1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 #define GLOBAL_DIRTY_MASK (0x3) 73 74 extern unsigned int global_dirty_tracking; 75 76 typedef struct MemoryRegionOps MemoryRegionOps; 77 78 struct ReservedRegion { 79 hwaddr low; 80 hwaddr high; 81 unsigned type; 82 }; 83 84 /** 85 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 86 * 87 * @mr: the region, or %NULL if empty 88 * @fv: the flat view of the address space the region is mapped in 89 * @offset_within_region: the beginning of the section, relative to @mr's start 90 * @size: the size of the section; will not exceed @mr's boundaries 91 * @offset_within_address_space: the address of the first byte of the section 92 * relative to the region's address space 93 * @readonly: writes to this section are ignored 94 * @nonvolatile: this section is non-volatile 95 */ 96 struct MemoryRegionSection { 97 Int128 size; 98 MemoryRegion *mr; 99 FlatView *fv; 100 hwaddr offset_within_region; 101 hwaddr offset_within_address_space; 102 bool readonly; 103 bool nonvolatile; 104 }; 105 106 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 107 108 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 109 typedef enum { 110 IOMMU_NONE = 0, 111 IOMMU_RO = 1, 112 IOMMU_WO = 2, 113 IOMMU_RW = 3, 114 } IOMMUAccessFlags; 115 116 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 117 118 struct IOMMUTLBEntry { 119 AddressSpace *target_as; 120 hwaddr iova; 121 hwaddr translated_addr; 122 hwaddr addr_mask; /* 0xfff = 4k translation */ 123 IOMMUAccessFlags perm; 124 }; 125 126 /* 127 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 128 * register with one or multiple IOMMU Notifier capability bit(s). 129 */ 130 typedef enum { 131 IOMMU_NOTIFIER_NONE = 0, 132 /* Notify cache invalidations */ 133 IOMMU_NOTIFIER_UNMAP = 0x1, 134 /* Notify entry changes (newly created entries) */ 135 IOMMU_NOTIFIER_MAP = 0x2, 136 /* Notify changes on device IOTLB entries */ 137 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 138 } IOMMUNotifierFlag; 139 140 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 141 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 142 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 143 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 144 145 struct IOMMUNotifier; 146 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 147 IOMMUTLBEntry *data); 148 149 struct IOMMUNotifier { 150 IOMMUNotify notify; 151 IOMMUNotifierFlag notifier_flags; 152 /* Notify for address space range start <= addr <= end */ 153 hwaddr start; 154 hwaddr end; 155 int iommu_idx; 156 QLIST_ENTRY(IOMMUNotifier) node; 157 }; 158 typedef struct IOMMUNotifier IOMMUNotifier; 159 160 typedef struct IOMMUTLBEvent { 161 IOMMUNotifierFlag type; 162 IOMMUTLBEntry entry; 163 } IOMMUTLBEvent; 164 165 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 166 #define RAM_PREALLOC (1 << 0) 167 168 /* RAM is mmap-ed with MAP_SHARED */ 169 #define RAM_SHARED (1 << 1) 170 171 /* Only a portion of RAM (used_length) is actually used, and migrated. 172 * Resizing RAM while migrating can result in the migration being canceled. 173 */ 174 #define RAM_RESIZEABLE (1 << 2) 175 176 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 177 * zero the page and wake waiting processes. 178 * (Set during postcopy) 179 */ 180 #define RAM_UF_ZEROPAGE (1 << 3) 181 182 /* RAM can be migrated */ 183 #define RAM_MIGRATABLE (1 << 4) 184 185 /* RAM is a persistent kind memory */ 186 #define RAM_PMEM (1 << 5) 187 188 189 /* 190 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 191 * support 'write-tracking' migration type. 192 * Implies ram_state->ram_wt_enabled. 193 */ 194 #define RAM_UF_WRITEPROTECT (1 << 6) 195 196 /* 197 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 198 * pages if applicable) is skipped: will bail out if not supported. When not 199 * set, the OS will do the reservation, if supported for the memory type. 200 */ 201 #define RAM_NORESERVE (1 << 7) 202 203 /* RAM that isn't accessible through normal means. */ 204 #define RAM_PROTECTED (1 << 8) 205 206 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 207 IOMMUNotifierFlag flags, 208 hwaddr start, hwaddr end, 209 int iommu_idx) 210 { 211 n->notify = fn; 212 n->notifier_flags = flags; 213 n->start = start; 214 n->end = end; 215 n->iommu_idx = iommu_idx; 216 } 217 218 /* 219 * Memory region callbacks 220 */ 221 struct MemoryRegionOps { 222 /* Read from the memory region. @addr is relative to @mr; @size is 223 * in bytes. */ 224 uint64_t (*read)(void *opaque, 225 hwaddr addr, 226 unsigned size); 227 /* Write to the memory region. @addr is relative to @mr; @size is 228 * in bytes. */ 229 void (*write)(void *opaque, 230 hwaddr addr, 231 uint64_t data, 232 unsigned size); 233 234 MemTxResult (*read_with_attrs)(void *opaque, 235 hwaddr addr, 236 uint64_t *data, 237 unsigned size, 238 MemTxAttrs attrs); 239 MemTxResult (*write_with_attrs)(void *opaque, 240 hwaddr addr, 241 uint64_t data, 242 unsigned size, 243 MemTxAttrs attrs); 244 245 enum device_endian endianness; 246 /* Guest-visible constraints: */ 247 struct { 248 /* If nonzero, specify bounds on access sizes beyond which a machine 249 * check is thrown. 250 */ 251 unsigned min_access_size; 252 unsigned max_access_size; 253 /* If true, unaligned accesses are supported. Otherwise unaligned 254 * accesses throw machine checks. 255 */ 256 bool unaligned; 257 /* 258 * If present, and returns #false, the transaction is not accepted 259 * by the device (and results in machine dependent behaviour such 260 * as a machine check exception). 261 */ 262 bool (*accepts)(void *opaque, hwaddr addr, 263 unsigned size, bool is_write, 264 MemTxAttrs attrs); 265 } valid; 266 /* Internal implementation constraints: */ 267 struct { 268 /* If nonzero, specifies the minimum size implemented. Smaller sizes 269 * will be rounded upwards and a partial result will be returned. 270 */ 271 unsigned min_access_size; 272 /* If nonzero, specifies the maximum size implemented. Larger sizes 273 * will be done as a series of accesses with smaller sizes. 274 */ 275 unsigned max_access_size; 276 /* If true, unaligned accesses are supported. Otherwise all accesses 277 * are converted to (possibly multiple) naturally aligned accesses. 278 */ 279 bool unaligned; 280 } impl; 281 }; 282 283 typedef struct MemoryRegionClass { 284 /* private */ 285 ObjectClass parent_class; 286 } MemoryRegionClass; 287 288 289 enum IOMMUMemoryRegionAttr { 290 IOMMU_ATTR_SPAPR_TCE_FD 291 }; 292 293 /* 294 * IOMMUMemoryRegionClass: 295 * 296 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 297 * and provide an implementation of at least the @translate method here 298 * to handle requests to the memory region. Other methods are optional. 299 * 300 * The IOMMU implementation must use the IOMMU notifier infrastructure 301 * to report whenever mappings are changed, by calling 302 * memory_region_notify_iommu() (or, if necessary, by calling 303 * memory_region_notify_iommu_one() for each registered notifier). 304 * 305 * Conceptually an IOMMU provides a mapping from input address 306 * to an output TLB entry. If the IOMMU is aware of memory transaction 307 * attributes and the output TLB entry depends on the transaction 308 * attributes, we represent this using IOMMU indexes. Each index 309 * selects a particular translation table that the IOMMU has: 310 * 311 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 312 * 313 * @translate takes an input address and an IOMMU index 314 * 315 * and the mapping returned can only depend on the input address and the 316 * IOMMU index. 317 * 318 * Most IOMMUs don't care about the transaction attributes and support 319 * only a single IOMMU index. A more complex IOMMU might have one index 320 * for secure transactions and one for non-secure transactions. 321 */ 322 struct IOMMUMemoryRegionClass { 323 /* private: */ 324 MemoryRegionClass parent_class; 325 326 /* public: */ 327 /** 328 * @translate: 329 * 330 * Return a TLB entry that contains a given address. 331 * 332 * The IOMMUAccessFlags indicated via @flag are optional and may 333 * be specified as IOMMU_NONE to indicate that the caller needs 334 * the full translation information for both reads and writes. If 335 * the access flags are specified then the IOMMU implementation 336 * may use this as an optimization, to stop doing a page table 337 * walk as soon as it knows that the requested permissions are not 338 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 339 * full page table walk and report the permissions in the returned 340 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 341 * return different mappings for reads and writes.) 342 * 343 * The returned information remains valid while the caller is 344 * holding the big QEMU lock or is inside an RCU critical section; 345 * if the caller wishes to cache the mapping beyond that it must 346 * register an IOMMU notifier so it can invalidate its cached 347 * information when the IOMMU mapping changes. 348 * 349 * @iommu: the IOMMUMemoryRegion 350 * 351 * @hwaddr: address to be translated within the memory region 352 * 353 * @flag: requested access permission 354 * 355 * @iommu_idx: IOMMU index for the translation 356 */ 357 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 358 IOMMUAccessFlags flag, int iommu_idx); 359 /** 360 * @get_min_page_size: 361 * 362 * Returns minimum supported page size in bytes. 363 * 364 * If this method is not provided then the minimum is assumed to 365 * be TARGET_PAGE_SIZE. 366 * 367 * @iommu: the IOMMUMemoryRegion 368 */ 369 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 370 /** 371 * @notify_flag_changed: 372 * 373 * Called when IOMMU Notifier flag changes (ie when the set of 374 * events which IOMMU users are requesting notification for changes). 375 * Optional method -- need not be provided if the IOMMU does not 376 * need to know exactly which events must be notified. 377 * 378 * @iommu: the IOMMUMemoryRegion 379 * 380 * @old_flags: events which previously needed to be notified 381 * 382 * @new_flags: events which now need to be notified 383 * 384 * Returns 0 on success, or a negative errno; in particular 385 * returns -EINVAL if the new flag bitmap is not supported by the 386 * IOMMU memory region. In case of failure, the error object 387 * must be created 388 */ 389 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 390 IOMMUNotifierFlag old_flags, 391 IOMMUNotifierFlag new_flags, 392 Error **errp); 393 /** 394 * @replay: 395 * 396 * Called to handle memory_region_iommu_replay(). 397 * 398 * The default implementation of memory_region_iommu_replay() is to 399 * call the IOMMU translate method for every page in the address space 400 * with flag == IOMMU_NONE and then call the notifier if translate 401 * returns a valid mapping. If this method is implemented then it 402 * overrides the default behaviour, and must provide the full semantics 403 * of memory_region_iommu_replay(), by calling @notifier for every 404 * translation present in the IOMMU. 405 * 406 * Optional method -- an IOMMU only needs to provide this method 407 * if the default is inefficient or produces undesirable side effects. 408 * 409 * Note: this is not related to record-and-replay functionality. 410 */ 411 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 412 413 /** 414 * @get_attr: 415 * 416 * Get IOMMU misc attributes. This is an optional method that 417 * can be used to allow users of the IOMMU to get implementation-specific 418 * information. The IOMMU implements this method to handle calls 419 * by IOMMU users to memory_region_iommu_get_attr() by filling in 420 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 421 * the IOMMU supports. If the method is unimplemented then 422 * memory_region_iommu_get_attr() will always return -EINVAL. 423 * 424 * @iommu: the IOMMUMemoryRegion 425 * 426 * @attr: attribute being queried 427 * 428 * @data: memory to fill in with the attribute data 429 * 430 * Returns 0 on success, or a negative errno; in particular 431 * returns -EINVAL for unrecognized or unimplemented attribute types. 432 */ 433 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 434 void *data); 435 436 /** 437 * @attrs_to_index: 438 * 439 * Return the IOMMU index to use for a given set of transaction attributes. 440 * 441 * Optional method: if an IOMMU only supports a single IOMMU index then 442 * the default implementation of memory_region_iommu_attrs_to_index() 443 * will return 0. 444 * 445 * The indexes supported by an IOMMU must be contiguous, starting at 0. 446 * 447 * @iommu: the IOMMUMemoryRegion 448 * @attrs: memory transaction attributes 449 */ 450 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 451 452 /** 453 * @num_indexes: 454 * 455 * Return the number of IOMMU indexes this IOMMU supports. 