1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #ifdef CONFIG_FUZZ 46 void fuzz_dma_read_cb(size_t addr, 47 size_t len, 48 MemoryRegion *mr, 49 bool is_write); 50 #else 51 static inline void fuzz_dma_read_cb(size_t addr, 52 size_t len, 53 MemoryRegion *mr, 54 bool is_write) 55 { 56 /* Do Nothing */ 57 } 58 #endif 59 60 extern bool global_dirty_log; 61 62 typedef struct MemoryRegionOps MemoryRegionOps; 63 64 struct ReservedRegion { 65 hwaddr low; 66 hwaddr high; 67 unsigned type; 68 }; 69 70 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 71 72 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 73 typedef enum { 74 IOMMU_NONE = 0, 75 IOMMU_RO = 1, 76 IOMMU_WO = 2, 77 IOMMU_RW = 3, 78 } IOMMUAccessFlags; 79 80 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 81 82 struct IOMMUTLBEntry { 83 AddressSpace *target_as; 84 hwaddr iova; 85 hwaddr translated_addr; 86 hwaddr addr_mask; /* 0xfff = 4k translation */ 87 IOMMUAccessFlags perm; 88 }; 89 90 /* 91 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 92 * register with one or multiple IOMMU Notifier capability bit(s). 93 */ 94 typedef enum { 95 IOMMU_NOTIFIER_NONE = 0, 96 /* Notify cache invalidations */ 97 IOMMU_NOTIFIER_UNMAP = 0x1, 98 /* Notify entry changes (newly created entries) */ 99 IOMMU_NOTIFIER_MAP = 0x2, 100 } IOMMUNotifierFlag; 101 102 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 103 104 struct IOMMUNotifier; 105 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 106 IOMMUTLBEntry *data); 107 108 struct IOMMUNotifier { 109 IOMMUNotify notify; 110 IOMMUNotifierFlag notifier_flags; 111 /* Notify for address space range start <= addr <= end */ 112 hwaddr start; 113 hwaddr end; 114 int iommu_idx; 115 QLIST_ENTRY(IOMMUNotifier) node; 116 }; 117 typedef struct IOMMUNotifier IOMMUNotifier; 118 119 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 120 #define RAM_PREALLOC (1 << 0) 121 122 /* RAM is mmap-ed with MAP_SHARED */ 123 #define RAM_SHARED (1 << 1) 124 125 /* Only a portion of RAM (used_length) is actually used, and migrated. 126 * This used_length size can change across reboots. 127 */ 128 #define RAM_RESIZEABLE (1 << 2) 129 130 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 131 * zero the page and wake waiting processes. 132 * (Set during postcopy) 133 */ 134 #define RAM_UF_ZEROPAGE (1 << 3) 135 136 /* RAM can be migrated */ 137 #define RAM_MIGRATABLE (1 << 4) 138 139 /* RAM is a persistent kind memory */ 140 #define RAM_PMEM (1 << 5) 141 142 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 143 IOMMUNotifierFlag flags, 144 hwaddr start, hwaddr end, 145 int iommu_idx) 146 { 147 n->notify = fn; 148 n->notifier_flags = flags; 149 n->start = start; 150 n->end = end; 151 n->iommu_idx = iommu_idx; 152 } 153 154 /* 155 * Memory region callbacks 156 */ 157 struct MemoryRegionOps { 158 /* Read from the memory region. @addr is relative to @mr; @size is 159 * in bytes. */ 160 uint64_t (*read)(void *opaque, 161 hwaddr addr, 162 unsigned size); 163 /* Write to the memory region. @addr is relative to @mr; @size is 164 * in bytes. */ 165 void (*write)(void *opaque, 166 hwaddr addr, 167 uint64_t data, 168 unsigned size); 169 170 MemTxResult (*read_with_attrs)(void *opaque, 171 hwaddr addr, 172 uint64_t *data, 173 unsigned size, 174 MemTxAttrs attrs); 175 MemTxResult (*write_with_attrs)(void *opaque, 176 hwaddr addr, 177 uint64_t data, 178 unsigned size, 179 MemTxAttrs attrs); 180 181 enum device_endian endianness; 182 /* Guest-visible constraints: */ 183 struct { 184 /* If nonzero, specify bounds on access sizes beyond which a machine 185 * check is thrown. 186 */ 187 unsigned min_access_size; 188 unsigned max_access_size; 189 /* If true, unaligned accesses are supported. Otherwise unaligned 190 * accesses throw machine checks. 191 */ 192 bool unaligned; 193 /* 194 * If present, and returns #false, the transaction is not accepted 195 * by the device (and results in machine dependent behaviour such 196 * as a machine check exception). 197 */ 198 bool (*accepts)(void *opaque, hwaddr addr, 199 unsigned size, bool is_write, 200 MemTxAttrs attrs); 201 } valid; 202 /* Internal implementation constraints: */ 203 struct { 204 /* If nonzero, specifies the minimum size implemented. Smaller sizes 205 * will be rounded upwards and a partial result will be returned. 206 */ 207 unsigned min_access_size; 208 /* If nonzero, specifies the maximum size implemented. Larger sizes 209 * will be done as a series of accesses with smaller sizes. 210 */ 211 unsigned max_access_size; 212 /* If true, unaligned accesses are supported. Otherwise all accesses 213 * are converted to (possibly multiple) naturally aligned accesses. 214 */ 215 bool unaligned; 216 } impl; 217 }; 218 219 typedef struct MemoryRegionClass { 220 /* private */ 221 ObjectClass parent_class; 222 } MemoryRegionClass; 223 224 225 enum IOMMUMemoryRegionAttr { 226 IOMMU_ATTR_SPAPR_TCE_FD 227 }; 228 229 /* 230 * IOMMUMemoryRegionClass: 231 * 232 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 233 * and provide an implementation of at least the @translate method here 234 * to handle requests to the memory region. Other methods are optional. 235 * 236 * The IOMMU implementation must use the IOMMU notifier infrastructure 237 * to report whenever mappings are changed, by calling 238 * memory_region_notify_iommu() (or, if necessary, by calling 239 * memory_region_notify_one() for each registered notifier). 240 * 241 * Conceptually an IOMMU provides a mapping from input address 242 * to an output TLB entry. If the IOMMU is aware of memory transaction 243 * attributes and the output TLB entry depends on the transaction 244 * attributes, we represent this using IOMMU indexes. Each index 245 * selects a particular translation table that the IOMMU has: 246 * 247 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 248 * 249 * @translate takes an input address and an IOMMU index 250 * 251 * and the mapping returned can only depend on the input address and the 252 * IOMMU index. 253 * 254 * Most IOMMUs don't care about the transaction attributes and support 255 * only a single IOMMU index. A more complex IOMMU might have one index 256 * for secure transactions and one for non-secure transactions. 257 */ 258 struct IOMMUMemoryRegionClass { 259 /* private: */ 260 MemoryRegionClass parent_class; 261 262 /* public: */ 263 /** 264 * @translate: 265 * 266 * Return a TLB entry that contains a given address. 267 * 268 * The IOMMUAccessFlags indicated via @flag are optional and may 269 * be specified as IOMMU_NONE to indicate that the caller needs 270 * the full translation information for both reads and writes. If 271 * the access flags are specified then the IOMMU implementation 272 * may use this as an optimization, to stop doing a page table 273 * walk as soon as it knows that the requested permissions are not 274 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 275 * full page table walk and report the permissions in the returned 276 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 277 * return different mappings for reads and writes.) 278 * 279 * The returned information remains valid while the caller is 280 * holding the big QEMU lock or is inside an RCU critical section; 281 * if the caller wishes to cache the mapping beyond that it must 282 * register an IOMMU notifier so it can invalidate its cached 283 * information when the IOMMU mapping changes. 284 * 285 * @iommu: the IOMMUMemoryRegion 286 * 287 * @hwaddr: address to be translated within the memory region 288 * 289 * @flag: requested access permission 290 * 291 * @iommu_idx: IOMMU index for the translation 292 */ 293 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 294 IOMMUAccessFlags flag, int iommu_idx); 295 /** 296 * @get_min_page_size: 297 * 298 * Returns minimum supported page size in bytes. 299 * 300 * If this method is not provided then the minimum is assumed to 301 * be TARGET_PAGE_SIZE. 302 * 303 * @iommu: the IOMMUMemoryRegion 304 */ 305 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 306 /** 307 * @notify_flag_changed: 308 * 309 * Called when IOMMU Notifier flag changes (ie when the set of 310 * events which IOMMU users are requesting notification for changes). 311 * Optional method -- need not be provided if the IOMMU does not 312 * need to know exactly which events must be notified. 313 * 314 * @iommu: the IOMMUMemoryRegion 315 * 316 * @old_flags: events which previously needed to be notified 317 * 318 * @new_flags: events which now need to be notified 319 * 320 * Returns 0 on success, or a negative errno; in particular 321 * returns -EINVAL if the new flag bitmap is not supported by the 322 * IOMMU memory region. In case of failure, the error object 323 * must be created 324 */ 325 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 326 IOMMUNotifierFlag old_flags, 327 IOMMUNotifierFlag new_flags, 328 Error **errp); 329 /** 330 * @replay: 331 * 332 * Called to handle memory_region_iommu_replay(). 333 * 334 * The default implementation of memory_region_iommu_replay() is to 335 * call the IOMMU translate method for every page in the address space 336 * with flag == IOMMU_NONE and then call the notifier if translate 337 * returns a valid mapping. If this method is implemented then it 338 * overrides the default behaviour, and must provide the full semantics 339 * of memory_region_iommu_replay(), by calling @notifier for every 340 * translation present in the IOMMU. 341 * 342 * Optional method -- an IOMMU only needs to provide this method 343 * if the default is inefficient or produces undesirable side effects. 344 * 345 * Note: this is not related to record-and-replay functionality. 346 */ 347 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 348 349 /** 350 * @get_attr: 351 * 352 * Get IOMMU misc attributes. This is an optional method that 353 * can be used to allow users of the IOMMU to get implementation-specific 354 * information. The IOMMU implements this method to handle calls 355 * by IOMMU users to memory_region_iommu_get_attr() by filling in 356 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 357 * the IOMMU supports. If the method is unimplemented then 358 * memory_region_iommu_get_attr() will always return -EINVAL. 359 * 360 * @iommu: the IOMMUMemoryRegion 361 * 362 * @attr: attribute being queried 363 * 364 * @data: memory to fill in with the attribute data 365 * 366 * Returns 0 on success, or a negative errno; in particular 367 * returns -EINVAL for unrecognized or unimplemented attribute types. 368 */ 369 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 370 void *data); 371 372 /** 373 * @attrs_to_index: 374 * 375 * Return the IOMMU index to use for a given set of transaction attributes. 376 * 377 * Optional method: if an IOMMU only supports a single IOMMU index then 378 * the default implementation of memory_region_iommu_attrs_to_index() 379 * will return 0. 380 * 381 * The indexes supported by an IOMMU must be contiguous, starting at 0. 382 * 383 * @iommu: the IOMMUMemoryRegion 384 * @attrs: memory transaction attributes 385 */ 386 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 387 388 /** 389 * @num_indexes: 390 * 391 * Return the number of IOMMU indexes this IOMMU supports. 