1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #define DIRTY_MEMORY_VGA 0 20 #define DIRTY_MEMORY_CODE 1 21 #define DIRTY_MEMORY_MIGRATION 2 22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */ 23 24 #include <stdint.h> 25 #include <stdbool.h> 26 #include "exec/cpu-common.h" 27 #ifndef CONFIG_USER_ONLY 28 #include "exec/hwaddr.h" 29 #endif 30 #include "exec/memattrs.h" 31 #include "qemu/queue.h" 32 #include "qemu/int128.h" 33 #include "qemu/notify.h" 34 #include "qapi/error.h" 35 #include "qom/object.h" 36 #include "qemu/rcu.h" 37 38 #define MAX_PHYS_ADDR_SPACE_BITS 62 39 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 40 41 #define TYPE_MEMORY_REGION "qemu:memory-region" 42 #define MEMORY_REGION(obj) \ 43 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 44 45 typedef struct MemoryRegionOps MemoryRegionOps; 46 typedef struct MemoryRegionMmio MemoryRegionMmio; 47 48 struct MemoryRegionMmio { 49 CPUReadMemoryFunc *read[3]; 50 CPUWriteMemoryFunc *write[3]; 51 }; 52 53 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 54 55 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 56 typedef enum { 57 IOMMU_NONE = 0, 58 IOMMU_RO = 1, 59 IOMMU_WO = 2, 60 IOMMU_RW = 3, 61 } IOMMUAccessFlags; 62 63 struct IOMMUTLBEntry { 64 AddressSpace *target_as; 65 hwaddr iova; 66 hwaddr translated_addr; 67 hwaddr addr_mask; /* 0xfff = 4k translation */ 68 IOMMUAccessFlags perm; 69 }; 70 71 /* New-style MMIO accessors can indicate that the transaction failed. 72 * A zero (MEMTX_OK) response means success; anything else is a failure 73 * of some kind. The memory subsystem will bitwise-OR together results 74 * if it is synthesizing an operation from multiple smaller accesses. 75 */ 76 #define MEMTX_OK 0 77 #define MEMTX_ERROR (1U << 0) /* device returned an error */ 78 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ 79 typedef uint32_t MemTxResult; 80 81 /* 82 * Memory region callbacks 83 */ 84 struct MemoryRegionOps { 85 /* Read from the memory region. @addr is relative to @mr; @size is 86 * in bytes. */ 87 uint64_t (*read)(void *opaque, 88 hwaddr addr, 89 unsigned size); 90 /* Write to the memory region. @addr is relative to @mr; @size is 91 * in bytes. */ 92 void (*write)(void *opaque, 93 hwaddr addr, 94 uint64_t data, 95 unsigned size); 96 97 MemTxResult (*read_with_attrs)(void *opaque, 98 hwaddr addr, 99 uint64_t *data, 100 unsigned size, 101 MemTxAttrs attrs); 102 MemTxResult (*write_with_attrs)(void *opaque, 103 hwaddr addr, 104 uint64_t data, 105 unsigned size, 106 MemTxAttrs attrs); 107 108 enum device_endian endianness; 109 /* Guest-visible constraints: */ 110 struct { 111 /* If nonzero, specify bounds on access sizes beyond which a machine 112 * check is thrown. 113 */ 114 unsigned min_access_size; 115 unsigned max_access_size; 116 /* If true, unaligned accesses are supported. Otherwise unaligned 117 * accesses throw machine checks. 118 */ 119 bool unaligned; 120 /* 121 * If present, and returns #false, the transaction is not accepted 122 * by the device (and results in machine dependent behaviour such 123 * as a machine check exception). 124 */ 125 bool (*accepts)(void *opaque, hwaddr addr, 126 unsigned size, bool is_write); 127 } valid; 128 /* Internal implementation constraints: */ 129 struct { 130 /* If nonzero, specifies the minimum size implemented. Smaller sizes 131 * will be rounded upwards and a partial result will be returned. 132 */ 133 unsigned min_access_size; 134 /* If nonzero, specifies the maximum size implemented. Larger sizes 135 * will be done as a series of accesses with smaller sizes. 136 */ 137 unsigned max_access_size; 138 /* If true, unaligned accesses are supported. Otherwise all accesses 139 * are converted to (possibly multiple) naturally aligned accesses. 