1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/ramlist.h" 23 #include "qemu/queue.h" 24 #include "qemu/int128.h" 25 #include "qemu/notify.h" 26 #include "qom/object.h" 27 #include "qemu/rcu.h" 28 #include "hw/qdev-core.h" 29 30 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 31 32 #define MAX_PHYS_ADDR_SPACE_BITS 62 33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 34 35 #define TYPE_MEMORY_REGION "qemu:memory-region" 36 #define MEMORY_REGION(obj) \ 37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 38 39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 40 #define IOMMU_MEMORY_REGION(obj) \ 41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 42 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 44 TYPE_IOMMU_MEMORY_REGION) 45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 47 TYPE_IOMMU_MEMORY_REGION) 48 49 extern bool global_dirty_log; 50 51 typedef struct MemoryRegionOps MemoryRegionOps; 52 typedef struct MemoryRegionMmio MemoryRegionMmio; 53 54 struct MemoryRegionMmio { 55 CPUReadMemoryFunc *read[3]; 56 CPUWriteMemoryFunc *write[3]; 57 }; 58 59 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 60 61 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 62 typedef enum { 63 IOMMU_NONE = 0, 64 IOMMU_RO = 1, 65 IOMMU_WO = 2, 66 IOMMU_RW = 3, 67 } IOMMUAccessFlags; 68 69 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 70 71 struct IOMMUTLBEntry { 72 AddressSpace *target_as; 73 hwaddr iova; 74 hwaddr translated_addr; 75 hwaddr addr_mask; /* 0xfff = 4k translation */ 76 IOMMUAccessFlags perm; 77 }; 78 79 /* 80 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 81 * register with one or multiple IOMMU Notifier capability bit(s). 82 */ 83 typedef enum { 84 IOMMU_NOTIFIER_NONE = 0, 85 /* Notify cache invalidations */ 86 IOMMU_NOTIFIER_UNMAP = 0x1, 87 /* Notify entry changes (newly created entries) */ 88 IOMMU_NOTIFIER_MAP = 0x2, 89 } IOMMUNotifierFlag; 90 91 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 92 93 struct IOMMUNotifier; 94 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 95 IOMMUTLBEntry *data); 96 97 struct IOMMUNotifier { 98 IOMMUNotify notify; 99 IOMMUNotifierFlag notifier_flags; 100 /* Notify for address space range start <= addr <= end */ 101 hwaddr start; 102 hwaddr end; 103 int iommu_idx; 104 QLIST_ENTRY(IOMMUNotifier) node; 105 }; 106 typedef struct IOMMUNotifier IOMMUNotifier; 107 108 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 109 #define RAM_PREALLOC (1 << 0) 110 111 /* RAM is mmap-ed with MAP_SHARED */ 112 #define RAM_SHARED (1 << 1) 113 114 /* Only a portion of RAM (used_length) is actually used, and migrated. 115 * This used_length size can change across reboots. 116 */ 117 #define RAM_RESIZEABLE (1 << 2) 118 119 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 120 * zero the page and wake waiting processes. 121 * (Set during postcopy) 122 */ 123 #define RAM_UF_ZEROPAGE (1 << 3) 124 125 /* RAM can be migrated */ 126 #define RAM_MIGRATABLE (1 << 4) 127 128 /* RAM is a persistent kind memory */ 129 #define RAM_PMEM (1 << 5) 130 131 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 132 IOMMUNotifierFlag flags, 133 hwaddr start, hwaddr end, 134 int iommu_idx) 135 { 136 n->notify = fn; 137 n->notifier_flags = flags; 138 n->start = start; 139 n->end = end; 140 n->iommu_idx = iommu_idx; 141 } 142 143 /* 144 * Memory region callbacks 145 */ 146 struct MemoryRegionOps { 147 /* Read from the memory region. @addr is relative to @mr; @size is 148 * in bytes. */ 149 uint64_t (*read)(void *opaque, 150 hwaddr addr, 151 unsigned size); 152 /* Write to the memory region. @addr is relative to @mr; @size is 153 * in bytes. */ 154 void (*write)(void *opaque, 155 hwaddr addr, 156 uint64_t data, 157 unsigned size); 158 159 MemTxResult (*read_with_attrs)(void *opaque, 160 hwaddr addr, 161 uint64_t *data, 162 unsigned size, 163 MemTxAttrs attrs); 164 MemTxResult (*write_with_attrs)(void *opaque, 165 hwaddr addr, 166 uint64_t data, 167 unsigned size, 168 MemTxAttrs attrs); 169 170 enum device_endian endianness; 171 /* Guest-visible constraints: */ 172 struct { 173 /* If nonzero, specify bounds on access sizes beyond which a machine 174 * check is thrown. 175 */ 176 unsigned min_access_size; 177 unsigned max_access_size; 178 /* If true, unaligned accesses are supported. Otherwise unaligned 179 * accesses throw machine checks. 180 */ 181 bool unaligned; 182 /* 183 * If present, and returns #false, the transaction is not accepted 184 * by the device (and results in machine dependent behaviour such 185 * as a machine check exception). 186 */ 187 bool (*accepts)(void *opaque, hwaddr addr, 188 unsigned size, bool is_write, 189 MemTxAttrs attrs); 190 } valid; 191 /* Internal implementation constraints: */ 192 struct { 193 /* If nonzero, specifies the minimum size implemented. Smaller sizes 194 * will be rounded upwards and a partial result will be returned. 195 */ 196 unsigned min_access_size; 197 /* If nonzero, specifies the maximum size implemented. Larger sizes 198 * will be done as a series of accesses with smaller sizes. 199 */ 200 unsigned max_access_size; 201 /* If true, unaligned accesses are supported. Otherwise all accesses 202 * are converted to (possibly multiple) naturally aligned accesses. 203 */ 204 bool unaligned; 205 } impl; 206 }; 207 208 enum IOMMUMemoryRegionAttr { 209 IOMMU_ATTR_SPAPR_TCE_FD 210 }; 211 212 /** 213 * IOMMUMemoryRegionClass: 214 * 215 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 216 * and provide an implementation of at least the @translate method here 217 * to handle requests to the memory region. Other methods are optional. 218 * 219 * The IOMMU implementation must use the IOMMU notifier infrastructure 220 * to report whenever mappings are changed, by calling 221 * memory_region_notify_iommu() (or, if necessary, by calling 222 * memory_region_notify_one() for each registered notifier). 223 * 224 * Conceptually an IOMMU provides a mapping from input address 225 * to an output TLB entry. If the IOMMU is aware of memory transaction 226 * attributes and the output TLB entry depends on the transaction 227 * attributes, we represent this using IOMMU indexes. Each index 228 * selects a particular translation table that the IOMMU has: 229 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 230 * @translate takes an input address and an IOMMU index 231 * and the mapping returned can only depend on the input address and the 232 * IOMMU index. 233 * 234 * Most IOMMUs don't care about the transaction attributes and support 235 * only a single IOMMU index. A more complex IOMMU might have one index 236 * for secure transactions and one for non-secure transactions. 237 */ 238 typedef struct IOMMUMemoryRegionClass { 239 /* private */ 240 struct DeviceClass parent_class; 241 242 /* 243 * Return a TLB entry that contains a given address. 244 * 245 * The IOMMUAccessFlags indicated via @flag are optional and may 246 * be specified as IOMMU_NONE to indicate that the caller needs 247 * the full translation information for both reads and writes. If 248 * the access flags are specified then the IOMMU implementation 249 * may use this as an optimization, to stop doing a page table 250 * walk as soon as it knows that the requested permissions are not 251 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 252 * full page table walk and report the permissions in the returned 253 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 254 * return different mappings for reads and writes.) 255 * 256 * The returned information remains valid while the caller is 257 * holding the big QEMU lock or is inside an RCU critical section; 258 * if the caller wishes to cache the mapping beyond that it must 259 * register an IOMMU notifier so it can invalidate its cached 260 * information when the IOMMU mapping changes. 261 * 262 * @iommu: the IOMMUMemoryRegion 263 * @hwaddr: address to be translated within the memory region 264 * @flag: requested access permissions 265 * @iommu_idx: IOMMU index for the translation 266 */ 267 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 268 IOMMUAccessFlags flag, int iommu_idx); 269 /* Returns minimum supported page size in bytes. 270 * If this method is not provided then the minimum is assumed to 271 * be TARGET_PAGE_SIZE. 272 * 273 * @iommu: the IOMMUMemoryRegion 274 */ 275 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 276 /* Called when IOMMU Notifier flag changes (ie when the set of 277 * events which IOMMU users are requesting notification for changes). 278 * Optional method -- need not be provided if the IOMMU does not 279 * need to know exactly which events must be notified. 280 * 281 * @iommu: the IOMMUMemoryRegion 282 * @old_flags: events which previously needed to be notified 283 * @new_flags: events which now need to be notified 284 */ 285 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 286 IOMMUNotifierFlag old_flags, 287 IOMMUNotifierFlag new_flags); 288 /* Called to handle memory_region_iommu_replay(). 289 * 290 * The default implementation of memory_region_iommu_replay() is to 291 * call the IOMMU translate method for every page in the address space 292 * with flag == IOMMU_NONE and then call the notifier if translate 293 * returns a valid mapping. If this method is implemented then it 294 * overrides the default behaviour, and must provide the full semantics 295 * of memory_region_iommu_replay(), by calling @notifier for every 296 * translation present in the IOMMU. 297 * 298 * Optional method -- an IOMMU only needs to provide this method 299 * if the default is inefficient or produces undesirable side effects. 300 * 301 * Note: this is not related to record-and-replay functionality. 