Error*, to store an error if it happens.
887  */
888 void memory_region_init_rom(MemoryRegion *mr,
889                             struct Object *owner,
890                             const char *name,
891                             uint64_t size,
892                             Error **errp);
893 
894 /**
895  * memory_region_init_rom_device:  Initialize a ROM memory region.
896  *                                 Writes are handled via callbacks.
897  *
898  * This function initializes a memory region backed by RAM for reads
899  * and callbacks for writes, and arranges for the RAM backing to
900  * be migrated (by calling vmstate_register_ram()
901  * if @owner is a DeviceState, or vmstate_register_ram_global() if
902  * @owner is NULL).
903  *
904  * TODO: Currently we restrict @owner to being either NULL (for
905  * global RAM regions with no owner) or devices, so that we can
906  * give the RAM block a unique name for migration purposes.
907  * We should lift this restriction and allow arbitrary Objects.
908  * If you pass a non-NULL non-device @owner then we will assert.
909  *
910  * @mr: the #MemoryRegion to be initialized.
911  * @owner: the object that tracks the region's reference count
912  * @ops: callbacks for write access handling (must not be NULL).
913  * @name: Region name, becomes part of RAMBlock name used in migration stream
914  *        must be unique within any device
915  * @size: size of the region.
916  * @errp: pointer to Error*, to store an error if it happens.
917  */
918 void memory_region_init_rom_device(MemoryRegion *mr,
919                                    struct Object *owner,
920                                    const MemoryRegionOps *ops,
921                                    void *opaque,
922                                    const char *name,
923                                    uint64_t size,
924                                    Error **errp);
925 
926 
927 /**
928  * memory_region_owner: get a memory region's owner.
929  *
930  * @mr: the memory region being queried.
931  */
932 struct Object *memory_region_owner(MemoryRegion *mr);
933 
934 /**
935  * memory_region_size: get a memory region's size.
936  *
937  * @mr: the memory region being queried.
938  */
939 uint64_t memory_region_size(MemoryRegion *mr);
940 
941 /**
942  * memory_region_is_ram: check whether a memory region is random access
943  *
944  * Returns %true if a memory region is random access.
945  *
946  * @mr: the memory region being queried
947  */
948 static inline bool memory_region_is_ram(MemoryRegion *mr)
949 {
950     return mr->ram;
951 }
952 
953 /**
954  * memory_region_is_ram_device: check whether a memory region is a ram device
955  *
956  * Returns %true if a memory region is a device backed ram region
957  *
958  * @mr: the memory region being queried
959  */
960 bool memory_region_is_ram_device(MemoryRegion *mr);
961 
962 /**
963  * memory_region_is_romd: check whether a memory region is in ROMD mode
964  *
965  * Returns %true if a memory region is a ROM device and currently set to allow
966  * direct reads.
967  *
968  * @mr: the memory region being queried
969  */
970 static inline bool memory_region_is_romd(MemoryRegion *mr)
971 {
972     return mr->rom_device && mr->romd_mode;
973 }
974 
975 /**
976  * memory_region_get_iommu: check whether a memory region is an iommu
977  *
978  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
979  * otherwise NULL.
980  *
981  * @mr: the memory region being queried
982  */
983 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
984 {
985     if (mr->alias) {
986         return memory_region_get_iommu(mr->alias);
987     }
988     if (mr->is_iommu) {
989         return (IOMMUMemoryRegion *) mr;
990     }
991     return NULL;
992 }
993 
994 /**
995  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
996  *   if an iommu or NULL if not
997  *
998  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
999  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1000  *
1001  * @mr: the memory region being queried
1002  */
1003 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1004         IOMMUMemoryRegion *iommu_mr)
1005 {
1006     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1007 }
1008 
1009 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1010 
1011 /**
1012  * memory_region_iommu_get_min_page_size: get minimum supported page size
1013  * for an iommu
1014  *
1015  * Returns minimum supported page size for an iommu.
1016  *
1017  * @iommu_mr: the memory region being queried
1018  */
1019 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1020 
1021 /**
1022  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1023  *
1024  * The notification type will be decided by entry.perm bits:
1025  *
1026  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1027  * - For MAP (newly added entry) notifies: set entry.perm to the
1028  *   permission of the page (which is definitely !IOMMU_NONE).
1029  *
1030  * Note: for any IOMMU implementation, an in-place mapping change
1031  * should be notified with an UNMAP followed by a MAP.
1032  *
1033  * @iommu_mr: the memory region that was changed
1034  * @iommu_idx: the IOMMU index for the translation table which has changed
1035  * @entry: the new entry in the IOMMU translation table.  The entry
1036  *         replaces all old entries for the same virtual I/O address range.
1037  *         Deleted entries have .@perm == 0.
1038  */
1039 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1040                                 int iommu_idx,
1041                                 IOMMUTLBEntry entry);
1042 
1043 /**
1044  * memory_region_notify_one: notify a change in an IOMMU translation
1045  *                           entry to a single notifier
1046  *
1047  * This works just like memory_region_notify_iommu(), but it only
1048  * notifies a specific notifier, not all of them.
1049  *
1050  * @notifier: the notifier to be notified
1051  * @entry: the new entry in the IOMMU translation table.  The entry
1052  *         replaces all old entries for the same virtual I/O address range.
1053  *         Deleted entries have .@perm == 0.
1054  */
1055 void memory_region_notify_one(IOMMUNotifier *notifier,
1056                               IOMMUTLBEntry *entry);
1057 
1058 /**
1059  * memory_region_register_iommu_notifier: register a notifier for changes to
1060  * IOMMU translation entries.
