1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 #define MEMORY_REGION(obj) \ 38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 41 #define IOMMU_MEMORY_REGION(obj) \ 42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 43 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 45 TYPE_IOMMU_MEMORY_REGION) 46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 48 TYPE_IOMMU_MEMORY_REGION) 49 50 extern bool global_dirty_log; 51 52 typedef struct MemoryRegionOps MemoryRegionOps; 53 typedef struct MemoryRegionMmio MemoryRegionMmio; 54 55 struct MemoryRegionMmio { 56 CPUReadMemoryFunc *read[3]; 57 CPUWriteMemoryFunc *write[3]; 58 }; 59 60 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 61 62 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 63 typedef enum { 64 IOMMU_NONE = 0, 65 IOMMU_RO = 1, 66 IOMMU_WO = 2, 67 IOMMU_RW = 3, 68 } IOMMUAccessFlags; 69 70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 71 72 struct IOMMUTLBEntry { 73 AddressSpace *target_as; 74 hwaddr iova; 75 hwaddr translated_addr; 76 hwaddr addr_mask; /* 0xfff = 4k translation */ 77 IOMMUAccessFlags perm; 78 }; 79 80 /* 81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 82 * register with one or multiple IOMMU Notifier capability bit(s). 83 */ 84 typedef enum { 85 IOMMU_NOTIFIER_NONE = 0, 86 /* Notify cache invalidations */ 87 IOMMU_NOTIFIER_UNMAP = 0x1, 88 /* Notify entry changes (newly created entries) */ 89 IOMMU_NOTIFIER_MAP = 0x2, 90 } IOMMUNotifierFlag; 91 92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 93 94 struct IOMMUNotifier; 95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 96 IOMMUTLBEntry *data); 97 98 struct IOMMUNotifier { 99 IOMMUNotify notify; 100 IOMMUNotifierFlag notifier_flags; 101 /* Notify for address space range start <= addr <= end */ 102 hwaddr start; 103 hwaddr end; 104 int iommu_idx; 105 QLIST_ENTRY(IOMMUNotifier) node; 106 }; 107 typedef struct IOMMUNotifier IOMMUNotifier; 108 109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 110 #define RAM_PREALLOC (1 << 0) 111 112 /* RAM is mmap-ed with MAP_SHARED */ 113 #define RAM_SHARED (1 << 1) 114 115 /* Only a portion of RAM (used_length) is actually used, and migrated. 116 * This used_length size can change across reboots. 117 */ 118 #define RAM_RESIZEABLE (1 << 2) 119 120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 121 * zero the page and wake waiting processes. 122 * (Set during postcopy) 123 */ 124 #define RAM_UF_ZEROPAGE (1 << 3) 125 126 /* RAM can be migrated */ 127 #define RAM_MIGRATABLE (1 << 4) 128 129 /* RAM is a persistent kind memory */ 130 #define RAM_PMEM (1 << 5) 131 132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 133 IOMMUNotifierFlag flags, 134 hwaddr start, hwaddr end, 135 int iommu_idx) 136 { 137 n->notify = fn; 138 n->notifier_flags = flags; 139 n->start = start; 140 n->end = end; 141 n->iommu_idx = iommu_idx; 142 } 143 144 /* 145 * Memory region callbacks 146 */ 147 struct MemoryRegionOps { 148 /* Read from the memory region. @addr is relative to @mr; @size is 149 * in bytes. */ 150 uint64_t (*read)(void *opaque, 151 hwaddr addr, 152 unsigned size); 153 /* Write to the memory region. @addr is relative to @mr; @size is 154 * in bytes. */ 155 void (*write)(void *opaque, 156 hwaddr addr, 157 uint64_t data, 158 unsigned size); 159 160 MemTxResult (*read_with_attrs)(void *opaque, 161 hwaddr addr, 162 uint64_t *data, 163 unsigned size, 164 MemTxAttrs attrs); 165 MemTxResult (*write_with_attrs)(void *opaque, 166 hwaddr addr, 167 uint64_t data, 168 unsigned size, 169 MemTxAttrs attrs); 170 171 enum device_endian endianness; 172 /* Guest-visible constraints: */ 173 struct { 174 /* If nonzero, specify bounds on access sizes beyond which a machine 175 * check is thrown. 176 */ 177 unsigned min_access_size; 178 unsigned max_access_size; 179 /* If true, unaligned accesses are supported. Otherwise unaligned 180 * accesses throw machine checks. 181 */ 182 bool unaligned; 183 /* 184 * If present, and returns #false, the transaction is not accepted 185 * by the device (and results in machine dependent behaviour such 186 * as a machine check exception). 187 */ 188 bool (*accepts)(void *opaque, hwaddr addr, 189 unsigned size, bool is_write, 190 MemTxAttrs attrs); 191 } valid; 192 /* Internal implementation constraints: */ 193 struct { 194 /* If nonzero, specifies the minimum size implemented. Smaller sizes 195 * will be rounded upwards and a partial result will be returned. 196 */ 197 unsigned min_access_size; 198 /* If nonzero, specifies the maximum size implemented. Larger sizes 199 * will be done as a series of accesses with smaller sizes. 200 */ 201 unsigned max_access_size; 202 /* If true, unaligned accesses are supported. Otherwise all accesses 203 * are converted to (possibly multiple) naturally aligned accesses. 204 */ 205 bool unaligned; 206 } impl; 207 }; 208 209 typedef struct MemoryRegionClass { 210 /* private */ 211 ObjectClass parent_class; 212 } MemoryRegionClass; 213 214 215 enum IOMMUMemoryRegionAttr { 216 IOMMU_ATTR_SPAPR_TCE_FD 217 }; 218 219 /** 220 * IOMMUMemoryRegionClass: 221 * 222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 223 * and provide an implementation of at least the @translate method here 224 * to handle requests to the memory region. Other methods are optional. 225 * 226 * The IOMMU implementation must use the IOMMU notifier infrastructure 227 * to report whenever mappings are changed, by calling 228 * memory_region_notify_iommu() (or, if necessary, by calling 229 * memory_region_notify_one() for each registered notifier). 230 * 231 * Conceptually an IOMMU provides a mapping from input address 232 * to an output TLB entry. If the IOMMU is aware of memory transaction 233 * attributes and the output TLB entry depends on the transaction 234 * attributes, we represent this using IOMMU indexes. Each index 235 * selects a particular translation table that the IOMMU has: 236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 237 * @translate takes an input address and an IOMMU index 238 * and the mapping returned can only depend on the input address and the 239 * IOMMU index. 240 * 241 * Most IOMMUs don't care about the transaction attributes and support 242 * only a single IOMMU index. A more complex IOMMU might have one index 243 * for secure transactions and one for non-secure transactions. 244 */ 245 typedef struct IOMMUMemoryRegionClass { 246 /* private */ 247 MemoryRegionClass parent_class; 248 249 /* 250 * Return a TLB entry that contains a given address. 251 * 252 * The IOMMUAccessFlags indicated via @flag are optional and may 253 * be specified as IOMMU_NONE to indicate that the caller needs 254 * the full translation information for both reads and writes. If 255 * the access flags are specified then the IOMMU implementation 256 * may use this as an optimization, to stop doing a page table 257 * walk as soon as it knows that the requested permissions are not 258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 259 * full page table walk and report the permissions in the returned 260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 261 * return different mappings for reads and writes.) 262 * 263 * The returned information remains valid while the caller is 264 * holding the big QEMU lock or is inside an RCU critical section; 265 * if the caller wishes to cache the mapping beyond that it must 266 * register an IOMMU notifier so it can invalidate its cached 267 * information when the IOMMU mapping changes. 268 * 269 * @iommu: the IOMMUMemoryRegion 270 * @hwaddr: address to be translated within the memory region 271 * @flag: requested access permissions 272 * @iommu_idx: IOMMU index for the translation 273 */ 274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 275 IOMMUAccessFlags flag, int iommu_idx); 276 /* Returns minimum supported page size in bytes. 277 * If this method is not provided then the minimum is assumed to 278 * be TARGET_PAGE_SIZE. 279 * 280 * @iommu: the IOMMUMemoryRegion 281 */ 282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 283 /* Called when IOMMU Notifier flag changes (ie when the set of 284 * events which IOMMU users are requesting notification for changes). 285 * Optional method -- need not be provided if the IOMMU does not 286 * need to know exactly which events must be notified. 287 * 288 * @iommu: the IOMMUMemoryRegion 289 * @old_flags: events which previously needed to be notified 290 * @new_flags: events which now need to be notified 291 * 292 * Returns 0 on success, or a negative errno; in particular 293 * returns -EINVAL if the new flag bitmap is not supported by the 294 * IOMMU memory region. In case of failure, the error object 295 * must be created 296 */ 297 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 298 IOMMUNotifierFlag old_flags, 299 IOMMUNotifierFlag new_flags, 300 Error **errp); 301 /* Called to handle memory_region_iommu_replay(). 302 * 303 * The default implementation of memory_region_iommu_replay() is to 304 * call the IOMMU translate method for every page in the address space 305 * with flag == IOMMU_NONE and then call the notifier if translate 306 * returns a valid mapping. If this method is implemented then it 307 * overrides the default behaviour, and must provide the full semantics 308 * of memory_region_iommu_replay(), by calling @notifier for every 309 * translation present in the IOMMU. 310 * 311 * Optional method -- an IOMMU only needs to provide this method 312 * if the default is inefficient or produces undesirable side effects. 313 * 314 * Note: this is not related to record-and-replay functionality. 315 */ 316 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 317 318 /* Get IOMMU misc attributes. This is an optional method that 319 * can be used to allow users of the IOMMU to get implementation-specific 320 * information. The IOMMU implements this method to handle calls 321 * by IOMMU users to memory_region_iommu_get_attr() by filling in 322 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 323 * the IOMMU supports. If the method is unimplemented then 324 * memory_region_iommu_get_attr() will always return -EINVAL. 325 * 326 * @iommu: the IOMMUMemoryRegion 327 * @attr: attribute being queried 328 * @data: memory to fill in with the attribute data 329 * 330 * Returns 0 on success, or a negative errno; in particular 331 * returns -EINVAL for unrecognized or unimplemented attribute types. 332 */ 333 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 334 void *data); 335 336 /* Return the IOMMU index to use for a given set of transaction attributes. 337 * 338 * Optional method: if an IOMMU only supports a single IOMMU index then 339 * the default implementation of memory_region_iommu_attrs_to_index() 340 * will return 0. 341 * 342 * The indexes supported by an IOMMU must be contiguous, starting at 0. 