140 */ 141 bool unaligned; 142 } impl; 143 144 /* If .read and .write are not present, old_mmio may be used for 145 * backwards compatibility with old mmio registration 146 */ 147 const MemoryRegionMmio old_mmio; 148 }; 149 150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 151 152 struct MemoryRegionIOMMUOps { 153 /* Return a TLB entry that contains a given address. */ 154 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); 155 }; 156 157 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 159 160 struct MemoryRegion { 161 Object parent_obj; 162 /* All fields are private - violators will be prosecuted */ 163 const MemoryRegionOps *ops; 164 const MemoryRegionIOMMUOps *iommu_ops; 165 void *opaque; 166 MemoryRegion *container; 167 Int128 size; 168 hwaddr addr; 169 void (*destructor)(MemoryRegion *mr); 170 ram_addr_t ram_addr; 171 uint64_t align; 172 bool subpage; 173 bool terminates; 174 bool romd_mode; 175 bool ram; 176 bool skip_dump; 177 bool readonly; /* For RAM regions */ 178 bool enabled; 179 bool rom_device; 180 bool warning_printed; /* For reservations */ 181 bool flush_coalesced_mmio; 182 bool global_locking; 183 MemoryRegion *alias; 184 hwaddr alias_offset; 185 int32_t priority; 186 bool may_overlap; 187 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 188 QTAILQ_ENTRY(MemoryRegion) subregions_link; 189 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 190 const char *name; 191 uint8_t dirty_log_mask; 192 unsigned ioeventfd_nb; 193 MemoryRegionIoeventfd *ioeventfds; 194 NotifierList iommu_notify; 195 }; 196 197 /** 198 * MemoryListener: callbacks structure for updates to the physical memory map 199 * 200 * Allows a component to adjust to changes in the guest-visible memory map. 201 * Use with memory_listener_register() and memory_listener_unregister(). 202 */ 203 struct MemoryListener { 204 void (*begin)(MemoryListener *listener); 205 void (*commit)(MemoryListener *listener); 206 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 207 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 208 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 209 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 210 int old, int new); 211 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 212 int old, int new); 213 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 214 void (*log_global_start)(MemoryListener *listener); 215 void (*log_global_stop)(MemoryListener *listener); 216 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 217 bool match_data, uint64_t data, EventNotifier *e); 218 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 219 bool match_data, uint64_t data, EventNotifier *e); 220 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 221 hwaddr addr, hwaddr len); 222 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 223 hwaddr addr, hwaddr len); 224 /* Lower = earlier (during add), later (during del) */ 225 unsigned priority; 226 AddressSpace *address_space_filter; 227 QTAILQ_ENTRY(MemoryListener) link; 228 }; 229 230 /** 231 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 232 */ 233 struct AddressSpace { 234 /* All fields are private. */ 235 struct rcu_head rcu; 236 char *name; 237 MemoryRegion *root; 238 239 /* Accessed via RCU. */ 240 struct FlatView *current_map; 241 242 int ioeventfd_nb; 243 struct MemoryRegionIoeventfd *ioeventfds; 244 struct AddressSpaceDispatch *dispatch; 245 struct AddressSpaceDispatch *next_dispatch; 246 MemoryListener dispatch_listener; 247 248 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 249 }; 250 251 /** 252 * MemoryRegionSection: describes a fragment of a #MemoryRegion 253 * 254 * @mr: the region, or %NULL if empty 255 * @address_space: the address space the region is mapped in 256 * @offset_within_region: the beginning of the section, relative to @mr's start 257 * @size: the size of the section; will not exceed @mr's boundaries 258 * @offset_within_address_space: the address of the first byte of the section 259 * relative to the region's address space 260 * @readonly: writes to this section are ignored 261 */ 262 struct MemoryRegionSection { 263 MemoryRegion *mr; 264 AddressSpace *address_space; 265 hwaddr offset_within_region; 266 Int128 size; 267 hwaddr offset_within_address_space; 268 bool readonly; 269 }; 270 271 /** 272 * memory_region_init: Initialize a memory region 273 * 274 * The region typically acts as a container for other memory regions. Use 275 * memory_region_add_subregion() to add subregions. 276 * 277 * @mr: the #MemoryRegion to be initialized 278 * @owner: the object that tracks the region's reference count 279 * @name: used for debugging; not visible to the user or ABI 280 * @size: size of the region; any subregions beyond this size will be clipped 281 */ 282 void memory_region_init(MemoryRegion *mr, 283 struct Object *owner, 284 const char *name, 285 uint64_t size); 286 287 /** 288 * memory_region_ref: Add 1 to a memory region's reference count 289 * 290 * Whenever memory regions are accessed outside the BQL, they need to be 291 * preserved against hot-unplug. MemoryRegions actually do not have their 292 * own reference count; they piggyback on a QOM object, their "owner". 