392 * 393 * Optional method: if this method is not provided, then 394 * memory_region_iommu_num_indexes() will return 1, indicating that 395 * only a single IOMMU index is supported. 396 * 397 * @iommu: the IOMMUMemoryRegion 398 */ 399 int (*num_indexes)(IOMMUMemoryRegion *iommu); 400 401 /** 402 * @iommu_set_page_size_mask: 403 * 404 * Restrict the page size mask that can be supported with a given IOMMU 405 * memory region. Used for example to propagate host physical IOMMU page 406 * size mask limitations to the virtual IOMMU. 407 * 408 * Optional method: if this method is not provided, then the default global 409 * page mask is used. 410 * 411 * @iommu: the IOMMUMemoryRegion 412 * 413 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 414 * representing the smallest page size, must be set. Additional set bits 415 * represent supported block sizes. For example a host physical IOMMU that 416 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 417 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 418 * block sizes is specified with mask 0xfffffffffffff000. 419 * 420 * Returns 0 on success, or a negative error. In case of failure, the error 421 * object must be created. 422 */ 423 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 424 uint64_t page_size_mask, 425 Error **errp); 426 }; 427 428 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 429 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 430 431 /** MemoryRegion: 432 * 433 * A struct representing a memory region. 434 */ 435 struct MemoryRegion { 436 Object parent_obj; 437 438 /* private: */ 439 440 /* The following fields should fit in a cache line */ 441 bool romd_mode; 442 bool ram; 443 bool subpage; 444 bool readonly; /* For RAM regions */ 445 bool nonvolatile; 446 bool rom_device; 447 bool flush_coalesced_mmio; 448 uint8_t dirty_log_mask; 449 bool is_iommu; 450 RAMBlock *ram_block; 451 Object *owner; 452 453 const MemoryRegionOps *ops; 454 void *opaque; 455 MemoryRegion *container; 456 Int128 size; 457 hwaddr addr; 458 void (*destructor)(MemoryRegion *mr); 459 uint64_t align; 460 bool terminates; 461 bool ram_device; 462 bool enabled; 463 bool warning_printed; /* For reservations */ 464 uint8_t vga_logging_count; 465 MemoryRegion *alias; 466 hwaddr alias_offset; 467 int32_t priority; 468 QTAILQ_HEAD(, MemoryRegion) subregions; 469 QTAILQ_ENTRY(MemoryRegion) subregions_link; 470 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 471 const char *name; 472 unsigned ioeventfd_nb; 473 MemoryRegionIoeventfd *ioeventfds; 474 }; 475 476 struct IOMMUMemoryRegion { 477 MemoryRegion parent_obj; 478 479 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 480 IOMMUNotifierFlag iommu_notify_flags; 481 }; 482 483 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 484 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 485 486 /** 487 * struct MemoryListener: callbacks structure for updates to the physical memory map 488 * 489 * Allows a component to adjust to changes in the guest-visible memory map. 490 * Use with memory_listener_register() and memory_listener_unregister(). 491 */ 492 struct MemoryListener { 493 /** 494 * @begin: 495 * 496 * Called at the beginning of an address space update transaction. 497 * Followed by calls to #MemoryListener.region_add(), 498 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 499 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 500 * increasing address order. 501 * 502 * @listener: The #MemoryListener. 503 */ 504 void (*begin)(MemoryListener *listener); 505 506 /** 507 * @commit: 508 * 509 * Called at the end of an address space update transaction, 510 * after the last call to #MemoryListener.region_add(), 511 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 512 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 513 * 514 * @listener: The #MemoryListener. 515 */ 516 void (*commit)(MemoryListener *listener); 517 518 /** 519 * @region_add: 520 * 521 * Called during an address space update transaction, 522 * for a section of the address space that is new in this address space 523 * space since the last transaction. 524 * 525 * @listener: The #MemoryListener. 526 * @section: The new #MemoryRegionSection. 527 */ 528 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 529 530 /** 531 * @region_del: 532 * 533 * Called during an address space update transaction, 534 * for a section of the address space that has disappeared in the address 535 * space since the last transaction. 536 * 537 * @listener: The #MemoryListener. 538 * @section: The old #MemoryRegionSection. 539 */ 540 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 541 542 /** 543 * @region_nop: 544 * 545 * Called during an address space update transaction, 546 * for a section of the address space that is in the same place in the address 547 * space as in the last transaction. 548 * 549 * @listener: The #MemoryListener. 550 * @section: The #MemoryRegionSection. 551 */ 552 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 553 554 /** 555 * @log_start: 556 * 557 * Called during an address space update transaction, after 558 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or 559 * #MemoryListener.region_nop(), if dirty memory logging clients have 560 * become active since the last transaction. 561 * 562 * @listener: The #MemoryListener. 563 * @section: The #MemoryRegionSection. 564 * @old: A bitmap of dirty memory logging clients that were active in 565 * the previous transaction. 566 * @new: A bitmap of dirty memory logging clients that are active in 567 * the current transaction. 568 */ 569 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 570 int old, int new); 571 572 /** 573 * @log_stop: 574 * 575 * Called during an address space update transaction, after 576 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 577 * #MemoryListener.region_nop() and possibly after 578 * #MemoryListener.log_start(), if dirty memory logging clients have 579 * become inactive since the last transaction. 580 * 581 * @listener: The #MemoryListener. 582 * @section: The #MemoryRegionSection. 583 * @old: A bitmap of dirty memory logging clients that were active in 584 * the previous transaction. 585 * @new: A bitmap of dirty memory logging clients that are active in 586 * the current transaction. 587 */ 588 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 589 int old, int new); 590 591 /** 592 * @log_sync: 593 * 594 * Called by memory_region_snapshot_and_clear_dirty() and 595 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 596 * copy of the dirty memory bitmap for a #MemoryRegionSection. 597 * 598 * @listener: The #MemoryListener. 599 * @section: The #MemoryRegionSection. 600 */ 601 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 602 603 /** 604 * @log_clear: 605 * 606 * Called before reading the dirty memory bitmap for a 607 * #MemoryRegionSection. 608 * 609 * @listener: The #MemoryListener. 610 * @section: The #MemoryRegionSection. 611 */ 612 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 613 614 /** 615 * @log_global_start: 616 * 617 * Called by memory_global_dirty_log_start(), which 618 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 619 * the address space. #MemoryListener.log_global_start() is also 620 * called when a #MemoryListener is added, if global dirty logging is 621 * active at that time. 622 * 623 * @listener: The #MemoryListener. 624 */ 625 void (*log_global_start)(MemoryListener *listener); 626 627 /** 628 * @log_global_stop: 629 * 630 * Called by memory_global_dirty_log_stop(), which 631 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 632 * the address space. 633 * 634 * @listener: The #MemoryListener. 635 */ 636 void (*log_global_stop)(MemoryListener *listener); 637 638 /** 639 * @log_global_after_sync: 640 * 641 * Called after reading the dirty memory bitmap 642 * for any #MemoryRegionSection. 643 * 644 * @listener: The #MemoryListener. 645 */ 646 void (*log_global_after_sync)(MemoryListener *listener); 647 648 /** 649 * @eventfd_add: 650 * 651 * Called during an address space update transaction, 652 * for a section of the address space that has had a new ioeventfd 653 * registration since the last transaction. 654 * 655 * @listener: The #MemoryListener. 656 * @section: The new #MemoryRegionSection. 657 * @match_data: The @match_data parameter for the new ioeventfd. 658 * @data: The @data parameter for the new ioeventfd. 659 * @e: The #EventNotifier parameter for the new ioeventfd. 660 */ 661 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 662 bool match_data, uint64_t data, EventNotifier *e); 663 664 /** 665 * @eventfd_del: 666 * 667 * Called during an address space update transaction, 668 * for a section of the address space that has dropped an ioeventfd 669 * registration since the last transaction. 670 * 671 * @listener: The #MemoryListener. 672 * @section: The new #MemoryRegionSection. 673 * @match_data: The @match_data parameter for the dropped ioeventfd. 674 * @data: The @data parameter for the dropped ioeventfd. 675 * @e: The #EventNotifier parameter for the dropped ioeventfd. 676 */ 677 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 678 bool match_data, uint64_t data, EventNotifier *e); 679 680 /** 681 * @coalesced_io_add: 682 * 683 * Called during an address space update transaction, 684 * for a section of the address space that has had a new coalesced 685 * MMIO range registration since the last transaction. 686 * 687 * @listener: The #MemoryListener. 688 * @section: The new #MemoryRegionSection. 689 * @addr: The starting address for the coalesced MMIO range. 690 * @len: The length of the coalesced MMIO range. 691 */ 692 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 693 hwaddr addr, hwaddr len); 694 695 /** 696 * @coalesced_io_del: 697 * 698 * Called during an address space update transaction, 699 * for a section of the address space that has dropped a coalesced 700 * MMIO range since the last transaction. 701 * 702 * @listener: The #MemoryListener. 703 * @section: The new #MemoryRegionSection. 704 * @addr: The starting address for the coalesced MMIO range. 705 * @len: The length of the coalesced MMIO range. 706 */ 707 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 708 hwaddr addr, hwaddr len); 709 /** 710 * @priority: 711 * 712 * Govern the order in which memory listeners are invoked. Lower priorities 713 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 714 * or "stop" callbacks. 715 */ 716 unsigned priority; 717 718 /* private: */ 719 AddressSpace *address_space; 720 QTAILQ_ENTRY(MemoryListener) link; 721 QTAILQ_ENTRY(MemoryListener) link_as; 722 }; 723 724 /** 725 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 726 */ 727 struct AddressSpace { 728 /* private: */ 729 struct rcu_head rcu; 730 char *name; 731 MemoryRegion *root; 732 733 /* Accessed via RCU. */ 734 struct FlatView *current_map; 735 736 int ioeventfd_nb; 737 struct MemoryRegionIoeventfd *ioeventfds; 738 QTAILQ_HEAD(, MemoryListener) listeners; 739 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 740 }; 741 742 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 743 typedef struct FlatRange FlatRange; 744 745 /* Flattened global view of current active memory hierarchy. Kept in sorted 746 * order. 