302 */ 303 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 304 305 /* Get IOMMU misc attributes. This is an optional method that 306 * can be used to allow users of the IOMMU to get implementation-specific 307 * information. The IOMMU implements this method to handle calls 308 * by IOMMU users to memory_region_iommu_get_attr() by filling in 309 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 310 * the IOMMU supports. If the method is unimplemented then 311 * memory_region_iommu_get_attr() will always return -EINVAL. 312 * 313 * @iommu: the IOMMUMemoryRegion 314 * @attr: attribute being queried 315 * @data: memory to fill in with the attribute data 316 * 317 * Returns 0 on success, or a negative errno; in particular 318 * returns -EINVAL for unrecognized or unimplemented attribute types. 319 */ 320 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 321 void *data); 322 323 /* Return the IOMMU index to use for a given set of transaction attributes. 324 * 325 * Optional method: if an IOMMU only supports a single IOMMU index then 326 * the default implementation of memory_region_iommu_attrs_to_index() 327 * will return 0. 328 * 329 * The indexes supported by an IOMMU must be contiguous, starting at 0. 330 * 331 * @iommu: the IOMMUMemoryRegion 332 * @attrs: memory transaction attributes 333 */ 334 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 335 336 /* Return the number of IOMMU indexes this IOMMU supports. 337 * 338 * Optional method: if this method is not provided, then 339 * memory_region_iommu_num_indexes() will return 1, indicating that 340 * only a single IOMMU index is supported. 341 * 342 * @iommu: the IOMMUMemoryRegion 343 */ 344 int (*num_indexes)(IOMMUMemoryRegion *iommu); 345 } IOMMUMemoryRegionClass; 346 347 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 348 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 349 350 struct MemoryRegion { 351 Object parent_obj; 352 353 /* All fields are private - violators will be prosecuted */ 354 355 /* The following fields should fit in a cache line */ 356 bool romd_mode; 357 bool ram; 358 bool subpage; 359 bool readonly; /* For RAM regions */ 360 bool nonvolatile; 361 bool rom_device; 362 bool flush_coalesced_mmio; 363 bool global_locking; 364 uint8_t dirty_log_mask; 365 bool is_iommu; 366 RAMBlock *ram_block; 367 Object *owner; 368 369 const MemoryRegionOps *ops; 370 void *opaque; 371 MemoryRegion *container; 372 Int128 size; 373 hwaddr addr; 374 void (*destructor)(MemoryRegion *mr); 375 uint64_t align; 376 bool terminates; 377 bool ram_device; 378 bool enabled; 379 bool warning_printed; /* For reservations */ 380 uint8_t vga_logging_count; 381 MemoryRegion *alias; 382 hwaddr alias_offset; 383 int32_t priority; 384 QTAILQ_HEAD(, MemoryRegion) subregions; 385 QTAILQ_ENTRY(MemoryRegion) subregions_link; 386 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 387 const char *name; 388 unsigned ioeventfd_nb; 389 MemoryRegionIoeventfd *ioeventfds; 390 }; 391 392 struct IOMMUMemoryRegion { 393 MemoryRegion parent_obj; 394 395 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 396 IOMMUNotifierFlag iommu_notify_flags; 397 }; 398 399 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 400 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 401 402 /** 403 * MemoryListener: callbacks structure for updates to the physical memory map 404 * 405 * Allows a component to adjust to changes in the guest-visible memory map. 406 * Use with memory_listener_register() and memory_listener_unregister(). 407 */ 408 struct MemoryListener { 409 void (*begin)(MemoryListener *listener); 410 void (*commit)(MemoryListener *listener); 411 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 412 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 413 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 414 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 415 int old, int new); 416 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 417 int old, int new); 418 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 419 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 420 void (*log_global_start)(MemoryListener *listener); 421 void (*log_global_stop)(MemoryListener *listener); 422 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 423 bool match_data, uint64_t data, EventNotifier *e); 424 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 425 bool match_data, uint64_t data, EventNotifier *e); 426 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 427 hwaddr addr, hwaddr len); 428 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 429 hwaddr addr, hwaddr len); 430 /* Lower = earlier (during add), later (during del) */ 431 unsigned priority; 432 AddressSpace *address_space; 433 QTAILQ_ENTRY(MemoryListener) link; 434 QTAILQ_ENTRY(MemoryListener) link_as; 435 }; 436 437 /** 438 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 439 */ 440 struct AddressSpace { 441 /* All fields are private. */ 442 struct rcu_head rcu; 443 char *name; 444 MemoryRegion *root; 445 446 /* Accessed via RCU. */ 447 struct FlatView *current_map; 448 449 int ioeventfd_nb; 450 struct MemoryRegionIoeventfd *ioeventfds; 451 QTAILQ_HEAD(, MemoryListener) listeners; 452 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 453 }; 454 455 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 456 typedef struct FlatRange FlatRange; 457 458 /* Flattened global view of current active memory hierarchy. Kept in sorted 459 * order. 460 */ 461 struct FlatView { 462 struct rcu_head rcu; 463 unsigned ref; 464 FlatRange *ranges; 465 unsigned nr; 466 unsigned nr_allocated; 467 struct AddressSpaceDispatch *dispatch; 468 MemoryRegion *root; 469 }; 470 471 static inline FlatView *address_space_to_flatview(AddressSpace *as) 472 { 473 return atomic_rcu_read(&as->current_map); 474 } 475 476 477 /** 478 * MemoryRegionSection: describes a fragment of a #MemoryRegion 479 * 480 * @mr: the region, or %NULL if empty 481 * @fv: the flat view of the address space the region is mapped in 482 * @offset_within_region: the beginning of the section, relative to @mr's start 483 * @size: the size of the section; will not exceed @mr's boundaries 484 * @offset_within_address_space: the address of the first byte of the section 485 * relative to the region's address space 486 * @readonly: writes to this section are ignored 487 * @nonvolatile: this section is non-volatile 488 */ 489 struct MemoryRegionSection { 490 MemoryRegion *mr; 491 FlatView *fv; 492 hwaddr offset_within_region; 493 Int128 size; 494 hwaddr offset_within_address_space; 495 bool readonly; 496 bool nonvolatile; 497 }; 498 499 /** 500 * memory_region_init: Initialize a memory region 501 * 502 * The region typically acts as a container for other memory regions. Use 503 * memory_region_add_subregion() to add subregions. 504 * 505 * @mr: the #MemoryRegion to be initialized 506 * @owner: the object that tracks the region's reference count 507 * @name: used for debugging; not visible to the user or ABI 508 * @size: size of the region; any subregions beyond this size will be clipped 509 */ 510 void memory_region_init(MemoryRegion *mr, 511 struct Object *owner, 512 const char *name, 513 uint64_t size); 514 515 /** 516 * memory_region_ref: Add 1 to a memory region's reference count 517 * 518 * Whenever memory regions are accessed outside the BQL, they need to be 519 * preserved against hot-unplug. MemoryRegions actually do not have their 520 * own reference count; they piggyback on a QOM object, their "owner". 521 * This function adds a reference to the owner. 522 * 523 * All MemoryRegions must have an owner if they can disappear, even if the 524 * device they belong to operates exclusively under the BQL. This is because 525 * the region could be returned at any time by memory_region_find, and this 526 * is usually under guest control. 527 * 528 * @mr: the #MemoryRegion 529 */ 530 void memory_region_ref(MemoryRegion *mr); 531 532 /** 533 * memory_region_unref: Remove 1 to a memory region's reference count 534 * 535 * Whenever memory regions are accessed outside the BQL, they need to be 536 * preserved against hot-unplug. MemoryRegions actually do not have their 537 * own reference count; they piggyback on a QOM object, their "owner". 538 * This function removes a reference to the owner and possibly destroys it. 539 * 540 * @mr: the #MemoryRegion 541 */ 542 void memory_region_unref(MemoryRegion *mr); 543 544 /** 545 * memory_region_init_io: Initialize an I/O memory region. 546 * 547 * Accesses into the region will cause the callbacks in @ops to be called. 548 * if @size is nonzero, subregions will be clipped to @size. 549 * 550 * @mr: the #MemoryRegion to be initialized. 551 * @owner: the object that tracks the region's reference count 552 * @ops: a structure containing read and write callbacks to be used when 553 * I/O is performed on the region. 554 * @opaque: passed to the read and write callbacks of the @ops structure. 555 * @name: used for debugging; not visible to the user or ABI 556 * @size: size of the region. 557 */ 558 void memory_region_init_io(MemoryRegion *mr, 559 struct Object *owner, 560 const MemoryRegionOps *ops, 561 void *opaque, 562 const char *name, 563 uint64_t size); 564 565 /** 566 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 567 * into the region will modify memory 568 * directly. 569 * 570 * @mr: the #MemoryRegion to be initialized. 571 * @owner: the object that tracks the region's reference count 572 * @name: Region name, becomes part of RAMBlock name used in migration stream 573 * must be unique within any device 574 * @size: size of the region. 575 * @errp: pointer to Error*, to store an error if it happens. 576 * 577 * Note that this function does not do anything to cause the data in the 578 * RAM memory region to be migrated; that is the responsibility of the caller. 