343 * 344 * @iommu: the IOMMUMemoryRegion 345 * @attrs: memory transaction attributes 346 */ 347 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 348 349 /* Return the number of IOMMU indexes this IOMMU supports. 350 * 351 * Optional method: if this method is not provided, then 352 * memory_region_iommu_num_indexes() will return 1, indicating that 353 * only a single IOMMU index is supported. 354 * 355 * @iommu: the IOMMUMemoryRegion 356 */ 357 int (*num_indexes)(IOMMUMemoryRegion *iommu); 358 } IOMMUMemoryRegionClass; 359 360 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 361 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 362 363 /** MemoryRegion: 364 * 365 * A struct representing a memory region. 366 */ 367 struct MemoryRegion { 368 Object parent_obj; 369 370 /* private: */ 371 372 /* The following fields should fit in a cache line */ 373 bool romd_mode; 374 bool ram; 375 bool subpage; 376 bool readonly; /* For RAM regions */ 377 bool nonvolatile; 378 bool rom_device; 379 bool flush_coalesced_mmio; 380 bool global_locking; 381 uint8_t dirty_log_mask; 382 bool is_iommu; 383 RAMBlock *ram_block; 384 Object *owner; 385 386 const MemoryRegionOps *ops; 387 void *opaque; 388 MemoryRegion *container; 389 Int128 size; 390 hwaddr addr; 391 void (*destructor)(MemoryRegion *mr); 392 uint64_t align; 393 bool terminates; 394 bool ram_device; 395 bool enabled; 396 bool warning_printed; /* For reservations */ 397 uint8_t vga_logging_count; 398 MemoryRegion *alias; 399 hwaddr alias_offset; 400 int32_t priority; 401 QTAILQ_HEAD(, MemoryRegion) subregions; 402 QTAILQ_ENTRY(MemoryRegion) subregions_link; 403 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 404 const char *name; 405 unsigned ioeventfd_nb; 406 MemoryRegionIoeventfd *ioeventfds; 407 }; 408 409 struct IOMMUMemoryRegion { 410 MemoryRegion parent_obj; 411 412 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 413 IOMMUNotifierFlag iommu_notify_flags; 414 }; 415 416 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 417 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 418 419 /** 420 * MemoryListener: callbacks structure for updates to the physical memory map 421 * 422 * Allows a component to adjust to changes in the guest-visible memory map. 423 * Use with memory_listener_register() and memory_listener_unregister(). 424 */ 425 struct MemoryListener { 426 /** 427 * @begin: 428 * 429 * Called at the beginning of an address space update transaction. 430 * Followed by calls to #MemoryListener.region_add(), 431 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 432 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 433 * increasing address order. 434 * 435 * @listener: The #MemoryListener. 436 */ 437 void (*begin)(MemoryListener *listener); 438 439 /** 440 * @commit: 441 * 442 * Called at the end of an address space update transaction, 443 * after the last call to #MemoryListener.region_add(), 444 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 445 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 446 * 447 * @listener: The #MemoryListener. 448 */ 449 void (*commit)(MemoryListener *listener); 450 451 /** 452 * @region_add: 453 * 454 * Called during an address space update transaction, 455 * for a section of the address space that is new in this address space 456 * space since the last transaction. 457 * 458 * @listener: The #MemoryListener. 459 * @section: The new #MemoryRegionSection. 460 */ 461 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 462 463 /** 464 * @region_del: 465 * 466 * Called during an address space update transaction, 467 * for a section of the address space that has disappeared in the address 468 * space since the last transaction. 469 * 470 * @listener: The #MemoryListener. 471 * @section: The old #MemoryRegionSection. 472 */ 473 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 474 475 /** 476 * @region_nop: 477 * 478 * Called during an address space update transaction, 479 * for a section of the address space that is in the same place in the address 480 * space as in the last transaction. 481 * 482 * @listener: The #MemoryListener. 483 * @section: The #MemoryRegionSection. 484 */ 485 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 486 487 /** 488 * @log_start: 489 * 490 * Called during an address space update transaction, after 491 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or 492 * #MemoryListener.region_nop(), if dirty memory logging clients have 493 * become active since the last transaction. 494 * 495 * @listener: The #MemoryListener. 496 * @section: The #MemoryRegionSection. 497 * @old: A bitmap of dirty memory logging clients that were active in 498 * the previous transaction. 499 * @new: A bitmap of dirty memory logging clients that are active in 500 * the current transaction. 501 */ 502 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 503 int old, int new); 504 505 /** 506 * @log_stop: 507 * 508 * Called during an address space update transaction, after 509 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 510 * #MemoryListener.region_nop() and possibly after 511 * #MemoryListener.log_start(), if dirty memory logging clients have 512 * become inactive since the last transaction. 513 * 514 * @listener: The #MemoryListener. 515 * @section: The #MemoryRegionSection. 516 * @old: A bitmap of dirty memory logging clients that were active in 517 * the previous transaction. 518 * @new: A bitmap of dirty memory logging clients that are active in 519 * the current transaction. 520 */ 521 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 522 int old, int new); 523 524 /** 525 * @log_sync: 526 * 527 * Called by memory_region_snapshot_and_clear_dirty() and 528 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 529 * copy of the dirty memory bitmap for a #MemoryRegionSection. 530 * 531 * @listener: The #MemoryListener. 532 * @section: The #MemoryRegionSection. 533 */ 534 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 535 536 /** 537 * @log_clear: 538 * 539 * Called before reading the dirty memory bitmap for a 540 * #MemoryRegionSection. 541 * 542 * @listener: The #MemoryListener. 543 * @section: The #MemoryRegionSection. 544 */ 545 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 546 547 /** 548 * @log_global_start: 549 * 550 * Called by memory_global_dirty_log_start(), which 551 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 552 * the address space. #MemoryListener.log_global_start() is also 553 * called when a #MemoryListener is added, if global dirty logging is 554 * active at that time. 555 * 556 * @listener: The #MemoryListener. 557 */ 558 void (*log_global_start)(MemoryListener *listener); 559 560 /** 561 * @log_global_stop: 562 * 563 * Called by memory_global_dirty_log_stop(), which 564 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 565 * the address space. 566 * 567 * @listener: The #MemoryListener. 568 */ 569 void (*log_global_stop)(MemoryListener *listener); 570 571 /** 572 * @log_global_after_sync: 573 * 574 * Called after reading the dirty memory bitmap 575 * for any #MemoryRegionSection. 576 * 577 * @listener: The #MemoryListener. 578 */ 579 void (*log_global_after_sync)(MemoryListener *listener); 580 581 /** 582 * @eventfd_add: 583 * 584 * Called during an address space update transaction, 585 * for a section of the address space that has had a new ioeventfd 586 * registration since the last transaction. 587 * 588 * @listener: The #MemoryListener. 589 * @section: The new #MemoryRegionSection. 590 * @match_data: The @match_data parameter for the new ioeventfd. 591 * @data: The @data parameter for the new ioeventfd. 592 * @e: The #EventNotifier parameter for the new ioeventfd. 593 */ 594 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 595 bool match_data, uint64_t data, EventNotifier *e); 596 597 /** 598 * @eventfd_del: 599 * 600 * Called during an address space update transaction, 601 * for a section of the address space that has dropped an ioeventfd 602 * registration since the last transaction. 603 * 604 * @listener: The #MemoryListener. 605 * @section: The new #MemoryRegionSection. 606 * @match_data: The @match_data parameter for the dropped ioeventfd. 607 * @data: The @data parameter for the dropped ioeventfd. 608 * @e: The #EventNotifier parameter for the dropped ioeventfd. 609 */ 610 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 611 bool match_data, uint64_t data, EventNotifier *e); 612 613 /** 614 * @coalesced_io_add: 615 * 616 * Called during an address space update transaction, 617 * for a section of the address space that has had a new coalesced 618 * MMIO range registration since the last transaction. 619 * 620 * @listener: The #MemoryListener. 621 * @section: The new #MemoryRegionSection. 622 * @addr: The starting address for the coalesced MMIO range. 623 * @len: The length of the coalesced MMIO range. 624 */ 625 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 626 hwaddr addr, hwaddr len); 627 628 /** 629 * @coalesced_io_del: 630 * 631 * Called during an address space update transaction, 632 * for a section of the address space that has dropped a coalesced 633 * MMIO range since the last transaction. 634 * 635 * @listener: The #MemoryListener. 636 * @section: The new #MemoryRegionSection. 637 * @addr: The starting address for the coalesced MMIO range. 638 * @len: The length of the coalesced MMIO range. 639 */ 640 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 641 hwaddr addr, hwaddr len); 642 /** 643 * @priority: 644 * 645 * Govern the order in which memory listeners are invoked. Lower priorities 646 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 647 * or "stop" callbacks. 648 */ 649 unsigned priority; 650 651 /* private: */ 652 AddressSpace *address_space; 653 QTAILQ_ENTRY(MemoryListener) link; 654 QTAILQ_ENTRY(MemoryListener) link_as; 655 }; 656 657 /** 658 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 659 */ 660 struct AddressSpace { 661 /* private: */ 662 struct rcu_head rcu; 663 char *name; 664 MemoryRegion *root; 665 666 /* Accessed via RCU. */ 667 struct FlatView *current_map; 668 669 int ioeventfd_nb; 670 struct MemoryRegionIoeventfd *ioeventfds; 671 QTAILQ_HEAD(, MemoryListener) listeners; 672 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 673 }; 674 675 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 676 typedef struct FlatRange FlatRange; 677 678 /* Flattened global view of current active memory hierarchy. Kept in sorted 679 * order. 