747 */ 748 struct FlatView { 749 struct rcu_head rcu; 750 unsigned ref; 751 FlatRange *ranges; 752 unsigned nr; 753 unsigned nr_allocated; 754 struct AddressSpaceDispatch *dispatch; 755 MemoryRegion *root; 756 }; 757 758 static inline FlatView *address_space_to_flatview(AddressSpace *as) 759 { 760 return qatomic_rcu_read(&as->current_map); 761 } 762 763 typedef int (*flatview_cb)(Int128 start, 764 Int128 len, 765 const MemoryRegion*, void*); 766 767 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque); 768 769 /** 770 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 771 * 772 * @mr: the region, or %NULL if empty 773 * @fv: the flat view of the address space the region is mapped in 774 * @offset_within_region: the beginning of the section, relative to @mr's start 775 * @size: the size of the section; will not exceed @mr's boundaries 776 * @offset_within_address_space: the address of the first byte of the section 777 * relative to the region's address space 778 * @readonly: writes to this section are ignored 779 * @nonvolatile: this section is non-volatile 780 */ 781 struct MemoryRegionSection { 782 Int128 size; 783 MemoryRegion *mr; 784 FlatView *fv; 785 hwaddr offset_within_region; 786 hwaddr offset_within_address_space; 787 bool readonly; 788 bool nonvolatile; 789 }; 790 791 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 792 MemoryRegionSection *b) 793 { 794 return a->mr == b->mr && 795 a->fv == b->fv && 796 a->offset_within_region == b->offset_within_region && 797 a->offset_within_address_space == b->offset_within_address_space && 798 int128_eq(a->size, b->size) && 799 a->readonly == b->readonly && 800 a->nonvolatile == b->nonvolatile; 801 } 802 803 /** 804 * memory_region_init: Initialize a memory region 805 * 806 * The region typically acts as a container for other memory regions. Use 807 * memory_region_add_subregion() to add subregions. 808 * 809 * @mr: the #MemoryRegion to be initialized 810 * @owner: the object that tracks the region's reference count 811 * @name: used for debugging; not visible to the user or ABI 812 * @size: size of the region; any subregions beyond this size will be clipped 813 */ 814 void memory_region_init(MemoryRegion *mr, 815 struct Object *owner, 816 const char *name, 817 uint64_t size); 818 819 /** 820 * memory_region_ref: Add 1 to a memory region's reference count 821 * 822 * Whenever memory regions are accessed outside the BQL, they need to be 823 * preserved against hot-unplug. MemoryRegions actually do not have their 824 * own reference count; they piggyback on a QOM object, their "owner". 825 * This function adds a reference to the owner. 826 * 827 * All MemoryRegions must have an owner if they can disappear, even if the 828 * device they belong to operates exclusively under the BQL. This is because 829 * the region could be returned at any time by memory_region_find, and this 830 * is usually under guest control. 831 * 832 * @mr: the #MemoryRegion 833 */ 834 void memory_region_ref(MemoryRegion *mr); 835 836 /** 837 * memory_region_unref: Remove 1 to a memory region's reference count 838 * 839 * Whenever memory regions are accessed outside the BQL, they need to be 840 * preserved against hot-unplug. MemoryRegions actually do not have their 841 * own reference count; they piggyback on a QOM object, their "owner". 842 * This function removes a reference to the owner and possibly destroys it. 843 * 844 * @mr: the #MemoryRegion 845 */ 846 void memory_region_unref(MemoryRegion *mr); 847 848 /** 849 * memory_region_init_io: Initialize an I/O memory region. 850 * 851 * Accesses into the region will cause the callbacks in @ops to be called. 852 * if @size is nonzero, subregions will be clipped to @size. 853 * 854 * @mr: the #MemoryRegion to be initialized. 855 * @owner: the object that tracks the region's reference count 856 * @ops: a structure containing read and write callbacks to be used when 857 * I/O is performed on the region. 858 * @opaque: passed to the read and write callbacks of the @ops structure. 859 * @name: used for debugging; not visible to the user or ABI 860 * @size: size of the region. 861 */ 862 void memory_region_init_io(MemoryRegion *mr, 863 struct Object *owner, 864 const MemoryRegionOps *ops, 865 void *opaque, 866 const char *name, 867 uint64_t size); 868 869 /** 870 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 871 * into the region will modify memory 872 * directly. 873 * 874 * @mr: the #MemoryRegion to be initialized. 875 * @owner: the object that tracks the region's reference count 876 * @name: Region name, becomes part of RAMBlock name used in migration stream 877 * must be unique within any device 878 * @size: size of the region. 879 * @errp: pointer to Error*, to store an error if it happens. 880 * 881 * Note that this function does not do anything to cause the data in the 882 * RAM memory region to be migrated; that is the responsibility of the caller. 883 */ 884 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 885 struct Object *owner, 886 const char *name, 887 uint64_t size, 888 Error **errp); 889 890 /** 891 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 892 * Accesses into the region will 893 * modify memory directly. 894 * 895 * @mr: the #MemoryRegion to be initialized. 896 * @owner: the object that tracks the region's reference count 897 * @name: Region name, becomes part of RAMBlock name used in migration stream 898 * must be unique within any device 899 * @size: size of the region. 900 * @share: allow remapping RAM to different addresses 901 * @errp: pointer to Error*, to store an error if it happens. 902 * 903 * Note that this function is similar to memory_region_init_ram_nomigrate. 904 * The only difference is part of the RAM region can be remapped. 905 */ 906 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 907 struct Object *owner, 908 const char *name, 909 uint64_t size, 910 bool share, 911 Error **errp); 912 913 /** 914 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 915 * RAM. Accesses into the region will 916 * modify memory directly. Only an initial 917 * portion of this RAM is actually used. 918 * The used size can change across reboots. 919 * 920 * @mr: the #MemoryRegion to be initialized. 921 * @owner: the object that tracks the region's reference count 922 * @name: Region name, becomes part of RAMBlock name used in migration stream 923 * must be unique within any device 924 * @size: used size of the region. 925 * @max_size: max size of the region. 926 * @resized: callback to notify owner about used size change. 927 * @errp: pointer to Error*, to store an error if it happens. 928 * 929 * Note that this function does not do anything to cause the data in the 930 * RAM memory region to be migrated; that is the responsibility of the caller. 931 */ 932 void memory_region_init_resizeable_ram(MemoryRegion *mr, 933 struct Object *owner, 934 const char *name, 935 uint64_t size, 936 uint64_t max_size, 937 void (*resized)(const char*, 938 uint64_t length, 939 void *host), 940 Error **errp); 941 #ifdef CONFIG_POSIX 942 943 /** 944 * memory_region_init_ram_from_file: Initialize RAM memory region with a 945 * mmap-ed backend. 946 * 947 * @mr: the #MemoryRegion to be initialized. 948 * @owner: the object that tracks the region's reference count 949 * @name: Region name, becomes part of RAMBlock name used in migration stream 950 * must be unique within any device 951 * @size: size of the region. 952 * @align: alignment of the region base address; if 0, the default alignment 953 * (getpagesize()) will be used. 954 * @ram_flags: Memory region features: 955 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 956 * - RAM_PMEM: the memory is persistent memory 957 * Other bits are ignored now. 958 * @path: the path in which to allocate the RAM. 959 * @errp: pointer to Error*, to store an error if it happens. 960 * 961 * Note that this function does not do anything to cause the data in the 962 * RAM memory region to be migrated; that is the responsibility of the caller. 963 */ 964 void memory_region_init_ram_from_file(MemoryRegion *mr, 965 struct Object *owner, 966 const char *name, 967 uint64_t size, 968 uint64_t align, 969 uint32_t ram_flags, 970 const char *path, 971 Error **errp); 972 973 /** 974 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 975 * mmap-ed backend. 976 * 977 * @mr: the #MemoryRegion to be initialized. 978 * @owner: the object that tracks the region's reference count 979 * @name: the name of the region. 980 * @size: size of the region. 981 * @share: %true if memory must be mmaped with the MAP_SHARED flag 982 * @fd: the fd to mmap. 983 * @errp: pointer to Error*, to store an error if it happens. 984 * 985 * Note that this function does not do anything to cause the data in the 986 * RAM memory region to be migrated; that is the responsibility of the caller. 987 */ 988 void memory_region_init_ram_from_fd(MemoryRegion *mr, 989 struct Object *owner, 990 const char *name, 991 uint64_t size, 992 bool share, 993 int fd, 994 Error **errp); 995 #endif 996 997 /** 998 * memory_region_init_ram_ptr: Initialize RAM memory region from a 999 * user-provided pointer. Accesses into the 1000 * region will modify memory directly. 1001 * 1002 * @mr: the #MemoryRegion to be initialized. 1003 * @owner: the object that tracks the region's reference count 1004 * @name: Region name, becomes part of RAMBlock name used in migration stream 1005 * must be unique within any device 1006 * @size: size of the region. 1007 * @ptr: memory to be mapped; must contain at least @size bytes. 1008 * 1009 * Note that this function does not do anything to cause the data in the 1010 * RAM memory region to be migrated; that is the responsibility of the caller. 1011 */ 1012 void memory_region_init_ram_ptr(MemoryRegion *mr, 1013 struct Object *owner, 1014 const char *name, 1015 uint64_t size, 1016 void *ptr); 1017 1018 /** 1019 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1020 * a user-provided pointer. 1021 * 1022 * A RAM device represents a mapping to a physical device, such as to a PCI 1023 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1024 * into the VM address space and access to the region will modify memory 1025 * directly. However, the memory region should not be included in a memory 1026 * dump (device may not be enabled/mapped at the time of the dump), and 1027 * operations incompatible with manipulating MMIO should be avoided. Replaces 1028 * skip_dump flag. 1029 * 1030 * @mr: the #MemoryRegion to be initialized. 1031 * @owner: the object that tracks the region's reference count 1032 * @name: the name of the region. 1033 * @size: size of the region. 1034 * @ptr: memory to be mapped; must contain at least @size bytes. 1035 * 1036 * Note that this function does not do anything to cause the data in the 1037 * RAM memory region to be migrated; that is the responsibility of the caller. 1038 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1039 */ 1040 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1041 struct Object *owner, 1042 const char *name, 1043 uint64_t size, 1044 void *ptr); 1045 1046 /** 1047 * memory_region_init_alias: Initialize a memory region that aliases all or a 1048 * part of another memory region. 1049 * 1050 * @mr: the #MemoryRegion to be initialized. 