456 * 457 * Optional method: if this method is not provided, then 458 * memory_region_iommu_num_indexes() will return 1, indicating that 459 * only a single IOMMU index is supported. 460 * 461 * @iommu: the IOMMUMemoryRegion 462 */ 463 int (*num_indexes)(IOMMUMemoryRegion *iommu); 464 465 /** 466 * @iommu_set_page_size_mask: 467 * 468 * Restrict the page size mask that can be supported with a given IOMMU 469 * memory region. Used for example to propagate host physical IOMMU page 470 * size mask limitations to the virtual IOMMU. 471 * 472 * Optional method: if this method is not provided, then the default global 473 * page mask is used. 474 * 475 * @iommu: the IOMMUMemoryRegion 476 * 477 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 478 * representing the smallest page size, must be set. Additional set bits 479 * represent supported block sizes. For example a host physical IOMMU that 480 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 481 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 482 * block sizes is specified with mask 0xfffffffffffff000. 483 * 484 * Returns 0 on success, or a negative error. In case of failure, the error 485 * object must be created. 486 */ 487 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 488 uint64_t page_size_mask, 489 Error **errp); 490 }; 491 492 typedef struct RamDiscardListener RamDiscardListener; 493 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 494 MemoryRegionSection *section); 495 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 496 MemoryRegionSection *section); 497 498 struct RamDiscardListener { 499 /* 500 * @notify_populate: 501 * 502 * Notification that previously discarded memory is about to get populated. 503 * Listeners are able to object. If any listener objects, already 504 * successfully notified listeners are notified about a discard again. 505 * 506 * @rdl: the #RamDiscardListener getting notified 507 * @section: the #MemoryRegionSection to get populated. The section 508 * is aligned within the memory region to the minimum granularity 509 * unless it would exceed the registered section. 510 * 511 * Returns 0 on success. If the notification is rejected by the listener, 512 * an error is returned. 513 */ 514 NotifyRamPopulate notify_populate; 515 516 /* 517 * @notify_discard: 518 * 519 * Notification that previously populated memory was discarded successfully 520 * and listeners should drop all references to such memory and prevent 521 * new population (e.g., unmap). 522 * 523 * @rdl: the #RamDiscardListener getting notified 524 * @section: the #MemoryRegionSection to get populated. The section 525 * is aligned within the memory region to the minimum granularity 526 * unless it would exceed the registered section. 527 */ 528 NotifyRamDiscard notify_discard; 529 530 /* 531 * @double_discard_supported: 532 * 533 * The listener suppors getting @notify_discard notifications that span 534 * already discarded parts. 535 */ 536 bool double_discard_supported; 537 538 MemoryRegionSection *section; 539 QLIST_ENTRY(RamDiscardListener) next; 540 }; 541 542 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 543 NotifyRamPopulate populate_fn, 544 NotifyRamDiscard discard_fn, 545 bool double_discard_supported) 546 { 547 rdl->notify_populate = populate_fn; 548 rdl->notify_discard = discard_fn; 549 rdl->double_discard_supported = double_discard_supported; 550 } 551 552 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 553 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 554 555 /* 556 * RamDiscardManagerClass: 557 * 558 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 559 * regions are currently populated to be used/accessed by the VM, notifying 560 * after parts were discarded (freeing up memory) and before parts will be 561 * populated (consuming memory), to be used/acessed by the VM. 562 * 563 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 564 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is 565 * mapped. 566 * 567 * The #RamDiscardManager is intended to be used by technologies that are 568 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 569 * memory inside a #MemoryRegion), and require proper coordination to only 570 * map the currently populated parts, to hinder parts that are expected to 571 * remain discarded from silently getting populated and consuming memory. 572 * Technologies that support discarding of RAM don't have to bother and can 573 * simply map the whole #MemoryRegion. 574 * 575 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 576 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 577 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 578 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 579 * properly coordinate with listeners before memory is plugged (populated), 580 * and after memory is unplugged (discarded). 581 * 582 * Listeners are called in multiples of the minimum granularity (unless it 583 * would exceed the registered range) and changes are aligned to the minimum 584 * granularity within the #MemoryRegion. Listeners have to prepare for memory 585 * becomming discarded in a different granularity than it was populated and the 586 * other way around. 587 */ 588 struct RamDiscardManagerClass { 589 /* private */ 590 InterfaceClass parent_class; 591 592 /* public */ 593 594 /** 595 * @get_min_granularity: 596 * 597 * Get the minimum granularity in which listeners will get notified 598 * about changes within the #MemoryRegion via the #RamDiscardManager. 599 * 600 * @rdm: the #RamDiscardManager 601 * @mr: the #MemoryRegion 602 * 603 * Returns the minimum granularity. 604 */ 605 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 606 const MemoryRegion *mr); 607 608 /** 609 * @is_populated: 610 * 611 * Check whether the given #MemoryRegionSection is completely populated 612 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 613 * There are no alignment requirements. 614 * 615 * @rdm: the #RamDiscardManager 616 * @section: the #MemoryRegionSection 617 * 618 * Returns whether the given range is completely populated. 619 */ 620 bool (*is_populated)(const RamDiscardManager *rdm, 621 const MemoryRegionSection *section); 622 623 /** 624 * @replay_populated: 625 * 626 * Call the #ReplayRamPopulate callback for all populated parts within the 627 * #MemoryRegionSection via the #RamDiscardManager. 628 * 629 * In case any call fails, no further calls are made. 630 * 631 * @rdm: the #RamDiscardManager 632 * @section: the #MemoryRegionSection 633 * @replay_fn: the #ReplayRamPopulate callback 634 * @opaque: pointer to forward to the callback 635 * 636 * Returns 0 on success, or a negative error if any notification failed. 637 */ 638 int (*replay_populated)(const RamDiscardManager *rdm, 639 MemoryRegionSection *section, 640 ReplayRamPopulate replay_fn, void *opaque); 641 642 /** 643 * @replay_discarded: 644 * 645 * Call the #ReplayRamDiscard callback for all discarded parts within the 646 * #MemoryRegionSection via the #RamDiscardManager. 647 * 648 * @rdm: the #RamDiscardManager 649 * @section: the #MemoryRegionSection 650 * @replay_fn: the #ReplayRamDiscard callback 651 * @opaque: pointer to forward to the callback 652 */ 653 void (*replay_discarded)(const RamDiscardManager *rdm, 654 MemoryRegionSection *section, 655 ReplayRamDiscard replay_fn, void *opaque); 656 657 /** 658 * @register_listener: 659 * 660 * Register a #RamDiscardListener for the given #MemoryRegionSection and 661 * immediately notify the #RamDiscardListener about all populated parts 662 * within the #MemoryRegionSection via the #RamDiscardManager. 663 * 664 * In case any notification fails, no further notifications are triggered 665 * and an error is logged. 666 * 667 * @rdm: the #RamDiscardManager 668 * @rdl: the #RamDiscardListener 669 * @section: the #MemoryRegionSection 670 */ 671 void (*register_listener)(RamDiscardManager *rdm, 672 RamDiscardListener *rdl, 673 MemoryRegionSection *section); 674 675 /** 676 * @unregister_listener: 677 * 678 * Unregister a previously registered #RamDiscardListener via the 679 * #RamDiscardManager after notifying the #RamDiscardListener about all 680 * populated parts becoming unpopulated within the registered 681 * #MemoryRegionSection. 682 * 683 * @rdm: the #RamDiscardManager 684 * @rdl: the #RamDiscardListener 685 */ 686 void (*unregister_listener)(RamDiscardManager *rdm, 687 RamDiscardListener *rdl); 688 }; 689 690 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 691 const MemoryRegion *mr); 692 693 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 694 const MemoryRegionSection *section); 695 696 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 697 MemoryRegionSection *section, 698 ReplayRamPopulate replay_fn, 699 void *opaque); 700 701 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 702 MemoryRegionSection *section, 703 ReplayRamDiscard replay_fn, 704 void *opaque); 705 706 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 707 RamDiscardListener *rdl, 708 MemoryRegionSection *section); 709 710 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 711 RamDiscardListener *rdl); 712 713 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 714 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 715 716 /** MemoryRegion: 717 * 718 * A struct representing a memory region. 719 */ 720 struct MemoryRegion { 721 Object parent_obj; 722 723 /* private: */ 724 725 /* The following fields should fit in a cache line */ 726 bool romd_mode; 727 bool ram; 728 bool subpage; 729 bool readonly; /* For RAM regions */ 730 bool nonvolatile; 731 bool rom_device; 732 bool flush_coalesced_mmio; 733 uint8_t dirty_log_mask; 734 bool is_iommu; 735 RAMBlock *ram_block; 736 Object *owner; 737 738 const MemoryRegionOps *ops; 739 void *opaque; 740 MemoryRegion *container; 741 Int128 size; 742 hwaddr addr; 743 void (*destructor)(MemoryRegion *mr); 744 uint64_t align; 745 bool terminates; 746 bool ram_device; 747 bool enabled; 748 bool warning_printed; /* For reservations */ 749 uint8_t vga_logging_count; 750 MemoryRegion *alias; 751 hwaddr alias_offset; 752 int32_t priority; 753 QTAILQ_HEAD(, MemoryRegion) subregions; 754 QTAILQ_ENTRY(MemoryRegion) subregions_link; 755 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 756 const char *name; 757 unsigned ioeventfd_nb; 758 MemoryRegionIoeventfd *ioeventfds; 759 RamDiscardManager *rdm; /* Only for RAM */ 760 }; 761 762 struct IOMMUMemoryRegion { 763 MemoryRegion parent_obj; 764 765 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 766 IOMMUNotifierFlag iommu_notify_flags; 767 }; 768 769 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 770 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 771 772 /** 773 * struct MemoryListener: callbacks structure for updates to the physical memory map 774 * 775 * Allows a component to adjust to changes in the guest-visible memory map. 776 * Use with memory_listener_register() and memory_listener_unregister(). 777 */ 778 struct MemoryListener { 779 /** 780 * @begin: 781 * 782 * Called at the beginning of an address space update transaction. 783 * Followed by calls to #MemoryListener.region_add(), 784 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 785 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 786 * increasing address order. 787 * 788 * @listener: The #MemoryListener. 789 */ 790 void (*begin)(MemoryListener *listener); 791 792 /** 793 * @commit: 794 * 795 * Called at the end of an address space update transaction, 796 * after the last call to #MemoryListener.region_add(), 797 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 798 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 799 * 800 * @listener: The #MemoryListener. 801 */ 802 void (*commit)(MemoryListener *listener); 803 804 /** 805 * @region_add: 806 * 807 * Called during an address space update transaction, 808 * for a section of the address space that is new in this address space 809 * space since the last transaction. 810 * 811 * @listener: The #MemoryListener. 812 * @section: The new #MemoryRegionSection. 813 */ 814 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 815 816 /** 817 * @region_del: 818 * 819 * Called during an address space update transaction, 820 * for a section of the address space that has disappeared in the address 821 * space since the last transaction. 822 * 823 * @listener: The #MemoryListener. 824 * @section: The old #MemoryRegionSection. 825 */ 826 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 827 828 /** 829 * @region_nop: 830 * 831 * Called during an address space update transaction, 832 * for a section of the address space that is in the same place in the address 833 * space as in the last transaction. 834 * 835 * @listener: The #MemoryListener. 836 * @section: The #MemoryRegionSection. 837 */ 838 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 839 840 /** 841 * @log_start: 842 * 843 * Called during an address space update transaction, after 844 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 845 * #MemoryListener.region_nop(), if dirty memory logging clients have 846 * become active since the last transaction. 