1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 #define GLOBAL_DIRTY_MASK (0x3) 73 74 extern unsigned int global_dirty_tracking; 75 76 typedef struct MemoryRegionOps MemoryRegionOps; 77 78 struct ReservedRegion { 79 hwaddr low; 80 hwaddr high; 81 unsigned type; 82 }; 83 84 /** 85 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 86 * 87 * @mr: the region, or %NULL if empty 88 * @fv: the flat view of the address space the region is mapped in 89 * @offset_within_region: the beginning of the section, relative to @mr's start 90 * @size: the size of the section; will not exceed @mr's boundaries 91 * @offset_within_address_space: the address of the first byte of the section 92 * relative to the region's address space 93 * @readonly: writes to this section are ignored 94 * @nonvolatile: this section is non-volatile 95 */ 96 struct MemoryRegionSection { 97 Int128 size; 98 MemoryRegion *mr; 99 FlatView *fv; 100 hwaddr offset_within_region; 101 hwaddr offset_within_address_space; 102 bool readonly; 103 bool nonvolatile; 104 }; 105 106 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 107 108 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 109 typedef enum { 110 IOMMU_NONE = 0, 111 IOMMU_RO = 1, 112 IOMMU_WO = 2, 113 IOMMU_RW = 3, 114 } IOMMUAccessFlags; 115 116 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 117 118 struct IOMMUTLBEntry { 119 AddressSpace *target_as; 120 hwaddr iova; 121 hwaddr translated_addr; 122 hwaddr addr_mask; /* 0xfff = 4k translation */ 123 IOMMUAccessFlags perm; 124 }; 125 126 /* 127 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 128 * register with one or multiple IOMMU Notifier capability bit(s). 129 */ 130 typedef enum { 131 IOMMU_NOTIFIER_NONE = 0, 132 /* Notify cache invalidations */ 133 IOMMU_NOTIFIER_UNMAP = 0x1, 134 /* Notify entry changes (newly created entries) */ 135 IOMMU_NOTIFIER_MAP = 0x2, 136 /* Notify changes on device IOTLB entries */ 137 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 138 } IOMMUNotifierFlag; 139 140 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 141 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 142 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 143 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 144 145 struct IOMMUNotifier; 146 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 147 IOMMUTLBEntry *data); 148 149 struct IOMMUNotifier { 150 IOMMUNotify notify; 151 IOMMUNotifierFlag notifier_flags; 152 /* Notify for address space range start <= addr <= end */ 153 hwaddr start; 154 hwaddr end; 155 int iommu_idx; 156 QLIST_ENTRY(IOMMUNotifier) node; 157 }; 158 typedef struct IOMMUNotifier IOMMUNotifier; 159 160 typedef struct IOMMUTLBEvent { 161 IOMMUNotifierFlag type; 162 IOMMUTLBEntry entry; 163 } IOMMUTLBEvent; 164 165 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 166 #define RAM_PREALLOC (1 << 0) 167 168 /* RAM is mmap-ed with MAP_SHARED */ 169 #define RAM_SHARED (1 << 1) 170 171 /* Only a portion of RAM (used_length) is actually used, and migrated. 172 * Resizing RAM while migrating can result in the migration being canceled. 173 */ 174 #define RAM_RESIZEABLE (1 << 2) 175 176 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 177 * zero the page and wake waiting processes. 178 * (Set during postcopy) 179 */ 180 #define RAM_UF_ZEROPAGE (1 << 3) 181 182 /* RAM can be migrated */ 183 #define RAM_MIGRATABLE (1 << 4) 184 185 /* RAM is a persistent kind memory */ 186 #define RAM_PMEM (1 << 5) 187 188 189 /* 190 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 191 * support 'write-tracking' migration type. 192 * Implies ram_state->ram_wt_enabled. 193 */ 194 #define RAM_UF_WRITEPROTECT (1 << 6) 195 196 /* 197 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 198 * pages if applicable) is skipped: will bail out if not supported. When not 199 * set, the OS will do the reservation, if supported for the memory type. 200 */ 201 #define RAM_NORESERVE (1 << 7) 202 203 /* RAM that isn't accessible through normal means. */ 204 #define RAM_PROTECTED (1 << 8) 205 206 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 207 IOMMUNotifierFlag flags, 208 hwaddr start, hwaddr end, 209 int iommu_idx) 210 { 211 n->notify = fn; 212 n->notifier_flags = flags; 213 n->start = start; 214 n->end = end; 215 n->iommu_idx = iommu_idx; 216 } 217 218 /* 219 * Memory region callbacks 220 */ 221 struct MemoryRegionOps { 222 /* Read from the memory region. @addr is relative to @mr; @size is 223 * in bytes. */ 224 uint64_t (*read)(void *opaque, 225 hwaddr addr, 226 unsigned size); 227 /* Write to the memory region. @addr is relative to @mr; @size is 228 * in bytes. */ 229 void (*write)(void *opaque, 230 hwaddr addr, 231 uint64_t data, 232 unsigned size); 233 234 MemTxResult (*read_with_attrs)(void *opaque, 235 hwaddr addr, 236 uint64_t *data, 237 unsigned size, 238 MemTxAttrs attrs); 239 MemTxResult (*write_with_attrs)(void *opaque, 240 hwaddr addr, 241 uint64_t data, 242 unsigned size, 243 MemTxAttrs attrs); 244 245 enum device_endian endianness; 246 /* Guest-visible constraints: */ 247 struct { 248 /* If nonzero, specify bounds on access sizes beyond which a machine 249 * check is thrown. 250 */ 251 unsigned min_access_size; 252 unsigned max_access_size; 253 /* If true, unaligned accesses are supported. Otherwise unaligned 254 * accesses throw machine checks. 255 */ 256 bool unaligned; 257 /* 258 * If present, and returns #false, the transaction is not accepted 259 * by the device (and results in machine dependent behaviour such 260 * as a machine check exception). 261 */ 262 bool (*accepts)(void *opaque, hwaddr addr, 263 unsigned size, bool is_write, 264 MemTxAttrs attrs); 265 } valid; 266 /* Internal implementation constraints: */ 267 struct { 268 /* If nonzero, specifies the minimum size implemented. Smaller sizes 269 * will be rounded upwards and a partial result will be returned. 270 */ 271 unsigned min_access_size; 272 /* If nonzero, specifies the maximum size implemented. Larger sizes 273 * will be done as a series of accesses with smaller sizes. 274 */ 275 unsigned max_access_size; 276 /* If true, unaligned accesses are supported. Otherwise all accesses 277 * are converted to (possibly multiple) naturally aligned accesses. 278 */ 279 bool unaligned; 280 } impl; 281 }; 282 283 typedef struct MemoryRegionClass { 284 /* private */ 285 ObjectClass parent_class; 286 } MemoryRegionClass; 287 288 289 enum IOMMUMemoryRegionAttr { 290 IOMMU_ATTR_SPAPR_TCE_FD 291 }; 292 293 /* 294 * IOMMUMemoryRegionClass: 295 * 296 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 297 * and provide an implementation of at least the @translate method here 298 * to handle requests to the memory region. Other methods are optional. 299 * 300 * The IOMMU implementation must use the IOMMU notifier infrastructure 301 * to report whenever mappings are changed, by calling 302 * memory_region_notify_iommu() (or, if necessary, by calling 303 * memory_region_notify_iommu_one() for each registered notifier). 304 * 305 * Conceptually an IOMMU provides a mapping from input address 306 * to an output TLB entry. If the IOMMU is aware of memory transaction 307 * attributes and the output TLB entry depends on the transaction 308 * attributes, we represent this using IOMMU indexes. Each index 309 * selects a particular translation table that the IOMMU has: 310 * 311 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 312 * 313 * @translate takes an input address and an IOMMU index 314 * 315 * and the mapping returned can only depend on the input address and the 316 * IOMMU index. 317 * 318 * Most IOMMUs don't care about the transaction attributes and support 319 * only a single IOMMU index. A more complex IOMMU might have one index 320 * for secure transactions and one for non-secure transactions. 321 */ 322 struct IOMMUMemoryRegionClass { 323 /* private: */ 324 MemoryRegionClass parent_class; 325 326 /* public: */ 327 /** 328 * @translate: 329 * 330 * Return a TLB entry that contains a given address. 331 * 332 * The IOMMUAccessFlags indicated via @flag are optional and may 333 * be specified as IOMMU_NONE to indicate that the caller needs 334 * the full translation information for both reads and writes. If 335 * the access flags are specified then the IOMMU implementation 336 * may use this as an optimization, to stop doing a page table 337 * walk as soon as it knows that the requested permissions are not 338 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 339 * full page table walk and report the permissions in the returned 340 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 341 * return different mappings for reads and writes.) 342 * 343 * The returned information remains valid while the caller is 344 * holding the big QEMU lock or is inside an RCU critical section; 345 * if the caller wishes to cache the mapping beyond that it must 346 * register an IOMMU notifier so it can invalidate its cached 347 * information when the IOMMU mapping changes. 348 * 349 * @iommu: the IOMMUMemoryRegion 350 * 351 * @hwaddr: address to be translated within the memory region 352 * 353 * @flag: requested access permission 354 * 355 * @iommu_idx: IOMMU index for the translation 356 */ 357 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 358 IOMMUAccessFlags flag, int iommu_idx); 359 /** 360 * @get_min_page_size: 361 * 362 * Returns minimum supported page size in bytes. 363 * 364 * If this method is not provided then the minimum is assumed to 365 * be TARGET_PAGE_SIZE. 366 * 367 * @iommu: the IOMMUMemoryRegion 368 */ 369 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 370 /** 371 * @notify_flag_changed: 372 * 373 * Called when IOMMU Notifier flag changes (ie when the set of 374 * events which IOMMU users are requesting notification for changes). 375 * Optional method -- need not be provided if the IOMMU does not 376 * need to know exactly which events must be notified. 377 * 378 * @iommu: the IOMMUMemoryRegion 379 * 380 * @old_flags: events which previously needed to be notified 381 * 382 * @new_flags: events which now need to be notified 383 * 384 * Returns 0 on success, or a negative errno; in particular 385 * returns -EINVAL if the new flag bitmap is not supported by the 386 * IOMMU memory region. In case of failure, the error object 387 * must be created 388 */ 389 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 390 IOMMUNotifierFlag old_flags, 391 IOMMUNotifierFlag new_flags, 392 Error **errp); 393 /** 394 * @replay: 395 * 396 * Called to handle memory_region_iommu_replay(). 397 * 398 * The default implementation of memory_region_iommu_replay() is to 399 * call the IOMMU translate method for every page in the address space 400 * with flag == IOMMU_NONE and then call the notifier if translate 401 * returns a valid mapping. If this method is implemented then it 402 * overrides the default behaviour, and must provide the full semantics 403 * of memory_region_iommu_replay(), by calling @notifier for every 404 * translation present in the IOMMU. 405 * 406 * Optional method -- an IOMMU only needs to provide this method 407 * if the default is inefficient or produces undesirable side effects. 408 * 409 * Note: this is not related to record-and-replay functionality. 410 */ 411 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 412 413 /** 414 * @get_attr: 415 * 416 * Get IOMMU misc attributes. This is an optional method that 417 * can be used to allow users of the IOMMU to get implementation-specific 418 * information. The IOMMU implements this method to handle calls 419 * by IOMMU users to memory_region_iommu_get_attr() by filling in 420 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 421 * the IOMMU supports. If the method is unimplemented then 422 * memory_region_iommu_get_attr() will always return -EINVAL. 423 * 424 * @iommu: the IOMMUMemoryRegion 425 * 426 * @attr: attribute being queried 427 * 428 * @data: memory to fill in with the attribute data 429 * 430 * Returns 0 on success, or a negative errno; in particular 431 * returns -EINVAL for unrecognized or unimplemented attribute types. 432 */ 433 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 434 void *data); 435 436 /** 437 * @attrs_to_index: 438 * 439 * Return the IOMMU index to use for a given set of transaction attributes. 440 * 441 * Optional method: if an IOMMU only supports a single IOMMU index then 442 * the default implementation of memory_region_iommu_attrs_to_index() 443 * will return 0. 444 * 445 * The indexes supported by an IOMMU must be contiguous, starting at 0. 446 * 447 * @iommu: the IOMMUMemoryRegion 448 * @attrs: memory transaction attributes 449 */ 450 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 451 452 /** 453 * @num_indexes: 454 * 455 * Return the number of IOMMU indexes this IOMMU supports. 456 * 457 * Optional method: if this method is not provided, then 458 * memory_region_iommu_num_indexes() will return 1, indicating that 459 * only a single IOMMU index is supported. 