680 */ 681 struct FlatView { 682 struct rcu_head rcu; 683 unsigned ref; 684 FlatRange *ranges; 685 unsigned nr; 686 unsigned nr_allocated; 687 struct AddressSpaceDispatch *dispatch; 688 MemoryRegion *root; 689 }; 690 691 static inline FlatView *address_space_to_flatview(AddressSpace *as) 692 { 693 return atomic_rcu_read(&as->current_map); 694 } 695 696 697 /** 698 * MemoryRegionSection: describes a fragment of a #MemoryRegion 699 * 700 * @mr: the region, or %NULL if empty 701 * @fv: the flat view of the address space the region is mapped in 702 * @offset_within_region: the beginning of the section, relative to @mr's start 703 * @size: the size of the section; will not exceed @mr's boundaries 704 * @offset_within_address_space: the address of the first byte of the section 705 * relative to the region's address space 706 * @readonly: writes to this section are ignored 707 * @nonvolatile: this section is non-volatile 708 */ 709 struct MemoryRegionSection { 710 Int128 size; 711 MemoryRegion *mr; 712 FlatView *fv; 713 hwaddr offset_within_region; 714 hwaddr offset_within_address_space; 715 bool readonly; 716 bool nonvolatile; 717 }; 718 719 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 720 MemoryRegionSection *b) 721 { 722 return a->mr == b->mr && 723 a->fv == b->fv && 724 a->offset_within_region == b->offset_within_region && 725 a->offset_within_address_space == b->offset_within_address_space && 726 int128_eq(a->size, b->size) && 727 a->readonly == b->readonly && 728 a->nonvolatile == b->nonvolatile; 729 } 730 731 /** 732 * memory_region_init: Initialize a memory region 733 * 734 * The region typically acts as a container for other memory regions. Use 735 * memory_region_add_subregion() to add subregions. 736 * 737 * @mr: the #MemoryRegion to be initialized 738 * @owner: the object that tracks the region's reference count 739 * @name: used for debugging; not visible to the user or ABI 740 * @size: size of the region; any subregions beyond this size will be clipped 741 */ 742 void memory_region_init(MemoryRegion *mr, 743 struct Object *owner, 744 const char *name, 745 uint64_t size); 746 747 /** 748 * memory_region_ref: Add 1 to a memory region's reference count 749 * 750 * Whenever memory regions are accessed outside the BQL, they need to be 751 * preserved against hot-unplug. MemoryRegions actually do not have their 752 * own reference count; they piggyback on a QOM object, their "owner". 753 * This function adds a reference to the owner. 754 * 755 * All MemoryRegions must have an owner if they can disappear, even if the 756 * device they belong to operates exclusively under the BQL. This is because 757 * the region could be returned at any time by memory_region_find, and this 758 * is usually under guest control. 759 * 760 * @mr: the #MemoryRegion 761 */ 762 void memory_region_ref(MemoryRegion *mr); 763 764 /** 765 * memory_region_unref: Remove 1 to a memory region's reference count 766 * 767 * Whenever memory regions are accessed outside the BQL, they need to be 768 * preserved against hot-unplug. MemoryRegions actually do not have their 769 * own reference count; they piggyback on a QOM object, their "owner". 770 * This function removes a reference to the owner and possibly destroys it. 771 * 772 * @mr: the #MemoryRegion 773 */ 774 void memory_region_unref(MemoryRegion *mr); 775 776 /** 777 * memory_region_init_io: Initialize an I/O memory region. 778 * 779 * Accesses into the region will cause the callbacks in @ops to be called. 780 * if @size is nonzero, subregions will be clipped to @size. 781 * 782 * @mr: the #MemoryRegion to be initialized. 783 * @owner: the object that tracks the region's reference count 784 * @ops: a structure containing read and write callbacks to be used when 785 * I/O is performed on the region. 786 * @opaque: passed to the read and write callbacks of the @ops structure. 787 * @name: used for debugging; not visible to the user or ABI 788 * @size: size of the region. 789 */ 790 void memory_region_init_io(MemoryRegion *mr, 791 struct Object *owner, 792 const MemoryRegionOps *ops, 793 void *opaque, 794 const char *name, 795 uint64_t size); 796 797 /** 798 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 799 * into the region will modify memory 800 * directly. 801 * 802 * @mr: the #MemoryRegion to be initialized. 803 * @owner: the object that tracks the region's reference count 804 * @name: Region name, becomes part of RAMBlock name used in migration stream 805 * must be unique within any device 806 * @size: size of the region. 807 * @errp: pointer to Error*, to store an error if it happens. 808 * 809 * Note that this function does not do anything to cause the data in the 810 * RAM memory region to be migrated; that is the responsibility of the caller. 811 */ 812 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 813 struct Object *owner, 814 const char *name, 815 uint64_t size, 816 Error **errp); 817 818 /** 819 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 820 * Accesses into the region will 821 * modify memory directly. 822 * 823 * @mr: the #MemoryRegion to be initialized. 824 * @owner: the object that tracks the region's reference count 825 * @name: Region name, becomes part of RAMBlock name used in migration stream 826 * must be unique within any device 827 * @size: size of the region. 828 * @share: allow remapping RAM to different addresses 829 * @errp: pointer to Error*, to store an error if it happens. 830 * 831 * Note that this function is similar to memory_region_init_ram_nomigrate. 832 * The only difference is part of the RAM region can be remapped. 833 */ 834 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 835 struct Object *owner, 836 const char *name, 837 uint64_t size, 838 bool share, 839 Error **errp); 840 841 /** 842 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 843 * RAM. Accesses into the region will 844 * modify memory directly. Only an initial 845 * portion of this RAM is actually used. 846 * The used size can change across reboots. 847 * 848 * @mr: the #MemoryRegion to be initialized. 849 * @owner: the object that tracks the region's reference count 850 * @name: Region name, becomes part of RAMBlock name used in migration stream 851 * must be unique within any device 852 * @size: used size of the region. 853 * @max_size: max size of the region. 854 * @resized: callback to notify owner about used size change. 855 * @errp: pointer to Error*, to store an error if it happens. 856 * 857 * Note that this function does not do anything to cause the data in the 858 * RAM memory region to be migrated; that is the responsibility of the caller. 859 */ 860 void memory_region_init_resizeable_ram(MemoryRegion *mr, 861 struct Object *owner, 862 const char *name, 863 uint64_t size, 864 uint64_t max_size, 865 void (*resized)(const char*, 866 uint64_t length, 867 void *host), 868 Error **errp); 869 #ifdef CONFIG_POSIX 870 871 /** 872 * memory_region_init_ram_from_file: Initialize RAM memory region with a 873 * mmap-ed backend. 874 * 875 * @mr: the #MemoryRegion to be initialized. 876 * @owner: the object that tracks the region's reference count 877 * @name: Region name, becomes part of RAMBlock name used in migration stream 878 * must be unique within any device 879 * @size: size of the region. 880 * @align: alignment of the region base address; if 0, the default alignment 881 * (getpagesize()) will be used. 882 * @ram_flags: Memory region features: 883 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 884 * - RAM_PMEM: the memory is persistent memory 885 * Other bits are ignored now. 886 * @path: the path in which to allocate the RAM. 887 * @errp: pointer to Error*, to store an error if it happens. 888 * 889 * Note that this function does not do anything to cause the data in the 890 * RAM memory region to be migrated; that is the responsibility of the caller. 891 */ 892 void memory_region_init_ram_from_file(MemoryRegion *mr, 893 struct Object *owner, 894 const char *name, 895 uint64_t size, 896 uint64_t align, 897 uint32_t ram_flags, 898 const char *path, 899 Error **errp); 900 901 /** 902 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 903 * mmap-ed backend. 904 * 905 * @mr: the #MemoryRegion to be initialized. 906 * @owner: the object that tracks the region's reference count 907 * @name: the name of the region. 908 * @size: size of the region. 909 * @share: %true if memory must be mmaped with the MAP_SHARED flag 910 * @fd: the fd to mmap. 911 * @errp: pointer to Error*, to store an error if it happens. 912 * 913 * Note that this function does not do anything to cause the data in the 914 * RAM memory region to be migrated; that is the responsibility of the caller. 915 */ 916 void memory_region_init_ram_from_fd(MemoryRegion *mr, 917 struct Object *owner, 918 const char *name, 919 uint64_t size, 920 bool share, 921 int fd, 922 Error **errp); 923 #endif 924 925 /** 926 * memory_region_init_ram_ptr: Initialize RAM memory region from a 927 * user-provided pointer. Accesses into the 928 * region will modify memory directly. 929 * 930 * @mr: the #MemoryRegion to be initialized. 931 * @owner: the object that tracks the region's reference count 932 * @name: Region name, becomes part of RAMBlock name used in migration stream 933 * must be unique within any device 934 * @size: size of the region. 935 * @ptr: memory to be mapped; must contain at least @size bytes. 936 * 937 * Note that this function does not do anything to cause the data in the 938 * RAM memory region to be migrated; that is the responsibility of the caller. 939 */ 940 void memory_region_init_ram_ptr(MemoryRegion *mr, 941 struct Object *owner, 942 const char *name, 943 uint64_t size, 944 void *ptr); 945 946 /** 947 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 948 * a user-provided pointer. 949 * 950 * A RAM device represents a mapping to a physical device, such as to a PCI 951 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 952 * into the VM address space and access to the region will modify memory 953 * directly. However, the memory region should not be included in a memory 954 * dump (device may not be enabled/mapped at the time of the dump), and 955 * operations incompatible with manipulating MMIO should be avoided. Replaces 956 * skip_dump flag. 957 * 958 * @mr: the #MemoryRegion to be initialized. 959 * @owner: the object that tracks the region's reference count 960 * @name: the name of the region. 961 * @size: size of the region. 962 * @ptr: memory to be mapped; must contain at least @size bytes. 963 * 964 * Note that this function does not do anything to cause the data in the 965 * RAM memory region to be migrated; that is the responsibility of the caller. 966 * (For RAM device memory regions, migrating the contents rarely makes sense.) 967 */ 968 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 969 struct Object *owner, 970 const char *name, 971 uint64_t size, 972 void *ptr); 973 974 /** 975 * memory_region_init_alias: Initialize a memory region that aliases all or a 976 * part of another memory region. 977 * 978 * @mr: the #MemoryRegion to be initialized. 979 * @owner: the object that tracks the region's reference count 980 * @name: used for debugging; not visible to the user or ABI 981 * @orig: the region to be referenced; @mr will be equivalent to 982 * @orig between @offset and @offset + @size - 1. 