293 * This function adds a reference to the owner. 294 * 295 * All MemoryRegions must have an owner if they can disappear, even if the 296 * device they belong to operates exclusively under the BQL. This is because 297 * the region could be returned at any time by memory_region_find, and this 298 * is usually under guest control. 299 * 300 * @mr: the #MemoryRegion 301 */ 302 void memory_region_ref(MemoryRegion *mr); 303 304 /** 305 * memory_region_unref: Remove 1 to a memory region's reference count 306 * 307 * Whenever memory regions are accessed outside the BQL, they need to be 308 * preserved against hot-unplug. MemoryRegions actually do not have their 309 * own reference count; they piggyback on a QOM object, their "owner". 310 * This function removes a reference to the owner and possibly destroys it. 311 * 312 * @mr: the #MemoryRegion 313 */ 314 void memory_region_unref(MemoryRegion *mr); 315 316 /** 317 * memory_region_init_io: Initialize an I/O memory region. 318 * 319 * Accesses into the region will cause the callbacks in @ops to be called. 320 * if @size is nonzero, subregions will be clipped to @size. 321 * 322 * @mr: the #MemoryRegion to be initialized. 323 * @owner: the object that tracks the region's reference count 324 * @ops: a structure containing read and write callbacks to be used when 325 * I/O is performed on the region. 326 * @opaque: passed to to the read and write callbacks of the @ops structure. 327 * @name: used for debugging; not visible to the user or ABI 328 * @size: size of the region. 329 */ 330 void memory_region_init_io(MemoryRegion *mr, 331 struct Object *owner, 332 const MemoryRegionOps *ops, 333 void *opaque, 334 const char *name, 335 uint64_t size); 336 337 /** 338 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 339 * region will modify memory directly. 340 * 341 * @mr: the #MemoryRegion to be initialized. 342 * @owner: the object that tracks the region's reference count 343 * @name: the name of the region. 344 * @size: size of the region. 345 * @errp: pointer to Error*, to store an error if it happens. 346 */ 347 void memory_region_init_ram(MemoryRegion *mr, 348 struct Object *owner, 349 const char *name, 350 uint64_t size, 351 Error **errp); 352 353 /** 354 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 355 * RAM. Accesses into the region will 356 * modify memory directly. Only an initial 357 * portion of this RAM is actually used. 358 * The used size can change across reboots. 359 * 360 * @mr: the #MemoryRegion to be initialized. 361 * @owner: the object that tracks the region's reference count 362 * @name: the name of the region. 363 * @size: used size of the region. 364 * @max_size: max size of the region. 365 * @resized: callback to notify owner about used size change. 366 * @errp: pointer to Error*, to store an error if it happens. 367 */ 368 void memory_region_init_resizeable_ram(MemoryRegion *mr, 369 struct Object *owner, 370 const char *name, 371 uint64_t size, 372 uint64_t max_size, 373 void (*resized)(const char*, 374 uint64_t length, 375 void *host), 376 Error **errp); 377 #ifdef __linux__ 378 /** 379 * memory_region_init_ram_from_file: Initialize RAM memory region with a 380 * mmap-ed backend. 381 * 382 * @mr: the #MemoryRegion to be initialized. 383 * @owner: the object that tracks the region's reference count 384 * @name: the name of the region. 385 * @size: size of the region. 386 * @share: %true if memory must be mmaped with the MAP_SHARED flag 387 * @path: the path in which to allocate the RAM. 388 * @errp: pointer to Error*, to store an error if it happens. 389 */ 390 void memory_region_init_ram_from_file(MemoryRegion *mr, 391 struct Object *owner, 392 const char *name, 393 uint64_t size, 394 bool share, 395 const char *path, 396 Error **errp); 397 #endif 398 399 /** 400 * memory_region_init_ram_ptr: Initialize RAM memory region from a 401 * user-provided pointer. Accesses into the 402 * region will modify memory directly. 403 * 404 * @mr: the #MemoryRegion to be initialized. 405 * @owner: the object that tracks the region's reference count 406 * @name: the name of the region. 407 * @size: size of the region. 