579 */ 580 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 581 struct Object *owner, 582 const char *name, 583 uint64_t size, 584 Error **errp); 585 586 /** 587 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 588 * Accesses into the region will 589 * modify memory directly. 590 * 591 * @mr: the #MemoryRegion to be initialized. 592 * @owner: the object that tracks the region's reference count 593 * @name: Region name, becomes part of RAMBlock name used in migration stream 594 * must be unique within any device 595 * @size: size of the region. 596 * @share: allow remapping RAM to different addresses 597 * @errp: pointer to Error*, to store an error if it happens. 598 * 599 * Note that this function is similar to memory_region_init_ram_nomigrate. 600 * The only difference is part of the RAM region can be remapped. 601 */ 602 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 603 struct Object *owner, 604 const char *name, 605 uint64_t size, 606 bool share, 607 Error **errp); 608 609 /** 610 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 611 * RAM. Accesses into the region will 612 * modify memory directly. Only an initial 613 * portion of this RAM is actually used. 614 * The used size can change across reboots. 615 * 616 * @mr: the #MemoryRegion to be initialized. 617 * @owner: the object that tracks the region's reference count 618 * @name: Region name, becomes part of RAMBlock name used in migration stream 619 * must be unique within any device 620 * @size: used size of the region. 621 * @max_size: max size of the region. 622 * @resized: callback to notify owner about used size change. 623 * @errp: pointer to Error*, to store an error if it happens. 624 * 625 * Note that this function does not do anything to cause the data in the 626 * RAM memory region to be migrated; that is the responsibility of the caller. 627 */ 628 void memory_region_init_resizeable_ram(MemoryRegion *mr, 629 struct Object *owner, 630 const char *name, 631 uint64_t size, 632 uint64_t max_size, 633 void (*resized)(const char*, 634 uint64_t length, 635 void *host), 636 Error **errp); 637 #ifdef CONFIG_POSIX 638 639 /** 640 * memory_region_init_ram_from_file: Initialize RAM memory region with a 641 * mmap-ed backend. 642 * 643 * @mr: the #MemoryRegion to be initialized. 644 * @owner: the object that tracks the region's reference count 645 * @name: Region name, becomes part of RAMBlock name used in migration stream 646 * must be unique within any device 647 * @size: size of the region. 648 * @align: alignment of the region base address; if 0, the default alignment 649 * (getpagesize()) will be used. 650 * @ram_flags: Memory region features: 651 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 652 * - RAM_PMEM: the memory is persistent memory 653 * Other bits are ignored now. 654 * @path: the path in which to allocate the RAM. 655 * @errp: pointer to Error*, to store an error if it happens. 656 * 657 * Note that this function does not do anything to cause the data in the 658 * RAM memory region to be migrated; that is the responsibility of the caller. 659 */ 660 void memory_region_init_ram_from_file(MemoryRegion *mr, 661 struct Object *owner, 662 const char *name, 663 uint64_t size, 664 uint64_t align, 665 uint32_t ram_flags, 666 const char *path, 667 Error **errp); 668 669 /** 670 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 671 * mmap-ed backend. 672 * 673 * @mr: the #MemoryRegion to be initialized. 674 * @owner: the object that tracks the region's reference count 675 * @name: the name of the region. 676 * @size: size of the region. 677 * @share: %true if memory must be mmaped with the MAP_SHARED flag 678 * @fd: the fd to mmap. 679 * @errp: pointer to Error*, to store an error if it happens. 680 * 681 * Note that this function does not do anything to cause the data in the 682 * RAM memory region to be migrated; that is the responsibility of the caller. 683 */ 684 void memory_region_init_ram_from_fd(MemoryRegion *mr, 685 struct Object *owner, 686 const char *name, 687 uint64_t size, 688 bool share, 689 int fd, 690 Error **errp); 691 #endif 692 693 /** 694 * memory_region_init_ram_ptr: Initialize RAM memory region from a 695 * user-provided pointer. Accesses into the 696 * region will modify memory directly. 697 * 698 * @mr: the #MemoryRegion to be initialized. 699 * @owner: the object that tracks the region's reference count 700 * @name: Region name, becomes part of RAMBlock name used in migration stream 701 * must be unique within any device 702 * @size: size of the region. 703 * @ptr: memory to be mapped; must contain at least @size bytes. 704 * 705 * Note that this function does not do anything to cause the data in the 706 * RAM memory region to be migrated; that is the responsibility of the caller. 707 */ 708 void memory_region_init_ram_ptr(MemoryRegion *mr, 709 struct Object *owner, 710 const char *name, 711 uint64_t size, 712 void *ptr); 713 714 /** 715 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 716 * a user-provided pointer. 717 * 718 * A RAM device represents a mapping to a physical device, such as to a PCI 719 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 720 * into the VM address space and access to the region will modify memory 721 * directly. However, the memory region should not be included in a memory 722 * dump (device may not be enabled/mapped at the time of the dump), and 723 * operations incompatible with manipulating MMIO should be avoided. Replaces 724 * skip_dump flag. 725 * 726 * @mr: the #MemoryRegion to be initialized. 727 * @owner: the object that tracks the region's reference count 728 * @name: the name of the region. 729 * @size: size of the region. 730 * @ptr: memory to be mapped; must contain at least @size bytes. 731 * 732 * Note that this function does not do anything to cause the data in the 733 * RAM memory region to be migrated; that is the responsibility of the caller. 734 * (For RAM device memory regions, migrating the contents rarely makes sense.) 735 */ 736 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 737 struct Object *owner, 738 const char *name, 739 uint64_t size, 740 void *ptr); 741 742 /** 743 * memory_region_init_alias: Initialize a memory region that aliases all or a 744 * part of another memory region. 745 * 746 * @mr: the #MemoryRegion to be initialized. 747 * @owner: the object that tracks the region's reference count 748 * @name: used for debugging; not visible to the user or ABI 749 * @orig: the region to be referenced; @mr will be equivalent to 750 * @orig between @offset and @offset + @size - 1. 751 * @offset: start of the section in @orig to be referenced. 752 * @size: size of the region. 753 */ 754 void memory_region_init_alias(MemoryRegion *mr, 755 struct Object *owner, 756 const char *name, 757 MemoryRegion *orig, 758 hwaddr offset, 759 uint64_t size); 760 761 /** 762 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 763 * 764 * This has the same effect as calling memory_region_init_ram_nomigrate() 765 * and then marking the resulting region read-only with 766 * memory_region_set_readonly(). 767 * 768 * Note that this function does not do anything to cause the data in the 769 * RAM side of the memory region to be migrated; that is the responsibility 770 * of the caller. 771 * 772 * @mr: the #MemoryRegion to be initialized. 773 * @owner: the object that tracks the region's reference count 774 * @name: Region name, becomes part of RAMBlock name used in migration stream 775 * must be unique within any device 776 * @size: size of the region. 777 * @errp: pointer to Error*, to store an error if it happens. 778 */ 779 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 780 struct Object *owner, 781 const char *name, 782 uint64_t size, 783 Error **errp); 784 785 /** 786 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 787 * Writes are handled via callbacks. 788 * 789 * Note that this function does not do anything to cause the data in the 790 * RAM side of the memory region to be migrated; that is the responsibility 791 * of the caller. 792 * 793 * @mr: the #MemoryRegion to be initialized. 794 * @owner: the object that tracks the region's reference count 795 * @ops: callbacks for write access handling (must not be NULL). 796 * @opaque: passed to the read and write callbacks of the @ops structure. 797 * @name: Region name, becomes part of RAMBlock name used in migration stream 798 * must be unique within any device 799 * @size: size of the region. 800 * @errp: pointer to Error*, to store an error if it happens. 801 */ 802 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 803 struct Object *owner, 804 const MemoryRegionOps *ops, 805 void *opaque, 806 const char *name, 807 uint64_t size, 808 Error **errp); 809 810 /** 811 * memory_region_init_iommu: Initialize a memory region of a custom type 812 * that translates addresses 813 * 814 * An IOMMU region translates addresses and forwards accesses to a target 815 * memory region. 816 * 817 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 818 * @_iommu_mr should be a pointer to enough memory for an instance of 819 * that subclass, @instance_size is the size of that subclass, and 820 * @mrtypename is its name. This function will initialize @_iommu_mr as an 821 * instance of the subclass, and its methods will then be called to handle 822 * accesses to the memory region. See the documentation of 823 * #IOMMUMemoryRegionClass for further details. 824 * 825 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 826 * @instance_size: the IOMMUMemoryRegion subclass instance size 827 * @mrtypename: the type name of the #IOMMUMemoryRegion 828 * @owner: the object that tracks the region's reference count 829 * @name: used for debugging; not visible to the user or ABI 830 * @size: size of the region. 