983 * @offset: start of the section in @orig to be referenced. 984 * @size: size of the region. 985 */ 986 void memory_region_init_alias(MemoryRegion *mr, 987 struct Object *owner, 988 const char *name, 989 MemoryRegion *orig, 990 hwaddr offset, 991 uint64_t size); 992 993 /** 994 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 995 * 996 * This has the same effect as calling memory_region_init_ram_nomigrate() 997 * and then marking the resulting region read-only with 998 * memory_region_set_readonly(). 999 * 1000 * Note that this function does not do anything to cause the data in the 1001 * RAM side of the memory region to be migrated; that is the responsibility 1002 * of the caller. 1003 * 1004 * @mr: the #MemoryRegion to be initialized. 1005 * @owner: the object that tracks the region's reference count 1006 * @name: Region name, becomes part of RAMBlock name used in migration stream 1007 * must be unique within any device 1008 * @size: size of the region. 1009 * @errp: pointer to Error*, to store an error if it happens. 1010 */ 1011 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1012 struct Object *owner, 1013 const char *name, 1014 uint64_t size, 1015 Error **errp); 1016 1017 /** 1018 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1019 * Writes are handled via callbacks. 1020 * 1021 * Note that this function does not do anything to cause the data in the 1022 * RAM side of the memory region to be migrated; that is the responsibility 1023 * of the caller. 1024 * 1025 * @mr: the #MemoryRegion to be initialized. 1026 * @owner: the object that tracks the region's reference count 1027 * @ops: callbacks for write access handling (must not be NULL). 1028 * @opaque: passed to the read and write callbacks of the @ops structure. 1029 * @name: Region name, becomes part of RAMBlock name used in migration stream 1030 * must be unique within any device 1031 * @size: size of the region. 1032 * @errp: pointer to Error*, to store an error if it happens. 1033 */ 1034 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1035 struct Object *owner, 1036 const MemoryRegionOps *ops, 1037 void *opaque, 1038 const char *name, 1039 uint64_t size, 1040 Error **errp); 1041 1042 /** 1043 * memory_region_init_iommu: Initialize a memory region of a custom type 1044 * that translates addresses 1045 * 1046 * An IOMMU region translates addresses and forwards accesses to a target 1047 * memory region. 1048 * 1049 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1050 * @_iommu_mr should be a pointer to enough memory for an instance of 1051 * that subclass, @instance_size is the size of that subclass, and 1052 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1053 * instance of the subclass, and its methods will then be called to handle 1054 * accesses to the memory region. See the documentation of 1055 * #IOMMUMemoryRegionClass for further details. 1056 * 1057 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1058 * @instance_size: the IOMMUMemoryRegion subclass instance size 1059 * @mrtypename: the type name of the #IOMMUMemoryRegion 1060 * @owner: the object that tracks the region's reference count 1061 * @name: used for debugging; not visible to the user or ABI 1062 * @size: size of the region. 1063 */ 1064 void memory_region_init_iommu(void *_iommu_mr, 1065 size_t instance_size, 1066 const char *mrtypename, 1067 Object *owner, 1068 const char *name, 1069 uint64_t size); 1070 1071 /** 1072 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1073 * region will modify memory directly. 1074 * 1075 * @mr: the #MemoryRegion to be initialized 1076 * @owner: the object that tracks the region's reference count (must be 1077 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1078 * @name: name of the memory region 1079 * @size: size of the region in bytes 1080 * @errp: pointer to Error*, to store an error if it happens. 1081 * 1082 * This function allocates RAM for a board model or device, and 1083 * arranges for it to be migrated (by calling vmstate_register_ram() 1084 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1085 * @owner is NULL). 1086 * 1087 * TODO: Currently we restrict @owner to being either NULL (for 1088 * global RAM regions with no owner) or devices, so that we can 1089 * give the RAM block a unique name for migration purposes. 1090 * We should lift this restriction and allow arbitrary Objects. 1091 * If you pass a non-NULL non-device @owner then we will assert. 1092 */ 1093 void memory_region_init_ram(MemoryRegion *mr, 1094 struct Object *owner, 1095 const char *name, 1096 uint64_t size, 1097 Error **errp); 1098 1099 /** 1100 * memory_region_init_rom: Initialize a ROM memory region. 1101 * 1102 * This has the same effect as calling memory_region_init_ram() 1103 * and then marking the resulting region read-only with 1104 * memory_region_set_readonly(). This includes arranging for the 1105 * contents to be migrated. 1106 * 1107 * TODO: Currently we restrict @owner to being either NULL (for 1108 * global RAM regions with no owner) or devices, so that we can 1109 * give the RAM block a unique name for migration purposes. 1110 * We should lift this restriction and allow arbitrary Objects. 1111 * If you pass a non-NULL non-device @owner then we will assert. 1112 * 1113 * @mr: the #MemoryRegion to be initialized. 1114 * @owner: the object that tracks the region's reference count 1115 * @name: Region name, becomes part of RAMBlock name used in migration stream 1116 * must be unique within any device 1117 * @size: size of the region. 1118 * @errp: pointer to Error*, to store an error if it happens. 1119 */ 1120 void memory_region_init_rom(MemoryRegion *mr, 1121 struct Object *owner, 1122 const char *name, 1123 uint64_t size, 1124 Error **errp); 1125 1126 /** 1127 * memory_region_init_rom_device: Initialize a ROM memory region. 1128 * Writes are handled via callbacks. 1129 * 1130 * This function initializes a memory region backed by RAM for reads 1131 * and callbacks for writes, and arranges for the RAM backing to 1132 * be migrated (by calling vmstate_register_ram() 1133 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1134 * @owner is NULL). 1135 * 1136 * TODO: Currently we restrict @owner to being either NULL (for 1137 * global RAM regions with no owner) or devices, so that we can 1138 * give the RAM block a unique name for migration purposes. 1139 * We should lift this restriction and allow arbitrary Objects. 1140 * If you pass a non-NULL non-device @owner then we will assert. 1141 * 1142 * @mr: the #MemoryRegion to be initialized. 1143 * @owner: the object that tracks the region's reference count 1144 * @ops: callbacks for write access handling (must not be NULL). 1145 * @opaque: passed to the read and write callbacks of the @ops structure. 1146 * @name: Region name, becomes part of RAMBlock name used in migration stream 1147 * must be unique within any device 1148 * @size: size of the region. 1149 * @errp: pointer to Error*, to store an error if it happens. 1150 */ 1151 void memory_region_init_rom_device(MemoryRegion *mr, 1152 struct Object *owner, 1153 const MemoryRegionOps *ops, 1154 void *opaque, 1155 const char *name, 1156 uint64_t size, 1157 Error **errp); 1158 1159 1160 /** 1161 * memory_region_owner: get a memory region's owner. 1162 * 1163 * @mr: the memory region being queried. 1164 */ 1165 struct Object *memory_region_owner(MemoryRegion *mr); 1166 1167 /** 1168 * memory_region_size: get a memory region's size. 1169 * 1170 * @mr: the memory region being queried. 1171 */ 1172 uint64_t memory_region_size(MemoryRegion *mr); 1173 1174 /** 1175 * memory_region_is_ram: check whether a memory region is random access 1176 * 1177 * Returns %true if a memory region is random access. 1178 * 1179 * @mr: the memory region being queried 1180 */ 1181 static inline bool memory_region_is_ram(MemoryRegion *mr) 1182 { 1183 return mr->ram; 1184 } 1185 1186 /** 1187 * memory_region_is_ram_device: check whether a memory region is a ram device 1188 * 1189 * Returns %true if a memory region is a device backed ram region 1190 * 1191 * @mr: the memory region being queried 1192 */ 1193 bool memory_region_is_ram_device(MemoryRegion *mr); 1194 1195 /** 1196 * memory_region_is_romd: check whether a memory region is in ROMD mode 1197 * 1198 * Returns %true if a memory region is a ROM device and currently set to allow 1199 * direct reads. 1200 * 1201 * @mr: the memory region being queried 1202 */ 1203 static inline bool memory_region_is_romd(MemoryRegion *mr) 1204 { 1205 return mr->rom_device && mr->romd_mode; 1206 } 1207 1208 /** 1209 * memory_region_get_iommu: check whether a memory region is an iommu 1210 * 1211 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1212 * otherwise NULL. 1213 * 1214 * @mr: the memory region being queried 1215 */ 1216 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1217 { 1218 if (mr->alias) { 1219 return memory_region_get_iommu(mr->alias); 1220 } 1221 if (mr->is_iommu) { 1222 return (IOMMUMemoryRegion *) mr; 1223 } 1224 return NULL; 1225 } 1226 1227 /** 1228 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1229 * if an iommu or NULL if not 1230 * 1231 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1232 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1233 * 1234 * @iommu_mr: the memory region being queried 1235 */ 1236 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1237 IOMMUMemoryRegion *iommu_mr) 1238 { 1239 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1240 } 1241 1242 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1243 1244 /** 1245 * memory_region_iommu_get_min_page_size: get minimum supported page size 1246 * for an iommu 1247 * 1248 * Returns minimum supported page size for an iommu. 1249 * 1250 * @iommu_mr: the memory region being queried 1251 */ 1252 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1253 1254 /** 1255 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1256 * 1257 * The notification type will be decided by entry.perm bits: 1258 * 1259 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1260 * - For MAP (newly added entry) notifies: set entry.perm to the 1261 * permission of the page (which is definitely !IOMMU_NONE). 1262 * 1263 * Note: for any IOMMU implementation, an in-place mapping change 1264 * should be notified with an UNMAP followed by a MAP. 1265 * 1266 * @iommu_mr: the memory region that was changed 1267 * @iommu_idx: the IOMMU index for the translation table which has changed 1268 * @entry: the new entry in the IOMMU translation table. The entry 1269 * replaces all old entries for the same virtual I/O address range. 1270 * Deleted entries have .@perm == 0. 