1051 * @owner: the object that tracks the region's reference count 1052 * @name: used for debugging; not visible to the user or ABI 1053 * @orig: the region to be referenced; @mr will be equivalent to 1054 * @orig between @offset and @offset + @size - 1. 1055 * @offset: start of the section in @orig to be referenced. 1056 * @size: size of the region. 1057 */ 1058 void memory_region_init_alias(MemoryRegion *mr, 1059 struct Object *owner, 1060 const char *name, 1061 MemoryRegion *orig, 1062 hwaddr offset, 1063 uint64_t size); 1064 1065 /** 1066 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1067 * 1068 * This has the same effect as calling memory_region_init_ram_nomigrate() 1069 * and then marking the resulting region read-only with 1070 * memory_region_set_readonly(). 1071 * 1072 * Note that this function does not do anything to cause the data in the 1073 * RAM side of the memory region to be migrated; that is the responsibility 1074 * of the caller. 1075 * 1076 * @mr: the #MemoryRegion to be initialized. 1077 * @owner: the object that tracks the region's reference count 1078 * @name: Region name, becomes part of RAMBlock name used in migration stream 1079 * must be unique within any device 1080 * @size: size of the region. 1081 * @errp: pointer to Error*, to store an error if it happens. 1082 */ 1083 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1084 struct Object *owner, 1085 const char *name, 1086 uint64_t size, 1087 Error **errp); 1088 1089 /** 1090 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1091 * Writes are handled via callbacks. 1092 * 1093 * Note that this function does not do anything to cause the data in the 1094 * RAM side of the memory region to be migrated; that is the responsibility 1095 * of the caller. 1096 * 1097 * @mr: the #MemoryRegion to be initialized. 1098 * @owner: the object that tracks the region's reference count 1099 * @ops: callbacks for write access handling (must not be NULL). 1100 * @opaque: passed to the read and write callbacks of the @ops structure. 1101 * @name: Region name, becomes part of RAMBlock name used in migration stream 1102 * must be unique within any device 1103 * @size: size of the region. 1104 * @errp: pointer to Error*, to store an error if it happens. 1105 */ 1106 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1107 struct Object *owner, 1108 const MemoryRegionOps *ops, 1109 void *opaque, 1110 const char *name, 1111 uint64_t size, 1112 Error **errp); 1113 1114 /** 1115 * memory_region_init_iommu: Initialize a memory region of a custom type 1116 * that translates addresses 1117 * 1118 * An IOMMU region translates addresses and forwards accesses to a target 1119 * memory region. 1120 * 1121 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1122 * @_iommu_mr should be a pointer to enough memory for an instance of 1123 * that subclass, @instance_size is the size of that subclass, and 1124 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1125 * instance of the subclass, and its methods will then be called to handle 1126 * accesses to the memory region. See the documentation of 1127 * #IOMMUMemoryRegionClass for further details. 1128 * 1129 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1130 * @instance_size: the IOMMUMemoryRegion subclass instance size 1131 * @mrtypename: the type name of the #IOMMUMemoryRegion 1132 * @owner: the object that tracks the region's reference count 1133 * @name: used for debugging; not visible to the user or ABI 1134 * @size: size of the region. 1135 */ 1136 void memory_region_init_iommu(void *_iommu_mr, 1137 size_t instance_size, 1138 const char *mrtypename, 1139 Object *owner, 1140 const char *name, 1141 uint64_t size); 1142 1143 /** 1144 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1145 * region will modify memory directly. 1146 * 1147 * @mr: the #MemoryRegion to be initialized 1148 * @owner: the object that tracks the region's reference count (must be 1149 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1150 * @name: name of the memory region 1151 * @size: size of the region in bytes 1152 * @errp: pointer to Error*, to store an error if it happens. 1153 * 1154 * This function allocates RAM for a board model or device, and 1155 * arranges for it to be migrated (by calling vmstate_register_ram() 1156 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1157 * @owner is NULL). 1158 * 1159 * TODO: Currently we restrict @owner to being either NULL (for 1160 * global RAM regions with no owner) or devices, so that we can 1161 * give the RAM block a unique name for migration purposes. 1162 * We should lift this restriction and allow arbitrary Objects. 1163 * If you pass a non-NULL non-device @owner then we will assert. 1164 */ 1165 void memory_region_init_ram(MemoryRegion *mr, 1166 struct Object *owner, 1167 const char *name, 1168 uint64_t size, 1169 Error **errp); 1170 1171 /** 1172 * memory_region_init_rom: Initialize a ROM memory region. 1173 * 1174 * This has the same effect as calling memory_region_init_ram() 1175 * and then marking the resulting region read-only with 1176 * memory_region_set_readonly(). This includes arranging for the 1177 * contents to be migrated. 1178 * 1179 * TODO: Currently we restrict @owner to being either NULL (for 1180 * global RAM regions with no owner) or devices, so that we can 1181 * give the RAM block a unique name for migration purposes. 1182 * We should lift this restriction and allow arbitrary Objects. 1183 * If you pass a non-NULL non-device @owner then we will assert. 1184 * 1185 * @mr: the #MemoryRegion to be initialized. 1186 * @owner: the object that tracks the region's reference count 1187 * @name: Region name, becomes part of RAMBlock name used in migration stream 1188 * must be unique within any device 1189 * @size: size of the region. 1190 * @errp: pointer to Error*, to store an error if it happens. 1191 */ 1192 void memory_region_init_rom(MemoryRegion *mr, 1193 struct Object *owner, 1194 const char *name, 1195 uint64_t size, 1196 Error **errp); 1197 1198 /** 1199 * memory_region_init_rom_device: Initialize a ROM memory region. 1200 * Writes are handled via callbacks. 1201 * 1202 * This function initializes a memory region backed by RAM for reads 1203 * and callbacks for writes, and arranges for the RAM backing to 1204 * be migrated (by calling vmstate_register_ram() 1205 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1206 * @owner is NULL). 1207 * 1208 * TODO: Currently we restrict @owner to being either NULL (for 1209 * global RAM regions with no owner) or devices, so that we can 1210 * give the RAM block a unique name for migration purposes. 1211 * We should lift this restriction and allow arbitrary Objects. 1212 * If you pass a non-NULL non-device @owner then we will assert. 1213 * 1214 * @mr: the #MemoryRegion to be initialized. 1215 * @owner: the object that tracks the region's reference count 1216 * @ops: callbacks for write access handling (must not be NULL). 1217 * @opaque: passed to the read and write callbacks of the @ops structure. 1218 * @name: Region name, becomes part of RAMBlock name used in migration stream 1219 * must be unique within any device 1220 * @size: size of the region. 1221 * @errp: pointer to Error*, to store an error if it happens. 1222 */ 1223 void memory_region_init_rom_device(MemoryRegion *mr, 1224 struct Object *owner, 1225 const MemoryRegionOps *ops, 1226 void *opaque, 1227 const char *name, 1228 uint64_t size, 1229 Error **errp); 1230 1231 1232 /** 1233 * memory_region_owner: get a memory region's owner. 1234 * 1235 * @mr: the memory region being queried. 1236 */ 1237 struct Object *memory_region_owner(MemoryRegion *mr); 1238 1239 /** 1240 * memory_region_size: get a memory region's size. 1241 * 1242 * @mr: the memory region being queried. 1243 */ 1244 uint64_t memory_region_size(MemoryRegion *mr); 1245 1246 /** 1247 * memory_region_is_ram: check whether a memory region is random access 1248 * 1249 * Returns %true if a memory region is random access. 1250 * 1251 * @mr: the memory region being queried 1252 */ 1253 static inline bool memory_region_is_ram(MemoryRegion *mr) 1254 { 1255 return mr->ram; 1256 } 1257 1258 /** 1259 * memory_region_is_ram_device: check whether a memory region is a ram device 1260 * 1261 * Returns %true if a memory region is a device backed ram region 1262 * 1263 * @mr: the memory region being queried 1264 */ 1265 bool memory_region_is_ram_device(MemoryRegion *mr); 1266 1267 /** 1268 * memory_region_is_romd: check whether a memory region is in ROMD mode 1269 * 1270 * Returns %true if a memory region is a ROM device and currently set to allow 1271 * direct reads. 1272 * 1273 * @mr: the memory region being queried 1274 */ 1275 static inline bool memory_region_is_romd(MemoryRegion *mr) 1276 { 1277 return mr->rom_device && mr->romd_mode; 1278 } 1279 1280 /** 1281 * memory_region_get_iommu: check whether a memory region is an iommu 1282 * 1283 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1284 * otherwise NULL. 1285 * 1286 * @mr: the memory region being queried 1287 */ 1288 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1289 { 1290 if (mr->alias) { 1291 return memory_region_get_iommu(mr->alias); 1292 } 1293 if (mr->is_iommu) { 1294 return (IOMMUMemoryRegion *) mr; 1295 } 1296 return NULL; 1297 } 1298 1299 /** 1300 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1301 * if an iommu or NULL if not 1302 * 1303 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1304 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1305 * 1306 * @iommu_mr: the memory region being queried 1307 */ 1308 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1309 IOMMUMemoryRegion *iommu_mr) 1310 { 1311 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1312 } 1313 1314 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1315 1316 /** 1317 * memory_region_iommu_get_min_page_size: get minimum supported page size 1318 * for an iommu 1319 * 1320 * Returns minimum supported page size for an iommu. 1321 * 1322 * @iommu_mr: the memory region being queried 1323 */ 1324 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1325 1326 /** 1327 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1328 * 1329 * The notification type will be decided by entry.perm bits: 1330 * 1331 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1332 * - For MAP (newly added entry) notifies: set entry.perm to the 1333 * permission of the page (which is definitely !IOMMU_NONE). 1334 * 1335 * Note: for any IOMMU implementation, an in-place mapping change 1336 * should be notified with an UNMAP followed by a MAP. 1337 * 1338 * @iommu_mr: the memory region that was changed 1339 * @iommu_idx: the IOMMU index for the translation table which has changed 1340 * @entry: the new entry in the IOMMU translation table. The entry 1341 * replaces all old entries for the same virtual I/O address range. 1342 * Deleted entries have .@perm == 0. 1343 */ 1344 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1345 int iommu_idx, 1346 IOMMUTLBEntry entry); 1347 1348 /** 1349 * memory_region_notify_one: notify a change in an IOMMU translation 1350 * entry to a single notifier 1351 * 1352 * This works just like memory_region_notify_iommu(), but it only 1353 * notifies a specific notifier, not all of them. 1354 * 1355 * @notifier: the notifier to be notified 1356 * @entry: the new entry in the IOMMU translation table. The entry 1357 * replaces all old entries for the same virtual I/O address range. 