831 */ 832 void memory_region_init_iommu(void *_iommu_mr, 833 size_t instance_size, 834 const char *mrtypename, 835 Object *owner, 836 const char *name, 837 uint64_t size); 838 839 /** 840 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 841 * region will modify memory directly. 842 * 843 * @mr: the #MemoryRegion to be initialized 844 * @owner: the object that tracks the region's reference count (must be 845 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 846 * @name: name of the memory region 847 * @size: size of the region in bytes 848 * @errp: pointer to Error*, to store an error if it happens. 849 * 850 * This function allocates RAM for a board model or device, and 851 * arranges for it to be migrated (by calling vmstate_register_ram() 852 * if @owner is a DeviceState, or vmstate_register_ram_global() if 853 * @owner is NULL). 854 * 855 * TODO: Currently we restrict @owner to being either NULL (for 856 * global RAM regions with no owner) or devices, so that we can 857 * give the RAM block a unique name for migration purposes. 858 * We should lift this restriction and allow arbitrary Objects. 859 * If you pass a non-NULL non-device @owner then we will assert. 860 */ 861 void memory_region_init_ram(MemoryRegion *mr, 862 struct Object *owner, 863 const char *name, 864 uint64_t size, 865 Error **errp); 866 867 /** 868 * memory_region_init_rom: Initialize a ROM memory region. 869 * 870 * This has the same effect as calling memory_region_init_ram() 871 * and then marking the resulting region read-only with 872 * memory_region_set_readonly(). This includes arranging for the 873 * contents to be migrated. 874 * 875 * TODO: Currently we restrict @owner to being either NULL (for 876 * global RAM regions with no owner) or devices, so that we can 877 * give the RAM block a unique name for migration purposes. 878 * We should lift this restriction and allow arbitrary Objects. 879 * If you pass a non-NULL non-device @owner then we will assert. 880 * 881 * @mr: the #MemoryRegion to be initialized. 882 * @owner: the object that tracks the region's reference count 883 * @name: Region name, becomes part of RAMBlock name used in migration stream 884 * must be unique within any device 885 * @size: size of the region. 886 * @errp: pointer to Error*, to store an error if it happens. 887 */ 888 void memory_region_init_rom(MemoryRegion *mr, 889 struct Object *owner, 890 const char *name, 891 uint64_t size, 892 Error **errp); 893 894 /** 895 * memory_region_init_rom_device: Initialize a ROM memory region. 896 * Writes are handled via callbacks. 897 * 898 * This function initializes a memory region backed by RAM for reads 899 * and callbacks for writes, and arranges for the RAM backing to 900 * be migrated (by calling vmstate_register_ram() 901 * if @owner is a DeviceState, or vmstate_register_ram_global() if 902 * @owner is NULL). 903 * 904 * TODO: Currently we restrict @owner to being either NULL (for 905 * global RAM regions with no owner) or devices, so that we can 906 * give the RAM block a unique name for migration purposes. 907 * We should lift this restriction and allow arbitrary Objects. 908 * If you pass a non-NULL non-device @owner then we will assert. 909 * 910 * @mr: the #MemoryRegion to be initialized. 911 * @owner: the object that tracks the region's reference count 912 * @ops: callbacks for write access handling (must not be NULL). 913 * @name: Region name, becomes part of RAMBlock name used in migration stream 914 * must be unique within any device 915 * @size: size of the region. 916 * @errp: pointer to Error*, to store an error if it happens. 917 */ 918 void memory_region_init_rom_device(MemoryRegion *mr, 919 struct Object *owner, 920 const MemoryRegionOps *ops, 921 void *opaque, 922 const char *name, 923 uint64_t size, 924 Error **errp); 925 926 927 /** 928 * memory_region_owner: get a memory region's owner. 929 * 930 * @mr: the memory region being queried. 931 */ 932 struct Object *memory_region_owner(MemoryRegion *mr); 933 934 /** 935 * memory_region_size: get a memory region's size. 936 * 937 * @mr: the memory region being queried. 938 */ 939 uint64_t memory_region_size(MemoryRegion *mr); 940 941 /** 942 * memory_region_is_ram: check whether a memory region is random access 943 * 944 * Returns %true if a memory region is random access. 945 * 946 * @mr: the memory region being queried 947 */ 948 static inline bool memory_region_is_ram(MemoryRegion *mr) 949 { 950 return mr->ram; 951 } 952 953 /** 954 * memory_region_is_ram_device: check whether a memory region is a ram device 955 * 956 * Returns %true if a memory region is a device backed ram region 957 * 958 * @mr: the memory region being queried 959 */ 960 bool memory_region_is_ram_device(MemoryRegion *mr); 961 962 /** 963 * memory_region_is_romd: check whether a memory region is in ROMD mode 964 * 965 * Returns %true if a memory region is a ROM device and currently set to allow 966 * direct reads. 967 * 968 * @mr: the memory region being queried 969 */ 970 static inline bool memory_region_is_romd(MemoryRegion *mr) 971 { 972 return mr->rom_device && mr->romd_mode; 973 } 974 975 /** 976 * memory_region_get_iommu: check whether a memory region is an iommu 977 * 978 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 979 * otherwise NULL. 980 * 981 * @mr: the memory region being queried 982 */ 983 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 984 { 985 if (mr->alias) { 986 return memory_region_get_iommu(mr->alias); 987 } 988 if (mr->is_iommu) { 989 return (IOMMUMemoryRegion *) mr; 990 } 991 return NULL; 992 } 993 994 /** 995 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 996 * if an iommu or NULL if not 997 * 998 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 999 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1000 * 1001 * @mr: the memory region being queried 1002 */ 1003 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1004 IOMMUMemoryRegion *iommu_mr) 1005 { 1006 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1007 } 1008 1009 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1010 1011 /** 1012 * memory_region_iommu_get_min_page_size: get minimum supported page size 1013 * for an iommu 1014 * 1015 * Returns minimum supported page size for an iommu. 1016 * 1017 * @iommu_mr: the memory region being queried 1018 */ 1019 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1020 1021 /** 1022 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1023 * 1024 * The notification type will be decided by entry.perm bits: 1025 * 1026 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1027 * - For MAP (newly added entry) notifies: set entry.perm to the 1028 * permission of the page (which is definitely !IOMMU_NONE). 1029 * 1030 * Note: for any IOMMU implementation, an in-place mapping change 1031 * should be notified with an UNMAP followed by a MAP. 1032 * 1033 * @iommu_mr: the memory region that was changed 1034 * @iommu_idx: the IOMMU index for the translation table which has changed 1035 * @entry: the new entry in the IOMMU translation table. The entry 1036 * replaces all old entries for the same virtual I/O address range. 1037 * Deleted entries have .@perm == 0. 1038 */ 1039 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1040 int iommu_idx, 1041 IOMMUTLBEntry entry); 1042 1043 /** 1044 * memory_region_notify_one: notify a change in an IOMMU translation 1045 * entry to a single notifier 1046 * 1047 * This works just like memory_region_notify_iommu(), but it only 1048 * notifies a specific notifier, not all of them. 1049 * 1050 * @notifier: the notifier to be notified 1051 * @entry: the new entry in the IOMMU translation table. The entry 1052 * replaces all old entries for the same virtual I/O address range. 1053 * Deleted entries have .@perm == 0. 1054 */ 1055 void memory_region_notify_one(IOMMUNotifier *notifier, 1056 IOMMUTLBEntry *entry); 1057 1058 /** 1059 * memory_region_register_iommu_notifier: register a notifier for changes to 1060 * IOMMU translation entries. 1061 * 1062 * @mr: the memory region to observe 1063 * @n: the IOMMUNotifier to be added; the notify callback receives a 1064 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1065 * ceases to be valid on exit from the notifier. 1066 */ 1067 void memory_region_register_iommu_notifier(MemoryRegion *mr, 1068 IOMMUNotifier *n); 1069 1070 /** 1071 * memory_region_iommu_replay: replay existing IOMMU translations to 1072 * a notifier with the minimum page granularity returned by 1073 * mr->iommu_ops->get_page_size(). 1074 * 1075 * Note: this is not related to record-and-replay functionality. 1076 * 1077 * @iommu_mr: the memory region to observe 1078 * @n: the notifier to which to replay iommu mappings 1079 */ 1080 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1081 1082 /** 1083 * memory_region_iommu_replay_all: replay existing IOMMU translations 1084 * to all the notifiers registered. 1085 * 1086 * Note: this is not related to record-and-replay functionality. 1087 * 1088 * @iommu_mr: the memory region to observe 1089 */ 1090 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 1091 1092 /** 1093 * memory_region_unregister_iommu_notifier: unregister a notifier for 1094 * changes to IOMMU translation entries. 1095 * 1096 * @mr: the memory region which was observed and for which notity_stopped() 1097 * needs to be called 1098 * @n: the notifier to be removed. 1099 */ 1100 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1101 IOMMUNotifier *n); 1102 1103 /** 1104 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1105 * defined on the IOMMU. 1106 * 1107 * Returns 0 on success, or a negative errno otherwise. In particular, 1108 * -EINVAL indicates that the IOMMU does not support the requested 1109 * attribute. 