1271 */ 1272 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1273 int iommu_idx, 1274 IOMMUTLBEntry entry); 1275 1276 /** 1277 * memory_region_notify_one: notify a change in an IOMMU translation 1278 * entry to a single notifier 1279 * 1280 * This works just like memory_region_notify_iommu(), but it only 1281 * notifies a specific notifier, not all of them. 1282 * 1283 * @notifier: the notifier to be notified 1284 * @entry: the new entry in the IOMMU translation table. The entry 1285 * replaces all old entries for the same virtual I/O address range. 1286 * Deleted entries have .@perm == 0. 1287 */ 1288 void memory_region_notify_one(IOMMUNotifier *notifier, 1289 IOMMUTLBEntry *entry); 1290 1291 /** 1292 * memory_region_register_iommu_notifier: register a notifier for changes to 1293 * IOMMU translation entries. 1294 * 1295 * Returns 0 on success, or a negative errno otherwise. In particular, 1296 * -EINVAL indicates that at least one of the attributes of the notifier 1297 * is not supported (flag/range) by the IOMMU memory region. In case of error 1298 * the error object must be created. 1299 * 1300 * @mr: the memory region to observe 1301 * @n: the IOMMUNotifier to be added; the notify callback receives a 1302 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1303 * ceases to be valid on exit from the notifier. 1304 * @errp: pointer to Error*, to store an error if it happens. 1305 */ 1306 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1307 IOMMUNotifier *n, Error **errp); 1308 1309 /** 1310 * memory_region_iommu_replay: replay existing IOMMU translations to 1311 * a notifier with the minimum page granularity returned by 1312 * mr->iommu_ops->get_page_size(). 1313 * 1314 * Note: this is not related to record-and-replay functionality. 1315 * 1316 * @iommu_mr: the memory region to observe 1317 * @n: the notifier to which to replay iommu mappings 1318 */ 1319 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1320 1321 /** 1322 * memory_region_unregister_iommu_notifier: unregister a notifier for 1323 * changes to IOMMU translation entries. 1324 * 1325 * @mr: the memory region which was observed and for which notity_stopped() 1326 * needs to be called 1327 * @n: the notifier to be removed. 1328 */ 1329 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1330 IOMMUNotifier *n); 1331 1332 /** 1333 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1334 * defined on the IOMMU. 1335 * 1336 * Returns 0 on success, or a negative errno otherwise. In particular, 1337 * -EINVAL indicates that the IOMMU does not support the requested 1338 * attribute. 1339 * 1340 * @iommu_mr: the memory region 1341 * @attr: the requested attribute 1342 * @data: a pointer to the requested attribute data 1343 */ 1344 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1345 enum IOMMUMemoryRegionAttr attr, 1346 void *data); 1347 1348 /** 1349 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1350 * use for translations with the given memory transaction attributes. 1351 * 1352 * @iommu_mr: the memory region 1353 * @attrs: the memory transaction attributes 1354 */ 1355 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1356 MemTxAttrs attrs); 1357 1358 /** 1359 * memory_region_iommu_num_indexes: return the total number of IOMMU 1360 * indexes that this IOMMU supports. 1361 * 1362 * @iommu_mr: the memory region 1363 */ 1364 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1365 1366 /** 1367 * memory_region_name: get a memory region's name 1368 * 1369 * Returns the string that was used to initialize the memory region. 1370 * 1371 * @mr: the memory region being queried 1372 */ 1373 const char *memory_region_name(const MemoryRegion *mr); 1374 1375 /** 1376 * memory_region_is_logging: return whether a memory region is logging writes 1377 * 1378 * Returns %true if the memory region is logging writes for the given client 1379 * 1380 * @mr: the memory region being queried 1381 * @client: the client being queried 1382 */ 1383 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1384 1385 /** 1386 * memory_region_get_dirty_log_mask: return the clients for which a 1387 * memory region is logging writes. 1388 * 1389 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1390 * are the bit indices. 1391 * 1392 * @mr: the memory region being queried 1393 */ 1394 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1395 1396 /** 1397 * memory_region_is_rom: check whether a memory region is ROM 1398 * 1399 * Returns %true if a memory region is read-only memory. 1400 * 1401 * @mr: the memory region being queried 1402 */ 1403 static inline bool memory_region_is_rom(MemoryRegion *mr) 1404 { 1405 return mr->ram && mr->readonly; 1406 } 1407 1408 /** 1409 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1410 * 1411 * Returns %true is a memory region is non-volatile memory. 1412 * 1413 * @mr: the memory region being queried 1414 */ 1415 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1416 { 1417 return mr->nonvolatile; 1418 } 1419 1420 /** 1421 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1422 * 1423 * Returns a file descriptor backing a file-based RAM memory region, 1424 * or -1 if the region is not a file-based RAM memory region. 1425 * 1426 * @mr: the RAM or alias memory region being queried. 1427 */ 1428 int memory_region_get_fd(MemoryRegion *mr); 1429 1430 /** 1431 * memory_region_from_host: Convert a pointer into a RAM memory region 1432 * and an offset within it. 1433 * 1434 * Given a host pointer inside a RAM memory region (created with 1435 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1436 * the MemoryRegion and the offset within it. 1437 * 1438 * Use with care; by the time this function returns, the returned pointer is 1439 * not protected by RCU anymore. If the caller is not within an RCU critical 1440 * section and does not hold the iothread lock, it must have other means of 1441 * protecting the pointer, such as a reference to the region that includes 1442 * the incoming ram_addr_t. 1443 * 1444 * @ptr: the host pointer to be converted 1445 * @offset: the offset within memory region 1446 */ 1447 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1448 1449 /** 1450 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1451 * 1452 * Returns a host pointer to a RAM memory region (created with 1453 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1454 * 1455 * Use with care; by the time this function returns, the returned pointer is 1456 * not protected by RCU anymore. If the caller is not within an RCU critical 1457 * section and does not hold the iothread lock, it must have other means of 1458 * protecting the pointer, such as a reference to the region that includes 1459 * the incoming ram_addr_t. 1460 * 1461 * @mr: the memory region being queried. 1462 */ 1463 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1464 1465 /* memory_region_ram_resize: Resize a RAM region. 1466 * 1467 * Only legal before guest might have detected the memory size: e.g. on 1468 * incoming migration, or right after reset. 1469 * 1470 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1471 * @newsize: the new size the region 1472 * @errp: pointer to Error*, to store an error if it happens. 1473 */ 1474 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1475 Error **errp); 1476 /** 1477 * memory_region_do_writeback: Trigger cache writeback or msync for 1478 * selected address range 1479 * 1480 * @mr: the memory region to be updated 1481 * @addr: the initial address of the range to be written back 1482 * @size: the size of the range to be written back 1483 */ 1484 void memory_region_do_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1485 1486 /** 1487 * memory_region_set_log: Turn dirty logging on or off for a region. 1488 * 1489 * Turns dirty logging on or off for a specified client (display, migration). 1490 * Only meaningful for RAM regions. 1491 * 1492 * @mr: the memory region being updated. 1493 * @log: whether dirty logging is to be enabled or disabled. 1494 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1495 */ 1496 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1497 1498 /** 1499 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1500 * 1501 * Marks a range of bytes as dirty, after it has been dirtied outside 1502 * guest code. 1503 * 1504 * @mr: the memory region being dirtied. 1505 * @addr: the address (relative to the start of the region) being dirtied. 1506 * @size: size of the range being dirtied. 1507 */ 1508 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1509 hwaddr size); 1510 1511 /** 1512 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1513 * 1514 * This function is called when the caller wants to clear the remote 1515 * dirty bitmap of a memory range within the memory region. This can 1516 * be used by e.g. KVM to manually clear dirty log when 1517 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1518 * kernel. 1519 * 1520 * @mr: the memory region to clear the dirty log upon 1521 * @start: start address offset within the memory region 1522 * @len: length of the memory region to clear dirty bitmap 1523 */ 1524 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1525 hwaddr len); 1526 1527 /** 1528 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1529 * bitmap and clear it. 1530 * 1531 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1532 * returns the snapshot. The snapshot can then be used to query dirty 1533 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1534 * querying the same page multiple times, which is especially useful for 1535 * display updates where the scanlines often are not page aligned. 1536 * 1537 * The dirty bitmap region which gets copyed into the snapshot (and 1538 * cleared afterwards) can be larger than requested. The boundaries 1539 * are rounded up/down so complete bitmap longs (covering 64 pages on 1540 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1541 * isn't a problem for display updates as the extra pages are outside 1542 * the visible area, and in case the visible area changes a full 1543 * display redraw is due anyway. Should other use cases for this 1544 * function emerge we might have to revisit this implementation 1545 * detail. 1546 * 1547 * Use g_free to release DirtyBitmapSnapshot. 1548 * 1549 * @mr: the memory region being queried. 1550 * @addr: the address (relative to the start of the region) being queried. 1551 * @size: the size of the range being queried. 1552 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1553 */ 1554 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1555 hwaddr addr, 1556 hwaddr size, 1557 unsigned client); 1558 1559 /** 1560 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1561 * in the specified dirty bitmap snapshot. 1562 * 1563 * @mr: the memory region being queried. 1564 * @snap: the dirty bitmap snapshot 1565 * @addr: the address (relative to the start of the region) being queried. 1566 * @size: the size of the range being queried. 