1061  *
1062  * @mr: the memory region to observe
1063  * @n: the IOMMUNotifier to be added; the notify callback receives a
1064  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1065  *     ceases to be valid on exit from the notifier.
1066  */
1067 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1068                                            IOMMUNotifier *n);
1069 
1070 /**
1071  * memory_region_iommu_replay: replay existing IOMMU translations to
1072  * a notifier with the minimum page granularity returned by
1073  * mr->iommu_ops->get_page_size().
1074  *
1075  * Note: this is not related to record-and-replay functionality.
1076  *
1077  * @iommu_mr: the memory region to observe
1078  * @n: the notifier to which to replay iommu mappings
1079  */
1080 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1081 
1082 /**
1083  * memory_region_iommu_replay_all: replay existing IOMMU translations
1084  * to all the notifiers registered.
1085  *
1086  * Note: this is not related to record-and-replay functionality.
1087  *
1088  * @iommu_mr: the memory region to observe
1089  */
1090 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
1091 
1092 /**
1093  * memory_region_unregister_iommu_notifier: unregister a notifier for
1094  * changes to IOMMU translation entries.
1095  *
1096  * @mr: the memory region which was observed and for which notity_stopped()
1097  *      needs to be called
1098  * @n: the notifier to be removed.
1099  */
1100 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1101                                              IOMMUNotifier *n);
1102 
1103 /**
1104  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1105  * defined on the IOMMU.
1106  *
1107  * Returns 0 on success, or a negative errno otherwise. In particular,
1108  * -EINVAL indicates that the IOMMU does not support the requested
1109  * attribute.
1110  *
1111  * @iommu_mr: the memory region
1112  * @attr: the requested attribute
1113  * @data: a pointer to the requested attribute data
1114  */
1115 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1116                                  enum IOMMUMemoryRegionAttr attr,
1117                                  void *data);
1118 
1119 /**
1120  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1121  * use for translations with the given memory transaction attributes.
1122  *
1123  * @iommu_mr: the memory region
1124  * @attrs: the memory transaction attributes
1125  */
1126 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1127                                        MemTxAttrs attrs);
1128 
1129 /**
1130  * memory_region_iommu_num_indexes: return the total number of IOMMU
1131  * indexes that this IOMMU supports.
1132  *
1133  * @iommu_mr: the memory region
1134  */
1135 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1136 
1137 /**
1138  * memory_region_name: get a memory region's name
1139  *
1140  * Returns the string that was used to initialize the memory region.
1141  *
1142  * @mr: the memory region being queried
1143  */
1144 const char *memory_region_name(const MemoryRegion *mr);
1145 
1146 /**
1147  * memory_region_is_logging: return whether a memory region is logging writes
1148  *
1149  * Returns %true if the memory region is logging writes for the given client
1150  *
1151  * @mr: the memory region being queried
1152  * @client: the client being queried
1153  */
1154 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1155 
1156 /**
1157  * memory_region_get_dirty_log_mask: return the clients for which a
1158  * memory region is logging writes.
1159  *
1160  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1161  * are the bit indices.
1162  *
1163  * @mr: the memory region being queried
1164  */
1165 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1166 
1167 /**
1168  * memory_region_is_rom: check whether a memory region is ROM
1169  *
1170  * Returns %true if a memory region is read-only memory.
1171  *
1172  * @mr: the memory region being queried
1173  */
1174 static inline bool memory_region_is_rom(MemoryRegion *mr)
1175 {
1176     return mr->ram && mr->readonly;
1177 }
1178 
1179 /**
1180  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1181  *
1182  * Returns %true is a memory region is non-volatile memory.
1183  *
1184  * @mr: the memory region being queried
1185  */
1186 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1187 {
1188     return mr->nonvolatile;
1189 }
1190 
1191 /**
1192  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1193  *
1194  * Returns a file descriptor backing a file-based RAM memory region,
1195  * or -1 if the region is not a file-based RAM memory region.
1196  *
1197  * @mr: the RAM or alias memory region being queried.
1198  */
1199 int memory_region_get_fd(MemoryRegion *mr);
1200 
1201 /**
1202  * memory_region_from_host: Convert a pointer into a RAM memory region
1203  * and an offset within it.
1204  *
1205  * Given a host pointer inside a RAM memory region (created with
1206  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1207  * the MemoryRegion and the offset within it.
1208  *
1209  * Use with care; by the time this function returns, the returned pointer is
1210  * not protected by RCU anymore.  If the caller is not within an RCU critical
1211  * section and does not hold the iothread lock, it must have other means of
1212  * protecting the pointer, such as a reference to the region that includes
1213  * the incoming ram_addr_t.
1214  *
1215  * @ptr: the host pointer to be converted
1216  * @offset: the offset within memory region
1217  */
1218 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1219 
1220 /**
1221  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1222  *
1223  * Returns a host pointer to a RAM memory region (created with
1224  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1225  *
1226  * Use with care; by the time this function returns, the returned pointer is
1227  * not protected by RCU anymore.  If the caller is not within an RCU critical
1228  * section and does not hold the iothread lock, it must have other means of
1229  * protecting the pointer, such as a reference to the region that includes
1230  * the incoming ram_addr_t.
1231  *
1232  * @mr: the memory region being queried.
1233  */
1234 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1235 
1236 /* memory_region_ram_resize: Resize a RAM region.