1358 * Deleted entries have .@perm == 0. 1359 */ 1360 void memory_region_notify_one(IOMMUNotifier *notifier, 1361 IOMMUTLBEntry *entry); 1362 1363 /** 1364 * memory_region_register_iommu_notifier: register a notifier for changes to 1365 * IOMMU translation entries. 1366 * 1367 * Returns 0 on success, or a negative errno otherwise. In particular, 1368 * -EINVAL indicates that at least one of the attributes of the notifier 1369 * is not supported (flag/range) by the IOMMU memory region. In case of error 1370 * the error object must be created. 1371 * 1372 * @mr: the memory region to observe 1373 * @n: the IOMMUNotifier to be added; the notify callback receives a 1374 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1375 * ceases to be valid on exit from the notifier. 1376 * @errp: pointer to Error*, to store an error if it happens. 1377 */ 1378 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1379 IOMMUNotifier *n, Error **errp); 1380 1381 /** 1382 * memory_region_iommu_replay: replay existing IOMMU translations to 1383 * a notifier with the minimum page granularity returned by 1384 * mr->iommu_ops->get_page_size(). 1385 * 1386 * Note: this is not related to record-and-replay functionality. 1387 * 1388 * @iommu_mr: the memory region to observe 1389 * @n: the notifier to which to replay iommu mappings 1390 */ 1391 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1392 1393 /** 1394 * memory_region_unregister_iommu_notifier: unregister a notifier for 1395 * changes to IOMMU translation entries. 1396 * 1397 * @mr: the memory region which was observed and for which notity_stopped() 1398 * needs to be called 1399 * @n: the notifier to be removed. 1400 */ 1401 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1402 IOMMUNotifier *n); 1403 1404 /** 1405 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1406 * defined on the IOMMU. 1407 * 1408 * Returns 0 on success, or a negative errno otherwise. In particular, 1409 * -EINVAL indicates that the IOMMU does not support the requested 1410 * attribute. 1411 * 1412 * @iommu_mr: the memory region 1413 * @attr: the requested attribute 1414 * @data: a pointer to the requested attribute data 1415 */ 1416 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1417 enum IOMMUMemoryRegionAttr attr, 1418 void *data); 1419 1420 /** 1421 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1422 * use for translations with the given memory transaction attributes. 1423 * 1424 * @iommu_mr: the memory region 1425 * @attrs: the memory transaction attributes 1426 */ 1427 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1428 MemTxAttrs attrs); 1429 1430 /** 1431 * memory_region_iommu_num_indexes: return the total number of IOMMU 1432 * indexes that this IOMMU supports. 1433 * 1434 * @iommu_mr: the memory region 1435 */ 1436 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1437 1438 /** 1439 * memory_region_iommu_set_page_size_mask: set the supported page 1440 * sizes for a given IOMMU memory region 1441 * 1442 * @iommu_mr: IOMMU memory region 1443 * @page_size_mask: supported page size mask 1444 * @errp: pointer to Error*, to store an error if it happens. 1445 */ 1446 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1447 uint64_t page_size_mask, 1448 Error **errp); 1449 1450 /** 1451 * memory_region_name: get a memory region's name 1452 * 1453 * Returns the string that was used to initialize the memory region. 1454 * 1455 * @mr: the memory region being queried 1456 */ 1457 const char *memory_region_name(const MemoryRegion *mr); 1458 1459 /** 1460 * memory_region_is_logging: return whether a memory region is logging writes 1461 * 1462 * Returns %true if the memory region is logging writes for the given client 1463 * 1464 * @mr: the memory region being queried 1465 * @client: the client being queried 1466 */ 1467 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1468 1469 /** 1470 * memory_region_get_dirty_log_mask: return the clients for which a 1471 * memory region is logging writes. 1472 * 1473 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1474 * are the bit indices. 1475 * 1476 * @mr: the memory region being queried 1477 */ 1478 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1479 1480 /** 1481 * memory_region_is_rom: check whether a memory region is ROM 1482 * 1483 * Returns %true if a memory region is read-only memory. 1484 * 1485 * @mr: the memory region being queried 1486 */ 1487 static inline bool memory_region_is_rom(MemoryRegion *mr) 1488 { 1489 return mr->ram && mr->readonly; 1490 } 1491 1492 /** 1493 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1494 * 1495 * Returns %true is a memory region is non-volatile memory. 1496 * 1497 * @mr: the memory region being queried 1498 */ 1499 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1500 { 1501 return mr->nonvolatile; 1502 } 1503 1504 /** 1505 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1506 * 1507 * Returns a file descriptor backing a file-based RAM memory region, 1508 * or -1 if the region is not a file-based RAM memory region. 1509 * 1510 * @mr: the RAM or alias memory region being queried. 1511 */ 1512 int memory_region_get_fd(MemoryRegion *mr); 1513 1514 /** 1515 * memory_region_from_host: Convert a pointer into a RAM memory region 1516 * and an offset within it. 1517 * 1518 * Given a host pointer inside a RAM memory region (created with 1519 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1520 * the MemoryRegion and the offset within it. 1521 * 1522 * Use with care; by the time this function returns, the returned pointer is 1523 * not protected by RCU anymore. If the caller is not within an RCU critical 1524 * section and does not hold the iothread lock, it must have other means of 1525 * protecting the pointer, such as a reference to the region that includes 1526 * the incoming ram_addr_t. 1527 * 1528 * @ptr: the host pointer to be converted 1529 * @offset: the offset within memory region 1530 */ 1531 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1532 1533 /** 1534 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1535 * 1536 * Returns a host pointer to a RAM memory region (created with 1537 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1538 * 1539 * Use with care; by the time this function returns, the returned pointer is 1540 * not protected by RCU anymore. If the caller is not within an RCU critical 1541 * section and does not hold the iothread lock, it must have other means of 1542 * protecting the pointer, such as a reference to the region that includes 1543 * the incoming ram_addr_t. 1544 * 1545 * @mr: the memory region being queried. 1546 */ 1547 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1548 1549 /* memory_region_ram_resize: Resize a RAM region. 1550 * 1551 * Only legal before guest might have detected the memory size: e.g. on 1552 * incoming migration, or right after reset. 1553 * 1554 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1555 * @newsize: the new size the region 1556 * @errp: pointer to Error*, to store an error if it happens. 1557 */ 1558 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1559 Error **errp); 1560 1561 /** 1562 * memory_region_msync: Synchronize selected address range of 1563 * a memory mapped region 1564 * 1565 * @mr: the memory region to be msync 1566 * @addr: the initial address of the range to be sync 1567 * @size: the size of the range to be sync 1568 */ 1569 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1570 1571 /** 1572 * memory_region_writeback: Trigger cache writeback for 1573 * selected address range 1574 * 1575 * @mr: the memory region to be updated 1576 * @addr: the initial address of the range to be written back 1577 * @size: the size of the range to be written back 1578 */ 1579 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1580 1581 /** 1582 * memory_region_set_log: Turn dirty logging on or off for a region. 1583 * 1584 * Turns dirty logging on or off for a specified client (display, migration). 1585 * Only meaningful for RAM regions. 1586 * 1587 * @mr: the memory region being updated. 1588 * @log: whether dirty logging is to be enabled or disabled. 1589 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1590 */ 1591 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1592 1593 /** 1594 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1595 * 1596 * Marks a range of bytes as dirty, after it has been dirtied outside 1597 * guest code. 1598 * 1599 * @mr: the memory region being dirtied. 1600 * @addr: the address (relative to the start of the region) being dirtied. 1601 * @size: size of the range being dirtied. 1602 */ 1603 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1604 hwaddr size); 1605 1606 /** 1607 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1608 * 1609 * This function is called when the caller wants to clear the remote 1610 * dirty bitmap of a memory range within the memory region. This can 1611 * be used by e.g. KVM to manually clear dirty log when 1612 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1613 * kernel. 1614 * 1615 * @mr: the memory region to clear the dirty log upon 1616 * @start: start address offset within the memory region 1617 * @len: length of the memory region to clear dirty bitmap 1618 */ 1619 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1620 hwaddr len); 1621 1622 /** 1623 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1624 * bitmap and clear it. 1625 * 1626 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1627 * returns the snapshot. The snapshot can then be used to query dirty 1628 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1629 * querying the same page multiple times, which is especially useful for 1630 * display updates where the scanlines often are not page aligned. 1631 * 1632 * The dirty bitmap region which gets copyed into the snapshot (and 1633 * cleared afterwards) can be larger than requested. The boundaries 1634 * are rounded up/down so complete bitmap longs (covering 64 pages on 1635 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1636 * isn't a problem for display updates as the extra pages are outside 1637 * the visible area, and in case the visible area changes a full 1638 * display redraw is due anyway. Should other use cases for this 1639 * function emerge we might have to revisit this implementation 1640 * detail. 1641 * 1642 * Use g_free to release DirtyBitmapSnapshot. 1643 * 1644 * @mr: the memory region being queried. 1645 * @addr: the address (relative to the start of the region) being queried. 1646 * @size: the size of the range being queried. 1647 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1648 */ 1649 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1650 hwaddr addr, 1651 hwaddr size, 1652 unsigned client); 1653 1654 /** 1655 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1656 * in the specified dirty bitmap snapshot. 1657 * 1658 * @mr: the memory region being queried. 1659 * @snap: the dirty bitmap snapshot 1660 * @addr: the address (relative to the start of the region) being queried. 1661 * @size: the size of the range being queried. 