1110 * 1111 * @iommu_mr: the memory region 1112 * @attr: the requested attribute 1113 * @data: a pointer to the requested attribute data 1114 */ 1115 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1116 enum IOMMUMemoryRegionAttr attr, 1117 void *data); 1118 1119 /** 1120 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1121 * use for translations with the given memory transaction attributes. 1122 * 1123 * @iommu_mr: the memory region 1124 * @attrs: the memory transaction attributes 1125 */ 1126 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1127 MemTxAttrs attrs); 1128 1129 /** 1130 * memory_region_iommu_num_indexes: return the total number of IOMMU 1131 * indexes that this IOMMU supports. 1132 * 1133 * @iommu_mr: the memory region 1134 */ 1135 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1136 1137 /** 1138 * memory_region_name: get a memory region's name 1139 * 1140 * Returns the string that was used to initialize the memory region. 1141 * 1142 * @mr: the memory region being queried 1143 */ 1144 const char *memory_region_name(const MemoryRegion *mr); 1145 1146 /** 1147 * memory_region_is_logging: return whether a memory region is logging writes 1148 * 1149 * Returns %true if the memory region is logging writes for the given client 1150 * 1151 * @mr: the memory region being queried 1152 * @client: the client being queried 1153 */ 1154 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1155 1156 /** 1157 * memory_region_get_dirty_log_mask: return the clients for which a 1158 * memory region is logging writes. 1159 * 1160 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1161 * are the bit indices. 1162 * 1163 * @mr: the memory region being queried 1164 */ 1165 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1166 1167 /** 1168 * memory_region_is_rom: check whether a memory region is ROM 1169 * 1170 * Returns %true if a memory region is read-only memory. 1171 * 1172 * @mr: the memory region being queried 1173 */ 1174 static inline bool memory_region_is_rom(MemoryRegion *mr) 1175 { 1176 return mr->ram && mr->readonly; 1177 } 1178 1179 /** 1180 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1181 * 1182 * Returns %true is a memory region is non-volatile memory. 1183 * 1184 * @mr: the memory region being queried 1185 */ 1186 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1187 { 1188 return mr->nonvolatile; 1189 } 1190 1191 /** 1192 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1193 * 1194 * Returns a file descriptor backing a file-based RAM memory region, 1195 * or -1 if the region is not a file-based RAM memory region. 1196 * 1197 * @mr: the RAM or alias memory region being queried. 1198 */ 1199 int memory_region_get_fd(MemoryRegion *mr); 1200 1201 /** 1202 * memory_region_from_host: Convert a pointer into a RAM memory region 1203 * and an offset within it. 1204 * 1205 * Given a host pointer inside a RAM memory region (created with 1206 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1207 * the MemoryRegion and the offset within it. 1208 * 1209 * Use with care; by the time this function returns, the returned pointer is 1210 * not protected by RCU anymore. If the caller is not within an RCU critical 1211 * section and does not hold the iothread lock, it must have other means of 1212 * protecting the pointer, such as a reference to the region that includes 1213 * the incoming ram_addr_t. 1214 * 1215 * @ptr: the host pointer to be converted 1216 * @offset: the offset within memory region 1217 */ 1218 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1219 1220 /** 1221 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1222 * 1223 * Returns a host pointer to a RAM memory region (created with 1224 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1225 * 1226 * Use with care; by the time this function returns, the returned pointer is 1227 * not protected by RCU anymore. If the caller is not within an RCU critical 1228 * section and does not hold the iothread lock, it must have other means of 1229 * protecting the pointer, such as a reference to the region that includes 1230 * the incoming ram_addr_t. 1231 * 1232 * @mr: the memory region being queried. 1233 */ 1234 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1235 1236 /* memory_region_ram_resize: Resize a RAM region. 1237 * 1238 * Only legal before guest might have detected the memory size: e.g. on 1239 * incoming migration, or right after reset. 1240 * 1241 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1242 * @newsize: the new size the region 1243 * @errp: pointer to Error*, to store an error if it happens. 1244 */ 1245 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1246 Error **errp); 1247 1248 /** 1249 * memory_region_set_log: Turn dirty logging on or off for a region. 1250 * 1251 * Turns dirty logging on or off for a specified client (display, migration). 1252 * Only meaningful for RAM regions. 1253 * 1254 * @mr: the memory region being updated. 1255 * @log: whether dirty logging is to be enabled or disabled. 1256 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1257 */ 1258 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1259 1260 /** 1261 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1262 * 1263 * Marks a range of bytes as dirty, after it has been dirtied outside 1264 * guest code. 1265 * 1266 * @mr: the memory region being dirtied. 1267 * @addr: the address (relative to the start of the region) being dirtied. 1268 * @size: size of the range being dirtied. 1269 */ 1270 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1271 hwaddr size); 1272 1273 /** 1274 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1275 * 1276 * This function is called when the caller wants to clear the remote 1277 * dirty bitmap of a memory range within the memory region. This can 1278 * be used by e.g. KVM to manually clear dirty log when 1279 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1280 * kernel. 1281 * 1282 * @mr: the memory region to clear the dirty log upon 1283 * @start: start address offset within the memory region 1284 * @len: length of the memory region to clear dirty bitmap 1285 */ 1286 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1287 hwaddr len); 1288 1289 /** 1290 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1291 * bitmap and clear it. 1292 * 1293 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1294 * returns the snapshot. The snapshot can then be used to query dirty 1295 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1296 * querying the same page multiple times, which is especially useful for 1297 * display updates where the scanlines often are not page aligned. 1298 * 1299 * The dirty bitmap region which gets copyed into the snapshot (and 1300 * cleared afterwards) can be larger than requested. The boundaries 1301 * are rounded up/down so complete bitmap longs (covering 64 pages on 1302 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1303 * isn't a problem for display updates as the extra pages are outside 1304 * the visible area, and in case the visible area changes a full 1305 * display redraw is due anyway. Should other use cases for this 1306 * function emerge we might have to revisit this implementation 1307 * detail. 1308 * 1309 * Use g_free to release DirtyBitmapSnapshot. 1310 * 1311 * @mr: the memory region being queried. 1312 * @addr: the address (relative to the start of the region) being queried. 1313 * @size: the size of the range being queried. 1314 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1315 */ 1316 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1317 hwaddr addr, 1318 hwaddr size, 1319 unsigned client); 1320 1321 /** 1322 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1323 * in the specified dirty bitmap snapshot. 1324 * 1325 * @mr: the memory region being queried. 1326 * @snap: the dirty bitmap snapshot 1327 * @addr: the address (relative to the start of the region) being queried. 1328 * @size: the size of the range being queried. 1329 */ 1330 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1331 DirtyBitmapSnapshot *snap, 1332 hwaddr addr, hwaddr size); 1333 1334 /** 1335 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1336 * client. 1337 * 1338 * Marks a range of pages as no longer dirty. 1339 * 1340 * @mr: the region being updated. 1341 * @addr: the start of the subrange being cleaned. 1342 * @size: the size of the subrange being cleaned. 1343 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1344 * %DIRTY_MEMORY_VGA. 1345 */ 1346 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1347 hwaddr size, unsigned client); 1348 1349 /** 1350 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1351 * TBs (for self-modifying code). 1352 * 1353 * The MemoryRegionOps->write() callback of a ROM device must use this function 1354 * to mark byte ranges that have been modified internally, such as by directly 1355 * accessing the memory returned by memory_region_get_ram_ptr(). 1356 * 1357 * This function marks the range dirty and invalidates TBs so that TCG can 1358 * detect self-modifying code. 1359 * 1360 * @mr: the region being flushed. 1361 * @addr: the start, relative to the start of the region, of the range being 1362 * flushed. 1363 * @size: the size, in bytes, of the range being flushed. 1364 */ 1365 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1366 1367 /** 1368 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1369 * 1370 * Allows a memory region to be marked as read-only (turning it into a ROM). 1371 * only useful on RAM regions. 1372 * 1373 * @mr: the region being updated. 1374 * @readonly: whether rhe region is to be ROM or RAM. 1375 */ 1376 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1377 1378 /** 1379 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1380 * 1381 * Allows a memory region to be marked as non-volatile. 1382 * only useful on RAM regions. 1383 * 1384 * @mr: the region being updated. 1385 * @nonvolatile: whether rhe region is to be non-volatile. 