1237  *
1238  * Only legal before guest might have detected the memory size: e.g. on
1239  * incoming migration, or right after reset.
1240  *
1241  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1242  * @newsize: the new size the region
1243  * @errp: pointer to Error*, to store an error if it happens.
1244  */
1245 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1246                               Error **errp);
1247 
1248 /**
1249  * memory_region_set_log: Turn dirty logging on or off for a region.
1250  *
1251  * Turns dirty logging on or off for a specified client (display, migration).
1252  * Only meaningful for RAM regions.
1253  *
1254  * @mr: the memory region being updated.
1255  * @log: whether dirty logging is to be enabled or disabled.
1256  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1257  */
1258 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1259 
1260 /**
1261  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1262  *
1263  * Marks a range of bytes as dirty, after it has been dirtied outside
1264  * guest code.
1265  *
1266  * @mr: the memory region being dirtied.
1267  * @addr: the address (relative to the start of the region) being dirtied.
1268  * @size: size of the range being dirtied.
1269  */
1270 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1271                              hwaddr size);
1272 
1273 /**
1274  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1275  *
1276  * This function is called when the caller wants to clear the remote
1277  * dirty bitmap of a memory range within the memory region.  This can
1278  * be used by e.g. KVM to manually clear dirty log when
1279  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1280  * kernel.
1281  *
1282  * @mr:     the memory region to clear the dirty log upon
1283  * @start:  start address offset within the memory region
1284  * @len:    length of the memory region to clear dirty bitmap
1285  */
1286 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1287                                       hwaddr len);
1288 
1289 /**
1290  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1291  *                                         bitmap and clear it.
1292  *
1293  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1294  * returns the snapshot.  The snapshot can then be used to query dirty
1295  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1296  * querying the same page multiple times, which is especially useful for
1297  * display updates where the scanlines often are not page aligned.
1298  *
1299  * The dirty bitmap region which gets copyed into the snapshot (and
1300  * cleared afterwards) can be larger than requested.  The boundaries
1301  * are rounded up/down so complete bitmap longs (covering 64 pages on
1302  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1303  * isn't a problem for display updates as the extra pages are outside
1304  * the visible area, and in case the visible area changes a full
1305  * display redraw is due anyway.  Should other use cases for this
1306  * function emerge we might have to revisit this implementation
1307  * detail.
1308  *
1309  * Use g_free to release DirtyBitmapSnapshot.
1310  *
1311  * @mr: the memory region being queried.
1312  * @addr: the address (relative to the start of the region) being queried.
1313  * @size: the size of the range being queried.
1314  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1315  */
1316 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1317                                                             hwaddr addr,
1318                                                             hwaddr size,
1319                                                             unsigned client);
1320 
1321 /**
1322  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1323  *                                   in the specified dirty bitmap snapshot.
1324  *
1325  * @mr: the memory region being queried.
1326  * @snap: the dirty bitmap snapshot
1327  * @addr: the address (relative to the start of the region) being queried.
1328  * @size: the size of the range being queried.
1329  */
1330 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1331                                       DirtyBitmapSnapshot *snap,
1332                                       hwaddr addr, hwaddr size);
1333 
1334 /**
1335  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1336  *                            client.
1337  *
1338  * Marks a range of pages as no longer dirty.
1339  *
1340  * @mr: the region being updated.
1341  * @addr: the start of the subrange being cleaned.
1342  * @size: the size of the subrange being cleaned.
1343  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1344  *          %DIRTY_MEMORY_VGA.
1345  */
1346 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1347                                hwaddr size, unsigned client);
1348 
1349 /**
1350  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1351  *                                 TBs (for self-modifying code).
1352  *
1353  * The MemoryRegionOps->write() callback of a ROM device must use this function
1354  * to mark byte ranges that have been modified internally, such as by directly
1355  * accessing the memory returned by memory_region_get_ram_ptr().
1356  *
1357  * This function marks the range dirty and invalidates TBs so that TCG can
1358  * detect self-modifying code.
1359  *
1360  * @mr: the region being flushed.
1361  * @addr: the start, relative to the start of the region, of the range being
1362  *        flushed.
1363  * @size: the size, in bytes, of the range being flushed.
1364  */
1365 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1366 
1367 /**
1368  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1369  *
1370  * Allows a memory region to be marked as read-only (turning it into a ROM).
1371  * only useful on RAM regions.
1372  *
1373  * @mr: the region being updated.
1374  * @readonly: whether rhe region is to be ROM or RAM.
1375  */
1376 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1377 
1378 /**
1379  * memory_region_set_nonvolatile: Turn a memory region non-volatile
1380  *
1381  * Allows a memory region to be marked as non-volatile.
1382  * only useful on RAM regions.
1383  *
1384  * @mr: the region being updated.
1385  * @nonvolatile: whether rhe region is to be non-volatile.
1386  */
1387 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1388 
1389 /**
1390  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1391  *
1392  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1393  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1394  * device is mapped to guest memory and satisfies read access directly.
1395  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1396  * Writes are always handled by the #MemoryRegion.write function.
1397  *
1398  * @mr: the memory region to be updated
1399  * @romd_mode: %true to put the region into ROMD mode
1400  */
1401 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1402 
1403 /**
1404  * memory_region_set_coalescing: Enable memory coalescing for the region.
1405  *
1406  * Enabled writes to a region to be queued for later processing. MMIO ->write
1407  * callbacks may be delayed until a non-coalesced MMIO is issued.