1567 */ 1568 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1569 DirtyBitmapSnapshot *snap, 1570 hwaddr addr, hwaddr size); 1571 1572 /** 1573 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1574 * client. 1575 * 1576 * Marks a range of pages as no longer dirty. 1577 * 1578 * @mr: the region being updated. 1579 * @addr: the start of the subrange being cleaned. 1580 * @size: the size of the subrange being cleaned. 1581 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1582 * %DIRTY_MEMORY_VGA. 1583 */ 1584 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1585 hwaddr size, unsigned client); 1586 1587 /** 1588 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1589 * TBs (for self-modifying code). 1590 * 1591 * The MemoryRegionOps->write() callback of a ROM device must use this function 1592 * to mark byte ranges that have been modified internally, such as by directly 1593 * accessing the memory returned by memory_region_get_ram_ptr(). 1594 * 1595 * This function marks the range dirty and invalidates TBs so that TCG can 1596 * detect self-modifying code. 1597 * 1598 * @mr: the region being flushed. 1599 * @addr: the start, relative to the start of the region, of the range being 1600 * flushed. 1601 * @size: the size, in bytes, of the range being flushed. 1602 */ 1603 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1604 1605 /** 1606 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1607 * 1608 * Allows a memory region to be marked as read-only (turning it into a ROM). 1609 * only useful on RAM regions. 1610 * 1611 * @mr: the region being updated. 1612 * @readonly: whether rhe region is to be ROM or RAM. 1613 */ 1614 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1615 1616 /** 1617 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1618 * 1619 * Allows a memory region to be marked as non-volatile. 1620 * only useful on RAM regions. 1621 * 1622 * @mr: the region being updated. 1623 * @nonvolatile: whether rhe region is to be non-volatile. 1624 */ 1625 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1626 1627 /** 1628 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1629 * 1630 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1631 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1632 * device is mapped to guest memory and satisfies read access directly. 1633 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1634 * Writes are always handled by the #MemoryRegion.write function. 1635 * 1636 * @mr: the memory region to be updated 1637 * @romd_mode: %true to put the region into ROMD mode 1638 */ 1639 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1640 1641 /** 1642 * memory_region_set_coalescing: Enable memory coalescing for the region. 1643 * 1644 * Enabled writes to a region to be queued for later processing. MMIO ->write 1645 * callbacks may be delayed until a non-coalesced MMIO is issued. 1646 * Only useful for IO regions. Roughly similar to write-combining hardware. 1647 * 1648 * @mr: the memory region to be write coalesced 1649 */ 1650 void memory_region_set_coalescing(MemoryRegion *mr); 1651 1652 /** 1653 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1654 * a region. 1655 * 1656 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1657 * Multiple calls can be issued coalesced disjoint ranges. 1658 * 1659 * @mr: the memory region to be updated. 1660 * @offset: the start of the range within the region to be coalesced. 1661 * @size: the size of the subrange to be coalesced. 1662 */ 1663 void memory_region_add_coalescing(MemoryRegion *mr, 1664 hwaddr offset, 1665 uint64_t size); 1666 1667 /** 1668 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1669 * 1670 * Disables any coalescing caused by memory_region_set_coalescing() or 1671 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1672 * hardware. 1673 * 1674 * @mr: the memory region to be updated. 1675 */ 1676 void memory_region_clear_coalescing(MemoryRegion *mr); 1677 1678 /** 1679 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1680 * accesses. 1681 * 1682 * Ensure that pending coalesced MMIO request are flushed before the memory 1683 * region is accessed. This property is automatically enabled for all regions 1684 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1685 * 1686 * @mr: the memory region to be updated. 1687 */ 1688 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1689 1690 /** 1691 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1692 * accesses. 1693 * 1694 * Clear the automatic coalesced MMIO flushing enabled via 1695 * memory_region_set_flush_coalesced. Note that this service has no effect on 1696 * memory regions that have MMIO coalescing enabled for themselves. For them, 1697 * automatic flushing will stop once coalescing is disabled. 1698 * 1699 * @mr: the memory region to be updated. 1700 */ 1701 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1702 1703 /** 1704 * memory_region_clear_global_locking: Declares that access processing does 1705 * not depend on the QEMU global lock. 1706 * 1707 * By clearing this property, accesses to the memory region will be processed 1708 * outside of QEMU's global lock (unless the lock is held on when issuing the 1709 * access request). In this case, the device model implementing the access 1710 * handlers is responsible for synchronization of concurrency. 1711 * 1712 * @mr: the memory region to be updated. 1713 */ 1714 void memory_region_clear_global_locking(MemoryRegion *mr); 1715 1716 /** 1717 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1718 * is written to a location. 1719 * 1720 * Marks a word in an IO region (initialized with memory_region_init_io()) 1721 * as a trigger for an eventfd event. The I/O callback will not be called. 1722 * The caller must be prepared to handle failure (that is, take the required 1723 * action if the callback _is_ called). 1724 * 1725 * @mr: the memory region being updated. 1726 * @addr: the address within @mr that is to be monitored 1727 * @size: the size of the access to trigger the eventfd 1728 * @match_data: whether to match against @data, instead of just @addr 1729 * @data: the data to match against the guest write 1730 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1731 **/ 1732 void memory_region_add_eventfd(MemoryRegion *mr, 1733 hwaddr addr, 1734 unsigned size, 1735 bool match_data, 1736 uint64_t data, 1737 EventNotifier *e); 1738 1739 /** 1740 * memory_region_del_eventfd: Cancel an eventfd. 1741 * 1742 * Cancels an eventfd trigger requested by a previous 1743 * memory_region_add_eventfd() call. 1744 * 1745 * @mr: the memory region being updated. 1746 * @addr: the address within @mr that is to be monitored 1747 * @size: the size of the access to trigger the eventfd 1748 * @match_data: whether to match against @data, instead of just @addr 1749 * @data: the data to match against the guest write 1750 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1751 */ 1752 void memory_region_del_eventfd(MemoryRegion *mr, 1753 hwaddr addr, 1754 unsigned size, 1755 bool match_data, 1756 uint64_t data, 1757 EventNotifier *e); 1758 1759 /** 1760 * memory_region_add_subregion: Add a subregion to a container. 1761 * 1762 * Adds a subregion at @offset. The subregion may not overlap with other 1763 * subregions (except for those explicitly marked as overlapping). A region 1764 * may only be added once as a subregion (unless removed with 1765 * memory_region_del_subregion()); use memory_region_init_alias() if you 1766 * want a region to be a subregion in multiple locations. 1767 * 1768 * @mr: the region to contain the new subregion; must be a container 1769 * initialized with memory_region_init(). 1770 * @offset: the offset relative to @mr where @subregion is added. 1771 * @subregion: the subregion to be added. 1772 */ 1773 void memory_region_add_subregion(MemoryRegion *mr, 1774 hwaddr offset, 1775 MemoryRegion *subregion); 1776 /** 1777 * memory_region_add_subregion_overlap: Add a subregion to a container 1778 * with overlap. 1779 * 1780 * Adds a subregion at @offset. The subregion may overlap with other 1781 * subregions. Conflicts are resolved by having a higher @priority hide a 1782 * lower @priority. Subregions without priority are taken as @priority 0. 1783 * A region may only be added once as a subregion (unless removed with 1784 * memory_region_del_subregion()); use memory_region_init_alias() if you 1785 * want a region to be a subregion in multiple locations. 1786 * 1787 * @mr: the region to contain the new subregion; must be a container 1788 * initialized with memory_region_init(). 1789 * @offset: the offset relative to @mr where @subregion is added. 1790 * @subregion: the subregion to be added. 1791 * @priority: used for resolving overlaps; highest priority wins. 1792 */ 1793 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1794 hwaddr offset, 1795 MemoryRegion *subregion, 1796 int priority); 1797 1798 /** 1799 * memory_region_get_ram_addr: Get the ram address associated with a memory 1800 * region 1801 * 1802 * @mr: the region to be queried 1803 */ 1804 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1805 1806 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1807 /** 1808 * memory_region_del_subregion: Remove a subregion. 1809 * 1810 * Removes a subregion from its container. 1811 * 1812 * @mr: the container to be updated. 1813 * @subregion: the region being removed; must be a current subregion of @mr. 1814 */ 1815 void memory_region_del_subregion(MemoryRegion *mr, 1816 MemoryRegion *subregion); 1817 1818 /* 1819 * memory_region_set_enabled: dynamically enable or disable a region 1820 * 1821 * Enables or disables a memory region. A disabled memory region 1822 * ignores all accesses to itself and its subregions. It does not 1823 * obscure sibling subregions with lower priority - it simply behaves as 1824 * if it was removed from the hierarchy. 1825 * 1826 * Regions default to being enabled. 1827 * 1828 * @mr: the region to be updated 1829 * @enabled: whether to enable or disable the region 1830 */ 1831 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1832 1833 /* 1834 * memory_region_set_address: dynamically update the address of a region 1835 * 1836 * Dynamically updates the address of a region, relative to its container. 1837 * May be used on regions are currently part of a memory hierarchy. 1838 * 1839 * @mr: the region to be updated 1840 * @addr: new address, relative to container region 1841 */ 1842 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1843 1844 /* 1845 * memory_region_set_size: dynamically update the size of a region. 1846 * 1847 * Dynamically updates the size of a region. 1848 * 1849 * @mr: the region to be updated 1850 * @size: used size of the region. 1851 */ 1852 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1853 1854 /* 1855 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1856 * 1857 * Dynamically updates the offset into the target region that an alias points 1858 * to, as if the fourth argument to memory_region_init_alias() has changed. 