1386 */ 1387 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1388 1389 /** 1390 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1391 * 1392 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1393 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1394 * device is mapped to guest memory and satisfies read access directly. 1395 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1396 * Writes are always handled by the #MemoryRegion.write function. 1397 * 1398 * @mr: the memory region to be updated 1399 * @romd_mode: %true to put the region into ROMD mode 1400 */ 1401 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1402 1403 /** 1404 * memory_region_set_coalescing: Enable memory coalescing for the region. 1405 * 1406 * Enabled writes to a region to be queued for later processing. MMIO ->write 1407 * callbacks may be delayed until a non-coalesced MMIO is issued. 1408 * Only useful for IO regions. Roughly similar to write-combining hardware. 1409 * 1410 * @mr: the memory region to be write coalesced 1411 */ 1412 void memory_region_set_coalescing(MemoryRegion *mr); 1413 1414 /** 1415 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1416 * a region. 1417 * 1418 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1419 * Multiple calls can be issued coalesced disjoint ranges. 1420 * 1421 * @mr: the memory region to be updated. 1422 * @offset: the start of the range within the region to be coalesced. 1423 * @size: the size of the subrange to be coalesced. 1424 */ 1425 void memory_region_add_coalescing(MemoryRegion *mr, 1426 hwaddr offset, 1427 uint64_t size); 1428 1429 /** 1430 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1431 * 1432 * Disables any coalescing caused by memory_region_set_coalescing() or 1433 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1434 * hardware. 1435 * 1436 * @mr: the memory region to be updated. 1437 */ 1438 void memory_region_clear_coalescing(MemoryRegion *mr); 1439 1440 /** 1441 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1442 * accesses. 1443 * 1444 * Ensure that pending coalesced MMIO request are flushed before the memory 1445 * region is accessed. This property is automatically enabled for all regions 1446 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1447 * 1448 * @mr: the memory region to be updated. 1449 */ 1450 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1451 1452 /** 1453 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1454 * accesses. 1455 * 1456 * Clear the automatic coalesced MMIO flushing enabled via 1457 * memory_region_set_flush_coalesced. Note that this service has no effect on 1458 * memory regions that have MMIO coalescing enabled for themselves. For them, 1459 * automatic flushing will stop once coalescing is disabled. 1460 * 1461 * @mr: the memory region to be updated. 1462 */ 1463 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1464 1465 /** 1466 * memory_region_clear_global_locking: Declares that access processing does 1467 * not depend on the QEMU global lock. 1468 * 1469 * By clearing this property, accesses to the memory region will be processed 1470 * outside of QEMU's global lock (unless the lock is held on when issuing the 1471 * access request). In this case, the device model implementing the access 1472 * handlers is responsible for synchronization of concurrency. 1473 * 1474 * @mr: the memory region to be updated. 1475 */ 1476 void memory_region_clear_global_locking(MemoryRegion *mr); 1477 1478 /** 1479 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1480 * is written to a location. 1481 * 1482 * Marks a word in an IO region (initialized with memory_region_init_io()) 1483 * as a trigger for an eventfd event. The I/O callback will not be called. 1484 * The caller must be prepared to handle failure (that is, take the required 1485 * action if the callback _is_ called). 1486 * 1487 * @mr: the memory region being updated. 1488 * @addr: the address within @mr that is to be monitored 1489 * @size: the size of the access to trigger the eventfd 1490 * @match_data: whether to match against @data, instead of just @addr 1491 * @data: the data to match against the guest write 1492 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1493 **/ 1494 void memory_region_add_eventfd(MemoryRegion *mr, 1495 hwaddr addr, 1496 unsigned size, 1497 bool match_data, 1498 uint64_t data, 1499 EventNotifier *e); 1500 1501 /** 1502 * memory_region_del_eventfd: Cancel an eventfd. 1503 * 1504 * Cancels an eventfd trigger requested by a previous 1505 * memory_region_add_eventfd() call. 1506 * 1507 * @mr: the memory region being updated. 1508 * @addr: the address within @mr that is to be monitored 1509 * @size: the size of the access to trigger the eventfd 1510 * @match_data: whether to match against @data, instead of just @addr 1511 * @data: the data to match against the guest write 1512 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1513 */ 1514 void memory_region_del_eventfd(MemoryRegion *mr, 1515 hwaddr addr, 1516 unsigned size, 1517 bool match_data, 1518 uint64_t data, 1519 EventNotifier *e); 1520 1521 /** 1522 * memory_region_add_subregion: Add a subregion to a container. 1523 * 1524 * Adds a subregion at @offset. The subregion may not overlap with other 1525 * subregions (except for those explicitly marked as overlapping). A region 1526 * may only be added once as a subregion (unless removed with 1527 * memory_region_del_subregion()); use memory_region_init_alias() if you 1528 * want a region to be a subregion in multiple locations. 1529 * 1530 * @mr: the region to contain the new subregion; must be a container 1531 * initialized with memory_region_init(). 1532 * @offset: the offset relative to @mr where @subregion is added. 1533 * @subregion: the subregion to be added. 1534 */ 1535 void memory_region_add_subregion(MemoryRegion *mr, 1536 hwaddr offset, 1537 MemoryRegion *subregion); 1538 /** 1539 * memory_region_add_subregion_overlap: Add a subregion to a container 1540 * with overlap. 1541 * 1542 * Adds a subregion at @offset. The subregion may overlap with other 1543 * subregions. Conflicts are resolved by having a higher @priority hide a 1544 * lower @priority. Subregions without priority are taken as @priority 0. 1545 * A region may only be added once as a subregion (unless removed with 1546 * memory_region_del_subregion()); use memory_region_init_alias() if you 1547 * want a region to be a subregion in multiple locations. 1548 * 1549 * @mr: the region to contain the new subregion; must be a container 1550 * initialized with memory_region_init(). 1551 * @offset: the offset relative to @mr where @subregion is added. 1552 * @subregion: the subregion to be added. 1553 * @priority: used for resolving overlaps; highest priority wins. 1554 */ 1555 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1556 hwaddr offset, 1557 MemoryRegion *subregion, 1558 int priority); 1559 1560 /** 1561 * memory_region_get_ram_addr: Get the ram address associated with a memory 1562 * region 1563 */ 1564 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1565 1566 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1567 /** 1568 * memory_region_del_subregion: Remove a subregion. 1569 * 1570 * Removes a subregion from its container. 1571 * 1572 * @mr: the container to be updated. 1573 * @subregion: the region being removed; must be a current subregion of @mr. 1574 */ 1575 void memory_region_del_subregion(MemoryRegion *mr, 1576 MemoryRegion *subregion); 1577 1578 /* 1579 * memory_region_set_enabled: dynamically enable or disable a region 1580 * 1581 * Enables or disables a memory region. A disabled memory region 1582 * ignores all accesses to itself and its subregions. It does not 1583 * obscure sibling subregions with lower priority - it simply behaves as 1584 * if it was removed from the hierarchy. 1585 * 1586 * Regions default to being enabled. 1587 * 1588 * @mr: the region to be updated 1589 * @enabled: whether to enable or disable the region 1590 */ 1591 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1592 1593 /* 1594 * memory_region_set_address: dynamically update the address of a region 1595 * 1596 * Dynamically updates the address of a region, relative to its container. 1597 * May be used on regions are currently part of a memory hierarchy. 1598 * 1599 * @mr: the region to be updated 1600 * @addr: new address, relative to container region 1601 */ 1602 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1603 1604 /* 1605 * memory_region_set_size: dynamically update the size of a region. 1606 * 1607 * Dynamically updates the size of a region. 1608 * 1609 * @mr: the region to be updated 1610 * @size: used size of the region. 1611 */ 1612 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1613 1614 /* 1615 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1616 * 1617 * Dynamically updates the offset into the target region that an alias points 1618 * to, as if the fourth argument to memory_region_init_alias() has changed. 1619 * 1620 * @mr: the #MemoryRegion to be updated; should be an alias. 1621 * @offset: the new offset into the target memory region 1622 */ 1623 void memory_region_set_alias_offset(MemoryRegion *mr, 1624 hwaddr offset); 1625 1626 /** 1627 * memory_region_present: checks if an address relative to a @container 1628 * translates into #MemoryRegion within @container 1629 * 1630 * Answer whether a #MemoryRegion within @container covers the address 1631 * @addr. 1632 * 1633 * @container: a #MemoryRegion within which @addr is a relative address 1634 * @addr: the area within @container to be searched 1635 */ 1636 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1637 1638 /** 1639 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1640 * into any address space. 