1408  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1409  *
1410  * @mr: the memory region to be write coalesced
1411  */
1412 void memory_region_set_coalescing(MemoryRegion *mr);
1413 
1414 /**
1415  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1416  *                               a region.
1417  *
1418  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1419  * Multiple calls can be issued coalesced disjoint ranges.
1420  *
1421  * @mr: the memory region to be updated.
1422  * @offset: the start of the range within the region to be coalesced.
1423  * @size: the size of the subrange to be coalesced.
1424  */
1425 void memory_region_add_coalescing(MemoryRegion *mr,
1426                                   hwaddr offset,
1427                                   uint64_t size);
1428 
1429 /**
1430  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1431  *
1432  * Disables any coalescing caused by memory_region_set_coalescing() or
1433  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1434  * hardware.
1435  *
1436  * @mr: the memory region to be updated.
1437  */
1438 void memory_region_clear_coalescing(MemoryRegion *mr);
1439 
1440 /**
1441  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1442  *                                    accesses.
1443  *
1444  * Ensure that pending coalesced MMIO request are flushed before the memory
1445  * region is accessed. This property is automatically enabled for all regions
1446  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1447  *
1448  * @mr: the memory region to be updated.
1449  */
1450 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1451 
1452 /**
1453  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1454  *                                      accesses.
1455  *
1456  * Clear the automatic coalesced MMIO flushing enabled via
1457  * memory_region_set_flush_coalesced. Note that this service has no effect on
1458  * memory regions that have MMIO coalescing enabled for themselves. For them,
1459  * automatic flushing will stop once coalescing is disabled.
1460  *
1461  * @mr: the memory region to be updated.
1462  */
1463 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1464 
1465 /**
1466  * memory_region_clear_global_locking: Declares that access processing does
1467  *                                     not depend on the QEMU global lock.
1468  *
1469  * By clearing this property, accesses to the memory region will be processed
1470  * outside of QEMU's global lock (unless the lock is held on when issuing the
1471  * access request). In this case, the device model implementing the access
1472  * handlers is responsible for synchronization of concurrency.
1473  *
1474  * @mr: the memory region to be updated.
1475  */
1476 void memory_region_clear_global_locking(MemoryRegion *mr);
1477 
1478 /**
1479  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1480  *                            is written to a location.
1481  *
1482  * Marks a word in an IO region (initialized with memory_region_init_io())
1483  * as a trigger for an eventfd event.  The I/O callback will not be called.
1484  * The caller must be prepared to handle failure (that is, take the required
1485  * action if the callback _is_ called).
1486  *
1487  * @mr: the memory region being updated.
1488  * @addr: the address within @mr that is to be monitored
1489  * @size: the size of the access to trigger the eventfd
1490  * @match_data: whether to match against @data, instead of just @addr
1491  * @data: the data to match against the guest write
1492  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1493  **/
1494 void memory_region_add_eventfd(MemoryRegion *mr,
1495                                hwaddr addr,
1496                                unsigned size,
1497                                bool match_data,
1498                                uint64_t data,
1499                                EventNotifier *e);
1500 
1501 /**
1502  * memory_region_del_eventfd: Cancel an eventfd.
1503  *
1504  * Cancels an eventfd trigger requested by a previous
1505  * memory_region_add_eventfd() call.
1506  *
1507  * @mr: the memory region being updated.
1508  * @addr: the address within @mr that is to be monitored
1509  * @size: the size of the access to trigger the eventfd
1510  * @match_data: whether to match against @data, instead of just @addr
1511  * @data: the data to match against the guest write
1512  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1513  */
1514 void memory_region_del_eventfd(MemoryRegion *mr,
1515                                hwaddr addr,
1516                                unsigned size,
1517                                bool match_data,
1518                                uint64_t data,
1519                                EventNotifier *e);
1520 
1521 /**
1522  * memory_region_add_subregion: Add a subregion to a container.
1523  *
1524  * Adds a subregion at @offset.  The subregion may not overlap with other
1525  * subregions (except for those explicitly marked as overlapping).  A region
1526  * may only be added once as a subregion (unless removed with
1527  * memory_region_del_subregion()); use memory_region_init_alias() if you
1528  * want a region to be a subregion in multiple locations.
1529  *
1530  * @mr: the region to contain the new subregion; must be a container
1531  *      initialized with memory_region_init().
1532  * @offset: the offset relative to @mr where @subregion is added.
1533  * @subregion: the subregion to be added.
1534  */
1535 void memory_region_add_subregion(MemoryRegion *mr,
1536                                  hwaddr offset,
1537                                  MemoryRegion *subregion);
1538 /**
1539  * memory_region_add_subregion_overlap: Add a subregion to a container
1540  *                                      with overlap.
1541  *
1542  * Adds a subregion at @offset.  The subregion may overlap with other
1543  * subregions.  Conflicts are resolved by having a higher @priority hide a
1544  * lower @priority. Subregions without priority are taken as @priority 0.
1545  * A region may only be added once as a subregion (unless removed with
1546  * memory_region_del_subregion()); use memory_region_init_alias() if you
1547  * want a region to be a subregion in multiple locations.
1548  *
1549  * @mr: the region to contain the new subregion; must be a container
1550  *      initialized with memory_region_init().
1551  * @offset: the offset relative to @mr where @subregion is added.
1552  * @subregion: the subregion to be added.
1553  * @priority: used for resolving overlaps; highest priority wins.
1554  */
1555 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1556                                          hwaddr offset,
1557                                          MemoryRegion *subregion,
1558                                          int priority);
1559 
1560 /**
1561  * memory_region_get_ram_addr: Get the ram address associated with a memory
1562  *                             region
1563  */
1564 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1565 
1566 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1567 /**
1568  * memory_region_del_subregion: Remove a subregion.