1859 * 1860 * @mr: the #MemoryRegion to be updated; should be an alias. 1861 * @offset: the new offset into the target memory region 1862 */ 1863 void memory_region_set_alias_offset(MemoryRegion *mr, 1864 hwaddr offset); 1865 1866 /** 1867 * memory_region_present: checks if an address relative to a @container 1868 * translates into #MemoryRegion within @container 1869 * 1870 * Answer whether a #MemoryRegion within @container covers the address 1871 * @addr. 1872 * 1873 * @container: a #MemoryRegion within which @addr is a relative address 1874 * @addr: the area within @container to be searched 1875 */ 1876 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1877 1878 /** 1879 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1880 * into any address space. 1881 * 1882 * @mr: a #MemoryRegion which should be checked if it's mapped 1883 */ 1884 bool memory_region_is_mapped(MemoryRegion *mr); 1885 1886 /** 1887 * memory_region_find: translate an address/size relative to a 1888 * MemoryRegion into a #MemoryRegionSection. 1889 * 1890 * Locates the first #MemoryRegion within @mr that overlaps the range 1891 * given by @addr and @size. 1892 * 1893 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1894 * It will have the following characteristics: 1895 * - @size = 0 iff no overlap was found 1896 * - @mr is non-%NULL iff an overlap was found 1897 * 1898 * Remember that in the return value the @offset_within_region is 1899 * relative to the returned region (in the .@mr field), not to the 1900 * @mr argument. 1901 * 1902 * Similarly, the .@offset_within_address_space is relative to the 1903 * address space that contains both regions, the passed and the 1904 * returned one. However, in the special case where the @mr argument 1905 * has no container (and thus is the root of the address space), the 1906 * following will hold: 1907 * - @offset_within_address_space >= @addr 1908 * - @offset_within_address_space + .@size <= @addr + @size 1909 * 1910 * @mr: a MemoryRegion within which @addr is a relative address 1911 * @addr: start of the area within @as to be searched 1912 * @size: size of the area to be searched 1913 */ 1914 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1915 hwaddr addr, uint64_t size); 1916 1917 /** 1918 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1919 * 1920 * Synchronizes the dirty page log for all address spaces. 1921 */ 1922 void memory_global_dirty_log_sync(void); 1923 1924 /** 1925 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1926 * 1927 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 1928 * This function must be called after the dirty log bitmap is cleared, and 1929 * before dirty guest memory pages are read. If you are using 1930 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 1931 * care of doing this. 1932 */ 1933 void memory_global_after_dirty_log_sync(void); 1934 1935 /** 1936 * memory_region_transaction_begin: Start a transaction. 1937 * 1938 * During a transaction, changes will be accumulated and made visible 1939 * only when the transaction ends (is committed). 1940 */ 1941 void memory_region_transaction_begin(void); 1942 1943 /** 1944 * memory_region_transaction_commit: Commit a transaction and make changes 1945 * visible to the guest. 1946 */ 1947 void memory_region_transaction_commit(void); 1948 1949 /** 1950 * memory_listener_register: register callbacks to be called when memory 1951 * sections are mapped or unmapped into an address 1952 * space 1953 * 1954 * @listener: an object containing the callbacks to be called 1955 * @filter: if non-%NULL, only regions in this address space will be observed 1956 */ 1957 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1958 1959 /** 1960 * memory_listener_unregister: undo the effect of memory_listener_register() 1961 * 1962 * @listener: an object containing the callbacks to be removed 1963 */ 1964 void memory_listener_unregister(MemoryListener *listener); 1965 1966 /** 1967 * memory_global_dirty_log_start: begin dirty logging for all regions 1968 */ 1969 void memory_global_dirty_log_start(void); 1970 1971 /** 1972 * memory_global_dirty_log_stop: end dirty logging for all regions 1973 */ 1974 void memory_global_dirty_log_stop(void); 1975 1976 void mtree_info(bool flatview, bool dispatch_tree, bool owner); 1977 1978 /** 1979 * memory_region_dispatch_read: perform a read directly to the specified 1980 * MemoryRegion. 1981 * 1982 * @mr: #MemoryRegion to access 1983 * @addr: address within that region 1984 * @pval: pointer to uint64_t which the data is written to 1985 * @op: size, sign, and endianness of the memory operation 1986 * @attrs: memory transaction attributes to use for the access 1987 */ 1988 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1989 hwaddr addr, 1990 uint64_t *pval, 1991 MemOp op, 1992 MemTxAttrs attrs); 1993 /** 1994 * memory_region_dispatch_write: perform a write directly to the specified 1995 * MemoryRegion. 1996 * 1997 * @mr: #MemoryRegion to access 1998 * @addr: address within that region 1999 * @data: data to write 2000 * @op: size, sign, and endianness of the memory operation 2001 * @attrs: memory transaction attributes to use for the access 2002 */ 2003 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2004 hwaddr addr, 2005 uint64_t data, 2006 MemOp op, 2007 MemTxAttrs attrs); 2008 2009 /** 2010 * address_space_init: initializes an address space 2011 * 2012 * @as: an uninitialized #AddressSpace 2013 * @root: a #MemoryRegion that routes addresses for the address space 2014 * @name: an address space name. The name is only used for debugging 2015 * output. 2016 */ 2017 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2018 2019 /** 2020 * address_space_destroy: destroy an address space 2021 * 2022 * Releases all resources associated with an address space. After an address space 2023 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2024 * as well. 2025 * 2026 * @as: address space to be destroyed 2027 */ 2028 void address_space_destroy(AddressSpace *as); 2029 2030 /** 2031 * address_space_remove_listeners: unregister all listeners of an address space 2032 * 2033 * Removes all callbacks previously registered with memory_listener_register() 2034 * for @as. 2035 * 2036 * @as: an initialized #AddressSpace 2037 */ 2038 void address_space_remove_listeners(AddressSpace *as); 2039 2040 /** 2041 * address_space_rw: read from or write to an address space. 2042 * 2043 * Return a MemTxResult indicating whether the operation succeeded 2044 * or failed (eg unassigned memory, device rejected the transaction, 2045 * IOMMU fault). 2046 * 2047 * @as: #AddressSpace to be accessed 2048 * @addr: address within that address space 2049 * @attrs: memory transaction attributes 2050 * @buf: buffer with the data transferred 2051 * @len: the number of bytes to read or write 2052 * @is_write: indicates the transfer direction 2053 */ 2054 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2055 MemTxAttrs attrs, uint8_t *buf, 2056 hwaddr len, bool is_write); 2057 2058 /** 2059 * address_space_write: write to address space. 2060 * 2061 * Return a MemTxResult indicating whether the operation succeeded 2062 * or failed (eg unassigned memory, device rejected the transaction, 2063 * IOMMU fault). 2064 * 2065 * @as: #AddressSpace to be accessed 2066 * @addr: address within that address space 2067 * @attrs: memory transaction attributes 2068 * @buf: buffer with the data transferred 2069 * @len: the number of bytes to write 2070 */ 2071 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2072 MemTxAttrs attrs, 2073 const uint8_t *buf, hwaddr len); 2074 2075 /** 2076 * address_space_write_rom: write to address space, including ROM. 2077 * 2078 * This function writes to the specified address space, but will 2079 * write data to both ROM and RAM. This is used for non-guest 2080 * writes like writes from the gdb debug stub or initial loading 2081 * of ROM contents. 2082 * 2083 * Note that portions of the write which attempt to write data to 2084 * a device will be silently ignored -- only real RAM and ROM will 2085 * be written to. 2086 * 2087 * Return a MemTxResult indicating whether the operation succeeded 2088 * or failed (eg unassigned memory, device rejected the transaction, 2089 * IOMMU fault). 2090 * 2091 * @as: #AddressSpace to be accessed 2092 * @addr: address within that address space 2093 * @attrs: memory transaction attributes 2094 * @buf: buffer with the data transferred 2095 * @len: the number of bytes to write 2096 */ 2097 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2098 MemTxAttrs attrs, 2099 const uint8_t *buf, hwaddr len); 2100 2101 /* address_space_ld*: load from an address space 2102 * address_space_st*: store to an address space 2103 * 2104 * These functions perform a load or store of the byte, word, 2105 * longword or quad to the specified address within the AddressSpace. 2106 * The _le suffixed functions treat the data as little endian; 2107 * _be indicates big endian; no suffix indicates "same endianness 2108 * as guest CPU". 2109 * 2110 * The "guest CPU endianness" accessors are deprecated for use outside 2111 * target-* code; devices should be CPU-agnostic and use either the LE 2112 * or the BE accessors. 2113 * 2114 * @as #AddressSpace to be accessed 2115 * @addr: address within that address space 2116 * @val: data value, for stores 2117 * @attrs: memory transaction attributes 2118 * @result: location to write the success/failure of the transaction; 2119 * if NULL, this information is discarded 2120 */ 2121 2122 #define SUFFIX 2123 #define ARG1 as 2124 #define ARG1_DECL AddressSpace *as 2125 #include "exec/memory_ldst.inc.h" 2126 2127 #define SUFFIX 2128 #define ARG1 as 2129 #define ARG1_DECL AddressSpace *as 2130 #include "exec/memory_ldst_phys.inc.h" 2131 2132 struct MemoryRegionCache { 2133 void *ptr; 2134 hwaddr xlat; 2135 hwaddr len; 2136 FlatView *fv; 2137 MemoryRegionSection mrs; 2138 bool is_write; 2139 }; 2140 2141 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2142 2143 2144 /* address_space_ld*_cached: load from a cached #MemoryRegion 2145 * address_space_st*_cached: store into a cached #MemoryRegion 2146 * 2147 * These functions perform a load or store of the byte, word, 2148 * longword or quad to the specified address. The address is 2149 * a physical address in the AddressSpace, but it must lie within 2150 * a #MemoryRegion that was mapped with address_space_cache_init. 2151 * 2152 * The _le suffixed functions treat the data as little endian; 2153 * _be indicates big endian; no suffix indicates "same endianness 2154 * as guest CPU". 2155 * 2156 * The "guest CPU endianness" accessors are deprecated for use outside 2157 * target-* code; devices should be CPU-agnostic and use either the LE 2158 * or the BE accessors. 