847 * 848 * @listener: The #MemoryListener. 849 * @section: The #MemoryRegionSection. 850 * @old: A bitmap of dirty memory logging clients that were active in 851 * the previous transaction. 852 * @new: A bitmap of dirty memory logging clients that are active in 853 * the current transaction. 854 */ 855 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 856 int old, int new); 857 858 /** 859 * @log_stop: 860 * 861 * Called during an address space update transaction, after 862 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 863 * #MemoryListener.region_nop() and possibly after 864 * #MemoryListener.log_start(), if dirty memory logging clients have 865 * become inactive since the last transaction. 866 * 867 * @listener: The #MemoryListener. 868 * @section: The #MemoryRegionSection. 869 * @old: A bitmap of dirty memory logging clients that were active in 870 * the previous transaction. 871 * @new: A bitmap of dirty memory logging clients that are active in 872 * the current transaction. 873 */ 874 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 875 int old, int new); 876 877 /** 878 * @log_sync: 879 * 880 * Called by memory_region_snapshot_and_clear_dirty() and 881 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 882 * copy of the dirty memory bitmap for a #MemoryRegionSection. 883 * 884 * @listener: The #MemoryListener. 885 * @section: The #MemoryRegionSection. 886 */ 887 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 888 889 /** 890 * @log_sync_global: 891 * 892 * This is the global version of @log_sync when the listener does 893 * not have a way to synchronize the log with finer granularity. 894 * When the listener registers with @log_sync_global defined, then 895 * its @log_sync must be NULL. Vice versa. 896 * 897 * @listener: The #MemoryListener. 898 */ 899 void (*log_sync_global)(MemoryListener *listener); 900 901 /** 902 * @log_clear: 903 * 904 * Called before reading the dirty memory bitmap for a 905 * #MemoryRegionSection. 906 * 907 * @listener: The #MemoryListener. 908 * @section: The #MemoryRegionSection. 909 */ 910 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 911 912 /** 913 * @log_global_start: 914 * 915 * Called by memory_global_dirty_log_start(), which 916 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 917 * the address space. #MemoryListener.log_global_start() is also 918 * called when a #MemoryListener is added, if global dirty logging is 919 * active at that time. 920 * 921 * @listener: The #MemoryListener. 922 */ 923 void (*log_global_start)(MemoryListener *listener); 924 925 /** 926 * @log_global_stop: 927 * 928 * Called by memory_global_dirty_log_stop(), which 929 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 930 * the address space. 931 * 932 * @listener: The #MemoryListener. 933 */ 934 void (*log_global_stop)(MemoryListener *listener); 935 936 /** 937 * @log_global_after_sync: 938 * 939 * Called after reading the dirty memory bitmap 940 * for any #MemoryRegionSection. 941 * 942 * @listener: The #MemoryListener. 943 */ 944 void (*log_global_after_sync)(MemoryListener *listener); 945 946 /** 947 * @eventfd_add: 948 * 949 * Called during an address space update transaction, 950 * for a section of the address space that has had a new ioeventfd 951 * registration since the last transaction. 952 * 953 * @listener: The #MemoryListener. 954 * @section: The new #MemoryRegionSection. 955 * @match_data: The @match_data parameter for the new ioeventfd. 956 * @data: The @data parameter for the new ioeventfd. 957 * @e: The #EventNotifier parameter for the new ioeventfd. 958 */ 959 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 960 bool match_data, uint64_t data, EventNotifier *e); 961 962 /** 963 * @eventfd_del: 964 * 965 * Called during an address space update transaction, 966 * for a section of the address space that has dropped an ioeventfd 967 * registration since the last transaction. 968 * 969 * @listener: The #MemoryListener. 970 * @section: The new #MemoryRegionSection. 971 * @match_data: The @match_data parameter for the dropped ioeventfd. 972 * @data: The @data parameter for the dropped ioeventfd. 973 * @e: The #EventNotifier parameter for the dropped ioeventfd. 974 */ 975 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 976 bool match_data, uint64_t data, EventNotifier *e); 977 978 /** 979 * @coalesced_io_add: 980 * 981 * Called during an address space update transaction, 982 * for a section of the address space that has had a new coalesced 983 * MMIO range registration since the last transaction. 984 * 985 * @listener: The #MemoryListener. 986 * @section: The new #MemoryRegionSection. 987 * @addr: The starting address for the coalesced MMIO range. 988 * @len: The length of the coalesced MMIO range. 989 */ 990 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 991 hwaddr addr, hwaddr len); 992 993 /** 994 * @coalesced_io_del: 995 * 996 * Called during an address space update transaction, 997 * for a section of the address space that has dropped a coalesced 998 * MMIO range since the last transaction. 999 * 1000 * @listener: The #MemoryListener. 1001 * @section: The new #MemoryRegionSection. 1002 * @addr: The starting address for the coalesced MMIO range. 1003 * @len: The length of the coalesced MMIO range. 1004 */ 1005 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1006 hwaddr addr, hwaddr len); 1007 /** 1008 * @priority: 1009 * 1010 * Govern the order in which memory listeners are invoked. Lower priorities 1011 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1012 * or "stop" callbacks. 1013 */ 1014 unsigned priority; 1015 1016 /** 1017 * @name: 1018 * 1019 * Name of the listener. It can be used in contexts where we'd like to 1020 * identify one memory listener with the rest. 1021 */ 1022 const char *name; 1023 1024 /* private: */ 1025 AddressSpace *address_space; 1026 QTAILQ_ENTRY(MemoryListener) link; 1027 QTAILQ_ENTRY(MemoryListener) link_as; 1028 }; 1029 1030 /** 1031 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1032 */ 1033 struct AddressSpace { 1034 /* private: */ 1035 struct rcu_head rcu; 1036 char *name; 1037 MemoryRegion *root; 1038 1039 /* Accessed via RCU. */ 1040 struct FlatView *current_map; 1041 1042 int ioeventfd_nb; 1043 struct MemoryRegionIoeventfd *ioeventfds; 1044 QTAILQ_HEAD(, MemoryListener) listeners; 1045 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1046 }; 1047 1048 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1049 typedef struct FlatRange FlatRange; 1050 1051 /* Flattened global view of current active memory hierarchy. Kept in sorted 1052 * order. 1053 */ 1054 struct FlatView { 1055 struct rcu_head rcu; 1056 unsigned ref; 1057 FlatRange *ranges; 1058 unsigned nr; 1059 unsigned nr_allocated; 1060 struct AddressSpaceDispatch *dispatch; 1061 MemoryRegion *root; 1062 }; 1063 1064 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1065 { 1066 return qatomic_rcu_read(&as->current_map); 1067 } 1068 1069 /** 1070 * typedef flatview_cb: callback for flatview_for_each_range() 1071 * 1072 * @start: start address of the range within the FlatView 1073 * @len: length of the range in bytes 1074 * @mr: MemoryRegion covering this range 1075 * @offset_in_region: offset of the first byte of the range within @mr 1076 * @opaque: data pointer passed to flatview_for_each_range() 1077 * 1078 * Returns: true to stop the iteration, false to keep going. 1079 */ 1080 typedef bool (*flatview_cb)(Int128 start, 1081 Int128 len, 1082 const MemoryRegion *mr, 1083 hwaddr offset_in_region, 1084 void *opaque); 1085 1086 /** 1087 * flatview_for_each_range: Iterate through a FlatView 1088 * @fv: the FlatView to iterate through 1089 * @cb: function to call for each range 1090 * @opaque: opaque data pointer to pass to @cb 1091 * 1092 * A FlatView is made up of a list of non-overlapping ranges, each of 1093 * which is a slice of a MemoryRegion. This function iterates through 1094 * each range in @fv, calling @cb. The callback function can terminate 1095 * iteration early by returning 'true'. 1096 */ 1097 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1098 1099 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1100 MemoryRegionSection *b) 1101 { 1102 return a->mr == b->mr && 1103 a->fv == b->fv && 1104 a->offset_within_region == b->offset_within_region && 1105 a->offset_within_address_space == b->offset_within_address_space && 1106 int128_eq(a->size, b->size) && 1107 a->readonly == b->readonly && 1108 a->nonvolatile == b->nonvolatile; 1109 } 1110 1111 /** 1112 * memory_region_section_new_copy: Copy a memory region section 1113 * 1114 * Allocate memory for a new copy, copy the memory region section, and 1115 * properly take a reference on all relevant members. 1116 * 1117 * @s: the #MemoryRegionSection to copy 1118 */ 1119 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1120 1121 /** 1122 * memory_region_section_new_copy: Free a copied memory region section 1123 * 1124 * Free a copy of a memory section created via memory_region_section_new_copy(). 1125 * properly dropping references on all relevant members. 1126 * 1127 * @s: the #MemoryRegionSection to copy 1128 */ 1129 void memory_region_section_free_copy(MemoryRegionSection *s); 1130 1131 /** 1132 * memory_region_init: Initialize a memory region 1133 * 1134 * The region typically acts as a container for other memory regions. Use 1135 * memory_region_add_subregion() to add subregions. 1136 * 1137 * @mr: the #MemoryRegion to be initialized 1138 * @owner: the object that tracks the region's reference count 1139 * @name: used for debugging; not visible to the user or ABI 1140 * @size: size of the region; any subregions beyond this size will be clipped 1141 */ 1142 void memory_region_init(MemoryRegion *mr, 1143 Object *owner, 1144 const char *name, 1145 uint64_t size); 1146 1147 /** 1148 * memory_region_ref: Add 1 to a memory region's reference count 1149 * 1150 * Whenever memory regions are accessed outside the BQL, they need to be 1151 * preserved against hot-unplug. MemoryRegions actually do not have their 1152 * own reference count; they piggyback on a QOM object, their "owner". 1153 * This function adds a reference to the owner. 1154 * 1155 * All MemoryRegions must have an owner if they can disappear, even if the 1156 * device they belong to operates exclusively under the BQL. This is because 1157 * the region could be returned at any time by memory_region_find, and this 1158 * is usually under guest control. 1159 * 1160 * @mr: the #MemoryRegion 1161 */ 1162 void memory_region_ref(MemoryRegion *mr); 1163 1164 /** 1165 * memory_region_unref: Remove 1 to a memory region's reference count 1166 * 1167 * Whenever memory regions are accessed outside the BQL, they need to be 1168 * preserved against hot-unplug. MemoryRegions actually do not have their 1169 * own reference count; they piggyback on a QOM object, their "owner". 1170 * This function removes a reference to the owner and possibly destroys it. 1171 * 1172 * @mr: the #MemoryRegion 1173 */ 1174 void memory_region_unref(MemoryRegion *mr); 1175 1176 /** 1177 * memory_region_init_io: Initialize an I/O memory region. 1178 * 1179 * Accesses into the region will cause the callbacks in @ops to be called. 1180 * if @size is nonzero, subregions will be clipped to @size. 1181 * 1182 * @mr: the #MemoryRegion to be initialized. 1183 * @owner: the object that tracks the region's reference count 1184 * @ops: a structure containing read and write callbacks to be used when 1185 * I/O is performed on the region. 1186 * @opaque: passed to the read and write callbacks of the @ops structure. 1187 * @name: used for debugging; not visible to the user or ABI 1188 * @size: size of the region. 1189 */ 1190 void memory_region_init_io(MemoryRegion *mr, 1191 Object *owner, 1192 const MemoryRegionOps *ops, 1193 void *opaque, 1194 const char *name, 1195 uint64_t size); 1196 1197 /** 1198 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1199 * into the region will modify memory 1200 * directly. 1201 * 1202 * @mr: the #MemoryRegion to be initialized. 1203 * @owner: the object that tracks the region's reference count 1204 * @name: Region name, becomes part of RAMBlock name used in migration stream 1205 * must be unique within any device 1206 * @size: size of the region. 1207 * @errp: pointer to Error*, to store an error if it happens. 1208 * 1209 * Note that this function does not do anything to cause the data in the 1210 * RAM memory region to be migrated; that is the responsibility of the caller. 1211 */ 1212 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1213 Object *owner, 1214 const char *name, 1215 uint64_t size, 1216 Error **errp); 1217 1218 /** 1219 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1220 * Accesses into the region will 1221 * modify memory directly. 