460 * 461 * @iommu: the IOMMUMemoryRegion 462 */ 463 int (*num_indexes)(IOMMUMemoryRegion *iommu); 464 465 /** 466 * @iommu_set_page_size_mask: 467 * 468 * Restrict the page size mask that can be supported with a given IOMMU 469 * memory region. Used for example to propagate host physical IOMMU page 470 * size mask limitations to the virtual IOMMU. 471 * 472 * Optional method: if this method is not provided, then the default global 473 * page mask is used. 474 * 475 * @iommu: the IOMMUMemoryRegion 476 * 477 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 478 * representing the smallest page size, must be set. Additional set bits 479 * represent supported block sizes. For example a host physical IOMMU that 480 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 481 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 482 * block sizes is specified with mask 0xfffffffffffff000. 483 * 484 * Returns 0 on success, or a negative error. In case of failure, the error 485 * object must be created. 486 */ 487 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 488 uint64_t page_size_mask, 489 Error **errp); 490 }; 491 492 typedef struct RamDiscardListener RamDiscardListener; 493 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 494 MemoryRegionSection *section); 495 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 496 MemoryRegionSection *section); 497 498 struct RamDiscardListener { 499 /* 500 * @notify_populate: 501 * 502 * Notification that previously discarded memory is about to get populated. 503 * Listeners are able to object. If any listener objects, already 504 * successfully notified listeners are notified about a discard again. 505 * 506 * @rdl: the #RamDiscardListener getting notified 507 * @section: the #MemoryRegionSection to get populated. The section 508 * is aligned within the memory region to the minimum granularity 509 * unless it would exceed the registered section. 510 * 511 * Returns 0 on success. If the notification is rejected by the listener, 512 * an error is returned. 513 */ 514 NotifyRamPopulate notify_populate; 515 516 /* 517 * @notify_discard: 518 * 519 * Notification that previously populated memory was discarded successfully 520 * and listeners should drop all references to such memory and prevent 521 * new population (e.g., unmap). 522 * 523 * @rdl: the #RamDiscardListener getting notified 524 * @section: the #MemoryRegionSection to get populated. The section 525 * is aligned within the memory region to the minimum granularity 526 * unless it would exceed the registered section. 527 */ 528 NotifyRamDiscard notify_discard; 529 530 /* 531 * @double_discard_supported: 532 * 533 * The listener suppors getting @notify_discard notifications that span 534 * already discarded parts. 535 */ 536 bool double_discard_supported; 537 538 MemoryRegionSection *section; 539 QLIST_ENTRY(RamDiscardListener) next; 540 }; 541 542 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 543 NotifyRamPopulate populate_fn, 544 NotifyRamDiscard discard_fn, 545 bool double_discard_supported) 546 { 547 rdl->notify_populate = populate_fn; 548 rdl->notify_discard = discard_fn; 549 rdl->double_discard_supported = double_discard_supported; 550 } 551 552 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 553 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 554 555 /* 556 * RamDiscardManagerClass: 557 * 558 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 559 * regions are currently populated to be used/accessed by the VM, notifying 560 * after parts were discarded (freeing up memory) and before parts will be 561 * populated (consuming memory), to be used/acessed by the VM. 562 * 563 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 564 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is 565 * mapped. 566 * 567 * The #RamDiscardManager is intended to be used by technologies that are 568 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 569 * memory inside a #MemoryRegion), and require proper coordination to only 570 * map the currently populated parts, to hinder parts that are expected to 571 * remain discarded from silently getting populated and consuming memory. 572 * Technologies that support discarding of RAM don't have to bother and can 573 * simply map the whole #MemoryRegion. 574 * 575 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 576 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 577 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 578 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 579 * properly coordinate with listeners before memory is plugged (populated), 580 * and after memory is unplugged (discarded). 581 * 582 * Listeners are called in multiples of the minimum granularity (unless it 583 * would exceed the registered range) and changes are aligned to the minimum 584 * granularity within the #MemoryRegion. Listeners have to prepare for memory 585 * becomming discarded in a different granularity than it was populated and the 586 * other way around. 587 */ 588 struct RamDiscardManagerClass { 589 /* private */ 590 InterfaceClass parent_class; 591 592 /* public */ 593 594 /** 595 * @get_min_granularity: 596 * 597 * Get the minimum granularity in which listeners will get notified 598 * about changes within the #MemoryRegion via the #RamDiscardManager. 599 * 600 * @rdm: the #RamDiscardManager 601 * @mr: the #MemoryRegion 602 * 603 * Returns the minimum granularity. 604 */ 605 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 606 const MemoryRegion *mr); 607 608 /** 609 * @is_populated: 610 * 611 * Check whether the given #MemoryRegionSection is completely populated 612 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 613 * There are no alignment requirements. 614 * 615 * @rdm: the #RamDiscardManager 616 * @section: the #MemoryRegionSection 617 * 618 * Returns whether the given range is completely populated. 619 */ 620 bool (*is_populated)(const RamDiscardManager *rdm, 621 const MemoryRegionSection *section); 622 623 /** 624 * @replay_populated: 625 * 626 * Call the #ReplayRamPopulate callback for all populated parts within the 627 * #MemoryRegionSection via the #RamDiscardManager. 628 * 629 * In case any call fails, no further calls are made. 630 * 631 * @rdm: the #RamDiscardManager 632 * @section: the #MemoryRegionSection 633 * @replay_fn: the #ReplayRamPopulate callback 634 * @opaque: pointer to forward to the callback 635 * 636 * Returns 0 on success, or a negative error if any notification failed. 637 */ 638 int (*replay_populated)(const RamDiscardManager *rdm, 639 MemoryRegionSection *section, 640 ReplayRamPopulate replay_fn, void *opaque); 641 642 /** 643 * @replay_discarded: 644 * 645 * Call the #ReplayRamDiscard callback for all discarded parts within the 646 * #MemoryRegionSection via the #RamDiscardManager. 647 * 648 * @rdm: the #RamDiscardManager 649 * @section: the #MemoryRegionSection 650 * @replay_fn: the #ReplayRamDiscard callback 651 * @opaque: pointer to forward to the callback 652 */ 653 void (*replay_discarded)(const RamDiscardManager *rdm, 654 MemoryRegionSection *section, 655 ReplayRamDiscard replay_fn, void *opaque); 656 657 /** 658 * @register_listener: 659 * 660 * Register a #RamDiscardListener for the given #MemoryRegionSection and 661 * immediately notify the #RamDiscardListener about all populated parts 662 * within the #MemoryRegionSection via the #RamDiscardManager. 663 * 664 * In case any notification fails, no further notifications are triggered 665 * and an error is logged. 666 * 667 * @rdm: the #RamDiscardManager 668 * @rdl: the #RamDiscardListener 669 * @section: the #MemoryRegionSection 670 */ 671 void (*register_listener)(RamDiscardManager *rdm, 672 RamDiscardListener *rdl, 673 MemoryRegionSection *section); 674 675 /** 676 * @unregister_listener: 677 * 678 * Unregister a previously registered #RamDiscardListener via the 679 * #RamDiscardManager after notifying the #RamDiscardListener about all 680 * populated parts becoming unpopulated within the registered 681 * #MemoryRegionSection. 682 * 683 * @rdm: the #RamDiscardManager 684 * @rdl: the #RamDiscardListener 685 */ 686 void (*unregister_listener)(RamDiscardManager *rdm, 687 RamDiscardListener *rdl); 688 }; 689 690 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 691 const MemoryRegion *mr); 692 693 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 694 const MemoryRegionSection *section); 695 696 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 697 MemoryRegionSection *section, 698 ReplayRamPopulate replay_fn, 699 void *opaque); 700 701 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 702 MemoryRegionSection *section, 703 ReplayRamDiscard replay_fn, 704 void *opaque); 705 706 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 707 RamDiscardListener *rdl, 708 MemoryRegionSection *section); 709 710 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 711 RamDiscardListener *rdl); 712 713 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 714 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 715 716 /** MemoryRegion: 717 * 718 * A struct representing a memory region. 719 */ 720 struct MemoryRegion { 721 Object parent_obj; 722 723 /* private: */ 724 725 /* The following fields should fit in a cache line */ 726 bool romd_mode; 727 bool ram; 728 bool subpage; 729 bool readonly; /* For RAM regions */ 730 bool nonvolatile; 731 bool rom_device; 732 bool flush_coalesced_mmio; 733 uint8_t dirty_log_mask; 734 bool is_iommu; 735 RAMBlock *ram_block; 736 Object *owner; 737 738 const MemoryRegionOps *ops; 739 void *opaque; 740 MemoryRegion *container; 741 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 742 Int128 size; 743 hwaddr addr; 744 void (*destructor)(MemoryRegion *mr); 745 uint64_t align; 746 bool terminates; 747 bool ram_device; 748 bool enabled; 749 bool warning_printed; /* For reservations */ 750 uint8_t vga_logging_count; 751 MemoryRegion *alias; 752 hwaddr alias_offset; 753 int32_t priority; 754 QTAILQ_HEAD(, MemoryRegion) subregions; 755 QTAILQ_ENTRY(MemoryRegion) subregions_link; 756 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 757 const char *name; 758 unsigned ioeventfd_nb; 759 MemoryRegionIoeventfd *ioeventfds; 760 RamDiscardManager *rdm; /* Only for RAM */ 761 }; 762 763 struct IOMMUMemoryRegion { 764 MemoryRegion parent_obj; 765 766 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 767 IOMMUNotifierFlag iommu_notify_flags; 768 }; 769 770 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 771 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 772 773 /** 774 * struct MemoryListener: callbacks structure for updates to the physical memory map 775 * 776 * Allows a component to adjust to changes in the guest-visible memory map. 777 * Use with memory_listener_register() and memory_listener_unregister(). 778 */ 779 struct MemoryListener { 780 /** 781 * @begin: 782 * 783 * Called at the beginning of an address space update transaction. 784 * Followed by calls to #MemoryListener.region_add(), 785 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 786 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 787 * increasing address order. 788 * 789 * @listener: The #MemoryListener. 790 */ 791 void (*begin)(MemoryListener *listener); 792 793 /** 794 * @commit: 795 * 796 * Called at the end of an address space update transaction, 797 * after the last call to #MemoryListener.region_add(), 798 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 799 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 800 * 801 * @listener: The #MemoryListener. 802 */ 803 void (*commit)(MemoryListener *listener); 804 805 /** 806 * @region_add: 807 * 808 * Called during an address space update transaction, 809 * for a section of the address space that is new in this address space 810 * space since the last transaction. 811 * 812 * @listener: The #MemoryListener. 813 * @section: The new #MemoryRegionSection. 814 */ 815 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 816 817 /** 818 * @region_del: 819 * 820 * Called during an address space update transaction, 821 * for a section of the address space that has disappeared in the address 822 * space since the last transaction. 823 * 824 * @listener: The #MemoryListener. 825 * @section: The old #MemoryRegionSection. 826 */ 827 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 828 829 /** 830 * @region_nop: 831 * 832 * Called during an address space update transaction, 833 * for a section of the address space that is in the same place in the address 834 * space as in the last transaction. 835 * 836 * @listener: The #MemoryListener. 837 * @section: The #MemoryRegionSection. 838 */ 839 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 840 841 /** 842 * @log_start: 843 * 844 * Called during an address space update transaction, after 845 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 846 * #MemoryListener.region_nop(), if dirty memory logging clients have 847 * become active since the last transaction. 