2159 * 2160 * @cache: previously initialized #MemoryRegionCache to be accessed 2161 * @addr: address within the address space 2162 * @val: data value, for stores 2163 * @attrs: memory transaction attributes 2164 * @result: location to write the success/failure of the transaction; 2165 * if NULL, this information is discarded 2166 */ 2167 2168 #define SUFFIX _cached_slow 2169 #define ARG1 cache 2170 #define ARG1_DECL MemoryRegionCache *cache 2171 #include "exec/memory_ldst.inc.h" 2172 2173 /* Inline fast path for direct RAM access. */ 2174 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2175 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2176 { 2177 assert(addr < cache->len); 2178 if (likely(cache->ptr)) { 2179 return ldub_p(cache->ptr + addr); 2180 } else { 2181 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2182 } 2183 } 2184 2185 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2186 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 2187 { 2188 assert(addr < cache->len); 2189 if (likely(cache->ptr)) { 2190 stb_p(cache->ptr + addr, val); 2191 } else { 2192 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2193 } 2194 } 2195 2196 #define ENDIANNESS _le 2197 #include "exec/memory_ldst_cached.inc.h" 2198 2199 #define ENDIANNESS _be 2200 #include "exec/memory_ldst_cached.inc.h" 2201 2202 #define SUFFIX _cached 2203 #define ARG1 cache 2204 #define ARG1_DECL MemoryRegionCache *cache 2205 #include "exec/memory_ldst_phys.inc.h" 2206 2207 /* address_space_cache_init: prepare for repeated access to a physical 2208 * memory region 2209 * 2210 * @cache: #MemoryRegionCache to be filled 2211 * @as: #AddressSpace to be accessed 2212 * @addr: address within that address space 2213 * @len: length of buffer 2214 * @is_write: indicates the transfer direction 2215 * 2216 * Will only work with RAM, and may map a subset of the requested range by 2217 * returning a value that is less than @len. On failure, return a negative 2218 * errno value. 2219 * 2220 * Because it only works with RAM, this function can be used for 2221 * read-modify-write operations. In this case, is_write should be %true. 2222 * 2223 * Note that addresses passed to the address_space_*_cached functions 2224 * are relative to @addr. 2225 */ 2226 int64_t address_space_cache_init(MemoryRegionCache *cache, 2227 AddressSpace *as, 2228 hwaddr addr, 2229 hwaddr len, 2230 bool is_write); 2231 2232 /** 2233 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2234 * 2235 * @cache: The #MemoryRegionCache to operate on. 2236 * @addr: The first physical address that was written, relative to the 2237 * address that was passed to @address_space_cache_init. 2238 * @access_len: The number of bytes that were written starting at @addr. 2239 */ 2240 void address_space_cache_invalidate(MemoryRegionCache *cache, 2241 hwaddr addr, 2242 hwaddr access_len); 2243 2244 /** 2245 * address_space_cache_destroy: free a #MemoryRegionCache 2246 * 2247 * @cache: The #MemoryRegionCache whose memory should be released. 2248 */ 2249 void address_space_cache_destroy(MemoryRegionCache *cache); 2250 2251 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2252 * entry. Should be called from an RCU critical section. 2253 */ 2254 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2255 bool is_write, MemTxAttrs attrs); 2256 2257 /* address_space_translate: translate an address range into an address space 2258 * into a MemoryRegion and an address range into that section. Should be 2259 * called from an RCU critical section, to avoid that the last reference 2260 * to the returned region disappears after address_space_translate returns. 2261 * 2262 * @fv: #FlatView to be accessed 2263 * @addr: address within that address space 2264 * @xlat: pointer to address within the returned memory region section's 2265 * #MemoryRegion. 2266 * @len: pointer to length 2267 * @is_write: indicates the transfer direction 2268 * @attrs: memory attributes 2269 */ 2270 MemoryRegion *flatview_translate(FlatView *fv, 2271 hwaddr addr, hwaddr *xlat, 2272 hwaddr *len, bool is_write, 2273 MemTxAttrs attrs); 2274 2275 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2276 hwaddr addr, hwaddr *xlat, 2277 hwaddr *len, bool is_write, 2278 MemTxAttrs attrs) 2279 { 2280 return flatview_translate(address_space_to_flatview(as), 2281 addr, xlat, len, is_write, attrs); 2282 } 2283 2284 /* address_space_access_valid: check for validity of accessing an address 2285 * space range 2286 * 2287 * Check whether memory is assigned to the given address space range, and 2288 * access is permitted by any IOMMU regions that are active for the address 2289 * space. 2290 * 2291 * For now, addr and len should be aligned to a page size. This limitation 2292 * will be lifted in the future. 2293 * 2294 * @as: #AddressSpace to be accessed 2295 * @addr: address within that address space 2296 * @len: length of the area to be checked 2297 * @is_write: indicates the transfer direction 2298 * @attrs: memory attributes 2299 */ 2300 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2301 bool is_write, MemTxAttrs attrs); 2302 2303 /* address_space_map: map a physical memory region into a host virtual address 2304 * 2305 * May map a subset of the requested range, given by and returned in @plen. 2306 * May return %NULL if resources needed to perform the mapping are exhausted. 2307 * Use only for reads OR writes - not for read-modify-write operations. 2308 * Use cpu_register_map_client() to know when retrying the map operation is 2309 * likely to succeed. 2310 * 2311 * @as: #AddressSpace to be accessed 2312 * @addr: address within that address space 2313 * @plen: pointer to length of buffer; updated on return 2314 * @is_write: indicates the transfer direction 2315 * @attrs: memory attributes 2316 */ 2317 void *address_space_map(AddressSpace *as, hwaddr addr, 2318 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2319 2320 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2321 * 2322 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2323 * the amount of memory that was actually read or written by the caller. 2324 * 2325 * @as: #AddressSpace used 2326 * @buffer: host pointer as returned by address_space_map() 2327 * @len: buffer length as returned by address_space_map() 2328 * @access_len: amount of data actually transferred 2329 * @is_write: indicates the transfer direction 2330 */ 2331 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2332 int is_write, hwaddr access_len); 2333 2334 2335 /* Internal functions, part of the implementation of address_space_read. */ 2336 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2337 MemTxAttrs attrs, uint8_t *buf, hwaddr len); 2338 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2339 MemTxAttrs attrs, uint8_t *buf, 2340 hwaddr len, hwaddr addr1, hwaddr l, 2341 MemoryRegion *mr); 2342 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2343 2344 /* Internal functions, part of the implementation of address_space_read_cached 2345 * and address_space_write_cached. */ 2346 void address_space_read_cached_slow(MemoryRegionCache *cache, 2347 hwaddr addr, void *buf, hwaddr len); 2348 void address_space_write_cached_slow(MemoryRegionCache *cache, 2349 hwaddr addr, const void *buf, hwaddr len); 2350 2351 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2352 { 2353 if (is_write) { 2354 return memory_region_is_ram(mr) && 2355 !mr->readonly && !memory_region_is_ram_device(mr); 2356 } else { 2357 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2358 memory_region_is_romd(mr); 2359 } 2360 } 2361 2362 /** 2363 * address_space_read: read from an address space. 2364 * 2365 * Return a MemTxResult indicating whether the operation succeeded 2366 * or failed (eg unassigned memory, device rejected the transaction, 2367 * IOMMU fault). Called within RCU critical section. 2368 * 2369 * @as: #AddressSpace to be accessed 2370 * @addr: address within that address space 2371 * @attrs: memory transaction attributes 2372 * @buf: buffer with the data transferred 2373 * @len: length of the data transferred 2374 */ 2375 static inline __attribute__((__always_inline__)) 2376 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2377 MemTxAttrs attrs, uint8_t *buf, 2378 hwaddr len) 2379 { 2380 MemTxResult result = MEMTX_OK; 2381 hwaddr l, addr1; 2382 void *ptr; 2383 MemoryRegion *mr; 2384 FlatView *fv; 2385 2386 if (__builtin_constant_p(len)) { 2387 if (len) { 2388 RCU_READ_LOCK_GUARD(); 2389 fv = address_space_to_flatview(as); 2390 l = len; 2391 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2392 if (len == l && memory_access_is_direct(mr, false)) { 2393 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2394 memcpy(buf, ptr, len); 2395 } else { 2396 result = flatview_read_continue(fv, addr, attrs, buf, len, 2397 addr1, l, mr); 2398 } 2399 } 2400 } else { 2401 result = address_space_read_full(as, addr, attrs, buf, len); 2402 } 2403 return result; 2404 } 2405 2406 /** 2407 * address_space_read_cached: read from a cached RAM region 2408 * 2409 * @cache: Cached region to be addressed 2410 * @addr: address relative to the base of the RAM region 2411 * @buf: buffer with the data transferred 2412 * @len: length of the data transferred 2413 */ 2414 static inline void 2415 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2416 void *buf, hwaddr len) 2417 { 2418 assert(addr < cache->len && len <= cache->len - addr); 2419 if (likely(cache->ptr)) { 2420 memcpy(buf, cache->ptr + addr, len); 2421 } else { 2422 address_space_read_cached_slow(cache, addr, buf, len); 2423 } 2424 } 2425 2426 /** 2427 * address_space_write_cached: write to a cached RAM region 2428 * 2429 * @cache: Cached region to be addressed 2430 * @addr: address relative to the base of the RAM region 2431 * @buf: buffer with the data transferred 2432 * @len: length of the data transferred 2433 */ 2434 static inline void 2435 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2436 void *buf, hwaddr len) 2437 { 2438 assert(addr < cache->len && len <= cache->len - addr); 2439 if (likely(cache->ptr)) { 2440 memcpy(cache->ptr + addr, buf, len); 2441 } else { 2442 address_space_write_cached_slow(cache, addr, buf, len); 2443 } 2444 } 2445 2446 #ifdef NEED_CPU_H 2447 /* enum device_endian to MemOp. */ 2448 static inline MemOp devend_memop(enum device_endian end) 2449 { 2450 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2451 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2452 2453 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2454 /* Swap if non-host endianness or native (target) endianness */ 2455 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2456 #else 2457 const int non_host_endianness = 2458 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2459 2460 /* In this case, native (target) endianness needs no swap. */ 2461 return (end == non_host_endianness) ? MO_BSWAP : 0; 2462 #endif 2463 } 2464 #endif 2465 2466 #endif 2467 2468 #endif 2469