1222 * 1223 * @mr: the #MemoryRegion to be initialized. 1224 * @owner: the object that tracks the region's reference count 1225 * @name: Region name, becomes part of RAMBlock name used in migration stream 1226 * must be unique within any device 1227 * @size: size of the region. 1228 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1229 * @errp: pointer to Error*, to store an error if it happens. 1230 * 1231 * Note that this function does not do anything to cause the data in the 1232 * RAM memory region to be migrated; that is the responsibility of the caller. 1233 */ 1234 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1235 Object *owner, 1236 const char *name, 1237 uint64_t size, 1238 uint32_t ram_flags, 1239 Error **errp); 1240 1241 /** 1242 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 1243 * RAM. Accesses into the region will 1244 * modify memory directly. Only an initial 1245 * portion of this RAM is actually used. 1246 * Changing the size while migrating 1247 * can result in the migration being 1248 * canceled. 1249 * 1250 * @mr: the #MemoryRegion to be initialized. 1251 * @owner: the object that tracks the region's reference count 1252 * @name: Region name, becomes part of RAMBlock name used in migration stream 1253 * must be unique within any device 1254 * @size: used size of the region. 1255 * @max_size: max size of the region. 1256 * @resized: callback to notify owner about used size change. 1257 * @errp: pointer to Error*, to store an error if it happens. 1258 * 1259 * Note that this function does not do anything to cause the data in the 1260 * RAM memory region to be migrated; that is the responsibility of the caller. 1261 */ 1262 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1263 Object *owner, 1264 const char *name, 1265 uint64_t size, 1266 uint64_t max_size, 1267 void (*resized)(const char*, 1268 uint64_t length, 1269 void *host), 1270 Error **errp); 1271 #ifdef CONFIG_POSIX 1272 1273 /** 1274 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1275 * mmap-ed backend. 1276 * 1277 * @mr: the #MemoryRegion to be initialized. 1278 * @owner: the object that tracks the region's reference count 1279 * @name: Region name, becomes part of RAMBlock name used in migration stream 1280 * must be unique within any device 1281 * @size: size of the region. 1282 * @align: alignment of the region base address; if 0, the default alignment 1283 * (getpagesize()) will be used. 1284 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1285 * RAM_NORESERVE, 1286 * @path: the path in which to allocate the RAM. 1287 * @readonly: true to open @path for reading, false for read/write. 1288 * @errp: pointer to Error*, to store an error if it happens. 1289 * 1290 * Note that this function does not do anything to cause the data in the 1291 * RAM memory region to be migrated; that is the responsibility of the caller. 1292 */ 1293 void memory_region_init_ram_from_file(MemoryRegion *mr, 1294 Object *owner, 1295 const char *name, 1296 uint64_t size, 1297 uint64_t align, 1298 uint32_t ram_flags, 1299 const char *path, 1300 bool readonly, 1301 Error **errp); 1302 1303 /** 1304 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1305 * mmap-ed backend. 1306 * 1307 * @mr: the #MemoryRegion to be initialized. 1308 * @owner: the object that tracks the region's reference count 1309 * @name: the name of the region. 1310 * @size: size of the region. 1311 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1312 * RAM_NORESERVE, RAM_PROTECTED. 1313 * @fd: the fd to mmap. 1314 * @offset: offset within the file referenced by fd 1315 * @errp: pointer to Error*, to store an error if it happens. 1316 * 1317 * Note that this function does not do anything to cause the data in the 1318 * RAM memory region to be migrated; that is the responsibility of the caller. 1319 */ 1320 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1321 Object *owner, 1322 const char *name, 1323 uint64_t size, 1324 uint32_t ram_flags, 1325 int fd, 1326 ram_addr_t offset, 1327 Error **errp); 1328 #endif 1329 1330 /** 1331 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1332 * user-provided pointer. Accesses into the 1333 * region will modify memory directly. 1334 * 1335 * @mr: the #MemoryRegion to be initialized. 1336 * @owner: the object that tracks the region's reference count 1337 * @name: Region name, becomes part of RAMBlock name used in migration stream 1338 * must be unique within any device 1339 * @size: size of the region. 1340 * @ptr: memory to be mapped; must contain at least @size bytes. 1341 * 1342 * Note that this function does not do anything to cause the data in the 1343 * RAM memory region to be migrated; that is the responsibility of the caller. 1344 */ 1345 void memory_region_init_ram_ptr(MemoryRegion *mr, 1346 Object *owner, 1347 const char *name, 1348 uint64_t size, 1349 void *ptr); 1350 1351 /** 1352 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1353 * a user-provided pointer. 1354 * 1355 * A RAM device represents a mapping to a physical device, such as to a PCI 1356 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1357 * into the VM address space and access to the region will modify memory 1358 * directly. However, the memory region should not be included in a memory 1359 * dump (device may not be enabled/mapped at the time of the dump), and 1360 * operations incompatible with manipulating MMIO should be avoided. Replaces 1361 * skip_dump flag. 1362 * 1363 * @mr: the #MemoryRegion to be initialized. 1364 * @owner: the object that tracks the region's reference count 1365 * @name: the name of the region. 1366 * @size: size of the region. 1367 * @ptr: memory to be mapped; must contain at least @size bytes. 1368 * 1369 * Note that this function does not do anything to cause the data in the 1370 * RAM memory region to be migrated; that is the responsibility of the caller. 1371 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1372 */ 1373 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1374 Object *owner, 1375 const char *name, 1376 uint64_t size, 1377 void *ptr); 1378 1379 /** 1380 * memory_region_init_alias: Initialize a memory region that aliases all or a 1381 * part of another memory region. 1382 * 1383 * @mr: the #MemoryRegion to be initialized. 1384 * @owner: the object that tracks the region's reference count 1385 * @name: used for debugging; not visible to the user or ABI 1386 * @orig: the region to be referenced; @mr will be equivalent to 1387 * @orig between @offset and @offset + @size - 1. 1388 * @offset: start of the section in @orig to be referenced. 1389 * @size: size of the region. 1390 */ 1391 void memory_region_init_alias(MemoryRegion *mr, 1392 Object *owner, 1393 const char *name, 1394 MemoryRegion *orig, 1395 hwaddr offset, 1396 uint64_t size); 1397 1398 /** 1399 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1400 * 1401 * This has the same effect as calling memory_region_init_ram_nomigrate() 1402 * and then marking the resulting region read-only with 1403 * memory_region_set_readonly(). 1404 * 1405 * Note that this function does not do anything to cause the data in the 1406 * RAM side of the memory region to be migrated; that is the responsibility 1407 * of the caller. 1408 * 1409 * @mr: the #MemoryRegion to be initialized. 1410 * @owner: the object that tracks the region's reference count 1411 * @name: Region name, becomes part of RAMBlock name used in migration stream 1412 * must be unique within any device 1413 * @size: size of the region. 1414 * @errp: pointer to Error*, to store an error if it happens. 1415 */ 1416 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1417 Object *owner, 1418 const char *name, 1419 uint64_t size, 1420 Error **errp); 1421 1422 /** 1423 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1424 * Writes are handled via callbacks. 1425 * 1426 * Note that this function does not do anything to cause the data in the 1427 * RAM side of the memory region to be migrated; that is the responsibility 1428 * of the caller. 1429 * 1430 * @mr: the #MemoryRegion to be initialized. 1431 * @owner: the object that tracks the region's reference count 1432 * @ops: callbacks for write access handling (must not be NULL). 1433 * @opaque: passed to the read and write callbacks of the @ops structure. 1434 * @name: Region name, becomes part of RAMBlock name used in migration stream 1435 * must be unique within any device 1436 * @size: size of the region. 1437 * @errp: pointer to Error*, to store an error if it happens. 1438 */ 1439 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1440 Object *owner, 1441 const MemoryRegionOps *ops, 1442 void *opaque, 1443 const char *name, 1444 uint64_t size, 1445 Error **errp); 1446 1447 /** 1448 * memory_region_init_iommu: Initialize a memory region of a custom type 1449 * that translates addresses 1450 * 1451 * An IOMMU region translates addresses and forwards accesses to a target 1452 * memory region. 1453 * 1454 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1455 * @_iommu_mr should be a pointer to enough memory for an instance of 1456 * that subclass, @instance_size is the size of that subclass, and 1457 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1458 * instance of the subclass, and its methods will then be called to handle 1459 * accesses to the memory region. See the documentation of 1460 * #IOMMUMemoryRegionClass for further details. 1461 * 1462 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1463 * @instance_size: the IOMMUMemoryRegion subclass instance size 1464 * @mrtypename: the type name of the #IOMMUMemoryRegion 1465 * @owner: the object that tracks the region's reference count 1466 * @name: used for debugging; not visible to the user or ABI 1467 * @size: size of the region. 1468 */ 1469 void memory_region_init_iommu(void *_iommu_mr, 1470 size_t instance_size, 1471 const char *mrtypename, 1472 Object *owner, 1473 const char *name, 1474 uint64_t size); 1475 1476 /** 1477 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1478 * region will modify memory directly. 1479 * 1480 * @mr: the #MemoryRegion to be initialized 1481 * @owner: the object that tracks the region's reference count (must be 1482 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1483 * @name: name of the memory region 1484 * @size: size of the region in bytes 1485 * @errp: pointer to Error*, to store an error if it happens. 1486 * 1487 * This function allocates RAM for a board model or device, and 1488 * arranges for it to be migrated (by calling vmstate_register_ram() 1489 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1490 * @owner is NULL). 1491 * 1492 * TODO: Currently we restrict @owner to being either NULL (for 1493 * global RAM regions with no owner) or devices, so that we can 1494 * give the RAM block a unique name for migration purposes. 1495 * We should lift this restriction and allow arbitrary Objects. 1496 * If you pass a non-NULL non-device @owner then we will assert. 1497 */ 1498 void memory_region_init_ram(MemoryRegion *mr, 1499 Object *owner, 1500 const char *name, 1501 uint64_t size, 1502 Error **errp); 1503 1504 /** 1505 * memory_region_init_rom: Initialize a ROM memory region. 1506 * 1507 * This has the same effect as calling memory_region_init_ram() 1508 * and then marking the resulting region read-only with 1509 * memory_region_set_readonly(). This includes arranging for the 1510 * contents to be migrated. 1511 * 1512 * TODO: Currently we restrict @owner to being either NULL (for 1513 * global RAM regions with no owner) or devices, so that we can 1514 * give the RAM block a unique name for migration purposes. 1515 * We should lift this restriction and allow arbitrary Objects. 1516 * If you pass a non-NULL non-device @owner then we will assert. 1517 * 1518 * @mr: the #MemoryRegion to be initialized. 1519 * @owner: the object that tracks the region's reference count 1520 * @name: Region name, becomes part of RAMBlock name used in migration stream 1521 * must be unique within any device 1522 * @size: size of the region. 1523 * @errp: pointer to Error*, to store an error if it happens. 1524 */ 1525 void memory_region_init_rom(MemoryRegion *mr, 1526 Object *owner, 1527 const char *name, 1528 uint64_t size, 1529 Error **errp); 1530 1531 /** 1532 * memory_region_init_rom_device: Initialize a ROM memory region. 1533 * Writes are handled via callbacks. 1534 * 1535 * This function initializes a memory region backed by RAM for reads 1536 * and callbacks for writes, and arranges for the RAM backing to 1537 * be migrated (by calling vmstate_register_ram() 1538 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1539 * @owner is NULL). 1540 * 1541 * TODO: Currently we restrict @owner to being either NULL (for 1542 * global RAM regions with no owner) or devices, so that we can 1543 * give the RAM block a unique name for migration purposes. 