408 * @ptr: memory to be mapped; must contain at least @size bytes. 409 */ 410 void memory_region_init_ram_ptr(MemoryRegion *mr, 411 struct Object *owner, 412 const char *name, 413 uint64_t size, 414 void *ptr); 415 416 /** 417 * memory_region_init_alias: Initialize a memory region that aliases all or a 418 * part of another memory region. 419 * 420 * @mr: the #MemoryRegion to be initialized. 421 * @owner: the object that tracks the region's reference count 422 * @name: used for debugging; not visible to the user or ABI 423 * @orig: the region to be referenced; @mr will be equivalent to 424 * @orig between @offset and @offset + @size - 1. 425 * @offset: start of the section in @orig to be referenced. 426 * @size: size of the region. 427 */ 428 void memory_region_init_alias(MemoryRegion *mr, 429 struct Object *owner, 430 const char *name, 431 MemoryRegion *orig, 432 hwaddr offset, 433 uint64_t size); 434 435 /** 436 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 437 * handled via callbacks. 438 * 439 * @mr: the #MemoryRegion to be initialized. 440 * @owner: the object that tracks the region's reference count 441 * @ops: callbacks for write access handling. 442 * @name: the name of the region. 443 * @size: size of the region. 444 * @errp: pointer to Error*, to store an error if it happens. 445 */ 446 void memory_region_init_rom_device(MemoryRegion *mr, 447 struct Object *owner, 448 const MemoryRegionOps *ops, 449 void *opaque, 450 const char *name, 451 uint64_t size, 452 Error **errp); 453 454 /** 455 * memory_region_init_reservation: Initialize a memory region that reserves 456 * I/O space. 457 * 458 * A reservation region primariy serves debugging purposes. It claims I/O 459 * space that is not supposed to be handled by QEMU itself. Any access via 460 * the memory API will cause an abort(). 461 * 462 * @mr: the #MemoryRegion to be initialized 463 * @owner: the object that tracks the region's reference count 464 * @name: used for debugging; not visible to the user or ABI 465 * @size: size of the region. 466 */ 467 void memory_region_init_reservation(MemoryRegion *mr, 468 struct Object *owner, 469 const char *name, 470 uint64_t size); 471 472 /** 473 * memory_region_init_iommu: Initialize a memory region that translates 474 * addresses 475 * 476 * An IOMMU region translates addresses and forwards accesses to a target 477 * memory region. 478 * 479 * @mr: the #MemoryRegion to be initialized 480 * @owner: the object that tracks the region's reference count 481 * @ops: a function that translates addresses into the @target region 482 * @name: used for debugging; not visible to the user or ABI 483 * @size: size of the region. 484 */ 485 void memory_region_init_iommu(MemoryRegion *mr, 486 struct Object *owner, 487 const MemoryRegionIOMMUOps *ops, 488 const char *name, 489 uint64_t size); 490 491 /** 492 * memory_region_owner: get a memory region's owner. 493 * 494 * @mr: the memory region being queried. 495 */ 496 struct Object *memory_region_owner(MemoryRegion *mr); 497 498 /** 499 * memory_region_size: get a memory region's size. 500 * 501 * @mr: the memory region being queried. 502 */ 503 uint64_t memory_region_size(MemoryRegion *mr); 504 505 /** 506 * memory_region_is_ram: check whether a memory region is random access 507 * 508 * Returns %true is a memory region is random access. 509 * 510 * @mr: the memory region being queried 511 */ 512 bool memory_region_is_ram(MemoryRegion *mr); 513 514 /** 515 * memory_region_is_skip_dump: check whether a memory region should not be 516 * dumped 517 * 518 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP). 519 * 520 * @mr: the memory region being queried 521 */ 522 bool memory_region_is_skip_dump(MemoryRegion *mr); 523 524 /** 525 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory 526 * region 527 * 528 * @mr: the memory region being queried 529 */ 530 void memory_region_set_skip_dump(MemoryRegion *mr); 531 532 /** 533 * memory_region_is_romd: check whether a memory region is in ROMD mode 534 * 535 * Returns %true if a memory region is a ROM device and currently set to allow 536 * direct reads. 537 * 538 * @mr: the memory region being queried 539 */ 540 static inline bool memory_region_is_romd(MemoryRegion *mr) 541 { 542 return mr->rom_device && mr->romd_mode; 543 } 544 545 /** 546 * memory_region_is_iommu: check whether a memory region is an iommu 547 * 548 * Returns %true is a memory region is an iommu. 