848 * 849 * @listener: The #MemoryListener. 850 * @section: The #MemoryRegionSection. 851 * @old: A bitmap of dirty memory logging clients that were active in 852 * the previous transaction. 853 * @new: A bitmap of dirty memory logging clients that are active in 854 * the current transaction. 855 */ 856 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 857 int old, int new); 858 859 /** 860 * @log_stop: 861 * 862 * Called during an address space update transaction, after 863 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 864 * #MemoryListener.region_nop() and possibly after 865 * #MemoryListener.log_start(), if dirty memory logging clients have 866 * become inactive since the last transaction. 867 * 868 * @listener: The #MemoryListener. 869 * @section: The #MemoryRegionSection. 870 * @old: A bitmap of dirty memory logging clients that were active in 871 * the previous transaction. 872 * @new: A bitmap of dirty memory logging clients that are active in 873 * the current transaction. 874 */ 875 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 876 int old, int new); 877 878 /** 879 * @log_sync: 880 * 881 * Called by memory_region_snapshot_and_clear_dirty() and 882 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 883 * copy of the dirty memory bitmap for a #MemoryRegionSection. 884 * 885 * @listener: The #MemoryListener. 886 * @section: The #MemoryRegionSection. 887 */ 888 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 889 890 /** 891 * @log_sync_global: 892 * 893 * This is the global version of @log_sync when the listener does 894 * not have a way to synchronize the log with finer granularity. 895 * When the listener registers with @log_sync_global defined, then 896 * its @log_sync must be NULL. Vice versa. 897 * 898 * @listener: The #MemoryListener. 899 */ 900 void (*log_sync_global)(MemoryListener *listener); 901 902 /** 903 * @log_clear: 904 * 905 * Called before reading the dirty memory bitmap for a 906 * #MemoryRegionSection. 907 * 908 * @listener: The #MemoryListener. 909 * @section: The #MemoryRegionSection. 910 */ 911 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 912 913 /** 914 * @log_global_start: 915 * 916 * Called by memory_global_dirty_log_start(), which 917 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 918 * the address space. #MemoryListener.log_global_start() is also 919 * called when a #MemoryListener is added, if global dirty logging is 920 * active at that time. 921 * 922 * @listener: The #MemoryListener. 923 */ 924 void (*log_global_start)(MemoryListener *listener); 925 926 /** 927 * @log_global_stop: 928 * 929 * Called by memory_global_dirty_log_stop(), which 930 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 931 * the address space. 932 * 933 * @listener: The #MemoryListener. 934 */ 935 void (*log_global_stop)(MemoryListener *listener); 936 937 /** 938 * @log_global_after_sync: 939 * 940 * Called after reading the dirty memory bitmap 941 * for any #MemoryRegionSection. 942 * 943 * @listener: The #MemoryListener. 944 */ 945 void (*log_global_after_sync)(MemoryListener *listener); 946 947 /** 948 * @eventfd_add: 949 * 950 * Called during an address space update transaction, 951 * for a section of the address space that has had a new ioeventfd 952 * registration since the last transaction. 953 * 954 * @listener: The #MemoryListener. 955 * @section: The new #MemoryRegionSection. 956 * @match_data: The @match_data parameter for the new ioeventfd. 957 * @data: The @data parameter for the new ioeventfd. 958 * @e: The #EventNotifier parameter for the new ioeventfd. 959 */ 960 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 961 bool match_data, uint64_t data, EventNotifier *e); 962 963 /** 964 * @eventfd_del: 965 * 966 * Called during an address space update transaction, 967 * for a section of the address space that has dropped an ioeventfd 968 * registration since the last transaction. 969 * 970 * @listener: The #MemoryListener. 971 * @section: The new #MemoryRegionSection. 972 * @match_data: The @match_data parameter for the dropped ioeventfd. 973 * @data: The @data parameter for the dropped ioeventfd. 974 * @e: The #EventNotifier parameter for the dropped ioeventfd. 975 */ 976 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 977 bool match_data, uint64_t data, EventNotifier *e); 978 979 /** 980 * @coalesced_io_add: 981 * 982 * Called during an address space update transaction, 983 * for a section of the address space that has had a new coalesced 984 * MMIO range registration since the last transaction. 985 * 986 * @listener: The #MemoryListener. 987 * @section: The new #MemoryRegionSection. 988 * @addr: The starting address for the coalesced MMIO range. 989 * @len: The length of the coalesced MMIO range. 990 */ 991 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 992 hwaddr addr, hwaddr len); 993 994 /** 995 * @coalesced_io_del: 996 * 997 * Called during an address space update transaction, 998 * for a section of the address space that has dropped a coalesced 999 * MMIO range since the last transaction. 1000 * 1001 * @listener: The #MemoryListener. 1002 * @section: The new #MemoryRegionSection. 1003 * @addr: The starting address for the coalesced MMIO range. 1004 * @len: The length of the coalesced MMIO range. 1005 */ 1006 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1007 hwaddr addr, hwaddr len); 1008 /** 1009 * @priority: 1010 * 1011 * Govern the order in which memory listeners are invoked. Lower priorities 1012 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1013 * or "stop" callbacks. 1014 */ 1015 unsigned priority; 1016 1017 /** 1018 * @name: 1019 * 1020 * Name of the listener. It can be used in contexts where we'd like to 1021 * identify one memory listener with the rest. 1022 */ 1023 const char *name; 1024 1025 /* private: */ 1026 AddressSpace *address_space; 1027 QTAILQ_ENTRY(MemoryListener) link; 1028 QTAILQ_ENTRY(MemoryListener) link_as; 1029 }; 1030 1031 /** 1032 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1033 */ 1034 struct AddressSpace { 1035 /* private: */ 1036 struct rcu_head rcu; 1037 char *name; 1038 MemoryRegion *root; 1039 1040 /* Accessed via RCU. */ 1041 struct FlatView *current_map; 1042 1043 int ioeventfd_nb; 1044 struct MemoryRegionIoeventfd *ioeventfds; 1045 QTAILQ_HEAD(, MemoryListener) listeners; 1046 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1047 }; 1048 1049 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1050 typedef struct FlatRange FlatRange; 1051 1052 /* Flattened global view of current active memory hierarchy. Kept in sorted 1053 * order. 1054 */ 1055 struct FlatView { 1056 struct rcu_head rcu; 1057 unsigned ref; 1058 FlatRange *ranges; 1059 unsigned nr; 1060 unsigned nr_allocated; 1061 struct AddressSpaceDispatch *dispatch; 1062 MemoryRegion *root; 1063 }; 1064 1065 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1066 { 1067 return qatomic_rcu_read(&as->current_map); 1068 } 1069 1070 /** 1071 * typedef flatview_cb: callback for flatview_for_each_range() 1072 * 1073 * @start: start address of the range within the FlatView 1074 * @len: length of the range in bytes 1075 * @mr: MemoryRegion covering this range 1076 * @offset_in_region: offset of the first byte of the range within @mr 1077 * @opaque: data pointer passed to flatview_for_each_range() 1078 * 1079 * Returns: true to stop the iteration, false to keep going. 1080 */ 1081 typedef bool (*flatview_cb)(Int128 start, 1082 Int128 len, 1083 const MemoryRegion *mr, 1084 hwaddr offset_in_region, 1085 void *opaque); 1086 1087 /** 1088 * flatview_for_each_range: Iterate through a FlatView 1089 * @fv: the FlatView to iterate through 1090 * @cb: function to call for each range 1091 * @opaque: opaque data pointer to pass to @cb 1092 * 1093 * A FlatView is made up of a list of non-overlapping ranges, each of 1094 * which is a slice of a MemoryRegion. This function iterates through 1095 * each range in @fv, calling @cb. The callback function can terminate 1096 * iteration early by returning 'true'. 1097 */ 1098 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1099 1100 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1101 MemoryRegionSection *b) 1102 { 1103 return a->mr == b->mr && 1104 a->fv == b->fv && 1105 a->offset_within_region == b->offset_within_region && 1106 a->offset_within_address_space == b->offset_within_address_space && 1107 int128_eq(a->size, b->size) && 1108 a->readonly == b->readonly && 1109 a->nonvolatile == b->nonvolatile; 1110 } 1111 1112 /** 1113 * memory_region_section_new_copy: Copy a memory region section 1114 * 1115 * Allocate memory for a new copy, copy the memory region section, and 1116 * properly take a reference on all relevant members. 1117 * 1118 * @s: the #MemoryRegionSection to copy 1119 */ 1120 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1121 1122 /** 1123 * memory_region_section_new_copy: Free a copied memory region section 1124 * 1125 * Free a copy of a memory section created via memory_region_section_new_copy(). 1126 * properly dropping references on all relevant members. 1127 * 1128 * @s: the #MemoryRegionSection to copy 1129 */ 1130 void memory_region_section_free_copy(MemoryRegionSection *s); 1131 1132 /** 1133 * memory_region_init: Initialize a memory region 1134 * 1135 * The region typically acts as a container for other memory regions. Use 1136 * memory_region_add_subregion() to add subregions. 1137 * 1138 * @mr: the #MemoryRegion to be initialized 1139 * @owner: the object that tracks the region's reference count 1140 * @name: used for debugging; not visible to the user or ABI 1141 * @size: size of the region; any subregions beyond this size will be clipped 1142 */ 1143 void memory_region_init(MemoryRegion *mr, 1144 Object *owner, 1145 const char *name, 1146 uint64_t size); 1147 1148 /** 1149 * memory_region_ref: Add 1 to a memory region's reference count 1150 * 1151 * Whenever memory regions are accessed outside the BQL, they need to be 1152 * preserved against hot-unplug. MemoryRegions actually do not have their 1153 * own reference count; they piggyback on a QOM object, their "owner". 1154 * This function adds a reference to the owner. 1155 * 1156 * All MemoryRegions must have an owner if they can disappear, even if the 1157 * device they belong to operates exclusively under the BQL. This is because 1158 * the region could be returned at any time by memory_region_find, and this 1159 * is usually under guest control. 1160 * 1161 * @mr: the #MemoryRegion 1162 */ 1163 void memory_region_ref(MemoryRegion *mr); 1164 1165 /** 1166 * memory_region_unref: Remove 1 to a memory region's reference count 1167 * 1168 * Whenever memory regions are accessed outside the BQL, they need to be 1169 * preserved against hot-unplug. MemoryRegions actually do not have their 1170 * own reference count; they piggyback on a QOM object, their "owner". 1171 * This function removes a reference to the owner and possibly destroys it. 1172 * 1173 * @mr: the #MemoryRegion 1174 */ 1175 void memory_region_unref(MemoryRegion *mr); 1176 1177 /** 1178 * memory_region_init_io: Initialize an I/O memory region. 1179 * 1180 * Accesses into the region will cause the callbacks in @ops to be called. 1181 * if @size is nonzero, subregions will be clipped to @size. 1182 * 1183 * @mr: the #MemoryRegion to be initialized. 1184 * @owner: the object that tracks the region's reference count 1185 * @ops: a structure containing read and write callbacks to be used when 1186 * I/O is performed on the region. 1187 * @opaque: passed to the read and write callbacks of the @ops structure. 1188 * @name: used for debugging; not visible to the user or ABI 1189 * @size: size of the region. 1190 */ 1191 void memory_region_init_io(MemoryRegion *mr, 1192 Object *owner, 1193 const MemoryRegionOps *ops, 1194 void *opaque, 1195 const char *name, 1196 uint64_t size); 1197 1198 /** 1199 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1200 * into the region will modify memory 1201 * directly. 1202 * 1203 * @mr: the #MemoryRegion to be initialized. 1204 * @owner: the object that tracks the region's reference count 1205 * @name: Region name, becomes part of RAMBlock name used in migration stream 1206 * must be unique within any device 1207 * @size: size of the region. 1208 * @errp: pointer to Error*, to store an error if it happens. 1209 * 1210 * Note that this function does not do anything to cause the data in the 1211 * RAM memory region to be migrated; that is the responsibility of the caller. 1212 */ 1213 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1214 Object *owner, 1215 const char *name, 1216 uint64_t size, 1217 Error **errp); 1218 1219 /** 1220 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1221 * Accesses into the region will 1222 * modify memory directly. 