1662 */ 1663 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1664 DirtyBitmapSnapshot *snap, 1665 hwaddr addr, hwaddr size); 1666 1667 /** 1668 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1669 * client. 1670 * 1671 * Marks a range of pages as no longer dirty. 1672 * 1673 * @mr: the region being updated. 1674 * @addr: the start of the subrange being cleaned. 1675 * @size: the size of the subrange being cleaned. 1676 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1677 * %DIRTY_MEMORY_VGA. 1678 */ 1679 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1680 hwaddr size, unsigned client); 1681 1682 /** 1683 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1684 * TBs (for self-modifying code). 1685 * 1686 * The MemoryRegionOps->write() callback of a ROM device must use this function 1687 * to mark byte ranges that have been modified internally, such as by directly 1688 * accessing the memory returned by memory_region_get_ram_ptr(). 1689 * 1690 * This function marks the range dirty and invalidates TBs so that TCG can 1691 * detect self-modifying code. 1692 * 1693 * @mr: the region being flushed. 1694 * @addr: the start, relative to the start of the region, of the range being 1695 * flushed. 1696 * @size: the size, in bytes, of the range being flushed. 1697 */ 1698 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1699 1700 /** 1701 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1702 * 1703 * Allows a memory region to be marked as read-only (turning it into a ROM). 1704 * only useful on RAM regions. 1705 * 1706 * @mr: the region being updated. 1707 * @readonly: whether rhe region is to be ROM or RAM. 1708 */ 1709 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1710 1711 /** 1712 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1713 * 1714 * Allows a memory region to be marked as non-volatile. 1715 * only useful on RAM regions. 1716 * 1717 * @mr: the region being updated. 1718 * @nonvolatile: whether rhe region is to be non-volatile. 1719 */ 1720 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1721 1722 /** 1723 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1724 * 1725 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1726 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1727 * device is mapped to guest memory and satisfies read access directly. 1728 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1729 * Writes are always handled by the #MemoryRegion.write function. 1730 * 1731 * @mr: the memory region to be updated 1732 * @romd_mode: %true to put the region into ROMD mode 1733 */ 1734 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1735 1736 /** 1737 * memory_region_set_coalescing: Enable memory coalescing for the region. 1738 * 1739 * Enabled writes to a region to be queued for later processing. MMIO ->write 1740 * callbacks may be delayed until a non-coalesced MMIO is issued. 1741 * Only useful for IO regions. Roughly similar to write-combining hardware. 1742 * 1743 * @mr: the memory region to be write coalesced 1744 */ 1745 void memory_region_set_coalescing(MemoryRegion *mr); 1746 1747 /** 1748 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1749 * a region. 1750 * 1751 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1752 * Multiple calls can be issued coalesced disjoint ranges. 1753 * 1754 * @mr: the memory region to be updated. 1755 * @offset: the start of the range within the region to be coalesced. 1756 * @size: the size of the subrange to be coalesced. 1757 */ 1758 void memory_region_add_coalescing(MemoryRegion *mr, 1759 hwaddr offset, 1760 uint64_t size); 1761 1762 /** 1763 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1764 * 1765 * Disables any coalescing caused by memory_region_set_coalescing() or 1766 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1767 * hardware. 1768 * 1769 * @mr: the memory region to be updated. 1770 */ 1771 void memory_region_clear_coalescing(MemoryRegion *mr); 1772 1773 /** 1774 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1775 * accesses. 1776 * 1777 * Ensure that pending coalesced MMIO request are flushed before the memory 1778 * region is accessed. This property is automatically enabled for all regions 1779 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1780 * 1781 * @mr: the memory region to be updated. 1782 */ 1783 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1784 1785 /** 1786 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1787 * accesses. 1788 * 1789 * Clear the automatic coalesced MMIO flushing enabled via 1790 * memory_region_set_flush_coalesced. Note that this service has no effect on 1791 * memory regions that have MMIO coalescing enabled for themselves. For them, 1792 * automatic flushing will stop once coalescing is disabled. 1793 * 1794 * @mr: the memory region to be updated. 1795 */ 1796 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1797 1798 /** 1799 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1800 * is written to a location. 1801 * 1802 * Marks a word in an IO region (initialized with memory_region_init_io()) 1803 * as a trigger for an eventfd event. The I/O callback will not be called. 1804 * The caller must be prepared to handle failure (that is, take the required 1805 * action if the callback _is_ called). 1806 * 1807 * @mr: the memory region being updated. 1808 * @addr: the address within @mr that is to be monitored 1809 * @size: the size of the access to trigger the eventfd 1810 * @match_data: whether to match against @data, instead of just @addr 1811 * @data: the data to match against the guest write 1812 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1813 **/ 1814 void memory_region_add_eventfd(MemoryRegion *mr, 1815 hwaddr addr, 1816 unsigned size, 1817 bool match_data, 1818 uint64_t data, 1819 EventNotifier *e); 1820 1821 /** 1822 * memory_region_del_eventfd: Cancel an eventfd. 1823 * 1824 * Cancels an eventfd trigger requested by a previous 1825 * memory_region_add_eventfd() call. 1826 * 1827 * @mr: the memory region being updated. 1828 * @addr: the address within @mr that is to be monitored 1829 * @size: the size of the access to trigger the eventfd 1830 * @match_data: whether to match against @data, instead of just @addr 1831 * @data: the data to match against the guest write 1832 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1833 */ 1834 void memory_region_del_eventfd(MemoryRegion *mr, 1835 hwaddr addr, 1836 unsigned size, 1837 bool match_data, 1838 uint64_t data, 1839 EventNotifier *e); 1840 1841 /** 1842 * memory_region_add_subregion: Add a subregion to a container. 1843 * 1844 * Adds a subregion at @offset. The subregion may not overlap with other 1845 * subregions (except for those explicitly marked as overlapping). A region 1846 * may only be added once as a subregion (unless removed with 1847 * memory_region_del_subregion()); use memory_region_init_alias() if you 1848 * want a region to be a subregion in multiple locations. 1849 * 1850 * @mr: the region to contain the new subregion; must be a container 1851 * initialized with memory_region_init(). 1852 * @offset: the offset relative to @mr where @subregion is added. 1853 * @subregion: the subregion to be added. 1854 */ 1855 void memory_region_add_subregion(MemoryRegion *mr, 1856 hwaddr offset, 1857 MemoryRegion *subregion); 1858 /** 1859 * memory_region_add_subregion_overlap: Add a subregion to a container 1860 * with overlap. 1861 * 1862 * Adds a subregion at @offset. The subregion may overlap with other 1863 * subregions. Conflicts are resolved by having a higher @priority hide a 1864 * lower @priority. Subregions without priority are taken as @priority 0. 1865 * A region may only be added once as a subregion (unless removed with 1866 * memory_region_del_subregion()); use memory_region_init_alias() if you 1867 * want a region to be a subregion in multiple locations. 1868 * 1869 * @mr: the region to contain the new subregion; must be a container 1870 * initialized with memory_region_init(). 1871 * @offset: the offset relative to @mr where @subregion is added. 1872 * @subregion: the subregion to be added. 1873 * @priority: used for resolving overlaps; highest priority wins. 1874 */ 1875 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1876 hwaddr offset, 1877 MemoryRegion *subregion, 1878 int priority); 1879 1880 /** 1881 * memory_region_get_ram_addr: Get the ram address associated with a memory 1882 * region 1883 * 1884 * @mr: the region to be queried 1885 */ 1886 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1887 1888 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1889 /** 1890 * memory_region_del_subregion: Remove a subregion. 1891 * 1892 * Removes a subregion from its container. 1893 * 1894 * @mr: the container to be updated. 1895 * @subregion: the region being removed; must be a current subregion of @mr. 1896 */ 1897 void memory_region_del_subregion(MemoryRegion *mr, 1898 MemoryRegion *subregion); 1899 1900 /* 1901 * memory_region_set_enabled: dynamically enable or disable a region 1902 * 1903 * Enables or disables a memory region. A disabled memory region 1904 * ignores all accesses to itself and its subregions. It does not 1905 * obscure sibling subregions with lower priority - it simply behaves as 1906 * if it was removed from the hierarchy. 1907 * 1908 * Regions default to being enabled. 1909 * 1910 * @mr: the region to be updated 1911 * @enabled: whether to enable or disable the region 1912 */ 1913 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1914 1915 /* 1916 * memory_region_set_address: dynamically update the address of a region 1917 * 1918 * Dynamically updates the address of a region, relative to its container. 1919 * May be used on regions are currently part of a memory hierarchy. 1920 * 1921 * @mr: the region to be updated 1922 * @addr: new address, relative to container region 1923 */ 1924 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1925 1926 /* 1927 * memory_region_set_size: dynamically update the size of a region. 1928 * 1929 * Dynamically updates the size of a region. 1930 * 1931 * @mr: the region to be updated 1932 * @size: used size of the region. 1933 */ 1934 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1935 1936 /* 1937 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1938 * 1939 * Dynamically updates the offset into the target region that an alias points 1940 * to, as if the fourth argument to memory_region_init_alias() has changed. 1941 * 1942 * @mr: the #MemoryRegion to be updated; should be an alias. 1943 * @offset: the new offset into the target memory region 1944 */ 1945 void memory_region_set_alias_offset(MemoryRegion *mr, 1946 hwaddr offset); 1947 1948 /** 1949 * memory_region_present: checks if an address relative to a @container 1950 * translates into #MemoryRegion within @container 1951 * 1952 * Answer whether a #MemoryRegion within @container covers the address 1953 * @addr. 1954 * 1955 * @container: a #MemoryRegion within which @addr is a relative address 1956 * @addr: the area within @container to be searched 1957 */ 1958 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1959 1960 /** 1961 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1962 * into any address space. 