549 * 550 * @mr: the memory region being queried 551 */ 552 bool memory_region_is_iommu(MemoryRegion *mr); 553 554 /** 555 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 556 * 557 * @mr: the memory region that was changed 558 * @entry: the new entry in the IOMMU translation table. The entry 559 * replaces all old entries for the same virtual I/O address range. 560 * Deleted entries have .@perm == 0. 561 */ 562 void memory_region_notify_iommu(MemoryRegion *mr, 563 IOMMUTLBEntry entry); 564 565 /** 566 * memory_region_register_iommu_notifier: register a notifier for changes to 567 * IOMMU translation entries. 568 * 569 * @mr: the memory region to observe 570 * @n: the notifier to be added; the notifier receives a pointer to an 571 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be 572 * valid on exit from the notifier. 573 */ 574 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n); 575 576 /** 577 * memory_region_unregister_iommu_notifier: unregister a notifier for 578 * changes to IOMMU translation entries. 579 * 580 * @n: the notifier to be removed. 581 */ 582 void memory_region_unregister_iommu_notifier(Notifier *n); 583 584 /** 585 * memory_region_name: get a memory region's name 586 * 587 * Returns the string that was used to initialize the memory region. 588 * 589 * @mr: the memory region being queried 590 */ 591 const char *memory_region_name(const MemoryRegion *mr); 592 593 /** 594 * memory_region_is_logging: return whether a memory region is logging writes 595 * 596 * Returns %true if the memory region is logging writes for the given client 597 * 598 * @mr: the memory region being queried 599 * @client: the client being queried 600 */ 601 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 602 603 /** 604 * memory_region_get_dirty_log_mask: return the clients for which a 605 * memory region is logging writes. 606 * 607 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 608 * are the bit indices. 609 * 610 * @mr: the memory region being queried 611 */ 612 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 613 614 /** 615 * memory_region_is_rom: check whether a memory region is ROM 616 * 617 * Returns %true is a memory region is read-only memory. 618 * 619 * @mr: the memory region being queried 620 */ 621 bool memory_region_is_rom(MemoryRegion *mr); 622 623 /** 624 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 625 * 626 * Returns a file descriptor backing a file-based RAM memory region, 627 * or -1 if the region is not a file-based RAM memory region. 628 * 629 * @mr: the RAM or alias memory region being queried. 630 */ 631 int memory_region_get_fd(MemoryRegion *mr); 632 633 /** 634 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 635 * 636 * Returns a host pointer to a RAM memory region (created with 637 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with 638 * care. 639 * 640 * @mr: the memory region being queried. 641 */ 642 void *memory_region_get_ram_ptr(MemoryRegion *mr); 643 644 /* memory_region_ram_resize: Resize a RAM region. 645 * 646 * Only legal before guest might have detected the memory size: e.g. on 647 * incoming migration, or right after reset. 648 * 649 * @mr: a memory region created with @memory_region_init_resizeable_ram. 650 * @newsize: the new size the region 651 * @errp: pointer to Error*, to store an error if it happens. 652 */ 653 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 654 Error **errp); 655 656 /** 657 * memory_region_set_log: Turn dirty logging on or off for a region. 658 * 659 * Turns dirty logging on or off for a specified client (display, migration). 660 * Only meaningful for RAM regions. 661 * 662 * @mr: the memory region being updated. 663 * @log: whether dirty logging is to be enabled or disabled. 664 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 665 */ 666 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 667 668 /** 669 * memory_region_get_dirty: Check whether a range of bytes is dirty 670 * for a specified client. 671 * 672 * Checks whether a range of bytes has been written to since the last 673 * call to memory_region_reset_dirty() with the same @client. Dirty logging 674 * must be enabled. 675 * 676 * @mr: the memory region being queried. 677 * @addr: the address (relative to the start of the region) being queried. 