1223 * 1224 * @mr: the #MemoryRegion to be initialized. 1225 * @owner: the object that tracks the region's reference count 1226 * @name: Region name, becomes part of RAMBlock name used in migration stream 1227 * must be unique within any device 1228 * @size: size of the region. 1229 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1230 * @errp: pointer to Error*, to store an error if it happens. 1231 * 1232 * Note that this function does not do anything to cause the data in the 1233 * RAM memory region to be migrated; that is the responsibility of the caller. 1234 */ 1235 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1236 Object *owner, 1237 const char *name, 1238 uint64_t size, 1239 uint32_t ram_flags, 1240 Error **errp); 1241 1242 /** 1243 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 1244 * RAM. Accesses into the region will 1245 * modify memory directly. Only an initial 1246 * portion of this RAM is actually used. 1247 * Changing the size while migrating 1248 * can result in the migration being 1249 * canceled. 1250 * 1251 * @mr: the #MemoryRegion to be initialized. 1252 * @owner: the object that tracks the region's reference count 1253 * @name: Region name, becomes part of RAMBlock name used in migration stream 1254 * must be unique within any device 1255 * @size: used size of the region. 1256 * @max_size: max size of the region. 1257 * @resized: callback to notify owner about used size change. 1258 * @errp: pointer to Error*, to store an error if it happens. 1259 * 1260 * Note that this function does not do anything to cause the data in the 1261 * RAM memory region to be migrated; that is the responsibility of the caller. 1262 */ 1263 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1264 Object *owner, 1265 const char *name, 1266 uint64_t size, 1267 uint64_t max_size, 1268 void (*resized)(const char*, 1269 uint64_t length, 1270 void *host), 1271 Error **errp); 1272 #ifdef CONFIG_POSIX 1273 1274 /** 1275 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1276 * mmap-ed backend. 1277 * 1278 * @mr: the #MemoryRegion to be initialized. 1279 * @owner: the object that tracks the region's reference count 1280 * @name: Region name, becomes part of RAMBlock name used in migration stream 1281 * must be unique within any device 1282 * @size: size of the region. 1283 * @align: alignment of the region base address; if 0, the default alignment 1284 * (getpagesize()) will be used. 1285 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1286 * RAM_NORESERVE, 1287 * @path: the path in which to allocate the RAM. 1288 * @readonly: true to open @path for reading, false for read/write. 1289 * @errp: pointer to Error*, to store an error if it happens. 1290 * 1291 * Note that this function does not do anything to cause the data in the 1292 * RAM memory region to be migrated; that is the responsibility of the caller. 1293 */ 1294 void memory_region_init_ram_from_file(MemoryRegion *mr, 1295 Object *owner, 1296 const char *name, 1297 uint64_t size, 1298 uint64_t align, 1299 uint32_t ram_flags, 1300 const char *path, 1301 bool readonly, 1302 Error **errp); 1303 1304 /** 1305 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1306 * mmap-ed backend. 1307 * 1308 * @mr: the #MemoryRegion to be initialized. 1309 * @owner: the object that tracks the region's reference count 1310 * @name: the name of the region. 1311 * @size: size of the region. 1312 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1313 * RAM_NORESERVE, RAM_PROTECTED. 1314 * @fd: the fd to mmap. 1315 * @offset: offset within the file referenced by fd 1316 * @errp: pointer to Error*, to store an error if it happens. 1317 * 1318 * Note that this function does not do anything to cause the data in the 1319 * RAM memory region to be migrated; that is the responsibility of the caller. 1320 */ 1321 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1322 Object *owner, 1323 const char *name, 1324 uint64_t size, 1325 uint32_t ram_flags, 1326 int fd, 1327 ram_addr_t offset, 1328 Error **errp); 1329 #endif 1330 1331 /** 1332 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1333 * user-provided pointer. Accesses into the 1334 * region will modify memory directly. 1335 * 1336 * @mr: the #MemoryRegion to be initialized. 1337 * @owner: the object that tracks the region's reference count 1338 * @name: Region name, becomes part of RAMBlock name used in migration stream 1339 * must be unique within any device 1340 * @size: size of the region. 1341 * @ptr: memory to be mapped; must contain at least @size bytes. 1342 * 1343 * Note that this function does not do anything to cause the data in the 1344 * RAM memory region to be migrated; that is the responsibility of the caller. 1345 */ 1346 void memory_region_init_ram_ptr(MemoryRegion *mr, 1347 Object *owner, 1348 const char *name, 1349 uint64_t size, 1350 void *ptr); 1351 1352 /** 1353 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1354 * a user-provided pointer. 1355 * 1356 * A RAM device represents a mapping to a physical device, such as to a PCI 1357 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1358 * into the VM address space and access to the region will modify memory 1359 * directly. However, the memory region should not be included in a memory 1360 * dump (device may not be enabled/mapped at the time of the dump), and 1361 * operations incompatible with manipulating MMIO should be avoided. Replaces 1362 * skip_dump flag. 1363 * 1364 * @mr: the #MemoryRegion to be initialized. 1365 * @owner: the object that tracks the region's reference count 1366 * @name: the name of the region. 1367 * @size: size of the region. 1368 * @ptr: memory to be mapped; must contain at least @size bytes. 1369 * 1370 * Note that this function does not do anything to cause the data in the 1371 * RAM memory region to be migrated; that is the responsibility of the caller. 1372 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1373 */ 1374 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1375 Object *owner, 1376 const char *name, 1377 uint64_t size, 1378 void *ptr); 1379 1380 /** 1381 * memory_region_init_alias: Initialize a memory region that aliases all or a 1382 * part of another memory region. 1383 * 1384 * @mr: the #MemoryRegion to be initialized. 1385 * @owner: the object that tracks the region's reference count 1386 * @name: used for debugging; not visible to the user or ABI 1387 * @orig: the region to be referenced; @mr will be equivalent to 1388 * @orig between @offset and @offset + @size - 1. 1389 * @offset: start of the section in @orig to be referenced. 1390 * @size: size of the region. 1391 */ 1392 void memory_region_init_alias(MemoryRegion *mr, 1393 Object *owner, 1394 const char *name, 1395 MemoryRegion *orig, 1396 hwaddr offset, 1397 uint64_t size); 1398 1399 /** 1400 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1401 * 1402 * This has the same effect as calling memory_region_init_ram_nomigrate() 1403 * and then marking the resulting region read-only with 1404 * memory_region_set_readonly(). 1405 * 1406 * Note that this function does not do anything to cause the data in the 1407 * RAM side of the memory region to be migrated; that is the responsibility 1408 * of the caller. 1409 * 1410 * @mr: the #MemoryRegion to be initialized. 1411 * @owner: the object that tracks the region's reference count 1412 * @name: Region name, becomes part of RAMBlock name used in migration stream 1413 * must be unique within any device 1414 * @size: size of the region. 1415 * @errp: pointer to Error*, to store an error if it happens. 1416 */ 1417 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1418 Object *owner, 1419 const char *name, 1420 uint64_t size, 1421 Error **errp); 1422 1423 /** 1424 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1425 * Writes are handled via callbacks. 1426 * 1427 * Note that this function does not do anything to cause the data in the 1428 * RAM side of the memory region to be migrated; that is the responsibility 1429 * of the caller. 1430 * 1431 * @mr: the #MemoryRegion to be initialized. 1432 * @owner: the object that tracks the region's reference count 1433 * @ops: callbacks for write access handling (must not be NULL). 1434 * @opaque: passed to the read and write callbacks of the @ops structure. 1435 * @name: Region name, becomes part of RAMBlock name used in migration stream 1436 * must be unique within any device 1437 * @size: size of the region. 1438 * @errp: pointer to Error*, to store an error if it happens. 1439 */ 1440 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1441 Object *owner, 1442 const MemoryRegionOps *ops, 1443 void *opaque, 1444 const char *name, 1445 uint64_t size, 1446 Error **errp); 1447 1448 /** 1449 * memory_region_init_iommu: Initialize a memory region of a custom type 1450 * that translates addresses 1451 * 1452 * An IOMMU region translates addresses and forwards accesses to a target 1453 * memory region. 1454 * 1455 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1456 * @_iommu_mr should be a pointer to enough memory for an instance of 1457 * that subclass, @instance_size is the size of that subclass, and 1458 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1459 * instance of the subclass, and its methods will then be called to handle 1460 * accesses to the memory region. See the documentation of 1461 * #IOMMUMemoryRegionClass for further details. 1462 * 1463 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1464 * @instance_size: the IOMMUMemoryRegion subclass instance size 1465 * @mrtypename: the type name of the #IOMMUMemoryRegion 1466 * @owner: the object that tracks the region's reference count 1467 * @name: used for debugging; not visible to the user or ABI 1468 * @size: size of the region. 1469 */ 1470 void memory_region_init_iommu(void *_iommu_mr, 1471 size_t instance_size, 1472 const char *mrtypename, 1473 Object *owner, 1474 const char *name, 1475 uint64_t size); 1476 1477 /** 1478 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1479 * region will modify memory directly. 1480 * 1481 * @mr: the #MemoryRegion to be initialized 1482 * @owner: the object that tracks the region's reference count (must be 1483 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1484 * @name: name of the memory region 1485 * @size: size of the region in bytes 1486 * @errp: pointer to Error*, to store an error if it happens. 1487 * 1488 * This function allocates RAM for a board model or device, and 1489 * arranges for it to be migrated (by calling vmstate_register_ram() 1490 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1491 * @owner is NULL). 1492 * 1493 * TODO: Currently we restrict @owner to being either NULL (for 1494 * global RAM regions with no owner) or devices, so that we can 1495 * give the RAM block a unique name for migration purposes. 1496 * We should lift this restriction and allow arbitrary Objects. 1497 * If you pass a non-NULL non-device @owner then we will assert. 1498 */ 1499 void memory_region_init_ram(MemoryRegion *mr, 1500 Object *owner, 1501 const char *name, 1502 uint64_t size, 1503 Error **errp); 1504 1505 /** 1506 * memory_region_init_rom: Initialize a ROM memory region. 1507 * 1508 * This has the same effect as calling memory_region_init_ram() 1509 * and then marking the resulting region read-only with 1510 * memory_region_set_readonly(). This includes arranging for the 1511 * contents to be migrated. 1512 * 1513 * TODO: Currently we restrict @owner to being either NULL (for 1514 * global RAM regions with no owner) or devices, so that we can 1515 * give the RAM block a unique name for migration purposes. 1516 * We should lift this restriction and allow arbitrary Objects. 1517 * If you pass a non-NULL non-device @owner then we will assert. 1518 * 1519 * @mr: the #MemoryRegion to be initialized. 1520 * @owner: the object that tracks the region's reference count 1521 * @name: Region name, becomes part of RAMBlock name used in migration stream 1522 * must be unique within any device 1523 * @size: size of the region. 1524 * @errp: pointer to Error*, to store an error if it happens. 1525 */ 1526 void memory_region_init_rom(MemoryRegion *mr, 1527 Object *owner, 1528 const char *name, 1529 uint64_t size, 1530 Error **errp); 1531 1532 /** 1533 * memory_region_init_rom_device: Initialize a ROM memory region. 1534 * Writes are handled via callbacks. 1535 * 1536 * This function initializes a memory region backed by RAM for reads 1537 * and callbacks for writes, and arranges for the RAM backing to 1538 * be migrated (by calling vmstate_register_ram() 1539 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1540 * @owner is NULL). 1541 * 1542 * TODO: Currently we restrict @owner to being either NULL (for 1543 * global RAM regions with no owner) or devices, so that we can 1544 * give the RAM block a unique name for migration purposes. 