1569  *
1570  * Removes a subregion from its container.
1571  *
1572  * @mr: the container to be updated.
1573  * @subregion: the region being removed; must be a current subregion of @mr.
1574  */
1575 void memory_region_del_subregion(MemoryRegion *mr,
1576                                  MemoryRegion *subregion);
1577 
1578 /*
1579  * memory_region_set_enabled: dynamically enable or disable a region
1580  *
1581  * Enables or disables a memory region.  A disabled memory region
1582  * ignores all accesses to itself and its subregions.  It does not
1583  * obscure sibling subregions with lower priority - it simply behaves as
1584  * if it was removed from the hierarchy.
1585  *
1586  * Regions default to being enabled.
1587  *
1588  * @mr: the region to be updated
1589  * @enabled: whether to enable or disable the region
1590  */
1591 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1592 
1593 /*
1594  * memory_region_set_address: dynamically update the address of a region
1595  *
1596  * Dynamically updates the address of a region, relative to its container.
1597  * May be used on regions are currently part of a memory hierarchy.
1598  *
1599  * @mr: the region to be updated
1600  * @addr: new address, relative to container region
1601  */
1602 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1603 
1604 /*
1605  * memory_region_set_size: dynamically update the size of a region.
1606  *
1607  * Dynamically updates the size of a region.
1608  *
1609  * @mr: the region to be updated
1610  * @size: used size of the region.
1611  */
1612 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1613 
1614 /*
1615  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1616  *
1617  * Dynamically updates the offset into the target region that an alias points
1618  * to, as if the fourth argument to memory_region_init_alias() has changed.
1619  *
1620  * @mr: the #MemoryRegion to be updated; should be an alias.
1621  * @offset: the new offset into the target memory region
1622  */
1623 void memory_region_set_alias_offset(MemoryRegion *mr,
1624                                     hwaddr offset);
1625 
1626 /**
1627  * memory_region_present: checks if an address relative to a @container
1628  * translates into #MemoryRegion within @container
1629  *
1630  * Answer whether a #MemoryRegion within @container covers the address
1631  * @addr.
1632  *
1633  * @container: a #MemoryRegion within which @addr is a relative address
1634  * @addr: the area within @container to be searched
1635  */
1636 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1637 
1638 /**
1639  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1640  * into any address space.
1641  *
1642  * @mr: a #MemoryRegion which should be checked if it's mapped
1643  */
1644 bool memory_region_is_mapped(MemoryRegion *mr);
1645 
1646 /**
1647  * memory_region_find: translate an address/size relative to a
1648  * MemoryRegion into a #MemoryRegionSection.
1649  *
1650  * Locates the first #MemoryRegion within @mr that overlaps the range
1651  * given by @addr and @size.
1652  *
1653  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1654  * It will have the following characteristics:
1655  *    .@size = 0 iff no overlap was found
1656  *    .@mr is non-%NULL iff an overlap was found
1657  *
1658  * Remember that in the return value the @offset_within_region is
1659  * relative to the returned region (in the .@mr field), not to the
1660  * @mr argument.
1661  *
1662  * Similarly, the .@offset_within_address_space is relative to the
1663  * address space that contains both regions, the passed and the
1664  * returned one.  However, in the special case where the @mr argument
1665  * has no container (and thus is the root of the address space), the
1666  * following will hold:
1667  *    .@offset_within_address_space >= @addr
1668  *    .@offset_within_address_space + .@size <= @addr + @size
1669  *
1670  * @mr: a MemoryRegion within which @addr is a relative address
1671  * @addr: start of the area within @as to be searched
1672  * @size: size of the area to be searched
1673  */
1674 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1675                                        hwaddr addr, uint64_t size);
1676 
1677 /**
1678  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1679  *
1680  * Synchronizes the dirty page log for all address spaces.
1681  */
1682 void memory_global_dirty_log_sync(void);
1683 
1684 /**
1685  * memory_region_transaction_begin: Start a transaction.
1686  *
1687  * During a transaction, changes will be accumulated and made visible
1688  * only when the transaction ends (is committed).
1689  */
1690 void memory_region_transaction_begin(void);
1691 
1692 /**
1693  * memory_region_transaction_commit: Commit a transaction and make changes
1694  *                                   visible to the guest.
1695  */
1696 void memory_region_transaction_commit(void);
1697 
1698 /**
1699  * memory_listener_register: register callbacks to be called when memory
1700  *                           sections are mapped or unmapped into an address
1701  *                           space
1702  *
1703  * @listener: an object containing the callbacks to be called
1704  * @filter: if non-%NULL, only regions in this address space will be observed
1705  */
1706 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1707 
1708 /**
1709  * memory_listener_unregister: undo the effect of memory_listener_register()
1710  *
1711  * @listener: an object containing the callbacks to be removed
1712  */
1713 void memory_listener_unregister(MemoryListener *listener);
1714 
1715 /**
1716  * memory_global_dirty_log_start: begin dirty logging for all regions
1717  */
1718 void memory_global_dirty_log_start(void);
1719 
1720 /**
1721  * memory_global_dirty_log_stop: end dirty logging for all regions
1722  */
1723 void memory_global_dirty_log_stop(void);
1724 
1725 void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1726 
1727 /**
1728  * memory_region_dispatch_read: perform a read directly to the specified
1729  * MemoryRegion.