678 * @size: the size of the range being queried. 679 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 680 * %DIRTY_MEMORY_VGA. 681 */ 682 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 683 hwaddr size, unsigned client); 684 685 /** 686 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 687 * 688 * Marks a range of bytes as dirty, after it has been dirtied outside 689 * guest code. 690 * 691 * @mr: the memory region being dirtied. 692 * @addr: the address (relative to the start of the region) being dirtied. 693 * @size: size of the range being dirtied. 694 */ 695 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 696 hwaddr size); 697 698 /** 699 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 700 * for a specified client. It clears them. 701 * 702 * Checks whether a range of bytes has been written to since the last 703 * call to memory_region_reset_dirty() with the same @client. Dirty logging 704 * must be enabled. 705 * 706 * @mr: the memory region being queried. 707 * @addr: the address (relative to the start of the region) being queried. 708 * @size: the size of the range being queried. 709 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 710 * %DIRTY_MEMORY_VGA. 711 */ 712 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 713 hwaddr size, unsigned client); 714 /** 715 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 716 * any external TLBs (e.g. kvm) 717 * 718 * Flushes dirty information from accelerators such as kvm and vhost-net 719 * and makes it available to users of the memory API. 720 * 721 * @mr: the region being flushed. 722 */ 723 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 724 725 /** 726 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 727 * client. 728 * 729 * Marks a range of pages as no longer dirty. 730 * 731 * @mr: the region being updated. 732 * @addr: the start of the subrange being cleaned. 733 * @size: the size of the subrange being cleaned. 734 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 735 * %DIRTY_MEMORY_VGA. 736 */ 737 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 738 hwaddr size, unsigned client); 739 740 /** 741 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 742 * 743 * Allows a memory region to be marked as read-only (turning it into a ROM). 744 * only useful on RAM regions. 745 * 746 * @mr: the region being updated. 747 * @readonly: whether rhe region is to be ROM or RAM. 748 */ 749 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 750 751 /** 752 * memory_region_rom_device_set_romd: enable/disable ROMD mode 753 * 754 * Allows a ROM device (initialized with memory_region_init_rom_device() to 755 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 756 * device is mapped to guest memory and satisfies read access directly. 757 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 758 * Writes are always handled by the #MemoryRegion.write function. 759 * 760 * @mr: the memory region to be updated 761 * @romd_mode: %true to put the region into ROMD mode 762 */ 763 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 764 765 /** 766 * memory_region_set_coalescing: Enable memory coalescing for the region. 767 * 768 * Enabled writes to a region to be queued for later processing. MMIO ->write 769 * callbacks may be delayed until a non-coalesced MMIO is issued. 770 * Only useful for IO regions. Roughly similar to write-combining hardware. 771 * 772 * @mr: the memory region to be write coalesced 773 */ 774 void memory_region_set_coalescing(MemoryRegion *mr); 775 776 /** 777 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 778 * a region. 779 * 780 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 781 * Multiple calls can be issued coalesced disjoint ranges. 782 * 783 * @mr: the memory region to be updated. 784 * @offset: the start of the range within the region to be coalesced. 785 * @size: the size of the subrange to be coalesced. 786 */ 787 void memory_region_add_coalescing(MemoryRegion *mr, 788 hwaddr offset, 789 uint64_t size); 790 791 /** 792 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 793 * 794 * Disables any coalescing caused by memory_region_set_coalescing() or 795 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 796 * hardware. 797 * 798 * @mr: the memory region to be updated. 