1963 * 1964 * @mr: a #MemoryRegion which should be checked if it's mapped 1965 */ 1966 bool memory_region_is_mapped(MemoryRegion *mr); 1967 1968 /** 1969 * memory_region_find: translate an address/size relative to a 1970 * MemoryRegion into a #MemoryRegionSection. 1971 * 1972 * Locates the first #MemoryRegion within @mr that overlaps the range 1973 * given by @addr and @size. 1974 * 1975 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1976 * It will have the following characteristics: 1977 * - @size = 0 iff no overlap was found 1978 * - @mr is non-%NULL iff an overlap was found 1979 * 1980 * Remember that in the return value the @offset_within_region is 1981 * relative to the returned region (in the .@mr field), not to the 1982 * @mr argument. 1983 * 1984 * Similarly, the .@offset_within_address_space is relative to the 1985 * address space that contains both regions, the passed and the 1986 * returned one. However, in the special case where the @mr argument 1987 * has no container (and thus is the root of the address space), the 1988 * following will hold: 1989 * - @offset_within_address_space >= @addr 1990 * - @offset_within_address_space + .@size <= @addr + @size 1991 * 1992 * @mr: a MemoryRegion within which @addr is a relative address 1993 * @addr: start of the area within @as to be searched 1994 * @size: size of the area to be searched 1995 */ 1996 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1997 hwaddr addr, uint64_t size); 1998 1999 /** 2000 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2001 * 2002 * Synchronizes the dirty page log for all address spaces. 2003 */ 2004 void memory_global_dirty_log_sync(void); 2005 2006 /** 2007 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2008 * 2009 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2010 * This function must be called after the dirty log bitmap is cleared, and 2011 * before dirty guest memory pages are read. If you are using 2012 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2013 * care of doing this. 2014 */ 2015 void memory_global_after_dirty_log_sync(void); 2016 2017 /** 2018 * memory_region_transaction_begin: Start a transaction. 2019 * 2020 * During a transaction, changes will be accumulated and made visible 2021 * only when the transaction ends (is committed). 2022 */ 2023 void memory_region_transaction_begin(void); 2024 2025 /** 2026 * memory_region_transaction_commit: Commit a transaction and make changes 2027 * visible to the guest. 2028 */ 2029 void memory_region_transaction_commit(void); 2030 2031 /** 2032 * memory_listener_register: register callbacks to be called when memory 2033 * sections are mapped or unmapped into an address 2034 * space 2035 * 2036 * @listener: an object containing the callbacks to be called 2037 * @filter: if non-%NULL, only regions in this address space will be observed 2038 */ 2039 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2040 2041 /** 2042 * memory_listener_unregister: undo the effect of memory_listener_register() 2043 * 2044 * @listener: an object containing the callbacks to be removed 2045 */ 2046 void memory_listener_unregister(MemoryListener *listener); 2047 2048 /** 2049 * memory_global_dirty_log_start: begin dirty logging for all regions 2050 */ 2051 void memory_global_dirty_log_start(void); 2052 2053 /** 2054 * memory_global_dirty_log_stop: end dirty logging for all regions 2055 */ 2056 void memory_global_dirty_log_stop(void); 2057 2058 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2059 2060 /** 2061 * memory_region_dispatch_read: perform a read directly to the specified 2062 * MemoryRegion. 2063 * 2064 * @mr: #MemoryRegion to access 2065 * @addr: address within that region 2066 * @pval: pointer to uint64_t which the data is written to 2067 * @op: size, sign, and endianness of the memory operation 2068 * @attrs: memory transaction attributes to use for the access 2069 */ 2070 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2071 hwaddr addr, 2072 uint64_t *pval, 2073 MemOp op, 2074 MemTxAttrs attrs); 2075 /** 2076 * memory_region_dispatch_write: perform a write directly to the specified 2077 * MemoryRegion. 2078 * 2079 * @mr: #MemoryRegion to access 2080 * @addr: address within that region 2081 * @data: data to write 2082 * @op: size, sign, and endianness of the memory operation 2083 * @attrs: memory transaction attributes to use for the access 2084 */ 2085 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2086 hwaddr addr, 2087 uint64_t data, 2088 MemOp op, 2089 MemTxAttrs attrs); 2090 2091 /** 2092 * address_space_init: initializes an address space 2093 * 2094 * @as: an uninitialized #AddressSpace 2095 * @root: a #MemoryRegion that routes addresses for the address space 2096 * @name: an address space name. The name is only used for debugging 2097 * output. 2098 */ 2099 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2100 2101 /** 2102 * address_space_destroy: destroy an address space 2103 * 2104 * Releases all resources associated with an address space. After an address space 2105 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2106 * as well. 2107 * 2108 * @as: address space to be destroyed 2109 */ 2110 void address_space_destroy(AddressSpace *as); 2111 2112 /** 2113 * address_space_remove_listeners: unregister all listeners of an address space 2114 * 2115 * Removes all callbacks previously registered with memory_listener_register() 2116 * for @as. 2117 * 2118 * @as: an initialized #AddressSpace 2119 */ 2120 void address_space_remove_listeners(AddressSpace *as); 2121 2122 /** 2123 * address_space_rw: read from or write to an address space. 2124 * 2125 * Return a MemTxResult indicating whether the operation succeeded 2126 * or failed (eg unassigned memory, device rejected the transaction, 2127 * IOMMU fault). 2128 * 2129 * @as: #AddressSpace to be accessed 2130 * @addr: address within that address space 2131 * @attrs: memory transaction attributes 2132 * @buf: buffer with the data transferred 2133 * @len: the number of bytes to read or write 2134 * @is_write: indicates the transfer direction 2135 */ 2136 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2137 MemTxAttrs attrs, void *buf, 2138 hwaddr len, bool is_write); 2139 2140 /** 2141 * address_space_write: write to address space. 2142 * 2143 * Return a MemTxResult indicating whether the operation succeeded 2144 * or failed (eg unassigned memory, device rejected the transaction, 2145 * IOMMU fault). 2146 * 2147 * @as: #AddressSpace to be accessed 2148 * @addr: address within that address space 2149 * @attrs: memory transaction attributes 2150 * @buf: buffer with the data transferred 2151 * @len: the number of bytes to write 2152 */ 2153 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2154 MemTxAttrs attrs, 2155 const void *buf, hwaddr len); 2156 2157 /** 2158 * address_space_write_rom: write to address space, including ROM. 2159 * 2160 * This function writes to the specified address space, but will 2161 * write data to both ROM and RAM. This is used for non-guest 2162 * writes like writes from the gdb debug stub or initial loading 2163 * of ROM contents. 2164 * 2165 * Note that portions of the write which attempt to write data to 2166 * a device will be silently ignored -- only real RAM and ROM will 2167 * be written to. 2168 * 2169 * Return a MemTxResult indicating whether the operation succeeded 2170 * or failed (eg unassigned memory, device rejected the transaction, 2171 * IOMMU fault). 2172 * 2173 * @as: #AddressSpace to be accessed 2174 * @addr: address within that address space 2175 * @attrs: memory transaction attributes 2176 * @buf: buffer with the data transferred 2177 * @len: the number of bytes to write 2178 */ 2179 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2180 MemTxAttrs attrs, 2181 const void *buf, hwaddr len); 2182 2183 /* address_space_ld*: load from an address space 2184 * address_space_st*: store to an address space 2185 * 2186 * These functions perform a load or store of the byte, word, 2187 * longword or quad to the specified address within the AddressSpace. 2188 * The _le suffixed functions treat the data as little endian; 2189 * _be indicates big endian; no suffix indicates "same endianness 2190 * as guest CPU". 2191 * 2192 * The "guest CPU endianness" accessors are deprecated for use outside 2193 * target-* code; devices should be CPU-agnostic and use either the LE 2194 * or the BE accessors. 2195 * 2196 * @as #AddressSpace to be accessed 2197 * @addr: address within that address space 2198 * @val: data value, for stores 2199 * @attrs: memory transaction attributes 2200 * @result: location to write the success/failure of the transaction; 2201 * if NULL, this information is discarded 2202 */ 2203 2204 #define SUFFIX 2205 #define ARG1 as 2206 #define ARG1_DECL AddressSpace *as 2207 #include "exec/memory_ldst.h.inc" 2208 2209 #define SUFFIX 2210 #define ARG1 as 2211 #define ARG1_DECL AddressSpace *as 2212 #include "exec/memory_ldst_phys.h.inc" 2213 2214 struct MemoryRegionCache { 2215 void *ptr; 2216 hwaddr xlat; 2217 hwaddr len; 2218 FlatView *fv; 2219 MemoryRegionSection mrs; 2220 bool is_write; 2221 }; 2222 2223 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2224 2225 2226 /* address_space_ld*_cached: load from a cached #MemoryRegion 2227 * address_space_st*_cached: store into a cached #MemoryRegion 2228 * 2229 * These functions perform a load or store of the byte, word, 2230 * longword or quad to the specified address. The address is 2231 * a physical address in the AddressSpace, but it must lie within 2232 * a #MemoryRegion that was mapped with address_space_cache_init. 2233 * 2234 * The _le suffixed functions treat the data as little endian; 2235 * _be indicates big endian; no suffix indicates "same endianness 2236 * as guest CPU". 2237 * 2238 * The "guest CPU endianness" accessors are deprecated for use outside 2239 * target-* code; devices should be CPU-agnostic and use either the LE 2240 * or the BE accessors. 2241 * 2242 * @cache: previously initialized #MemoryRegionCache to be accessed 2243 * @addr: address within the address space 2244 * @val: data value, for stores 2245 * @attrs: memory transaction attributes 2246 * @result: location to write the success/failure of the transaction; 2247 * if NULL, this information is discarded 2248 */ 2249 2250 #define SUFFIX _cached_slow 2251 #define ARG1 cache 2252 #define ARG1_DECL MemoryRegionCache *cache 2253 #include "exec/memory_ldst.h.inc" 2254 2255 /* Inline fast path for direct RAM access. */ 2256 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2257 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2258 { 2259 assert(addr < cache->len); 2260 if (likely(cache->ptr)) { 2261 return ldub_p(cache->ptr + addr); 2262 } else { 2263 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2264 } 2265 } 2266 2267 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2268 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 2269 { 2270 assert(addr < cache->len); 2271 if (likely(cache->ptr)) { 2272 stb_p(cache->ptr + addr, val); 2273 } else { 2274 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2275 } 2276 } 2277 2278 #define ENDIANNESS _le 2279 #include "exec/memory_ldst_cached.h.inc" 2280 2281 #define ENDIANNESS _be 2282 #include "exec/memory_ldst_cached.h.inc" 2283 2284 #define SUFFIX _cached 2285 #define ARG1 cache 2286 #define ARG1_DECL MemoryRegionCache *cache 2287 #include "exec/memory_ldst_phys.h.inc" 2288 2289 /* address_space_cache_init: prepare for repeated access to a physical 2290 * memory region 2291 * 2292 * @cache: #MemoryRegionCache to be filled 2293 * @as: #AddressSpace to be accessed 2294 * @addr: address within that address space 2295 * @len: length of buffer 2296 * @is_write: indicates the transfer direction 2297 * 2298 * Will only work with RAM, and may map a subset of the requested range by 2299 * returning a value that is less than @len. On failure, return a negative 2300 * errno value. 