1545 * We should lift this restriction and allow arbitrary Objects. 1546 * If you pass a non-NULL non-device @owner then we will assert. 1547 * 1548 * @mr: the #MemoryRegion to be initialized. 1549 * @owner: the object that tracks the region's reference count 1550 * @ops: callbacks for write access handling (must not be NULL). 1551 * @opaque: passed to the read and write callbacks of the @ops structure. 1552 * @name: Region name, becomes part of RAMBlock name used in migration stream 1553 * must be unique within any device 1554 * @size: size of the region. 1555 * @errp: pointer to Error*, to store an error if it happens. 1556 */ 1557 void memory_region_init_rom_device(MemoryRegion *mr, 1558 Object *owner, 1559 const MemoryRegionOps *ops, 1560 void *opaque, 1561 const char *name, 1562 uint64_t size, 1563 Error **errp); 1564 1565 1566 /** 1567 * memory_region_owner: get a memory region's owner. 1568 * 1569 * @mr: the memory region being queried. 1570 */ 1571 Object *memory_region_owner(MemoryRegion *mr); 1572 1573 /** 1574 * memory_region_size: get a memory region's size. 1575 * 1576 * @mr: the memory region being queried. 1577 */ 1578 uint64_t memory_region_size(MemoryRegion *mr); 1579 1580 /** 1581 * memory_region_is_ram: check whether a memory region is random access 1582 * 1583 * Returns %true if a memory region is random access. 1584 * 1585 * @mr: the memory region being queried 1586 */ 1587 static inline bool memory_region_is_ram(MemoryRegion *mr) 1588 { 1589 return mr->ram; 1590 } 1591 1592 /** 1593 * memory_region_is_ram_device: check whether a memory region is a ram device 1594 * 1595 * Returns %true if a memory region is a device backed ram region 1596 * 1597 * @mr: the memory region being queried 1598 */ 1599 bool memory_region_is_ram_device(MemoryRegion *mr); 1600 1601 /** 1602 * memory_region_is_romd: check whether a memory region is in ROMD mode 1603 * 1604 * Returns %true if a memory region is a ROM device and currently set to allow 1605 * direct reads. 1606 * 1607 * @mr: the memory region being queried 1608 */ 1609 static inline bool memory_region_is_romd(MemoryRegion *mr) 1610 { 1611 return mr->rom_device && mr->romd_mode; 1612 } 1613 1614 /** 1615 * memory_region_is_protected: check whether a memory region is protected 1616 * 1617 * Returns %true if a memory region is protected RAM and cannot be accessed 1618 * via standard mechanisms, e.g. DMA. 1619 * 1620 * @mr: the memory region being queried 1621 */ 1622 bool memory_region_is_protected(MemoryRegion *mr); 1623 1624 /** 1625 * memory_region_get_iommu: check whether a memory region is an iommu 1626 * 1627 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1628 * otherwise NULL. 1629 * 1630 * @mr: the memory region being queried 1631 */ 1632 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1633 { 1634 if (mr->alias) { 1635 return memory_region_get_iommu(mr->alias); 1636 } 1637 if (mr->is_iommu) { 1638 return (IOMMUMemoryRegion *) mr; 1639 } 1640 return NULL; 1641 } 1642 1643 /** 1644 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1645 * if an iommu or NULL if not 1646 * 1647 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1648 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1649 * 1650 * @iommu_mr: the memory region being queried 1651 */ 1652 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1653 IOMMUMemoryRegion *iommu_mr) 1654 { 1655 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1656 } 1657 1658 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1659 1660 /** 1661 * memory_region_iommu_get_min_page_size: get minimum supported page size 1662 * for an iommu 1663 * 1664 * Returns minimum supported page size for an iommu. 1665 * 1666 * @iommu_mr: the memory region being queried 1667 */ 1668 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1669 1670 /** 1671 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1672 * 1673 * Note: for any IOMMU implementation, an in-place mapping change 1674 * should be notified with an UNMAP followed by a MAP. 1675 * 1676 * @iommu_mr: the memory region that was changed 1677 * @iommu_idx: the IOMMU index for the translation table which has changed 1678 * @event: TLB event with the new entry in the IOMMU translation table. 1679 * The entry replaces all old entries for the same virtual I/O address 1680 * range. 1681 */ 1682 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1683 int iommu_idx, 1684 IOMMUTLBEvent event); 1685 1686 /** 1687 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1688 * entry to a single notifier 1689 * 1690 * This works just like memory_region_notify_iommu(), but it only 1691 * notifies a specific notifier, not all of them. 1692 * 1693 * @notifier: the notifier to be notified 1694 * @event: TLB event with the new entry in the IOMMU translation table. 1695 * The entry replaces all old entries for the same virtual I/O address 1696 * range. 1697 */ 1698 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1699 IOMMUTLBEvent *event); 1700 1701 /** 1702 * memory_region_register_iommu_notifier: register a notifier for changes to 1703 * IOMMU translation entries. 1704 * 1705 * Returns 0 on success, or a negative errno otherwise. In particular, 1706 * -EINVAL indicates that at least one of the attributes of the notifier 1707 * is not supported (flag/range) by the IOMMU memory region. In case of error 1708 * the error object must be created. 1709 * 1710 * @mr: the memory region to observe 1711 * @n: the IOMMUNotifier to be added; the notify callback receives a 1712 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1713 * ceases to be valid on exit from the notifier. 1714 * @errp: pointer to Error*, to store an error if it happens. 1715 */ 1716 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1717 IOMMUNotifier *n, Error **errp); 1718 1719 /** 1720 * memory_region_iommu_replay: replay existing IOMMU translations to 1721 * a notifier with the minimum page granularity returned by 1722 * mr->iommu_ops->get_page_size(). 1723 * 1724 * Note: this is not related to record-and-replay functionality. 1725 * 1726 * @iommu_mr: the memory region to observe 1727 * @n: the notifier to which to replay iommu mappings 1728 */ 1729 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1730 1731 /** 1732 * memory_region_unregister_iommu_notifier: unregister a notifier for 1733 * changes to IOMMU translation entries. 1734 * 1735 * @mr: the memory region which was observed and for which notity_stopped() 1736 * needs to be called 1737 * @n: the notifier to be removed. 1738 */ 1739 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1740 IOMMUNotifier *n); 1741 1742 /** 1743 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1744 * defined on the IOMMU. 1745 * 1746 * Returns 0 on success, or a negative errno otherwise. In particular, 1747 * -EINVAL indicates that the IOMMU does not support the requested 1748 * attribute. 1749 * 1750 * @iommu_mr: the memory region 1751 * @attr: the requested attribute 1752 * @data: a pointer to the requested attribute data 1753 */ 1754 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1755 enum IOMMUMemoryRegionAttr attr, 1756 void *data); 1757 1758 /** 1759 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1760 * use for translations with the given memory transaction attributes. 1761 * 1762 * @iommu_mr: the memory region 1763 * @attrs: the memory transaction attributes 1764 */ 1765 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1766 MemTxAttrs attrs); 1767 1768 /** 1769 * memory_region_iommu_num_indexes: return the total number of IOMMU 1770 * indexes that this IOMMU supports. 1771 * 1772 * @iommu_mr: the memory region 1773 */ 1774 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1775 1776 /** 1777 * memory_region_iommu_set_page_size_mask: set the supported page 1778 * sizes for a given IOMMU memory region 1779 * 1780 * @iommu_mr: IOMMU memory region 1781 * @page_size_mask: supported page size mask 1782 * @errp: pointer to Error*, to store an error if it happens. 1783 */ 1784 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1785 uint64_t page_size_mask, 1786 Error **errp); 1787 1788 /** 1789 * memory_region_name: get a memory region's name 1790 * 1791 * Returns the string that was used to initialize the memory region. 1792 * 1793 * @mr: the memory region being queried 1794 */ 1795 const char *memory_region_name(const MemoryRegion *mr); 1796 1797 /** 1798 * memory_region_is_logging: return whether a memory region is logging writes 1799 * 1800 * Returns %true if the memory region is logging writes for the given client 1801 * 1802 * @mr: the memory region being queried 1803 * @client: the client being queried 1804 */ 1805 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1806 1807 /** 1808 * memory_region_get_dirty_log_mask: return the clients for which a 1809 * memory region is logging writes. 1810 * 1811 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1812 * are the bit indices. 1813 * 1814 * @mr: the memory region being queried 1815 */ 1816 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1817 1818 /** 1819 * memory_region_is_rom: check whether a memory region is ROM 1820 * 1821 * Returns %true if a memory region is read-only memory. 1822 * 1823 * @mr: the memory region being queried 1824 */ 1825 static inline bool memory_region_is_rom(MemoryRegion *mr) 1826 { 1827 return mr->ram && mr->readonly; 1828 } 1829 1830 /** 1831 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1832 * 1833 * Returns %true is a memory region is non-volatile memory. 1834 * 1835 * @mr: the memory region being queried 1836 */ 1837 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1838 { 1839 return mr->nonvolatile; 1840 } 1841 1842 /** 1843 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1844 * 1845 * Returns a file descriptor backing a file-based RAM memory region, 1846 * or -1 if the region is not a file-based RAM memory region. 1847 * 1848 * @mr: the RAM or alias memory region being queried. 1849 */ 1850 int memory_region_get_fd(MemoryRegion *mr); 1851 1852 /** 1853 * memory_region_from_host: Convert a pointer into a RAM memory region 1854 * and an offset within it. 1855 * 1856 * Given a host pointer inside a RAM memory region (created with 1857 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1858 * the MemoryRegion and the offset within it. 1859 * 1860 * Use with care; by the time this function returns, the returned pointer is 1861 * not protected by RCU anymore. If the caller is not within an RCU critical 1862 * section and does not hold the iothread lock, it must have other means of 1863 * protecting the pointer, such as a reference to the region that includes 1864 * the incoming ram_addr_t. 1865 * 1866 * @ptr: the host pointer to be converted 1867 * @offset: the offset within memory region 1868 */ 1869 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1870 1871 /** 1872 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1873 * 1874 * Returns a host pointer to a RAM memory region (created with 1875 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1876 * 1877 * Use with care; by the time this function returns, the returned pointer is 1878 * not protected by RCU anymore. If the caller is not within an RCU critical 1879 * section and does not hold the iothread lock, it must have other means of 1880 * protecting the pointer, such as a reference to the region that includes 1881 * the incoming ram_addr_t. 1882 * 1883 * @mr: the memory region being queried. 1884 */ 1885 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1886 1887 /* memory_region_ram_resize: Resize a RAM region. 1888 * 1889 * Resizing RAM while migrating can result in the migration being canceled. 1890 * Care has to be taken if the guest might have already detected the memory. 1891 * 1892 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1893 * @newsize: the new size the region 1894 * @errp: pointer to Error*, to store an error if it happens. 1895 */ 1896 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1897 Error **errp); 1898 1899 /** 1900 * memory_region_msync: Synchronize selected address range of 1901 * a memory mapped region 1902 * 1903 * @mr: the memory region to be msync 1904 * @addr: the initial address of the range to be sync 1905 * @size: the size of the range to be sync 1906 */ 1907 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1908 1909 /** 1910 * memory_region_writeback: Trigger cache writeback for 1911 * selected address range 1912 * 1913 * @mr: the memory region to be updated 1914 * @addr: the initial address of the range to be written back 1915 * @size: the size of the range to be written back 1916 */ 1917 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1918 1919 /** 1920 * memory_region_set_log: Turn dirty logging on or off for a region. 1921 * 1922 * Turns dirty logging on or off for a specified client (display, migration). 1923 * Only meaningful for RAM regions. 