799 */ 800 void memory_region_clear_coalescing(MemoryRegion *mr); 801 802 /** 803 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 804 * accesses. 805 * 806 * Ensure that pending coalesced MMIO request are flushed before the memory 807 * region is accessed. This property is automatically enabled for all regions 808 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 809 * 810 * @mr: the memory region to be updated. 811 */ 812 void memory_region_set_flush_coalesced(MemoryRegion *mr); 813 814 /** 815 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 816 * accesses. 817 * 818 * Clear the automatic coalesced MMIO flushing enabled via 819 * memory_region_set_flush_coalesced. Note that this service has no effect on 820 * memory regions that have MMIO coalescing enabled for themselves. For them, 821 * automatic flushing will stop once coalescing is disabled. 822 * 823 * @mr: the memory region to be updated. 824 */ 825 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 826 827 /** 828 * memory_region_set_global_locking: Declares the access processing requires 829 * QEMU's global lock. 830 * 831 * When this is invoked, accesses to the memory region will be processed while 832 * holding the global lock of QEMU. This is the default behavior of memory 833 * regions. 834 * 835 * @mr: the memory region to be updated. 836 */ 837 void memory_region_set_global_locking(MemoryRegion *mr); 838 839 /** 840 * memory_region_clear_global_locking: Declares that access processing does 841 * not depend on the QEMU global lock. 842 * 843 * By clearing this property, accesses to the memory region will be processed 844 * outside of QEMU's global lock (unless the lock is held on when issuing the 845 * access request). In this case, the device model implementing the access 846 * handlers is responsible for synchronization of concurrency. 847 * 848 * @mr: the memory region to be updated. 849 */ 850 void memory_region_clear_global_locking(MemoryRegion *mr); 851 852 /** 853 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 854 * is written to a location. 855 * 856 * Marks a word in an IO region (initialized with memory_region_init_io()) 857 * as a trigger for an eventfd event. The I/O callback will not be called. 858 * The caller must be prepared to handle failure (that is, take the required 859 * action if the callback _is_ called). 860 * 861 * @mr: the memory region being updated. 862 * @addr: the address within @mr that is to be monitored 863 * @size: the size of the access to trigger the eventfd 864 * @match_data: whether to match against @data, instead of just @addr 865 * @data: the data to match against the guest write 866 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 867 **/ 868 void memory_region_add_eventfd(MemoryRegion *mr, 869 hwaddr addr, 870 unsigned size, 871 bool match_data, 872 uint64_t data, 873 EventNotifier *e); 874 875 /** 876 * memory_region_del_eventfd: Cancel an eventfd. 877 * 878 * Cancels an eventfd trigger requested by a previous 879 * memory_region_add_eventfd() call. 880 * 881 * @mr: the memory region being updated. 882 * @addr: the address within @mr that is to be monitored 883 * @size: the size of the access to trigger the eventfd 884 * @match_data: whether to match against @data, instead of just @addr 885 * @data: the data to match against the guest write 886 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 887 */ 888 void memory_region_del_eventfd(MemoryRegion *mr, 889 hwaddr addr, 890 unsigned size, 891 bool match_data, 892 uint64_t data, 893 EventNotifier *e); 894 895 /** 896 * memory_region_add_subregion: Add a subregion to a container. 897 * 898 * Adds a subregion at @offset. The subregion may not overlap with other 899 * subregions (except for those explicitly marked as overlapping). A region 900 * may only be added once as a subregion (unless removed with 901 * memory_region_del_subregion()); use memory_region_init_alias() if you 902 * want a region to be a subregion in multiple locations. 903 * 904 * @mr: the region to contain the new subregion; must be a container 905 * initialized with memory_region_init(). 906 * @offset: the offset relative to @mr where @subregion is added. 907 * @subregion: the subregion to be added. 908 */ 909 void memory_region_add_subregion(MemoryRegion *mr, 910 hwaddr offset, 911 MemoryRegion *subregion); 912 /** 913 * memory_region_add_subregion_overlap: Add a subregion to a container 914 * with overlap. 