1730  *
1731  * @mr: #MemoryRegion to access
1732  * @addr: address within that region
1733  * @pval: pointer to uint64_t which the data is written to
1734  * @size: size of the access in bytes
1735  * @attrs: memory transaction attributes to use for the access
1736  */
1737 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1738                                         hwaddr addr,
1739                                         uint64_t *pval,
1740                                         unsigned size,
1741                                         MemTxAttrs attrs);
1742 /**
1743  * memory_region_dispatch_write: perform a write directly to the specified
1744  * MemoryRegion.
1745  *
1746  * @mr: #MemoryRegion to access
1747  * @addr: address within that region
1748  * @data: data to write
1749  * @size: size of the access in bytes
1750  * @attrs: memory transaction attributes to use for the access
1751  */
1752 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1753                                          hwaddr addr,
1754                                          uint64_t data,
1755                                          unsigned size,
1756                                          MemTxAttrs attrs);
1757 
1758 /**
1759  * address_space_init: initializes an address space
1760  *
1761  * @as: an uninitialized #AddressSpace
1762  * @root: a #MemoryRegion that routes addresses for the address space
1763  * @name: an address space name.  The name is only used for debugging
1764  *        output.
1765  */
1766 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1767 
1768 /**
1769  * address_space_destroy: destroy an address space
1770  *
1771  * Releases all resources associated with an address space.  After an address space
1772  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1773  * as well.
1774  *
1775  * @as: address space to be destroyed
1776  */
1777 void address_space_destroy(AddressSpace *as);
1778 
1779 /**
1780  * address_space_remove_listeners: unregister all listeners of an address space
1781  *
1782  * Removes all callbacks previously registered with memory_listener_register()
1783  * for @as.
1784  *
1785  * @as: an initialized #AddressSpace
1786  */
1787 void address_space_remove_listeners(AddressSpace *as);
1788 
1789 /**
1790  * address_space_rw: read from or write to an address space.
1791  *
1792  * Return a MemTxResult indicating whether the operation succeeded
1793  * or failed (eg unassigned memory, device rejected the transaction,
1794  * IOMMU fault).
1795  *
1796  * @as: #AddressSpace to be accessed
1797  * @addr: address within that address space
1798  * @attrs: memory transaction attributes
1799  * @buf: buffer with the data transferred
1800  * @len: the number of bytes to read or write
1801  * @is_write: indicates the transfer direction
1802  */
1803 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1804                              MemTxAttrs attrs, uint8_t *buf,
1805                              hwaddr len, bool is_write);
1806 
1807 /**
1808  * address_space_write: write to address space.
1809  *
1810  * Return a MemTxResult indicating whether the operation succeeded
1811  * or failed (eg unassigned memory, device rejected the transaction,
1812  * IOMMU fault).
1813  *
1814  * @as: #AddressSpace to be accessed
1815  * @addr: address within that address space
1816  * @attrs: memory transaction attributes
1817  * @buf: buffer with the data transferred
1818  * @len: the number of bytes to write
1819  */
1820 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1821                                 MemTxAttrs attrs,
1822                                 const uint8_t *buf, hwaddr len);
1823 
1824 /**
1825  * address_space_write_rom: write to address space, including ROM.
1826  *
1827  * This function writes to the specified address space, but will
1828  * write data to both ROM and RAM. This is used for non-guest
1829  * writes like writes from the gdb debug stub or initial loading
1830  * of ROM contents.
1831  *
1832  * Note that portions of the write which attempt to write data to
1833  * a device will be silently ignored -- only real RAM and ROM will
1834  * be written to.
1835  *
1836  * Return a MemTxResult indicating whether the operation succeeded
1837  * or failed (eg unassigned memory, device rejected the transaction,
1838  * IOMMU fault).
1839  *
1840  * @as: #AddressSpace to be accessed
1841  * @addr: address within that address space
1842  * @attrs: memory transaction attributes
1843  * @buf: buffer with the data transferred
1844  * @len: the number of bytes to write
1845  */
1846 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1847                                     MemTxAttrs attrs,
1848                                     const uint8_t *buf, hwaddr len);
1849 
1850 /* address_space_ld*: load from an address space
1851  * address_space_st*: store to an address space
1852  *
1853  * These functions perform a load or store of the byte, word,
1854  * longword or quad to the specified address within the AddressSpace.
1855  * The _le suffixed functions treat the data as little endian;
1856  * _be indicates big endian; no suffix indicates "same endianness
1857  * as guest CPU".
1858  *
1859  * The "guest CPU endianness" accessors are deprecated for use outside
1860  * target-* code; devices should be CPU-agnostic and use either the LE
1861  * or the BE accessors.
1862  *
1863  * @as #AddressSpace to be accessed
1864  * @addr: address within that address space
1865  * @val: data value, for stores
1866  * @attrs: memory transaction attributes
1867  * @result: location to write the success/failure of the transaction;
1868  *   if NULL, this information is discarded
1869  */
1870 
1871 #define SUFFIX
1872 #define ARG1         as
1873 #define ARG1_DECL    AddressSpace *as
1874 #include "exec/memory_ldst.inc.h"
1875 
1876 #define SUFFIX
1877 #define ARG1         as
1878 #define ARG1_DECL    AddressSpace *as
1879 #include "exec/memory_ldst_phys.inc.h"
1880 
1881 struct MemoryRegionCache {
1882     void *ptr;
1883     hwaddr xlat;
1884     hwaddr len;
1885     FlatView *fv;
1886     MemoryRegionSection mrs;
1887     bool is_write;
1888 };
1889 
1890 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1891 
1892 
1893 /* address_space_ld*_cached: load from a cached #MemoryRegion
1894  * address_space_st*_cached: store into a cached #MemoryRegion
1895  *
1896  * These functions perform a load or store of the byte, word,
1897  * longword or quad to the specified address.  The address is
1898  * a physical address in the AddressSpace, but it must lie within
1899  * a #MemoryRegion that was mapped with address_space_cache_init.