1924 * 1925 * @mr: the memory region being updated. 1926 * @log: whether dirty logging is to be enabled or disabled. 1927 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1928 */ 1929 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1930 1931 /** 1932 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1933 * 1934 * Marks a range of bytes as dirty, after it has been dirtied outside 1935 * guest code. 1936 * 1937 * @mr: the memory region being dirtied. 1938 * @addr: the address (relative to the start of the region) being dirtied. 1939 * @size: size of the range being dirtied. 1940 */ 1941 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1942 hwaddr size); 1943 1944 /** 1945 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1946 * 1947 * This function is called when the caller wants to clear the remote 1948 * dirty bitmap of a memory range within the memory region. This can 1949 * be used by e.g. KVM to manually clear dirty log when 1950 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1951 * kernel. 1952 * 1953 * @mr: the memory region to clear the dirty log upon 1954 * @start: start address offset within the memory region 1955 * @len: length of the memory region to clear dirty bitmap 1956 */ 1957 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1958 hwaddr len); 1959 1960 /** 1961 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1962 * bitmap and clear it. 1963 * 1964 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1965 * returns the snapshot. The snapshot can then be used to query dirty 1966 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1967 * querying the same page multiple times, which is especially useful for 1968 * display updates where the scanlines often are not page aligned. 1969 * 1970 * The dirty bitmap region which gets copyed into the snapshot (and 1971 * cleared afterwards) can be larger than requested. The boundaries 1972 * are rounded up/down so complete bitmap longs (covering 64 pages on 1973 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1974 * isn't a problem for display updates as the extra pages are outside 1975 * the visible area, and in case the visible area changes a full 1976 * display redraw is due anyway. Should other use cases for this 1977 * function emerge we might have to revisit this implementation 1978 * detail. 1979 * 1980 * Use g_free to release DirtyBitmapSnapshot. 1981 * 1982 * @mr: the memory region being queried. 1983 * @addr: the address (relative to the start of the region) being queried. 1984 * @size: the size of the range being queried. 1985 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1986 */ 1987 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1988 hwaddr addr, 1989 hwaddr size, 1990 unsigned client); 1991 1992 /** 1993 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1994 * in the specified dirty bitmap snapshot. 1995 * 1996 * @mr: the memory region being queried. 1997 * @snap: the dirty bitmap snapshot 1998 * @addr: the address (relative to the start of the region) being queried. 1999 * @size: the size of the range being queried. 2000 */ 2001 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2002 DirtyBitmapSnapshot *snap, 2003 hwaddr addr, hwaddr size); 2004 2005 /** 2006 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2007 * client. 2008 * 2009 * Marks a range of pages as no longer dirty. 2010 * 2011 * @mr: the region being updated. 2012 * @addr: the start of the subrange being cleaned. 2013 * @size: the size of the subrange being cleaned. 2014 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2015 * %DIRTY_MEMORY_VGA. 2016 */ 2017 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2018 hwaddr size, unsigned client); 2019 2020 /** 2021 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2022 * TBs (for self-modifying code). 2023 * 2024 * The MemoryRegionOps->write() callback of a ROM device must use this function 2025 * to mark byte ranges that have been modified internally, such as by directly 2026 * accessing the memory returned by memory_region_get_ram_ptr(). 2027 * 2028 * This function marks the range dirty and invalidates TBs so that TCG can 2029 * detect self-modifying code. 2030 * 2031 * @mr: the region being flushed. 2032 * @addr: the start, relative to the start of the region, of the range being 2033 * flushed. 2034 * @size: the size, in bytes, of the range being flushed. 2035 */ 2036 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2037 2038 /** 2039 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2040 * 2041 * Allows a memory region to be marked as read-only (turning it into a ROM). 2042 * only useful on RAM regions. 2043 * 2044 * @mr: the region being updated. 2045 * @readonly: whether rhe region is to be ROM or RAM. 2046 */ 2047 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2048 2049 /** 2050 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2051 * 2052 * Allows a memory region to be marked as non-volatile. 2053 * only useful on RAM regions. 2054 * 2055 * @mr: the region being updated. 2056 * @nonvolatile: whether rhe region is to be non-volatile. 2057 */ 2058 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2059 2060 /** 2061 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2062 * 2063 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2064 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2065 * device is mapped to guest memory and satisfies read access directly. 2066 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2067 * Writes are always handled by the #MemoryRegion.write function. 2068 * 2069 * @mr: the memory region to be updated 2070 * @romd_mode: %true to put the region into ROMD mode 2071 */ 2072 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2073 2074 /** 2075 * memory_region_set_coalescing: Enable memory coalescing for the region. 2076 * 2077 * Enabled writes to a region to be queued for later processing. MMIO ->write 2078 * callbacks may be delayed until a non-coalesced MMIO is issued. 2079 * Only useful for IO regions. Roughly similar to write-combining hardware. 2080 * 2081 * @mr: the memory region to be write coalesced 2082 */ 2083 void memory_region_set_coalescing(MemoryRegion *mr); 2084 2085 /** 2086 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2087 * a region. 2088 * 2089 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2090 * Multiple calls can be issued coalesced disjoint ranges. 2091 * 2092 * @mr: the memory region to be updated. 2093 * @offset: the start of the range within the region to be coalesced. 2094 * @size: the size of the subrange to be coalesced. 2095 */ 2096 void memory_region_add_coalescing(MemoryRegion *mr, 2097 hwaddr offset, 2098 uint64_t size); 2099 2100 /** 2101 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2102 * 2103 * Disables any coalescing caused by memory_region_set_coalescing() or 2104 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2105 * hardware. 2106 * 2107 * @mr: the memory region to be updated. 2108 */ 2109 void memory_region_clear_coalescing(MemoryRegion *mr); 2110 2111 /** 2112 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2113 * accesses. 2114 * 2115 * Ensure that pending coalesced MMIO request are flushed before the memory 2116 * region is accessed. This property is automatically enabled for all regions 2117 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2118 * 2119 * @mr: the memory region to be updated. 2120 */ 2121 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2122 2123 /** 2124 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2125 * accesses. 2126 * 2127 * Clear the automatic coalesced MMIO flushing enabled via 2128 * memory_region_set_flush_coalesced. Note that this service has no effect on 2129 * memory regions that have MMIO coalescing enabled for themselves. For them, 2130 * automatic flushing will stop once coalescing is disabled. 2131 * 2132 * @mr: the memory region to be updated. 2133 */ 2134 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2135 2136 /** 2137 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2138 * is written to a location. 2139 * 2140 * Marks a word in an IO region (initialized with memory_region_init_io()) 2141 * as a trigger for an eventfd event. The I/O callback will not be called. 2142 * The caller must be prepared to handle failure (that is, take the required 2143 * action if the callback _is_ called). 2144 * 2145 * @mr: the memory region being updated. 2146 * @addr: the address within @mr that is to be monitored 2147 * @size: the size of the access to trigger the eventfd 2148 * @match_data: whether to match against @data, instead of just @addr 2149 * @data: the data to match against the guest write 2150 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2151 **/ 2152 void memory_region_add_eventfd(MemoryRegion *mr, 2153 hwaddr addr, 2154 unsigned size, 2155 bool match_data, 2156 uint64_t data, 2157 EventNotifier *e); 2158 2159 /** 2160 * memory_region_del_eventfd: Cancel an eventfd. 2161 * 2162 * Cancels an eventfd trigger requested by a previous 2163 * memory_region_add_eventfd() call. 2164 * 2165 * @mr: the memory region being updated. 2166 * @addr: the address within @mr that is to be monitored 2167 * @size: the size of the access to trigger the eventfd 2168 * @match_data: whether to match against @data, instead of just @addr 2169 * @data: the data to match against the guest write 2170 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2171 */ 2172 void memory_region_del_eventfd(MemoryRegion *mr, 2173 hwaddr addr, 2174 unsigned size, 2175 bool match_data, 2176 uint64_t data, 2177 EventNotifier *e); 2178 2179 /** 2180 * memory_region_add_subregion: Add a subregion to a container. 2181 * 2182 * Adds a subregion at @offset. The subregion may not overlap with other 2183 * subregions (except for those explicitly marked as overlapping). A region 2184 * may only be added once as a subregion (unless removed with 2185 * memory_region_del_subregion()); use memory_region_init_alias() if you 2186 * want a region to be a subregion in multiple locations. 2187 * 2188 * @mr: the region to contain the new subregion; must be a container 2189 * initialized with memory_region_init(). 2190 * @offset: the offset relative to @mr where @subregion is added. 2191 * @subregion: the subregion to be added. 2192 */ 2193 void memory_region_add_subregion(MemoryRegion *mr, 2194 hwaddr offset, 2195 MemoryRegion *subregion); 2196 /** 2197 * memory_region_add_subregion_overlap: Add a subregion to a container 2198 * with overlap. 2199 * 2200 * Adds a subregion at @offset. The subregion may overlap with other 2201 * subregions. Conflicts are resolved by having a higher @priority hide a 2202 * lower @priority. Subregions without priority are taken as @priority 0. 2203 * A region may only be added once as a subregion (unless removed with 2204 * memory_region_del_subregion()); use memory_region_init_alias() if you 2205 * want a region to be a subregion in multiple locations. 2206 * 2207 * @mr: the region to contain the new subregion; must be a container 2208 * initialized with memory_region_init(). 2209 * @offset: the offset relative to @mr where @subregion is added. 2210 * @subregion: the subregion to be added. 2211 * @priority: used for resolving overlaps; highest priority wins. 2212 */ 2213 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2214 hwaddr offset, 2215 MemoryRegion *subregion, 2216 int priority); 2217 2218 /** 2219 * memory_region_get_ram_addr: Get the ram address associated with a memory 2220 * region 2221 * 2222 * @mr: the region to be queried 2223 */ 2224 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2225 2226 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2227 /** 2228 * memory_region_del_subregion: Remove a subregion. 2229 * 2230 * Removes a subregion from its container. 2231 * 2232 * @mr: the container to be updated. 2233 * @subregion: the region being removed; must be a current subregion of @mr. 2234 */ 2235 void memory_region_del_subregion(MemoryRegion *mr, 2236 MemoryRegion *subregion); 2237 2238 /* 2239 * memory_region_set_enabled: dynamically enable or disable a region 2240 * 2241 * Enables or disables a memory region. A disabled memory region 2242 * ignores all accesses to itself and its subregions. It does not 2243 * obscure sibling subregions with lower priority - it simply behaves as 2244 * if it was removed from the hierarchy. 2245 * 2246 * Regions default to being enabled. 2247 * 2248 * @mr: the region to be updated 2249 * @enabled: whether to enable or disable the region 2250 */ 2251 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2252 2253 /* 2254 * memory_region_set_address: dynamically update the address of a region 2255 * 2256 * Dynamically updates the address of a region, relative to its container. 2257 * May be used on regions are currently part of a memory hierarchy. 