1544 * We should lift this restriction and allow arbitrary Objects. 1545 * If you pass a non-NULL non-device @owner then we will assert. 1546 * 1547 * @mr: the #MemoryRegion to be initialized. 1548 * @owner: the object that tracks the region's reference count 1549 * @ops: callbacks for write access handling (must not be NULL). 1550 * @opaque: passed to the read and write callbacks of the @ops structure. 1551 * @name: Region name, becomes part of RAMBlock name used in migration stream 1552 * must be unique within any device 1553 * @size: size of the region. 1554 * @errp: pointer to Error*, to store an error if it happens. 1555 */ 1556 void memory_region_init_rom_device(MemoryRegion *mr, 1557 Object *owner, 1558 const MemoryRegionOps *ops, 1559 void *opaque, 1560 const char *name, 1561 uint64_t size, 1562 Error **errp); 1563 1564 1565 /** 1566 * memory_region_owner: get a memory region's owner. 1567 * 1568 * @mr: the memory region being queried. 1569 */ 1570 Object *memory_region_owner(MemoryRegion *mr); 1571 1572 /** 1573 * memory_region_size: get a memory region's size. 1574 * 1575 * @mr: the memory region being queried. 1576 */ 1577 uint64_t memory_region_size(MemoryRegion *mr); 1578 1579 /** 1580 * memory_region_is_ram: check whether a memory region is random access 1581 * 1582 * Returns %true if a memory region is random access. 1583 * 1584 * @mr: the memory region being queried 1585 */ 1586 static inline bool memory_region_is_ram(MemoryRegion *mr) 1587 { 1588 return mr->ram; 1589 } 1590 1591 /** 1592 * memory_region_is_ram_device: check whether a memory region is a ram device 1593 * 1594 * Returns %true if a memory region is a device backed ram region 1595 * 1596 * @mr: the memory region being queried 1597 */ 1598 bool memory_region_is_ram_device(MemoryRegion *mr); 1599 1600 /** 1601 * memory_region_is_romd: check whether a memory region is in ROMD mode 1602 * 1603 * Returns %true if a memory region is a ROM device and currently set to allow 1604 * direct reads. 1605 * 1606 * @mr: the memory region being queried 1607 */ 1608 static inline bool memory_region_is_romd(MemoryRegion *mr) 1609 { 1610 return mr->rom_device && mr->romd_mode; 1611 } 1612 1613 /** 1614 * memory_region_is_protected: check whether a memory region is protected 1615 * 1616 * Returns %true if a memory region is protected RAM and cannot be accessed 1617 * via standard mechanisms, e.g. DMA. 1618 * 1619 * @mr: the memory region being queried 1620 */ 1621 bool memory_region_is_protected(MemoryRegion *mr); 1622 1623 /** 1624 * memory_region_get_iommu: check whether a memory region is an iommu 1625 * 1626 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1627 * otherwise NULL. 1628 * 1629 * @mr: the memory region being queried 1630 */ 1631 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1632 { 1633 if (mr->alias) { 1634 return memory_region_get_iommu(mr->alias); 1635 } 1636 if (mr->is_iommu) { 1637 return (IOMMUMemoryRegion *) mr; 1638 } 1639 return NULL; 1640 } 1641 1642 /** 1643 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1644 * if an iommu or NULL if not 1645 * 1646 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1647 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1648 * 1649 * @iommu_mr: the memory region being queried 1650 */ 1651 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1652 IOMMUMemoryRegion *iommu_mr) 1653 { 1654 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1655 } 1656 1657 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1658 1659 /** 1660 * memory_region_iommu_get_min_page_size: get minimum supported page size 1661 * for an iommu 1662 * 1663 * Returns minimum supported page size for an iommu. 1664 * 1665 * @iommu_mr: the memory region being queried 1666 */ 1667 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1668 1669 /** 1670 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1671 * 1672 * Note: for any IOMMU implementation, an in-place mapping change 1673 * should be notified with an UNMAP followed by a MAP. 1674 * 1675 * @iommu_mr: the memory region that was changed 1676 * @iommu_idx: the IOMMU index for the translation table which has changed 1677 * @event: TLB event with the new entry in the IOMMU translation table. 1678 * The entry replaces all old entries for the same virtual I/O address 1679 * range. 1680 */ 1681 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1682 int iommu_idx, 1683 IOMMUTLBEvent event); 1684 1685 /** 1686 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1687 * entry to a single notifier 1688 * 1689 * This works just like memory_region_notify_iommu(), but it only 1690 * notifies a specific notifier, not all of them. 1691 * 1692 * @notifier: the notifier to be notified 1693 * @event: TLB event with the new entry in the IOMMU translation table. 1694 * The entry replaces all old entries for the same virtual I/O address 1695 * range. 1696 */ 1697 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1698 IOMMUTLBEvent *event); 1699 1700 /** 1701 * memory_region_register_iommu_notifier: register a notifier for changes to 1702 * IOMMU translation entries. 1703 * 1704 * Returns 0 on success, or a negative errno otherwise. In particular, 1705 * -EINVAL indicates that at least one of the attributes of the notifier 1706 * is not supported (flag/range) by the IOMMU memory region. In case of error 1707 * the error object must be created. 1708 * 1709 * @mr: the memory region to observe 1710 * @n: the IOMMUNotifier to be added; the notify callback receives a 1711 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1712 * ceases to be valid on exit from the notifier. 1713 * @errp: pointer to Error*, to store an error if it happens. 1714 */ 1715 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1716 IOMMUNotifier *n, Error **errp); 1717 1718 /** 1719 * memory_region_iommu_replay: replay existing IOMMU translations to 1720 * a notifier with the minimum page granularity returned by 1721 * mr->iommu_ops->get_page_size(). 1722 * 1723 * Note: this is not related to record-and-replay functionality. 1724 * 1725 * @iommu_mr: the memory region to observe 1726 * @n: the notifier to which to replay iommu mappings 1727 */ 1728 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1729 1730 /** 1731 * memory_region_unregister_iommu_notifier: unregister a notifier for 1732 * changes to IOMMU translation entries. 1733 * 1734 * @mr: the memory region which was observed and for which notity_stopped() 1735 * needs to be called 1736 * @n: the notifier to be removed. 1737 */ 1738 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1739 IOMMUNotifier *n); 1740 1741 /** 1742 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1743 * defined on the IOMMU. 1744 * 1745 * Returns 0 on success, or a negative errno otherwise. In particular, 1746 * -EINVAL indicates that the IOMMU does not support the requested 1747 * attribute. 1748 * 1749 * @iommu_mr: the memory region 1750 * @attr: the requested attribute 1751 * @data: a pointer to the requested attribute data 1752 */ 1753 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1754 enum IOMMUMemoryRegionAttr attr, 1755 void *data); 1756 1757 /** 1758 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1759 * use for translations with the given memory transaction attributes. 1760 * 1761 * @iommu_mr: the memory region 1762 * @attrs: the memory transaction attributes 1763 */ 1764 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1765 MemTxAttrs attrs); 1766 1767 /** 1768 * memory_region_iommu_num_indexes: return the total number of IOMMU 1769 * indexes that this IOMMU supports. 1770 * 1771 * @iommu_mr: the memory region 1772 */ 1773 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1774 1775 /** 1776 * memory_region_iommu_set_page_size_mask: set the supported page 1777 * sizes for a given IOMMU memory region 1778 * 1779 * @iommu_mr: IOMMU memory region 1780 * @page_size_mask: supported page size mask 1781 * @errp: pointer to Error*, to store an error if it happens. 1782 */ 1783 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1784 uint64_t page_size_mask, 1785 Error **errp); 1786 1787 /** 1788 * memory_region_name: get a memory region's name 1789 * 1790 * Returns the string that was used to initialize the memory region. 1791 * 1792 * @mr: the memory region being queried 1793 */ 1794 const char *memory_region_name(const MemoryRegion *mr); 1795 1796 /** 1797 * memory_region_is_logging: return whether a memory region is logging writes 1798 * 1799 * Returns %true if the memory region is logging writes for the given client 1800 * 1801 * @mr: the memory region being queried 1802 * @client: the client being queried 1803 */ 1804 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1805 1806 /** 1807 * memory_region_get_dirty_log_mask: return the clients for which a 1808 * memory region is logging writes. 1809 * 1810 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1811 * are the bit indices. 1812 * 1813 * @mr: the memory region being queried 1814 */ 1815 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1816 1817 /** 1818 * memory_region_is_rom: check whether a memory region is ROM 1819 * 1820 * Returns %true if a memory region is read-only memory. 1821 * 1822 * @mr: the memory region being queried 1823 */ 1824 static inline bool memory_region_is_rom(MemoryRegion *mr) 1825 { 1826 return mr->ram && mr->readonly; 1827 } 1828 1829 /** 1830 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1831 * 1832 * Returns %true is a memory region is non-volatile memory. 1833 * 1834 * @mr: the memory region being queried 1835 */ 1836 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1837 { 1838 return mr->nonvolatile; 1839 } 1840 1841 /** 1842 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1843 * 1844 * Returns a file descriptor backing a file-based RAM memory region, 1845 * or -1 if the region is not a file-based RAM memory region. 1846 * 1847 * @mr: the RAM or alias memory region being queried. 1848 */ 1849 int memory_region_get_fd(MemoryRegion *mr); 1850 1851 /** 1852 * memory_region_from_host: Convert a pointer into a RAM memory region 1853 * and an offset within it. 1854 * 1855 * Given a host pointer inside a RAM memory region (created with 1856 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1857 * the MemoryRegion and the offset within it. 1858 * 1859 * Use with care; by the time this function returns, the returned pointer is 1860 * not protected by RCU anymore. If the caller is not within an RCU critical 1861 * section and does not hold the iothread lock, it must have other means of 1862 * protecting the pointer, such as a reference to the region that includes 1863 * the incoming ram_addr_t. 1864 * 1865 * @ptr: the host pointer to be converted 1866 * @offset: the offset within memory region 1867 */ 1868 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1869 1870 /** 1871 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1872 * 1873 * Returns a host pointer to a RAM memory region (created with 1874 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1875 * 1876 * Use with care; by the time this function returns, the returned pointer is 1877 * not protected by RCU anymore. If the caller is not within an RCU critical 1878 * section and does not hold the iothread lock, it must have other means of 1879 * protecting the pointer, such as a reference to the region that includes 1880 * the incoming ram_addr_t. 1881 * 1882 * @mr: the memory region being queried. 1883 */ 1884 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1885 1886 /* memory_region_ram_resize: Resize a RAM region. 1887 * 1888 * Resizing RAM while migrating can result in the migration being canceled. 1889 * Care has to be taken if the guest might have already detected the memory. 1890 * 1891 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1892 * @newsize: the new size the region 1893 * @errp: pointer to Error*, to store an error if it happens. 1894 */ 1895 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1896 Error **errp); 1897 1898 /** 1899 * memory_region_msync: Synchronize selected address range of 1900 * a memory mapped region 1901 * 1902 * @mr: the memory region to be msync 1903 * @addr: the initial address of the range to be sync 1904 * @size: the size of the range to be sync 1905 */ 1906 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1907 1908 /** 1909 * memory_region_writeback: Trigger cache writeback for 1910 * selected address range 1911 * 1912 * @mr: the memory region to be updated 1913 * @addr: the initial address of the range to be written back 1914 * @size: the size of the range to be written back 1915 */ 1916 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1917 1918 /** 1919 * memory_region_set_log: Turn dirty logging on or off for a region. 1920 * 1921 * Turns dirty logging on or off for a specified client (display, migration). 