1641 * 1642 * @mr: a #MemoryRegion which should be checked if it's mapped 1643 */ 1644 bool memory_region_is_mapped(MemoryRegion *mr); 1645 1646 /** 1647 * memory_region_find: translate an address/size relative to a 1648 * MemoryRegion into a #MemoryRegionSection. 1649 * 1650 * Locates the first #MemoryRegion within @mr that overlaps the range 1651 * given by @addr and @size. 1652 * 1653 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1654 * It will have the following characteristics: 1655 * .@size = 0 iff no overlap was found 1656 * .@mr is non-%NULL iff an overlap was found 1657 * 1658 * Remember that in the return value the @offset_within_region is 1659 * relative to the returned region (in the .@mr field), not to the 1660 * @mr argument. 1661 * 1662 * Similarly, the .@offset_within_address_space is relative to the 1663 * address space that contains both regions, the passed and the 1664 * returned one. However, in the special case where the @mr argument 1665 * has no container (and thus is the root of the address space), the 1666 * following will hold: 1667 * .@offset_within_address_space >= @addr 1668 * .@offset_within_address_space + .@size <= @addr + @size 1669 * 1670 * @mr: a MemoryRegion within which @addr is a relative address 1671 * @addr: start of the area within @as to be searched 1672 * @size: size of the area to be searched 1673 */ 1674 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1675 hwaddr addr, uint64_t size); 1676 1677 /** 1678 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1679 * 1680 * Synchronizes the dirty page log for all address spaces. 1681 */ 1682 void memory_global_dirty_log_sync(void); 1683 1684 /** 1685 * memory_region_transaction_begin: Start a transaction. 1686 * 1687 * During a transaction, changes will be accumulated and made visible 1688 * only when the transaction ends (is committed). 1689 */ 1690 void memory_region_transaction_begin(void); 1691 1692 /** 1693 * memory_region_transaction_commit: Commit a transaction and make changes 1694 * visible to the guest. 1695 */ 1696 void memory_region_transaction_commit(void); 1697 1698 /** 1699 * memory_listener_register: register callbacks to be called when memory 1700 * sections are mapped or unmapped into an address 1701 * space 1702 * 1703 * @listener: an object containing the callbacks to be called 1704 * @filter: if non-%NULL, only regions in this address space will be observed 1705 */ 1706 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1707 1708 /** 1709 * memory_listener_unregister: undo the effect of memory_listener_register() 1710 * 1711 * @listener: an object containing the callbacks to be removed 1712 */ 1713 void memory_listener_unregister(MemoryListener *listener); 1714 1715 /** 1716 * memory_global_dirty_log_start: begin dirty logging for all regions 1717 */ 1718 void memory_global_dirty_log_start(void); 1719 1720 /** 1721 * memory_global_dirty_log_stop: end dirty logging for all regions 1722 */ 1723 void memory_global_dirty_log_stop(void); 1724 1725 void mtree_info(bool flatview, bool dispatch_tree, bool owner); 1726 1727 /** 1728 * memory_region_dispatch_read: perform a read directly to the specified 1729 * MemoryRegion. 1730 * 1731 * @mr: #MemoryRegion to access 1732 * @addr: address within that region 1733 * @pval: pointer to uint64_t which the data is written to 1734 * @size: size of the access in bytes 1735 * @attrs: memory transaction attributes to use for the access 1736 */ 1737 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1738 hwaddr addr, 1739 uint64_t *pval, 1740 unsigned size, 1741 MemTxAttrs attrs); 1742 /** 1743 * memory_region_dispatch_write: perform a write directly to the specified 1744 * MemoryRegion. 1745 * 1746 * @mr: #MemoryRegion to access 1747 * @addr: address within that region 1748 * @data: data to write 1749 * @size: size of the access in bytes 1750 * @attrs: memory transaction attributes to use for the access 1751 */ 1752 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1753 hwaddr addr, 1754 uint64_t data, 1755 unsigned size, 1756 MemTxAttrs attrs); 1757 1758 /** 1759 * address_space_init: initializes an address space 1760 * 1761 * @as: an uninitialized #AddressSpace 1762 * @root: a #MemoryRegion that routes addresses for the address space 1763 * @name: an address space name. The name is only used for debugging 1764 * output. 1765 */ 1766 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1767 1768 /** 1769 * address_space_destroy: destroy an address space 1770 * 1771 * Releases all resources associated with an address space. After an address space 1772 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1773 * as well. 1774 * 1775 * @as: address space to be destroyed 1776 */ 1777 void address_space_destroy(AddressSpace *as); 1778 1779 /** 1780 * address_space_remove_listeners: unregister all listeners of an address space 1781 * 1782 * Removes all callbacks previously registered with memory_listener_register() 1783 * for @as. 1784 * 1785 * @as: an initialized #AddressSpace 1786 */ 1787 void address_space_remove_listeners(AddressSpace *as); 1788 1789 /** 1790 * address_space_rw: read from or write to an address space. 1791 * 1792 * Return a MemTxResult indicating whether the operation succeeded 1793 * or failed (eg unassigned memory, device rejected the transaction, 1794 * IOMMU fault). 1795 * 1796 * @as: #AddressSpace to be accessed 1797 * @addr: address within that address space 1798 * @attrs: memory transaction attributes 1799 * @buf: buffer with the data transferred 1800 * @len: the number of bytes to read or write 1801 * @is_write: indicates the transfer direction 1802 */ 1803 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1804 MemTxAttrs attrs, uint8_t *buf, 1805 hwaddr len, bool is_write); 1806 1807 /** 1808 * address_space_write: write to address space. 1809 * 1810 * Return a MemTxResult indicating whether the operation succeeded 1811 * or failed (eg unassigned memory, device rejected the transaction, 1812 * IOMMU fault). 1813 * 1814 * @as: #AddressSpace to be accessed 1815 * @addr: address within that address space 1816 * @attrs: memory transaction attributes 1817 * @buf: buffer with the data transferred 1818 * @len: the number of bytes to write 1819 */ 1820 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1821 MemTxAttrs attrs, 1822 const uint8_t *buf, hwaddr len); 1823 1824 /** 1825 * address_space_write_rom: write to address space, including ROM. 1826 * 1827 * This function writes to the specified address space, but will 1828 * write data to both ROM and RAM. This is used for non-guest 1829 * writes like writes from the gdb debug stub or initial loading 1830 * of ROM contents. 1831 * 1832 * Note that portions of the write which attempt to write data to 1833 * a device will be silently ignored -- only real RAM and ROM will 1834 * be written to. 1835 * 1836 * Return a MemTxResult indicating whether the operation succeeded 1837 * or failed (eg unassigned memory, device rejected the transaction, 1838 * IOMMU fault). 1839 * 1840 * @as: #AddressSpace to be accessed 1841 * @addr: address within that address space 1842 * @attrs: memory transaction attributes 1843 * @buf: buffer with the data transferred 1844 * @len: the number of bytes to write 1845 */ 1846 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 1847 MemTxAttrs attrs, 1848 const uint8_t *buf, hwaddr len); 1849 1850 /* address_space_ld*: load from an address space 1851 * address_space_st*: store to an address space 1852 * 1853 * These functions perform a load or store of the byte, word, 1854 * longword or quad to the specified address within the AddressSpace. 1855 * The _le suffixed functions treat the data as little endian; 1856 * _be indicates big endian; no suffix indicates "same endianness 1857 * as guest CPU". 1858 * 1859 * The "guest CPU endianness" accessors are deprecated for use outside 1860 * target-* code; devices should be CPU-agnostic and use either the LE 1861 * or the BE accessors. 1862 * 1863 * @as #AddressSpace to be accessed 1864 * @addr: address within that address space 1865 * @val: data value, for stores 1866 * @attrs: memory transaction attributes 1867 * @result: location to write the success/failure of the transaction; 1868 * if NULL, this information is discarded 1869 */ 1870 1871 #define SUFFIX 1872 #define ARG1 as 1873 #define ARG1_DECL AddressSpace *as 1874 #include "exec/memory_ldst.inc.h" 1875 1876 #define SUFFIX 1877 #define ARG1 as 1878 #define ARG1_DECL AddressSpace *as 1879 #include "exec/memory_ldst_phys.inc.h" 1880 1881 struct MemoryRegionCache { 1882 void *ptr; 1883 hwaddr xlat; 1884 hwaddr len; 1885 FlatView *fv; 1886 MemoryRegionSection mrs; 1887 bool is_write; 1888 }; 1889 1890 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 1891 1892 1893 /* address_space_ld*_cached: load from a cached #MemoryRegion 1894 * address_space_st*_cached: store into a cached #MemoryRegion 1895 * 1896 * These functions perform a load or store of the byte, word, 1897 * longword or quad to the specified address. The address is 1898 * a physical address in the AddressSpace, but it must lie within 1899 * a #MemoryRegion that was mapped with address_space_cache_init. 1900 * 1901 * The _le suffixed functions treat the data as little endian; 1902 * _be indicates big endian; no suffix indicates "same endianness 1903 * as guest CPU". 1904 * 1905 * The "guest CPU endianness" accessors are deprecated for use outside 1906 * target-* code; devices should be CPU-agnostic and use either the LE 1907 * or the BE accessors. 