2258 * 2259 * @mr: the region to be updated 2260 * @addr: new address, relative to container region 2261 */ 2262 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2263 2264 /* 2265 * memory_region_set_size: dynamically update the size of a region. 2266 * 2267 * Dynamically updates the size of a region. 2268 * 2269 * @mr: the region to be updated 2270 * @size: used size of the region. 2271 */ 2272 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2273 2274 /* 2275 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2276 * 2277 * Dynamically updates the offset into the target region that an alias points 2278 * to, as if the fourth argument to memory_region_init_alias() has changed. 2279 * 2280 * @mr: the #MemoryRegion to be updated; should be an alias. 2281 * @offset: the new offset into the target memory region 2282 */ 2283 void memory_region_set_alias_offset(MemoryRegion *mr, 2284 hwaddr offset); 2285 2286 /** 2287 * memory_region_present: checks if an address relative to a @container 2288 * translates into #MemoryRegion within @container 2289 * 2290 * Answer whether a #MemoryRegion within @container covers the address 2291 * @addr. 2292 * 2293 * @container: a #MemoryRegion within which @addr is a relative address 2294 * @addr: the area within @container to be searched 2295 */ 2296 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2297 2298 /** 2299 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2300 * into another memory region, which does not necessarily imply that it is 2301 * mapped into an address space. 2302 * 2303 * @mr: a #MemoryRegion which should be checked if it's mapped 2304 */ 2305 bool memory_region_is_mapped(MemoryRegion *mr); 2306 2307 /** 2308 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2309 * #MemoryRegion 2310 * 2311 * The #RamDiscardManager cannot change while a memory region is mapped. 2312 * 2313 * @mr: the #MemoryRegion 2314 */ 2315 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2316 2317 /** 2318 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2319 * #RamDiscardManager assigned 2320 * 2321 * @mr: the #MemoryRegion 2322 */ 2323 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2324 { 2325 return !!memory_region_get_ram_discard_manager(mr); 2326 } 2327 2328 /** 2329 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2330 * #MemoryRegion 2331 * 2332 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2333 * that does not cover RAM, or a #MemoryRegion that already has a 2334 * #RamDiscardManager assigned. 2335 * 2336 * @mr: the #MemoryRegion 2337 * @rdm: #RamDiscardManager to set 2338 */ 2339 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2340 RamDiscardManager *rdm); 2341 2342 /** 2343 * memory_region_find: translate an address/size relative to a 2344 * MemoryRegion into a #MemoryRegionSection. 2345 * 2346 * Locates the first #MemoryRegion within @mr that overlaps the range 2347 * given by @addr and @size. 2348 * 2349 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2350 * It will have the following characteristics: 2351 * - @size = 0 iff no overlap was found 2352 * - @mr is non-%NULL iff an overlap was found 2353 * 2354 * Remember that in the return value the @offset_within_region is 2355 * relative to the returned region (in the .@mr field), not to the 2356 * @mr argument. 2357 * 2358 * Similarly, the .@offset_within_address_space is relative to the 2359 * address space that contains both regions, the passed and the 2360 * returned one. However, in the special case where the @mr argument 2361 * has no container (and thus is the root of the address space), the 2362 * following will hold: 2363 * - @offset_within_address_space >= @addr 2364 * - @offset_within_address_space + .@size <= @addr + @size 2365 * 2366 * @mr: a MemoryRegion within which @addr is a relative address 2367 * @addr: start of the area within @as to be searched 2368 * @size: size of the area to be searched 2369 */ 2370 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2371 hwaddr addr, uint64_t size); 2372 2373 /** 2374 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2375 * 2376 * Synchronizes the dirty page log for all address spaces. 2377 */ 2378 void memory_global_dirty_log_sync(void); 2379 2380 /** 2381 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2382 * 2383 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2384 * This function must be called after the dirty log bitmap is cleared, and 2385 * before dirty guest memory pages are read. If you are using 2386 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2387 * care of doing this. 2388 */ 2389 void memory_global_after_dirty_log_sync(void); 2390 2391 /** 2392 * memory_region_transaction_begin: Start a transaction. 2393 * 2394 * During a transaction, changes will be accumulated and made visible 2395 * only when the transaction ends (is committed). 2396 */ 2397 void memory_region_transaction_begin(void); 2398 2399 /** 2400 * memory_region_transaction_commit: Commit a transaction and make changes 2401 * visible to the guest. 2402 */ 2403 void memory_region_transaction_commit(void); 2404 2405 /** 2406 * memory_listener_register: register callbacks to be called when memory 2407 * sections are mapped or unmapped into an address 2408 * space 2409 * 2410 * @listener: an object containing the callbacks to be called 2411 * @filter: if non-%NULL, only regions in this address space will be observed 2412 */ 2413 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2414 2415 /** 2416 * memory_listener_unregister: undo the effect of memory_listener_register() 2417 * 2418 * @listener: an object containing the callbacks to be removed 2419 */ 2420 void memory_listener_unregister(MemoryListener *listener); 2421 2422 /** 2423 * memory_global_dirty_log_start: begin dirty logging for all regions 2424 * 2425 * @flags: purpose of starting dirty log, migration or dirty rate 2426 */ 2427 void memory_global_dirty_log_start(unsigned int flags); 2428 2429 /** 2430 * memory_global_dirty_log_stop: end dirty logging for all regions 2431 * 2432 * @flags: purpose of stopping dirty log, migration or dirty rate 2433 */ 2434 void memory_global_dirty_log_stop(unsigned int flags); 2435 2436 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2437 2438 /** 2439 * memory_region_dispatch_read: perform a read directly to the specified 2440 * MemoryRegion. 2441 * 2442 * @mr: #MemoryRegion to access 2443 * @addr: address within that region 2444 * @pval: pointer to uint64_t which the data is written to 2445 * @op: size, sign, and endianness of the memory operation 2446 * @attrs: memory transaction attributes to use for the access 2447 */ 2448 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2449 hwaddr addr, 2450 uint64_t *pval, 2451 MemOp op, 2452 MemTxAttrs attrs); 2453 /** 2454 * memory_region_dispatch_write: perform a write directly to the specified 2455 * MemoryRegion. 2456 * 2457 * @mr: #MemoryRegion to access 2458 * @addr: address within that region 2459 * @data: data to write 2460 * @op: size, sign, and endianness of the memory operation 2461 * @attrs: memory transaction attributes to use for the access 2462 */ 2463 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2464 hwaddr addr, 2465 uint64_t data, 2466 MemOp op, 2467 MemTxAttrs attrs); 2468 2469 /** 2470 * address_space_init: initializes an address space 2471 * 2472 * @as: an uninitialized #AddressSpace 2473 * @root: a #MemoryRegion that routes addresses for the address space 2474 * @name: an address space name. The name is only used for debugging 2475 * output. 2476 */ 2477 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2478 2479 /** 2480 * address_space_destroy: destroy an address space 2481 * 2482 * Releases all resources associated with an address space. After an address space 2483 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2484 * as well. 2485 * 2486 * @as: address space to be destroyed 2487 */ 2488 void address_space_destroy(AddressSpace *as); 2489 2490 /** 2491 * address_space_remove_listeners: unregister all listeners of an address space 2492 * 2493 * Removes all callbacks previously registered with memory_listener_register() 2494 * for @as. 2495 * 2496 * @as: an initialized #AddressSpace 2497 */ 2498 void address_space_remove_listeners(AddressSpace *as); 2499 2500 /** 2501 * address_space_rw: read from or write to an address space. 2502 * 2503 * Return a MemTxResult indicating whether the operation succeeded 2504 * or failed (eg unassigned memory, device rejected the transaction, 2505 * IOMMU fault). 2506 * 2507 * @as: #AddressSpace to be accessed 2508 * @addr: address within that address space 2509 * @attrs: memory transaction attributes 2510 * @buf: buffer with the data transferred 2511 * @len: the number of bytes to read or write 2512 * @is_write: indicates the transfer direction 2513 */ 2514 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2515 MemTxAttrs attrs, void *buf, 2516 hwaddr len, bool is_write); 2517 2518 /** 2519 * address_space_write: write to address space. 2520 * 2521 * Return a MemTxResult indicating whether the operation succeeded 2522 * or failed (eg unassigned memory, device rejected the transaction, 2523 * IOMMU fault). 2524 * 2525 * @as: #AddressSpace to be accessed 2526 * @addr: address within that address space 2527 * @attrs: memory transaction attributes 2528 * @buf: buffer with the data transferred 2529 * @len: the number of bytes to write 2530 */ 2531 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2532 MemTxAttrs attrs, 2533 const void *buf, hwaddr len); 2534 2535 /** 2536 * address_space_write_rom: write to address space, including ROM. 2537 * 2538 * This function writes to the specified address space, but will 2539 * write data to both ROM and RAM. This is used for non-guest 2540 * writes like writes from the gdb debug stub or initial loading 2541 * of ROM contents. 2542 * 2543 * Note that portions of the write which attempt to write data to 2544 * a device will be silently ignored -- only real RAM and ROM will 2545 * be written to. 2546 * 2547 * Return a MemTxResult indicating whether the operation succeeded 2548 * or failed (eg unassigned memory, device rejected the transaction, 2549 * IOMMU fault). 2550 * 2551 * @as: #AddressSpace to be accessed 2552 * @addr: address within that address space 2553 * @attrs: memory transaction attributes 2554 * @buf: buffer with the data transferred 2555 * @len: the number of bytes to write 2556 */ 2557 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2558 MemTxAttrs attrs, 2559 const void *buf, hwaddr len); 2560 2561 /* address_space_ld*: load from an address space 2562 * address_space_st*: store to an address space 2563 * 2564 * These functions perform a load or store of the byte, word, 2565 * longword or quad to the specified address within the AddressSpace. 2566 * The _le suffixed functions treat the data as little endian; 2567 * _be indicates big endian; no suffix indicates "same endianness 2568 * as guest CPU". 2569 * 2570 * The "guest CPU endianness" accessors are deprecated for use outside 2571 * target-* code; devices should be CPU-agnostic and use either the LE 2572 * or the BE accessors. 2573 * 2574 * @as #AddressSpace to be accessed 2575 * @addr: address within that address space 2576 * @val: data value, for stores 2577 * @attrs: memory transaction attributes 2578 * @result: location to write the success/failure of the transaction; 2579 * if NULL, this information is discarded 2580 */ 2581 2582 #define SUFFIX 2583 #define ARG1 as 2584 #define ARG1_DECL AddressSpace *as 2585 #include "exec/memory_ldst.h.inc" 2586 2587 #define SUFFIX 2588 #define ARG1 as 2589 #define ARG1_DECL AddressSpace *as 2590 #include "exec/memory_ldst_phys.h.inc" 2591 2592 struct MemoryRegionCache { 2593 void *ptr; 2594 hwaddr xlat; 2595 hwaddr len; 2596 FlatView *fv; 2597 MemoryRegionSection mrs; 2598 bool is_write; 2599 }; 2600 2601 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2602 2603 2604 /* address_space_ld*_cached: load from a cached #MemoryRegion 2605 * address_space_st*_cached: store into a cached #MemoryRegion 2606 * 2607 * These functions perform a load or store of the byte, word, 2608 * longword or quad to the specified address. The address is 2609 * a physical address in the AddressSpace, but it must lie within 2610 * a #MemoryRegion that was mapped with address_space_cache_init. 2611 * 2612 * The _le suffixed functions treat the data as little endian; 2613 * _be indicates big endian; no suffix indicates "same endianness 2614 * as guest CPU". 2615 * 2616 * The "guest CPU endianness" accessors are deprecated for use outside 2617 * target-* code; devices should be CPU-agnostic and use either the LE 2618 * or the BE accessors. 