1922 * Only meaningful for RAM regions. 1923 * 1924 * @mr: the memory region being updated. 1925 * @log: whether dirty logging is to be enabled or disabled. 1926 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1927 */ 1928 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1929 1930 /** 1931 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1932 * 1933 * Marks a range of bytes as dirty, after it has been dirtied outside 1934 * guest code. 1935 * 1936 * @mr: the memory region being dirtied. 1937 * @addr: the address (relative to the start of the region) being dirtied. 1938 * @size: size of the range being dirtied. 1939 */ 1940 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1941 hwaddr size); 1942 1943 /** 1944 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1945 * 1946 * This function is called when the caller wants to clear the remote 1947 * dirty bitmap of a memory range within the memory region. This can 1948 * be used by e.g. KVM to manually clear dirty log when 1949 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1950 * kernel. 1951 * 1952 * @mr: the memory region to clear the dirty log upon 1953 * @start: start address offset within the memory region 1954 * @len: length of the memory region to clear dirty bitmap 1955 */ 1956 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1957 hwaddr len); 1958 1959 /** 1960 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1961 * bitmap and clear it. 1962 * 1963 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1964 * returns the snapshot. The snapshot can then be used to query dirty 1965 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1966 * querying the same page multiple times, which is especially useful for 1967 * display updates where the scanlines often are not page aligned. 1968 * 1969 * The dirty bitmap region which gets copyed into the snapshot (and 1970 * cleared afterwards) can be larger than requested. The boundaries 1971 * are rounded up/down so complete bitmap longs (covering 64 pages on 1972 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1973 * isn't a problem for display updates as the extra pages are outside 1974 * the visible area, and in case the visible area changes a full 1975 * display redraw is due anyway. Should other use cases for this 1976 * function emerge we might have to revisit this implementation 1977 * detail. 1978 * 1979 * Use g_free to release DirtyBitmapSnapshot. 1980 * 1981 * @mr: the memory region being queried. 1982 * @addr: the address (relative to the start of the region) being queried. 1983 * @size: the size of the range being queried. 1984 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1985 */ 1986 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1987 hwaddr addr, 1988 hwaddr size, 1989 unsigned client); 1990 1991 /** 1992 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1993 * in the specified dirty bitmap snapshot. 1994 * 1995 * @mr: the memory region being queried. 1996 * @snap: the dirty bitmap snapshot 1997 * @addr: the address (relative to the start of the region) being queried. 1998 * @size: the size of the range being queried. 1999 */ 2000 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2001 DirtyBitmapSnapshot *snap, 2002 hwaddr addr, hwaddr size); 2003 2004 /** 2005 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2006 * client. 2007 * 2008 * Marks a range of pages as no longer dirty. 2009 * 2010 * @mr: the region being updated. 2011 * @addr: the start of the subrange being cleaned. 2012 * @size: the size of the subrange being cleaned. 2013 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2014 * %DIRTY_MEMORY_VGA. 2015 */ 2016 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2017 hwaddr size, unsigned client); 2018 2019 /** 2020 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2021 * TBs (for self-modifying code). 2022 * 2023 * The MemoryRegionOps->write() callback of a ROM device must use this function 2024 * to mark byte ranges that have been modified internally, such as by directly 2025 * accessing the memory returned by memory_region_get_ram_ptr(). 2026 * 2027 * This function marks the range dirty and invalidates TBs so that TCG can 2028 * detect self-modifying code. 2029 * 2030 * @mr: the region being flushed. 2031 * @addr: the start, relative to the start of the region, of the range being 2032 * flushed. 2033 * @size: the size, in bytes, of the range being flushed. 2034 */ 2035 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2036 2037 /** 2038 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2039 * 2040 * Allows a memory region to be marked as read-only (turning it into a ROM). 2041 * only useful on RAM regions. 2042 * 2043 * @mr: the region being updated. 2044 * @readonly: whether rhe region is to be ROM or RAM. 2045 */ 2046 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2047 2048 /** 2049 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2050 * 2051 * Allows a memory region to be marked as non-volatile. 2052 * only useful on RAM regions. 2053 * 2054 * @mr: the region being updated. 2055 * @nonvolatile: whether rhe region is to be non-volatile. 2056 */ 2057 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2058 2059 /** 2060 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2061 * 2062 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2063 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2064 * device is mapped to guest memory and satisfies read access directly. 2065 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2066 * Writes are always handled by the #MemoryRegion.write function. 2067 * 2068 * @mr: the memory region to be updated 2069 * @romd_mode: %true to put the region into ROMD mode 2070 */ 2071 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2072 2073 /** 2074 * memory_region_set_coalescing: Enable memory coalescing for the region. 2075 * 2076 * Enabled writes to a region to be queued for later processing. MMIO ->write 2077 * callbacks may be delayed until a non-coalesced MMIO is issued. 2078 * Only useful for IO regions. Roughly similar to write-combining hardware. 2079 * 2080 * @mr: the memory region to be write coalesced 2081 */ 2082 void memory_region_set_coalescing(MemoryRegion *mr); 2083 2084 /** 2085 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2086 * a region. 2087 * 2088 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2089 * Multiple calls can be issued coalesced disjoint ranges. 2090 * 2091 * @mr: the memory region to be updated. 2092 * @offset: the start of the range within the region to be coalesced. 2093 * @size: the size of the subrange to be coalesced. 2094 */ 2095 void memory_region_add_coalescing(MemoryRegion *mr, 2096 hwaddr offset, 2097 uint64_t size); 2098 2099 /** 2100 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2101 * 2102 * Disables any coalescing caused by memory_region_set_coalescing() or 2103 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2104 * hardware. 2105 * 2106 * @mr: the memory region to be updated. 2107 */ 2108 void memory_region_clear_coalescing(MemoryRegion *mr); 2109 2110 /** 2111 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2112 * accesses. 2113 * 2114 * Ensure that pending coalesced MMIO request are flushed before the memory 2115 * region is accessed. This property is automatically enabled for all regions 2116 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2117 * 2118 * @mr: the memory region to be updated. 2119 */ 2120 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2121 2122 /** 2123 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2124 * accesses. 2125 * 2126 * Clear the automatic coalesced MMIO flushing enabled via 2127 * memory_region_set_flush_coalesced. Note that this service has no effect on 2128 * memory regions that have MMIO coalescing enabled for themselves. For them, 2129 * automatic flushing will stop once coalescing is disabled. 2130 * 2131 * @mr: the memory region to be updated. 2132 */ 2133 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2134 2135 /** 2136 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2137 * is written to a location. 2138 * 2139 * Marks a word in an IO region (initialized with memory_region_init_io()) 2140 * as a trigger for an eventfd event. The I/O callback will not be called. 2141 * The caller must be prepared to handle failure (that is, take the required 2142 * action if the callback _is_ called). 2143 * 2144 * @mr: the memory region being updated. 2145 * @addr: the address within @mr that is to be monitored 2146 * @size: the size of the access to trigger the eventfd 2147 * @match_data: whether to match against @data, instead of just @addr 2148 * @data: the data to match against the guest write 2149 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2150 **/ 2151 void memory_region_add_eventfd(MemoryRegion *mr, 2152 hwaddr addr, 2153 unsigned size, 2154 bool match_data, 2155 uint64_t data, 2156 EventNotifier *e); 2157 2158 /** 2159 * memory_region_del_eventfd: Cancel an eventfd. 2160 * 2161 * Cancels an eventfd trigger requested by a previous 2162 * memory_region_add_eventfd() call. 2163 * 2164 * @mr: the memory region being updated. 2165 * @addr: the address within @mr that is to be monitored 2166 * @size: the size of the access to trigger the eventfd 2167 * @match_data: whether to match against @data, instead of just @addr 2168 * @data: the data to match against the guest write 2169 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2170 */ 2171 void memory_region_del_eventfd(MemoryRegion *mr, 2172 hwaddr addr, 2173 unsigned size, 2174 bool match_data, 2175 uint64_t data, 2176 EventNotifier *e); 2177 2178 /** 2179 * memory_region_add_subregion: Add a subregion to a container. 2180 * 2181 * Adds a subregion at @offset. The subregion may not overlap with other 2182 * subregions (except for those explicitly marked as overlapping). A region 2183 * may only be added once as a subregion (unless removed with 2184 * memory_region_del_subregion()); use memory_region_init_alias() if you 2185 * want a region to be a subregion in multiple locations. 2186 * 2187 * @mr: the region to contain the new subregion; must be a container 2188 * initialized with memory_region_init(). 2189 * @offset: the offset relative to @mr where @subregion is added. 2190 * @subregion: the subregion to be added. 2191 */ 2192 void memory_region_add_subregion(MemoryRegion *mr, 2193 hwaddr offset, 2194 MemoryRegion *subregion); 2195 /** 2196 * memory_region_add_subregion_overlap: Add a subregion to a container 2197 * with overlap. 2198 * 2199 * Adds a subregion at @offset. The subregion may overlap with other 2200 * subregions. Conflicts are resolved by having a higher @priority hide a 2201 * lower @priority. Subregions without priority are taken as @priority 0. 2202 * A region may only be added once as a subregion (unless removed with 2203 * memory_region_del_subregion()); use memory_region_init_alias() if you 2204 * want a region to be a subregion in multiple locations. 2205 * 2206 * @mr: the region to contain the new subregion; must be a container 2207 * initialized with memory_region_init(). 2208 * @offset: the offset relative to @mr where @subregion is added. 2209 * @subregion: the subregion to be added. 2210 * @priority: used for resolving overlaps; highest priority wins. 2211 */ 2212 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2213 hwaddr offset, 2214 MemoryRegion *subregion, 2215 int priority); 2216 2217 /** 2218 * memory_region_get_ram_addr: Get the ram address associated with a memory 2219 * region 2220 * 2221 * @mr: the region to be queried 2222 */ 2223 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2224 2225 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2226 /** 2227 * memory_region_del_subregion: Remove a subregion. 2228 * 2229 * Removes a subregion from its container. 2230 * 2231 * @mr: the container to be updated. 2232 * @subregion: the region being removed; must be a current subregion of @mr. 2233 */ 2234 void memory_region_del_subregion(MemoryRegion *mr, 2235 MemoryRegion *subregion); 2236 2237 /* 2238 * memory_region_set_enabled: dynamically enable or disable a region 2239 * 2240 * Enables or disables a memory region. A disabled memory region 2241 * ignores all accesses to itself and its subregions. It does not 2242 * obscure sibling subregions with lower priority - it simply behaves as 2243 * if it was removed from the hierarchy. 2244 * 2245 * Regions default to being enabled. 2246 * 2247 * @mr: the region to be updated 2248 * @enabled: whether to enable or disable the region 2249 */ 2250 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2251 2252 /* 2253 * memory_region_set_address: dynamically update the address of a region 2254 * 2255 * Dynamically updates the address of a region, relative to its container. 2256 * May be used on regions are currently part of a memory hierarchy. 