2301 * 2302 * Because it only works with RAM, this function can be used for 2303 * read-modify-write operations. In this case, is_write should be %true. 2304 * 2305 * Note that addresses passed to the address_space_*_cached functions 2306 * are relative to @addr. 2307 */ 2308 int64_t address_space_cache_init(MemoryRegionCache *cache, 2309 AddressSpace *as, 2310 hwaddr addr, 2311 hwaddr len, 2312 bool is_write); 2313 2314 /** 2315 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2316 * 2317 * @cache: The #MemoryRegionCache to operate on. 2318 * @addr: The first physical address that was written, relative to the 2319 * address that was passed to @address_space_cache_init. 2320 * @access_len: The number of bytes that were written starting at @addr. 2321 */ 2322 void address_space_cache_invalidate(MemoryRegionCache *cache, 2323 hwaddr addr, 2324 hwaddr access_len); 2325 2326 /** 2327 * address_space_cache_destroy: free a #MemoryRegionCache 2328 * 2329 * @cache: The #MemoryRegionCache whose memory should be released. 2330 */ 2331 void address_space_cache_destroy(MemoryRegionCache *cache); 2332 2333 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2334 * entry. Should be called from an RCU critical section. 2335 */ 2336 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2337 bool is_write, MemTxAttrs attrs); 2338 2339 /* address_space_translate: translate an address range into an address space 2340 * into a MemoryRegion and an address range into that section. Should be 2341 * called from an RCU critical section, to avoid that the last reference 2342 * to the returned region disappears after address_space_translate returns. 2343 * 2344 * @fv: #FlatView to be accessed 2345 * @addr: address within that address space 2346 * @xlat: pointer to address within the returned memory region section's 2347 * #MemoryRegion. 2348 * @len: pointer to length 2349 * @is_write: indicates the transfer direction 2350 * @attrs: memory attributes 2351 */ 2352 MemoryRegion *flatview_translate(FlatView *fv, 2353 hwaddr addr, hwaddr *xlat, 2354 hwaddr *len, bool is_write, 2355 MemTxAttrs attrs); 2356 2357 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2358 hwaddr addr, hwaddr *xlat, 2359 hwaddr *len, bool is_write, 2360 MemTxAttrs attrs) 2361 { 2362 return flatview_translate(address_space_to_flatview(as), 2363 addr, xlat, len, is_write, attrs); 2364 } 2365 2366 /* address_space_access_valid: check for validity of accessing an address 2367 * space range 2368 * 2369 * Check whether memory is assigned to the given address space range, and 2370 * access is permitted by any IOMMU regions that are active for the address 2371 * space. 2372 * 2373 * For now, addr and len should be aligned to a page size. This limitation 2374 * will be lifted in the future. 2375 * 2376 * @as: #AddressSpace to be accessed 2377 * @addr: address within that address space 2378 * @len: length of the area to be checked 2379 * @is_write: indicates the transfer direction 2380 * @attrs: memory attributes 2381 */ 2382 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2383 bool is_write, MemTxAttrs attrs); 2384 2385 /* address_space_map: map a physical memory region into a host virtual address 2386 * 2387 * May map a subset of the requested range, given by and returned in @plen. 2388 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2389 * the mapping are exhausted. 2390 * Use only for reads OR writes - not for read-modify-write operations. 2391 * Use cpu_register_map_client() to know when retrying the map operation is 2392 * likely to succeed. 2393 * 2394 * @as: #AddressSpace to be accessed 2395 * @addr: address within that address space 2396 * @plen: pointer to length of buffer; updated on return 2397 * @is_write: indicates the transfer direction 2398 * @attrs: memory attributes 2399 */ 2400 void *address_space_map(AddressSpace *as, hwaddr addr, 2401 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2402 2403 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2404 * 2405 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2406 * the amount of memory that was actually read or written by the caller. 2407 * 2408 * @as: #AddressSpace used 2409 * @buffer: host pointer as returned by address_space_map() 2410 * @len: buffer length as returned by address_space_map() 2411 * @access_len: amount of data actually transferred 2412 * @is_write: indicates the transfer direction 2413 */ 2414 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2415 bool is_write, hwaddr access_len); 2416 2417 2418 /* Internal functions, part of the implementation of address_space_read. */ 2419 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2420 MemTxAttrs attrs, void *buf, hwaddr len); 2421 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2422 MemTxAttrs attrs, void *buf, 2423 hwaddr len, hwaddr addr1, hwaddr l, 2424 MemoryRegion *mr); 2425 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2426 2427 /* Internal functions, part of the implementation of address_space_read_cached 2428 * and address_space_write_cached. */ 2429 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2430 hwaddr addr, void *buf, hwaddr len); 2431 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2432 hwaddr addr, const void *buf, 2433 hwaddr len); 2434 2435 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2436 { 2437 if (is_write) { 2438 return memory_region_is_ram(mr) && !mr->readonly && 2439 !mr->rom_device && !memory_region_is_ram_device(mr); 2440 } else { 2441 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2442 memory_region_is_romd(mr); 2443 } 2444 } 2445 2446 /** 2447 * address_space_read: read from an address space. 2448 * 2449 * Return a MemTxResult indicating whether the operation succeeded 2450 * or failed (eg unassigned memory, device rejected the transaction, 2451 * IOMMU fault). Called within RCU critical section. 2452 * 2453 * @as: #AddressSpace to be accessed 2454 * @addr: address within that address space 2455 * @attrs: memory transaction attributes 2456 * @buf: buffer with the data transferred 2457 * @len: length of the data transferred 2458 */ 2459 static inline __attribute__((__always_inline__)) 2460 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2461 MemTxAttrs attrs, void *buf, 2462 hwaddr len) 2463 { 2464 MemTxResult result = MEMTX_OK; 2465 hwaddr l, addr1; 2466 void *ptr; 2467 MemoryRegion *mr; 2468 FlatView *fv; 2469 2470 if (__builtin_constant_p(len)) { 2471 if (len) { 2472 RCU_READ_LOCK_GUARD(); 2473 fv = address_space_to_flatview(as); 2474 l = len; 2475 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2476 if (len == l && memory_access_is_direct(mr, false)) { 2477 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2478 memcpy(buf, ptr, len); 2479 } else { 2480 result = flatview_read_continue(fv, addr, attrs, buf, len, 2481 addr1, l, mr); 2482 } 2483 } 2484 } else { 2485 result = address_space_read_full(as, addr, attrs, buf, len); 2486 } 2487 return result; 2488 } 2489 2490 /** 2491 * address_space_read_cached: read from a cached RAM region 2492 * 2493 * @cache: Cached region to be addressed 2494 * @addr: address relative to the base of the RAM region 2495 * @buf: buffer with the data transferred 2496 * @len: length of the data transferred 2497 */ 2498 static inline MemTxResult 2499 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2500 void *buf, hwaddr len) 2501 { 2502 assert(addr < cache->len && len <= cache->len - addr); 2503 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr, false); 2504 if (likely(cache->ptr)) { 2505 memcpy(buf, cache->ptr + addr, len); 2506 return MEMTX_OK; 2507 } else { 2508 return address_space_read_cached_slow(cache, addr, buf, len); 2509 } 2510 } 2511 2512 /** 2513 * address_space_write_cached: write to a cached RAM region 2514 * 2515 * @cache: Cached region to be addressed 2516 * @addr: address relative to the base of the RAM region 2517 * @buf: buffer with the data transferred 2518 * @len: length of the data transferred 2519 */ 2520 static inline MemTxResult 2521 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2522 const void *buf, hwaddr len) 2523 { 2524 assert(addr < cache->len && len <= cache->len - addr); 2525 if (likely(cache->ptr)) { 2526 memcpy(cache->ptr + addr, buf, len); 2527 return MEMTX_OK; 2528 } else { 2529 return address_space_write_cached_slow(cache, addr, buf, len); 2530 } 2531 } 2532 2533 #ifdef NEED_CPU_H 2534 /* enum device_endian to MemOp. */ 2535 static inline MemOp devend_memop(enum device_endian end) 2536 { 2537 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2538 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2539 2540 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2541 /* Swap if non-host endianness or native (target) endianness */ 2542 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2543 #else 2544 const int non_host_endianness = 2545 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2546 2547 /* In this case, native (target) endianness needs no swap. */ 2548 return (end == non_host_endianness) ? MO_BSWAP : 0; 2549 #endif 2550 } 2551 #endif 2552 2553 /* 2554 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2555 * to manage the actual amount of memory consumed by the VM (then, the memory 2556 * provided by RAM blocks might be bigger than the desired memory consumption). 2557 * This *must* be set if: 2558 * - Discarding parts of a RAM blocks does not result in the change being 2559 * reflected in the VM and the pages getting freed. 2560 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2561 * discards blindly. 2562 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2563 * encrypted VMs). 2564 * Technologies that only temporarily pin the current working set of a 2565 * driver are fine, because we don't expect such pages to be discarded 2566 * (esp. based on guest action like balloon inflation). 2567 * 2568 * This is *not* to be used to protect from concurrent discards (esp., 2569 * postcopy). 2570 * 2571 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2572 * discards to work reliably is active. 2573 */ 2574 int ram_block_discard_disable(bool state); 2575 2576 /* 2577 * Inhibit technologies that disable discarding of pages in RAM blocks. 2578 * 2579 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2580 * broken. 2581 */ 2582 int ram_block_discard_require(bool state); 2583 2584 /* 2585 * Test if discarding of memory in ram blocks is disabled. 2586 */ 2587 bool ram_block_discard_is_disabled(void); 2588 2589 /* 2590 * Test if discarding of memory in ram blocks is required to work reliably. 2591 */ 2592 bool ram_block_discard_is_required(void); 2593 2594 #endif 2595 2596 #endif 2597