1900  *
1901  * The _le suffixed functions treat the data as little endian;
1902  * _be indicates big endian; no suffix indicates "same endianness
1903  * as guest CPU".
1904  *
1905  * The "guest CPU endianness" accessors are deprecated for use outside
1906  * target-* code; devices should be CPU-agnostic and use either the LE
1907  * or the BE accessors.
1908  *
1909  * @cache: previously initialized #MemoryRegionCache to be accessed
1910  * @addr: address within the address space
1911  * @val: data value, for stores
1912  * @attrs: memory transaction attributes
1913  * @result: location to write the success/failure of the transaction;
1914  *   if NULL, this information is discarded
1915  */
1916 
1917 #define SUFFIX       _cached_slow
1918 #define ARG1         cache
1919 #define ARG1_DECL    MemoryRegionCache *cache
1920 #include "exec/memory_ldst.inc.h"
1921 
1922 /* Inline fast path for direct RAM access.  */
1923 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1924     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1925 {
1926     assert(addr < cache->len);
1927     if (likely(cache->ptr)) {
1928         return ldub_p(cache->ptr + addr);
1929     } else {
1930         return address_space_ldub_cached_slow(cache, addr, attrs, result);
1931     }
1932 }
1933 
1934 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1935     hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1936 {
1937     assert(addr < cache->len);
1938     if (likely(cache->ptr)) {
1939         stb_p(cache->ptr + addr, val);
1940     } else {
1941         address_space_stb_cached_slow(cache, addr, val, attrs, result);
1942     }
1943 }
1944 
1945 #define ENDIANNESS   _le
1946 #include "exec/memory_ldst_cached.inc.h"
1947 
1948 #define ENDIANNESS   _be
1949 #include "exec/memory_ldst_cached.inc.h"
1950 
1951 #define SUFFIX       _cached
1952 #define ARG1         cache
1953 #define ARG1_DECL    MemoryRegionCache *cache
1954 #include "exec/memory_ldst_phys.inc.h"
1955 
1956 /* address_space_cache_init: prepare for repeated access to a physical
1957  * memory region
1958  *
1959  * @cache: #MemoryRegionCache to be filled
1960  * @as: #AddressSpace to be accessed
1961  * @addr: address within that address space
1962  * @len: length of buffer
1963  * @is_write: indicates the transfer direction
1964  *
1965  * Will only work with RAM, and may map a subset of the requested range by
1966  * returning a value that is less than @len.  On failure, return a negative
1967  * errno value.
1968  *
1969  * Because it only works with RAM, this function can be used for
1970  * read-modify-write operations.  In this case, is_write should be %true.
1971  *
1972  * Note that addresses passed to the address_space_*_cached functions
1973  * are relative to @addr.
1974  */
1975 int64_t address_space_cache_init(MemoryRegionCache *cache,
1976                                  AddressSpace *as,
1977                                  hwaddr addr,
1978                                  hwaddr len,
1979                                  bool is_write);
1980 
1981 /**
1982  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1983  *
1984  * @cache: The #MemoryRegionCache to operate on.
1985  * @addr: The first physical address that was written, relative to the
1986  * address that was passed to @address_space_cache_init.
1987  * @access_len: The number of bytes that were written starting at @addr.
1988  */
1989 void address_space_cache_invalidate(MemoryRegionCache *cache,
1990                                     hwaddr addr,
1991                                     hwaddr access_len);
1992 
1993 /**
1994  * address_space_cache_destroy: free a #MemoryRegionCache
1995  *
1996  * @cache: The #MemoryRegionCache whose memory should be released.
1997  */
1998 void address_space_cache_destroy(MemoryRegionCache *cache);
1999 
2000 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2001  * entry. Should be called from an RCU critical section.
2002  */
2003 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2004                                             bool is_write, MemTxAttrs attrs);
2005 
2006 /* address_space_translate: translate an address range into an address space
2007  * into a MemoryRegion and an address range into that section.  Should be
2008  * called from an RCU critical section, to avoid that the last reference
2009  * to the returned region disappears after address_space_translate returns.
2010  *
2011  * @fv: #FlatView to be accessed
2012  * @addr: address within that address space
2013  * @xlat: pointer to address within the returned memory region section's
2014  * #MemoryRegion.
2015  * @len: pointer to length
2016  * @is_write: indicates the transfer direction
2017  * @attrs: memory attributes
2018  */
2019 MemoryRegion *flatview_translate(FlatView *fv,
2020                                  hwaddr addr, hwaddr *xlat,
2021                                  hwaddr *len, bool is_write,
2022                                  MemTxAttrs attrs);
2023 
2024 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2025                                                     hwaddr addr, hwaddr *xlat,
2026                                                     hwaddr *len, bool is_write,
2027                                                     MemTxAttrs attrs)
2028 {
2029     return flatview_translate(address_space_to_flatview(as),
2030                               addr, xlat, len, is_write, attrs);
2031 }
2032 
2033 /* address_space_access_valid: check for validity of accessing an address
2034  * space range
2035  *
2036  * Check whether memory is assigned to the given address space range, and
2037  * access is permitted by any IOMMU regions that are active for the address
2038  * space.