2257 * 2258 * @mr: the region to be updated 2259 * @addr: new address, relative to container region 2260 */ 2261 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2262 2263 /* 2264 * memory_region_set_size: dynamically update the size of a region. 2265 * 2266 * Dynamically updates the size of a region. 2267 * 2268 * @mr: the region to be updated 2269 * @size: used size of the region. 2270 */ 2271 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2272 2273 /* 2274 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2275 * 2276 * Dynamically updates the offset into the target region that an alias points 2277 * to, as if the fourth argument to memory_region_init_alias() has changed. 2278 * 2279 * @mr: the #MemoryRegion to be updated; should be an alias. 2280 * @offset: the new offset into the target memory region 2281 */ 2282 void memory_region_set_alias_offset(MemoryRegion *mr, 2283 hwaddr offset); 2284 2285 /** 2286 * memory_region_present: checks if an address relative to a @container 2287 * translates into #MemoryRegion within @container 2288 * 2289 * Answer whether a #MemoryRegion within @container covers the address 2290 * @addr. 2291 * 2292 * @container: a #MemoryRegion within which @addr is a relative address 2293 * @addr: the area within @container to be searched 2294 */ 2295 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2296 2297 /** 2298 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2299 * into any address space. 2300 * 2301 * @mr: a #MemoryRegion which should be checked if it's mapped 2302 */ 2303 bool memory_region_is_mapped(MemoryRegion *mr); 2304 2305 /** 2306 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2307 * #MemoryRegion 2308 * 2309 * The #RamDiscardManager cannot change while a memory region is mapped. 2310 * 2311 * @mr: the #MemoryRegion 2312 */ 2313 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2314 2315 /** 2316 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2317 * #RamDiscardManager assigned 2318 * 2319 * @mr: the #MemoryRegion 2320 */ 2321 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2322 { 2323 return !!memory_region_get_ram_discard_manager(mr); 2324 } 2325 2326 /** 2327 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2328 * #MemoryRegion 2329 * 2330 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2331 * that does not cover RAM, or a #MemoryRegion that already has a 2332 * #RamDiscardManager assigned. 2333 * 2334 * @mr: the #MemoryRegion 2335 * @rdm: #RamDiscardManager to set 2336 */ 2337 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2338 RamDiscardManager *rdm); 2339 2340 /** 2341 * memory_region_find: translate an address/size relative to a 2342 * MemoryRegion into a #MemoryRegionSection. 2343 * 2344 * Locates the first #MemoryRegion within @mr that overlaps the range 2345 * given by @addr and @size. 2346 * 2347 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2348 * It will have the following characteristics: 2349 * - @size = 0 iff no overlap was found 2350 * - @mr is non-%NULL iff an overlap was found 2351 * 2352 * Remember that in the return value the @offset_within_region is 2353 * relative to the returned region (in the .@mr field), not to the 2354 * @mr argument. 2355 * 2356 * Similarly, the .@offset_within_address_space is relative to the 2357 * address space that contains both regions, the passed and the 2358 * returned one. However, in the special case where the @mr argument 2359 * has no container (and thus is the root of the address space), the 2360 * following will hold: 2361 * - @offset_within_address_space >= @addr 2362 * - @offset_within_address_space + .@size <= @addr + @size 2363 * 2364 * @mr: a MemoryRegion within which @addr is a relative address 2365 * @addr: start of the area within @as to be searched 2366 * @size: size of the area to be searched 2367 */ 2368 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2369 hwaddr addr, uint64_t size); 2370 2371 /** 2372 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2373 * 2374 * Synchronizes the dirty page log for all address spaces. 2375 */ 2376 void memory_global_dirty_log_sync(void); 2377 2378 /** 2379 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2380 * 2381 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2382 * This function must be called after the dirty log bitmap is cleared, and 2383 * before dirty guest memory pages are read. If you are using 2384 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2385 * care of doing this. 2386 */ 2387 void memory_global_after_dirty_log_sync(void); 2388 2389 /** 2390 * memory_region_transaction_begin: Start a transaction. 2391 * 2392 * During a transaction, changes will be accumulated and made visible 2393 * only when the transaction ends (is committed). 2394 */ 2395 void memory_region_transaction_begin(void); 2396 2397 /** 2398 * memory_region_transaction_commit: Commit a transaction and make changes 2399 * visible to the guest. 2400 */ 2401 void memory_region_transaction_commit(void); 2402 2403 /** 2404 * memory_listener_register: register callbacks to be called when memory 2405 * sections are mapped or unmapped into an address 2406 * space 2407 * 2408 * @listener: an object containing the callbacks to be called 2409 * @filter: if non-%NULL, only regions in this address space will be observed 2410 */ 2411 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2412 2413 /** 2414 * memory_listener_unregister: undo the effect of memory_listener_register() 2415 * 2416 * @listener: an object containing the callbacks to be removed 2417 */ 2418 void memory_listener_unregister(MemoryListener *listener); 2419 2420 /** 2421 * memory_global_dirty_log_start: begin dirty logging for all regions 2422 * 2423 * @flags: purpose of starting dirty log, migration or dirty rate 2424 */ 2425 void memory_global_dirty_log_start(unsigned int flags); 2426 2427 /** 2428 * memory_global_dirty_log_stop: end dirty logging for all regions 2429 * 2430 * @flags: purpose of stopping dirty log, migration or dirty rate 2431 */ 2432 void memory_global_dirty_log_stop(unsigned int flags); 2433 2434 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2435 2436 /** 2437 * memory_region_dispatch_read: perform a read directly to the specified 2438 * MemoryRegion. 2439 * 2440 * @mr: #MemoryRegion to access 2441 * @addr: address within that region 2442 * @pval: pointer to uint64_t which the data is written to 2443 * @op: size, sign, and endianness of the memory operation 2444 * @attrs: memory transaction attributes to use for the access 2445 */ 2446 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2447 hwaddr addr, 2448 uint64_t *pval, 2449 MemOp op, 2450 MemTxAttrs attrs); 2451 /** 2452 * memory_region_dispatch_write: perform a write directly to the specified 2453 * MemoryRegion. 2454 * 2455 * @mr: #MemoryRegion to access 2456 * @addr: address within that region 2457 * @data: data to write 2458 * @op: size, sign, and endianness of the memory operation 2459 * @attrs: memory transaction attributes to use for the access 2460 */ 2461 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2462 hwaddr addr, 2463 uint64_t data, 2464 MemOp op, 2465 MemTxAttrs attrs); 2466 2467 /** 2468 * address_space_init: initializes an address space 2469 * 2470 * @as: an uninitialized #AddressSpace 2471 * @root: a #MemoryRegion that routes addresses for the address space 2472 * @name: an address space name. The name is only used for debugging 2473 * output. 2474 */ 2475 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2476 2477 /** 2478 * address_space_destroy: destroy an address space 2479 * 2480 * Releases all resources associated with an address space. After an address space 2481 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2482 * as well. 2483 * 2484 * @as: address space to be destroyed 2485 */ 2486 void address_space_destroy(AddressSpace *as); 2487 2488 /** 2489 * address_space_remove_listeners: unregister all listeners of an address space 2490 * 2491 * Removes all callbacks previously registered with memory_listener_register() 2492 * for @as. 2493 * 2494 * @as: an initialized #AddressSpace 2495 */ 2496 void address_space_remove_listeners(AddressSpace *as); 2497 2498 /** 2499 * address_space_rw: read from or write to an address space. 2500 * 2501 * Return a MemTxResult indicating whether the operation succeeded 2502 * or failed (eg unassigned memory, device rejected the transaction, 2503 * IOMMU fault). 2504 * 2505 * @as: #AddressSpace to be accessed 2506 * @addr: address within that address space 2507 * @attrs: memory transaction attributes 2508 * @buf: buffer with the data transferred 2509 * @len: the number of bytes to read or write 2510 * @is_write: indicates the transfer direction 2511 */ 2512 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2513 MemTxAttrs attrs, void *buf, 2514 hwaddr len, bool is_write); 2515 2516 /** 2517 * address_space_write: write to address space. 2518 * 2519 * Return a MemTxResult indicating whether the operation succeeded 2520 * or failed (eg unassigned memory, device rejected the transaction, 2521 * IOMMU fault). 2522 * 2523 * @as: #AddressSpace to be accessed 2524 * @addr: address within that address space 2525 * @attrs: memory transaction attributes 2526 * @buf: buffer with the data transferred 2527 * @len: the number of bytes to write 2528 */ 2529 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2530 MemTxAttrs attrs, 2531 const void *buf, hwaddr len); 2532 2533 /** 2534 * address_space_write_rom: write to address space, including ROM. 2535 * 2536 * This function writes to the specified address space, but will 2537 * write data to both ROM and RAM. This is used for non-guest 2538 * writes like writes from the gdb debug stub or initial loading 2539 * of ROM contents. 2540 * 2541 * Note that portions of the write which attempt to write data to 2542 * a device will be silently ignored -- only real RAM and ROM will 2543 * be written to. 2544 * 2545 * Return a MemTxResult indicating whether the operation succeeded 2546 * or failed (eg unassigned memory, device rejected the transaction, 2547 * IOMMU fault). 2548 * 2549 * @as: #AddressSpace to be accessed 2550 * @addr: address within that address space 2551 * @attrs: memory transaction attributes 2552 * @buf: buffer with the data transferred 2553 * @len: the number of bytes to write 2554 */ 2555 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2556 MemTxAttrs attrs, 2557 const void *buf, hwaddr len); 2558 2559 /* address_space_ld*: load from an address space 2560 * address_space_st*: store to an address space 2561 * 2562 * These functions perform a load or store of the byte, word, 2563 * longword or quad to the specified address within the AddressSpace. 2564 * The _le suffixed functions treat the data as little endian; 2565 * _be indicates big endian; no suffix indicates "same endianness 2566 * as guest CPU". 2567 * 2568 * The "guest CPU endianness" accessors are deprecated for use outside 2569 * target-* code; devices should be CPU-agnostic and use either the LE 2570 * or the BE accessors. 2571 * 2572 * @as #AddressSpace to be accessed 2573 * @addr: address within that address space 2574 * @val: data value, for stores 2575 * @attrs: memory transaction attributes 2576 * @result: location to write the success/failure of the transaction; 2577 * if NULL, this information is discarded 2578 */ 2579 2580 #define SUFFIX 2581 #define ARG1 as 2582 #define ARG1_DECL AddressSpace *as 2583 #include "exec/memory_ldst.h.inc" 2584 2585 #define SUFFIX 2586 #define ARG1 as 2587 #define ARG1_DECL AddressSpace *as 2588 #include "exec/memory_ldst_phys.h.inc" 2589 2590 struct MemoryRegionCache { 2591 void *ptr; 2592 hwaddr xlat; 2593 hwaddr len; 2594 FlatView *fv; 2595 MemoryRegionSection mrs; 2596 bool is_write; 2597 }; 2598 2599 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2600 2601 2602 /* address_space_ld*_cached: load from a cached #MemoryRegion 2603 * address_space_st*_cached: store into a cached #MemoryRegion 2604 * 2605 * These functions perform a load or store of the byte, word, 2606 * longword or quad to the specified address. The address is 2607 * a physical address in the AddressSpace, but it must lie within 2608 * a #MemoryRegion that was mapped with address_space_cache_init. 2609 * 2610 * The _le suffixed functions treat the data as little endian; 2611 * _be indicates big endian; no suffix indicates "same endianness 2612 * as guest CPU". 2613 * 2614 * The "guest CPU endianness" accessors are deprecated for use outside 2615 * target-* code; devices should be CPU-agnostic and use either the LE 2616 * or the BE accessors. 