1908 * 1909 * @cache: previously initialized #MemoryRegionCache to be accessed 1910 * @addr: address within the address space 1911 * @val: data value, for stores 1912 * @attrs: memory transaction attributes 1913 * @result: location to write the success/failure of the transaction; 1914 * if NULL, this information is discarded 1915 */ 1916 1917 #define SUFFIX _cached_slow 1918 #define ARG1 cache 1919 #define ARG1_DECL MemoryRegionCache *cache 1920 #include "exec/memory_ldst.inc.h" 1921 1922 /* Inline fast path for direct RAM access. */ 1923 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 1924 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 1925 { 1926 assert(addr < cache->len); 1927 if (likely(cache->ptr)) { 1928 return ldub_p(cache->ptr + addr); 1929 } else { 1930 return address_space_ldub_cached_slow(cache, addr, attrs, result); 1931 } 1932 } 1933 1934 static inline void address_space_stb_cached(MemoryRegionCache *cache, 1935 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 1936 { 1937 assert(addr < cache->len); 1938 if (likely(cache->ptr)) { 1939 stb_p(cache->ptr + addr, val); 1940 } else { 1941 address_space_stb_cached_slow(cache, addr, val, attrs, result); 1942 } 1943 } 1944 1945 #define ENDIANNESS _le 1946 #include "exec/memory_ldst_cached.inc.h" 1947 1948 #define ENDIANNESS _be 1949 #include "exec/memory_ldst_cached.inc.h" 1950 1951 #define SUFFIX _cached 1952 #define ARG1 cache 1953 #define ARG1_DECL MemoryRegionCache *cache 1954 #include "exec/memory_ldst_phys.inc.h" 1955 1956 /* address_space_cache_init: prepare for repeated access to a physical 1957 * memory region 1958 * 1959 * @cache: #MemoryRegionCache to be filled 1960 * @as: #AddressSpace to be accessed 1961 * @addr: address within that address space 1962 * @len: length of buffer 1963 * @is_write: indicates the transfer direction 1964 * 1965 * Will only work with RAM, and may map a subset of the requested range by 1966 * returning a value that is less than @len. On failure, return a negative 1967 * errno value. 1968 * 1969 * Because it only works with RAM, this function can be used for 1970 * read-modify-write operations. In this case, is_write should be %true. 1971 * 1972 * Note that addresses passed to the address_space_*_cached functions 1973 * are relative to @addr. 1974 */ 1975 int64_t address_space_cache_init(MemoryRegionCache *cache, 1976 AddressSpace *as, 1977 hwaddr addr, 1978 hwaddr len, 1979 bool is_write); 1980 1981 /** 1982 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1983 * 1984 * @cache: The #MemoryRegionCache to operate on. 1985 * @addr: The first physical address that was written, relative to the 1986 * address that was passed to @address_space_cache_init. 1987 * @access_len: The number of bytes that were written starting at @addr. 1988 */ 1989 void address_space_cache_invalidate(MemoryRegionCache *cache, 1990 hwaddr addr, 1991 hwaddr access_len); 1992 1993 /** 1994 * address_space_cache_destroy: free a #MemoryRegionCache 1995 * 1996 * @cache: The #MemoryRegionCache whose memory should be released. 1997 */ 1998 void address_space_cache_destroy(MemoryRegionCache *cache); 1999 2000 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2001 * entry. Should be called from an RCU critical section. 2002 */ 2003 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2004 bool is_write, MemTxAttrs attrs); 2005 2006 /* address_space_translate: translate an address range into an address space 2007 * into a MemoryRegion and an address range into that section. Should be 2008 * called from an RCU critical section, to avoid that the last reference 2009 * to the returned region disappears after address_space_translate returns. 2010 * 2011 * @fv: #FlatView to be accessed 2012 * @addr: address within that address space 2013 * @xlat: pointer to address within the returned memory region section's 2014 * #MemoryRegion. 2015 * @len: pointer to length 2016 * @is_write: indicates the transfer direction 2017 * @attrs: memory attributes 2018 */ 2019 MemoryRegion *flatview_translate(FlatView *fv, 2020 hwaddr addr, hwaddr *xlat, 2021 hwaddr *len, bool is_write, 2022 MemTxAttrs attrs); 2023 2024 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2025 hwaddr addr, hwaddr *xlat, 2026 hwaddr *len, bool is_write, 2027 MemTxAttrs attrs) 2028 { 2029 return flatview_translate(address_space_to_flatview(as), 2030 addr, xlat, len, is_write, attrs); 2031 } 2032 2033 /* address_space_access_valid: check for validity of accessing an address 2034 * space range 2035 * 2036 * Check whether memory is assigned to the given address space range, and 2037 * access is permitted by any IOMMU regions that are active for the address 2038 * space. 2039 * 2040 * For now, addr and len should be aligned to a page size. This limitation 2041 * will be lifted in the future. 2042 * 2043 * @as: #AddressSpace to be accessed 2044 * @addr: address within that address space 2045 * @len: length of the area to be checked 2046 * @is_write: indicates the transfer direction 2047 * @attrs: memory attributes 2048 */ 2049 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2050 bool is_write, MemTxAttrs attrs); 2051 2052 /* address_space_map: map a physical memory region into a host virtual address 2053 * 2054 * May map a subset of the requested range, given by and returned in @plen. 2055 * May return %NULL if resources needed to perform the mapping are exhausted. 2056 * Use only for reads OR writes - not for read-modify-write operations. 2057 * Use cpu_register_map_client() to know when retrying the map operation is 2058 * likely to succeed. 2059 * 2060 * @as: #AddressSpace to be accessed 2061 * @addr: address within that address space 2062 * @plen: pointer to length of buffer; updated on return 2063 * @is_write: indicates the transfer direction 2064 * @attrs: memory attributes 2065 */ 2066 void *address_space_map(AddressSpace *as, hwaddr addr, 2067 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2068 2069 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2070 * 2071 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2072 * the amount of memory that was actually read or written by the caller. 2073 * 2074 * @as: #AddressSpace used 2075 * @buffer: host pointer as returned by address_space_map() 2076 * @len: buffer length as returned by address_space_map() 2077 * @access_len: amount of data actually transferred 2078 * @is_write: indicates the transfer direction 2079 */ 2080 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2081 int is_write, hwaddr access_len); 2082 2083 2084 /* Internal functions, part of the implementation of address_space_read. */ 2085 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2086 MemTxAttrs attrs, uint8_t *buf, hwaddr len); 2087 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2088 MemTxAttrs attrs, uint8_t *buf, 2089 hwaddr len, hwaddr addr1, hwaddr l, 2090 MemoryRegion *mr); 2091 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2092 2093 /* Internal functions, part of the implementation of address_space_read_cached 2094 * and address_space_write_cached. */ 2095 void address_space_read_cached_slow(MemoryRegionCache *cache, 2096 hwaddr addr, void *buf, hwaddr len); 2097 void address_space_write_cached_slow(MemoryRegionCache *cache, 2098 hwaddr addr, const void *buf, hwaddr len); 2099 2100 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2101 { 2102 if (is_write) { 2103 return memory_region_is_ram(mr) && 2104 !mr->readonly && !memory_region_is_ram_device(mr); 2105 } else { 2106 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2107 memory_region_is_romd(mr); 2108 } 2109 } 2110 2111 /** 2112 * address_space_read: read from an address space. 2113 * 2114 * Return a MemTxResult indicating whether the operation succeeded 2115 * or failed (eg unassigned memory, device rejected the transaction, 2116 * IOMMU fault). Called within RCU critical section. 2117 * 2118 * @as: #AddressSpace to be accessed 2119 * @addr: address within that address space 2120 * @attrs: memory transaction attributes 2121 * @buf: buffer with the data transferred 2122 */ 2123 static inline __attribute__((__always_inline__)) 2124 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2125 MemTxAttrs attrs, uint8_t *buf, 2126 hwaddr len) 2127 { 2128 MemTxResult result = MEMTX_OK; 2129 hwaddr l, addr1; 2130 void *ptr; 2131 MemoryRegion *mr; 2132 FlatView *fv; 2133 2134 if (__builtin_constant_p(len)) { 2135 if (len) { 2136 rcu_read_lock(); 2137 fv = address_space_to_flatview(as); 2138 l = len; 2139 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2140 if (len == l && memory_access_is_direct(mr, false)) { 2141 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2142 memcpy(buf, ptr, len); 2143 } else { 2144 result = flatview_read_continue(fv, addr, attrs, buf, len, 2145 addr1, l, mr); 2146 } 2147 rcu_read_unlock(); 2148 } 2149 } else { 2150 result = address_space_read_full(as, addr, attrs, buf, len); 2151 } 2152 return result; 2153 } 2154 2155 /** 2156 * address_space_read_cached: read from a cached RAM region 2157 * 2158 * @cache: Cached region to be addressed 2159 * @addr: address relative to the base of the RAM region 2160 * @buf: buffer with the data transferred 2161 * @len: length of the data transferred 2162 */ 2163 static inline void 2164 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2165 void *buf, hwaddr len) 2166 { 2167 assert(addr < cache->len && len <= cache->len - addr); 2168 if (likely(cache->ptr)) { 2169 memcpy(buf, cache->ptr + addr, len); 2170 } else { 2171 address_space_read_cached_slow(cache, addr, buf, len); 2172 } 2173 } 2174 2175 /** 2176 * address_space_write_cached: write to a cached RAM region 2177 * 2178 * @cache: Cached region to be addressed 2179 * @addr: address relative to the base of the RAM region 2180 * @buf: buffer with the data transferred 2181 * @len: length of the data transferred 2182 */ 2183 static inline void 2184 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2185 void *buf, hwaddr len) 2186 { 2187 assert(addr < cache->len && len <= cache->len - addr); 2188 if (likely(cache->ptr)) { 2189 memcpy(cache->ptr + addr, buf, len); 2190 } else { 2191 address_space_write_cached_slow(cache, addr, buf, len); 2192 } 2193 } 2194 2195 #endif 2196 2197 #endif 2198