2619 * 2620 * @cache: previously initialized #MemoryRegionCache to be accessed 2621 * @addr: address within the address space 2622 * @val: data value, for stores 2623 * @attrs: memory transaction attributes 2624 * @result: location to write the success/failure of the transaction; 2625 * if NULL, this information is discarded 2626 */ 2627 2628 #define SUFFIX _cached_slow 2629 #define ARG1 cache 2630 #define ARG1_DECL MemoryRegionCache *cache 2631 #include "exec/memory_ldst.h.inc" 2632 2633 /* Inline fast path for direct RAM access. */ 2634 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2635 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2636 { 2637 assert(addr < cache->len); 2638 if (likely(cache->ptr)) { 2639 return ldub_p(cache->ptr + addr); 2640 } else { 2641 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2642 } 2643 } 2644 2645 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2646 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2647 { 2648 assert(addr < cache->len); 2649 if (likely(cache->ptr)) { 2650 stb_p(cache->ptr + addr, val); 2651 } else { 2652 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2653 } 2654 } 2655 2656 #define ENDIANNESS _le 2657 #include "exec/memory_ldst_cached.h.inc" 2658 2659 #define ENDIANNESS _be 2660 #include "exec/memory_ldst_cached.h.inc" 2661 2662 #define SUFFIX _cached 2663 #define ARG1 cache 2664 #define ARG1_DECL MemoryRegionCache *cache 2665 #include "exec/memory_ldst_phys.h.inc" 2666 2667 /* address_space_cache_init: prepare for repeated access to a physical 2668 * memory region 2669 * 2670 * @cache: #MemoryRegionCache to be filled 2671 * @as: #AddressSpace to be accessed 2672 * @addr: address within that address space 2673 * @len: length of buffer 2674 * @is_write: indicates the transfer direction 2675 * 2676 * Will only work with RAM, and may map a subset of the requested range by 2677 * returning a value that is less than @len. On failure, return a negative 2678 * errno value. 2679 * 2680 * Because it only works with RAM, this function can be used for 2681 * read-modify-write operations. In this case, is_write should be %true. 2682 * 2683 * Note that addresses passed to the address_space_*_cached functions 2684 * are relative to @addr. 2685 */ 2686 int64_t address_space_cache_init(MemoryRegionCache *cache, 2687 AddressSpace *as, 2688 hwaddr addr, 2689 hwaddr len, 2690 bool is_write); 2691 2692 /** 2693 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2694 * 2695 * @cache: The #MemoryRegionCache to operate on. 2696 * @addr: The first physical address that was written, relative to the 2697 * address that was passed to @address_space_cache_init. 2698 * @access_len: The number of bytes that were written starting at @addr. 2699 */ 2700 void address_space_cache_invalidate(MemoryRegionCache *cache, 2701 hwaddr addr, 2702 hwaddr access_len); 2703 2704 /** 2705 * address_space_cache_destroy: free a #MemoryRegionCache 2706 * 2707 * @cache: The #MemoryRegionCache whose memory should be released. 2708 */ 2709 void address_space_cache_destroy(MemoryRegionCache *cache); 2710 2711 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2712 * entry. Should be called from an RCU critical section. 2713 */ 2714 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2715 bool is_write, MemTxAttrs attrs); 2716 2717 /* address_space_translate: translate an address range into an address space 2718 * into a MemoryRegion and an address range into that section. Should be 2719 * called from an RCU critical section, to avoid that the last reference 2720 * to the returned region disappears after address_space_translate returns. 2721 * 2722 * @fv: #FlatView to be accessed 2723 * @addr: address within that address space 2724 * @xlat: pointer to address within the returned memory region section's 2725 * #MemoryRegion. 2726 * @len: pointer to length 2727 * @is_write: indicates the transfer direction 2728 * @attrs: memory attributes 2729 */ 2730 MemoryRegion *flatview_translate(FlatView *fv, 2731 hwaddr addr, hwaddr *xlat, 2732 hwaddr *len, bool is_write, 2733 MemTxAttrs attrs); 2734 2735 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2736 hwaddr addr, hwaddr *xlat, 2737 hwaddr *len, bool is_write, 2738 MemTxAttrs attrs) 2739 { 2740 return flatview_translate(address_space_to_flatview(as), 2741 addr, xlat, len, is_write, attrs); 2742 } 2743 2744 /* address_space_access_valid: check for validity of accessing an address 2745 * space range 2746 * 2747 * Check whether memory is assigned to the given address space range, and 2748 * access is permitted by any IOMMU regions that are active for the address 2749 * space. 2750 * 2751 * For now, addr and len should be aligned to a page size. This limitation 2752 * will be lifted in the future. 2753 * 2754 * @as: #AddressSpace to be accessed 2755 * @addr: address within that address space 2756 * @len: length of the area to be checked 2757 * @is_write: indicates the transfer direction 2758 * @attrs: memory attributes 2759 */ 2760 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2761 bool is_write, MemTxAttrs attrs); 2762 2763 /* address_space_map: map a physical memory region into a host virtual address 2764 * 2765 * May map a subset of the requested range, given by and returned in @plen. 2766 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2767 * the mapping are exhausted. 2768 * Use only for reads OR writes - not for read-modify-write operations. 2769 * Use cpu_register_map_client() to know when retrying the map operation is 2770 * likely to succeed. 2771 * 2772 * @as: #AddressSpace to be accessed 2773 * @addr: address within that address space 2774 * @plen: pointer to length of buffer; updated on return 2775 * @is_write: indicates the transfer direction 2776 * @attrs: memory attributes 2777 */ 2778 void *address_space_map(AddressSpace *as, hwaddr addr, 2779 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2780 2781 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2782 * 2783 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2784 * the amount of memory that was actually read or written by the caller. 2785 * 2786 * @as: #AddressSpace used 2787 * @buffer: host pointer as returned by address_space_map() 2788 * @len: buffer length as returned by address_space_map() 2789 * @access_len: amount of data actually transferred 2790 * @is_write: indicates the transfer direction 2791 */ 2792 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2793 bool is_write, hwaddr access_len); 2794 2795 2796 /* Internal functions, part of the implementation of address_space_read. */ 2797 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2798 MemTxAttrs attrs, void *buf, hwaddr len); 2799 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2800 MemTxAttrs attrs, void *buf, 2801 hwaddr len, hwaddr addr1, hwaddr l, 2802 MemoryRegion *mr); 2803 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2804 2805 /* Internal functions, part of the implementation of address_space_read_cached 2806 * and address_space_write_cached. */ 2807 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2808 hwaddr addr, void *buf, hwaddr len); 2809 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2810 hwaddr addr, const void *buf, 2811 hwaddr len); 2812 2813 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2814 { 2815 if (is_write) { 2816 return memory_region_is_ram(mr) && !mr->readonly && 2817 !mr->rom_device && !memory_region_is_ram_device(mr); 2818 } else { 2819 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2820 memory_region_is_romd(mr); 2821 } 2822 } 2823 2824 /** 2825 * address_space_read: read from an address space. 2826 * 2827 * Return a MemTxResult indicating whether the operation succeeded 2828 * or failed (eg unassigned memory, device rejected the transaction, 2829 * IOMMU fault). Called within RCU critical section. 2830 * 2831 * @as: #AddressSpace to be accessed 2832 * @addr: address within that address space 2833 * @attrs: memory transaction attributes 2834 * @buf: buffer with the data transferred 2835 * @len: length of the data transferred 2836 */ 2837 static inline __attribute__((__always_inline__)) 2838 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2839 MemTxAttrs attrs, void *buf, 2840 hwaddr len) 2841 { 2842 MemTxResult result = MEMTX_OK; 2843 hwaddr l, addr1; 2844 void *ptr; 2845 MemoryRegion *mr; 2846 FlatView *fv; 2847 2848 if (__builtin_constant_p(len)) { 2849 if (len) { 2850 RCU_READ_LOCK_GUARD(); 2851 fv = address_space_to_flatview(as); 2852 l = len; 2853 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2854 if (len == l && memory_access_is_direct(mr, false)) { 2855 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2856 memcpy(buf, ptr, len); 2857 } else { 2858 result = flatview_read_continue(fv, addr, attrs, buf, len, 2859 addr1, l, mr); 2860 } 2861 } 2862 } else { 2863 result = address_space_read_full(as, addr, attrs, buf, len); 2864 } 2865 return result; 2866 } 2867 2868 /** 2869 * address_space_read_cached: read from a cached RAM region 2870 * 2871 * @cache: Cached region to be addressed 2872 * @addr: address relative to the base of the RAM region 2873 * @buf: buffer with the data transferred 2874 * @len: length of the data transferred 2875 */ 2876 static inline MemTxResult 2877 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2878 void *buf, hwaddr len) 2879 { 2880 assert(addr < cache->len && len <= cache->len - addr); 2881 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2882 if (likely(cache->ptr)) { 2883 memcpy(buf, cache->ptr + addr, len); 2884 return MEMTX_OK; 2885 } else { 2886 return address_space_read_cached_slow(cache, addr, buf, len); 2887 } 2888 } 2889 2890 /** 2891 * address_space_write_cached: write to a cached RAM region 2892 * 2893 * @cache: Cached region to be addressed 2894 * @addr: address relative to the base of the RAM region 2895 * @buf: buffer with the data transferred 2896 * @len: length of the data transferred 2897 */ 2898 static inline MemTxResult 2899 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2900 const void *buf, hwaddr len) 2901 { 2902 assert(addr < cache->len && len <= cache->len - addr); 2903 if (likely(cache->ptr)) { 2904 memcpy(cache->ptr + addr, buf, len); 2905 return MEMTX_OK; 2906 } else { 2907 return address_space_write_cached_slow(cache, addr, buf, len); 2908 } 2909 } 2910 2911 #ifdef NEED_CPU_H 2912 /* enum device_endian to MemOp. */ 2913 static inline MemOp devend_memop(enum device_endian end) 2914 { 2915 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2916 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2917 2918 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2919 /* Swap if non-host endianness or native (target) endianness */ 2920 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2921 #else 2922 const int non_host_endianness = 2923 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2924 2925 /* In this case, native (target) endianness needs no swap. */ 2926 return (end == non_host_endianness) ? MO_BSWAP : 0; 2927 #endif 2928 } 2929 #endif 2930 2931 /* 2932 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2933 * to manage the actual amount of memory consumed by the VM (then, the memory 2934 * provided by RAM blocks might be bigger than the desired memory consumption). 2935 * This *must* be set if: 2936 * - Discarding parts of a RAM blocks does not result in the change being 2937 * reflected in the VM and the pages getting freed. 2938 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2939 * discards blindly. 2940 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2941 * encrypted VMs). 2942 * Technologies that only temporarily pin the current working set of a 2943 * driver are fine, because we don't expect such pages to be discarded 2944 * (esp. based on guest action like balloon inflation). 2945 * 2946 * This is *not* to be used to protect from concurrent discards (esp., 2947 * postcopy). 2948 * 2949 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2950 * discards to work reliably is active. 2951 */ 2952 int ram_block_discard_disable(bool state); 2953 2954 /* 2955 * See ram_block_discard_disable(): only disable uncoordinated discards, 2956 * keeping coordinated discards (via the RamDiscardManager) enabled. 2957 */ 2958 int ram_block_uncoordinated_discard_disable(bool state); 2959 2960 /* 2961 * Inhibit technologies that disable discarding of pages in RAM blocks. 2962 * 2963 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2964 * broken. 2965 */ 2966 int ram_block_discard_require(bool state); 2967 2968 /* 2969 * See ram_block_discard_require(): only inhibit technologies that disable 2970 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 2971 * technologies that only inhibit uncoordinated discards (via the 2972 * RamDiscardManager). 2973 */ 2974 int ram_block_coordinated_discard_require(bool state); 2975 2976 /* 2977 * Test if any discarding of memory in ram blocks is disabled. 2978 */ 2979 bool ram_block_discard_is_disabled(void); 2980 2981 /* 2982 * Test if any discarding of memory in ram blocks is required to work reliably. 2983 */ 2984 bool ram_block_discard_is_required(void); 2985 2986 #endif 2987 2988 #endif 2989