2617 * 2618 * @cache: previously initialized #MemoryRegionCache to be accessed 2619 * @addr: address within the address space 2620 * @val: data value, for stores 2621 * @attrs: memory transaction attributes 2622 * @result: location to write the success/failure of the transaction; 2623 * if NULL, this information is discarded 2624 */ 2625 2626 #define SUFFIX _cached_slow 2627 #define ARG1 cache 2628 #define ARG1_DECL MemoryRegionCache *cache 2629 #include "exec/memory_ldst.h.inc" 2630 2631 /* Inline fast path for direct RAM access. */ 2632 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2633 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2634 { 2635 assert(addr < cache->len); 2636 if (likely(cache->ptr)) { 2637 return ldub_p(cache->ptr + addr); 2638 } else { 2639 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2640 } 2641 } 2642 2643 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2644 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2645 { 2646 assert(addr < cache->len); 2647 if (likely(cache->ptr)) { 2648 stb_p(cache->ptr + addr, val); 2649 } else { 2650 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2651 } 2652 } 2653 2654 #define ENDIANNESS _le 2655 #include "exec/memory_ldst_cached.h.inc" 2656 2657 #define ENDIANNESS _be 2658 #include "exec/memory_ldst_cached.h.inc" 2659 2660 #define SUFFIX _cached 2661 #define ARG1 cache 2662 #define ARG1_DECL MemoryRegionCache *cache 2663 #include "exec/memory_ldst_phys.h.inc" 2664 2665 /* address_space_cache_init: prepare for repeated access to a physical 2666 * memory region 2667 * 2668 * @cache: #MemoryRegionCache to be filled 2669 * @as: #AddressSpace to be accessed 2670 * @addr: address within that address space 2671 * @len: length of buffer 2672 * @is_write: indicates the transfer direction 2673 * 2674 * Will only work with RAM, and may map a subset of the requested range by 2675 * returning a value that is less than @len. On failure, return a negative 2676 * errno value. 2677 * 2678 * Because it only works with RAM, this function can be used for 2679 * read-modify-write operations. In this case, is_write should be %true. 2680 * 2681 * Note that addresses passed to the address_space_*_cached functions 2682 * are relative to @addr. 2683 */ 2684 int64_t address_space_cache_init(MemoryRegionCache *cache, 2685 AddressSpace *as, 2686 hwaddr addr, 2687 hwaddr len, 2688 bool is_write); 2689 2690 /** 2691 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2692 * 2693 * @cache: The #MemoryRegionCache to operate on. 2694 * @addr: The first physical address that was written, relative to the 2695 * address that was passed to @address_space_cache_init. 2696 * @access_len: The number of bytes that were written starting at @addr. 2697 */ 2698 void address_space_cache_invalidate(MemoryRegionCache *cache, 2699 hwaddr addr, 2700 hwaddr access_len); 2701 2702 /** 2703 * address_space_cache_destroy: free a #MemoryRegionCache 2704 * 2705 * @cache: The #MemoryRegionCache whose memory should be released. 2706 */ 2707 void address_space_cache_destroy(MemoryRegionCache *cache); 2708 2709 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2710 * entry. Should be called from an RCU critical section. 2711 */ 2712 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2713 bool is_write, MemTxAttrs attrs); 2714 2715 /* address_space_translate: translate an address range into an address space 2716 * into a MemoryRegion and an address range into that section. Should be 2717 * called from an RCU critical section, to avoid that the last reference 2718 * to the returned region disappears after address_space_translate returns. 2719 * 2720 * @fv: #FlatView to be accessed 2721 * @addr: address within that address space 2722 * @xlat: pointer to address within the returned memory region section's 2723 * #MemoryRegion. 2724 * @len: pointer to length 2725 * @is_write: indicates the transfer direction 2726 * @attrs: memory attributes 2727 */ 2728 MemoryRegion *flatview_translate(FlatView *fv, 2729 hwaddr addr, hwaddr *xlat, 2730 hwaddr *len, bool is_write, 2731 MemTxAttrs attrs); 2732 2733 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2734 hwaddr addr, hwaddr *xlat, 2735 hwaddr *len, bool is_write, 2736 MemTxAttrs attrs) 2737 { 2738 return flatview_translate(address_space_to_flatview(as), 2739 addr, xlat, len, is_write, attrs); 2740 } 2741 2742 /* address_space_access_valid: check for validity of accessing an address 2743 * space range 2744 * 2745 * Check whether memory is assigned to the given address space range, and 2746 * access is permitted by any IOMMU regions that are active for the address 2747 * space. 2748 * 2749 * For now, addr and len should be aligned to a page size. This limitation 2750 * will be lifted in the future. 2751 * 2752 * @as: #AddressSpace to be accessed 2753 * @addr: address within that address space 2754 * @len: length of the area to be checked 2755 * @is_write: indicates the transfer direction 2756 * @attrs: memory attributes 2757 */ 2758 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2759 bool is_write, MemTxAttrs attrs); 2760 2761 /* address_space_map: map a physical memory region into a host virtual address 2762 * 2763 * May map a subset of the requested range, given by and returned in @plen. 2764 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2765 * the mapping are exhausted. 2766 * Use only for reads OR writes - not for read-modify-write operations. 2767 * Use cpu_register_map_client() to know when retrying the map operation is 2768 * likely to succeed. 2769 * 2770 * @as: #AddressSpace to be accessed 2771 * @addr: address within that address space 2772 * @plen: pointer to length of buffer; updated on return 2773 * @is_write: indicates the transfer direction 2774 * @attrs: memory attributes 2775 */ 2776 void *address_space_map(AddressSpace *as, hwaddr addr, 2777 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2778 2779 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2780 * 2781 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2782 * the amount of memory that was actually read or written by the caller. 2783 * 2784 * @as: #AddressSpace used 2785 * @buffer: host pointer as returned by address_space_map() 2786 * @len: buffer length as returned by address_space_map() 2787 * @access_len: amount of data actually transferred 2788 * @is_write: indicates the transfer direction 2789 */ 2790 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2791 bool is_write, hwaddr access_len); 2792 2793 2794 /* Internal functions, part of the implementation of address_space_read. */ 2795 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2796 MemTxAttrs attrs, void *buf, hwaddr len); 2797 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2798 MemTxAttrs attrs, void *buf, 2799 hwaddr len, hwaddr addr1, hwaddr l, 2800 MemoryRegion *mr); 2801 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2802 2803 /* Internal functions, part of the implementation of address_space_read_cached 2804 * and address_space_write_cached. */ 2805 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2806 hwaddr addr, void *buf, hwaddr len); 2807 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2808 hwaddr addr, const void *buf, 2809 hwaddr len); 2810 2811 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2812 { 2813 if (is_write) { 2814 return memory_region_is_ram(mr) && !mr->readonly && 2815 !mr->rom_device && !memory_region_is_ram_device(mr); 2816 } else { 2817 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2818 memory_region_is_romd(mr); 2819 } 2820 } 2821 2822 /** 2823 * address_space_read: read from an address space. 2824 * 2825 * Return a MemTxResult indicating whether the operation succeeded 2826 * or failed (eg unassigned memory, device rejected the transaction, 2827 * IOMMU fault). Called within RCU critical section. 2828 * 2829 * @as: #AddressSpace to be accessed 2830 * @addr: address within that address space 2831 * @attrs: memory transaction attributes 2832 * @buf: buffer with the data transferred 2833 * @len: length of the data transferred 2834 */ 2835 static inline __attribute__((__always_inline__)) 2836 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2837 MemTxAttrs attrs, void *buf, 2838 hwaddr len) 2839 { 2840 MemTxResult result = MEMTX_OK; 2841 hwaddr l, addr1; 2842 void *ptr; 2843 MemoryRegion *mr; 2844 FlatView *fv; 2845 2846 if (__builtin_constant_p(len)) { 2847 if (len) { 2848 RCU_READ_LOCK_GUARD(); 2849 fv = address_space_to_flatview(as); 2850 l = len; 2851 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2852 if (len == l && memory_access_is_direct(mr, false)) { 2853 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2854 memcpy(buf, ptr, len); 2855 } else { 2856 result = flatview_read_continue(fv, addr, attrs, buf, len, 2857 addr1, l, mr); 2858 } 2859 } 2860 } else { 2861 result = address_space_read_full(as, addr, attrs, buf, len); 2862 } 2863 return result; 2864 } 2865 2866 /** 2867 * address_space_read_cached: read from a cached RAM region 2868 * 2869 * @cache: Cached region to be addressed 2870 * @addr: address relative to the base of the RAM region 2871 * @buf: buffer with the data transferred 2872 * @len: length of the data transferred 2873 */ 2874 static inline MemTxResult 2875 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2876 void *buf, hwaddr len) 2877 { 2878 assert(addr < cache->len && len <= cache->len - addr); 2879 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2880 if (likely(cache->ptr)) { 2881 memcpy(buf, cache->ptr + addr, len); 2882 return MEMTX_OK; 2883 } else { 2884 return address_space_read_cached_slow(cache, addr, buf, len); 2885 } 2886 } 2887 2888 /** 2889 * address_space_write_cached: write to a cached RAM region 2890 * 2891 * @cache: Cached region to be addressed 2892 * @addr: address relative to the base of the RAM region 2893 * @buf: buffer with the data transferred 2894 * @len: length of the data transferred 2895 */ 2896 static inline MemTxResult 2897 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2898 const void *buf, hwaddr len) 2899 { 2900 assert(addr < cache->len && len <= cache->len - addr); 2901 if (likely(cache->ptr)) { 2902 memcpy(cache->ptr + addr, buf, len); 2903 return MEMTX_OK; 2904 } else { 2905 return address_space_write_cached_slow(cache, addr, buf, len); 2906 } 2907 } 2908 2909 #ifdef NEED_CPU_H 2910 /* enum device_endian to MemOp. */ 2911 static inline MemOp devend_memop(enum device_endian end) 2912 { 2913 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2914 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2915 2916 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2917 /* Swap if non-host endianness or native (target) endianness */ 2918 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2919 #else 2920 const int non_host_endianness = 2921 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2922 2923 /* In this case, native (target) endianness needs no swap. */ 2924 return (end == non_host_endianness) ? MO_BSWAP : 0; 2925 #endif 2926 } 2927 #endif 2928 2929 /* 2930 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2931 * to manage the actual amount of memory consumed by the VM (then, the memory 2932 * provided by RAM blocks might be bigger than the desired memory consumption). 2933 * This *must* be set if: 2934 * - Discarding parts of a RAM blocks does not result in the change being 2935 * reflected in the VM and the pages getting freed. 2936 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2937 * discards blindly. 2938 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2939 * encrypted VMs). 2940 * Technologies that only temporarily pin the current working set of a 2941 * driver are fine, because we don't expect such pages to be discarded 2942 * (esp. based on guest action like balloon inflation). 2943 * 2944 * This is *not* to be used to protect from concurrent discards (esp., 2945 * postcopy). 2946 * 2947 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2948 * discards to work reliably is active. 2949 */ 2950 int ram_block_discard_disable(bool state); 2951 2952 /* 2953 * See ram_block_discard_disable(): only disable uncoordinated discards, 2954 * keeping coordinated discards (via the RamDiscardManager) enabled. 2955 */ 2956 int ram_block_uncoordinated_discard_disable(bool state); 2957 2958 /* 2959 * Inhibit technologies that disable discarding of pages in RAM blocks. 2960 * 2961 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2962 * broken. 2963 */ 2964 int ram_block_discard_require(bool state); 2965 2966 /* 2967 * See ram_block_discard_require(): only inhibit technologies that disable 2968 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 2969 * technologies that only inhibit uncoordinated discards (via the 2970 * RamDiscardManager). 2971 */ 2972 int ram_block_coordinated_discard_require(bool state); 2973 2974 /* 2975 * Test if any discarding of memory in ram blocks is disabled. 2976 */ 2977 bool ram_block_discard_is_disabled(void); 2978 2979 /* 2980 * Test if any discarding of memory in ram blocks is required to work reliably. 2981 */ 2982 bool ram_block_discard_is_required(void); 2983 2984 #endif 2985 2986 #endif 2987