2039  *
2040  * For now, addr and len should be aligned to a page size.  This limitation
2041  * will be lifted in the future.
2042  *
2043  * @as: #AddressSpace to be accessed
2044  * @addr: address within that address space
2045  * @len: length of the area to be checked
2046  * @is_write: indicates the transfer direction
2047  * @attrs: memory attributes
2048  */
2049 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2050                                 bool is_write, MemTxAttrs attrs);
2051 
2052 /* address_space_map: map a physical memory region into a host virtual address
2053  *
2054  * May map a subset of the requested range, given by and returned in @plen.
2055  * May return %NULL if resources needed to perform the mapping are exhausted.
2056  * Use only for reads OR writes - not for read-modify-write operations.
2057  * Use cpu_register_map_client() to know when retrying the map operation is
2058  * likely to succeed.
2059  *
2060  * @as: #AddressSpace to be accessed
2061  * @addr: address within that address space
2062  * @plen: pointer to length of buffer; updated on return
2063  * @is_write: indicates the transfer direction
2064  * @attrs: memory attributes
2065  */
2066 void *address_space_map(AddressSpace *as, hwaddr addr,
2067                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2068 
2069 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2070  *
2071  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2072  * the amount of memory that was actually read or written by the caller.
2073  *
2074  * @as: #AddressSpace used
2075  * @buffer: host pointer as returned by address_space_map()
2076  * @len: buffer length as returned by address_space_map()
2077  * @access_len: amount of data actually transferred
2078  * @is_write: indicates the transfer direction
2079  */
2080 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2081                          int is_write, hwaddr access_len);
2082 
2083 
2084 /* Internal functions, part of the implementation of address_space_read.  */
2085 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2086                                     MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2087 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2088                                    MemTxAttrs attrs, uint8_t *buf,
2089                                    hwaddr len, hwaddr addr1, hwaddr l,
2090                                    MemoryRegion *mr);
2091 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2092 
2093 /* Internal functions, part of the implementation of address_space_read_cached
2094  * and address_space_write_cached.  */
2095 void address_space_read_cached_slow(MemoryRegionCache *cache,
2096                                     hwaddr addr, void *buf, hwaddr len);
2097 void address_space_write_cached_slow(MemoryRegionCache *cache,
2098                                      hwaddr addr, const void *buf, hwaddr len);
2099 
2100 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2101 {
2102     if (is_write) {
2103         return memory_region_is_ram(mr) &&
2104                !mr->readonly && !memory_region_is_ram_device(mr);
2105     } else {
2106         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2107                memory_region_is_romd(mr);
2108     }
2109 }
2110 
2111 /**
2112  * address_space_read: read from an address space.
2113  *
2114  * Return a MemTxResult indicating whether the operation succeeded
2115  * or failed (eg unassigned memory, device rejected the transaction,
2116  * IOMMU fault).  Called within RCU critical section.
2117  *
2118  * @as: #AddressSpace to be accessed
2119  * @addr: address within that address space
2120  * @attrs: memory transaction attributes
2121  * @buf: buffer with the data transferred
2122  */
2123 static inline __attribute__((__always_inline__))
2124 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2125                                MemTxAttrs attrs, uint8_t *buf,
2126                                hwaddr len)
2127 {
2128     MemTxResult result = MEMTX_OK;
2129     hwaddr l, addr1;
2130     void *ptr;
2131     MemoryRegion *mr;
2132     FlatView *fv;
2133 
2134     if (__builtin_constant_p(len)) {
2135         if (len) {
2136             rcu_read_lock();
2137             fv = address_space_to_flatview(as);
2138             l = len;
2139             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2140             if (len == l && memory_access_is_direct(mr, false)) {
2141                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2142                 memcpy(buf, ptr, len);
2143             } else {
2144                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2145                                                 addr1, l, mr);
2146             }
2147             rcu_read_unlock();
2148         }
2149     } else {
2150         result = address_space_read_full(as, addr, attrs, buf, len);
2151     }
2152     return result;
2153 }
2154 
2155 /**
2156  * address_space_read_cached: read from a cached RAM region
2157  *
2158  * @cache: Cached region to be addressed
2159  * @addr: address relative to the base of the RAM region
2160  * @buf: buffer with the data transferred
2161  * @len: length of the data transferred
2162  */
2163 static inline void
2164 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2165                           void *buf, hwaddr len)
2166 {
2167     assert(addr < cache->len && len <= cache->len - addr);
2168     if (likely(cache->ptr)) {
2169         memcpy(buf, cache->ptr + addr, len);
2170     } else {
2171         address_space_read_cached_slow(cache, addr, buf, len);
2172     }
2173 }
2174 
2175 /**
2176  * address_space_write_cached: write to a cached RAM region
2177  *
2178  * @cache: Cached region to be addressed
2179  * @addr: address relative to the base of the RAM region
2180  * @buf: buffer with the data transferred
2181  * @len: length of the data transferred
2182  */
2183 static inline void
2184 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2185                            void *buf, hwaddr len)
2186 {
2187     assert(addr < cache->len && len <= cache->len - addr);
2188     if (likely(cache->ptr)) {
2189         memcpy(cache->ptr + addr, buf, len);
2190     } else {
2191         address_space_write_cached_slow(cache, addr, buf, len);
2192     }
2193 }
2194 
2195 #endif
2196 
2197 #endif
2198