915 * 916 * Adds a subregion at @offset. The subregion may overlap with other 917 * subregions. Conflicts are resolved by having a higher @priority hide a 918 * lower @priority. Subregions without priority are taken as @priority 0. 919 * A region may only be added once as a subregion (unless removed with 920 * memory_region_del_subregion()); use memory_region_init_alias() if you 921 * want a region to be a subregion in multiple locations. 922 * 923 * @mr: the region to contain the new subregion; must be a container 924 * initialized with memory_region_init(). 925 * @offset: the offset relative to @mr where @subregion is added. 926 * @subregion: the subregion to be added. 927 * @priority: used for resolving overlaps; highest priority wins. 928 */ 929 void memory_region_add_subregion_overlap(MemoryRegion *mr, 930 hwaddr offset, 931 MemoryRegion *subregion, 932 int priority); 933 934 /** 935 * memory_region_get_ram_addr: Get the ram address associated with a memory 936 * region 937 * 938 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 939 * code is being reworked. 940 */ 941 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 942 943 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 944 /** 945 * memory_region_del_subregion: Remove a subregion. 946 * 947 * Removes a subregion from its container. 948 * 949 * @mr: the container to be updated. 950 * @subregion: the region being removed; must be a current subregion of @mr. 951 */ 952 void memory_region_del_subregion(MemoryRegion *mr, 953 MemoryRegion *subregion); 954 955 /* 956 * memory_region_set_enabled: dynamically enable or disable a region 957 * 958 * Enables or disables a memory region. A disabled memory region 959 * ignores all accesses to itself and its subregions. It does not 960 * obscure sibling subregions with lower priority - it simply behaves as 961 * if it was removed from the hierarchy. 962 * 963 * Regions default to being enabled. 964 * 965 * @mr: the region to be updated 966 * @enabled: whether to enable or disable the region 967 */ 968 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 969 970 /* 971 * memory_region_set_address: dynamically update the address of a region 972 * 973 * Dynamically updates the address of a region, relative to its container. 974 * May be used on regions are currently part of a memory hierarchy. 975 * 976 * @mr: the region to be updated 977 * @addr: new address, relative to container region 978 */ 979 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 980 981 /* 982 * memory_region_set_size: dynamically update the size of a region. 983 * 984 * Dynamically updates the size of a region. 985 * 986 * @mr: the region to be updated 987 * @size: used size of the region. 988 */ 989 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 990 991 /* 992 * memory_region_set_alias_offset: dynamically update a memory alias's offset 993 * 994 * Dynamically updates the offset into the target region that an alias points 995 * to, as if the fourth argument to memory_region_init_alias() has changed. 996 * 997 * @mr: the #MemoryRegion to be updated; should be an alias. 998 * @offset: the new offset into the target memory region 999 */ 1000 void memory_region_set_alias_offset(MemoryRegion *mr, 1001 hwaddr offset); 1002 1003 /** 1004 * memory_region_present: checks if an address relative to a @container 1005 * translates into #MemoryRegion within @container 1006 * 1007 * Answer whether a #MemoryRegion within @container covers the address 1008 * @addr. 1009 * 1010 * @container: a #MemoryRegion within which @addr is a relative address 1011 * @addr: the area within @container to be searched 1012 */ 1013 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1014 1015 /** 1016 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1017 * into any address space. 1018 * 1019 * @mr: a #MemoryRegion which should be checked if it's mapped 1020 */ 1021 bool memory_region_is_mapped(MemoryRegion *mr); 1022 1023 /** 1024 * memory_region_find: translate an address/size relative to a 1025 * MemoryRegion into a #MemoryRegionSection. 1026 * 1027 * Locates the first #MemoryRegion within @mr that overlaps the range 1028 * given by @addr and @size. 1029 * 1030 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1031 * It will have the following characteristics: 1032 * .@size = 0 iff no overlap was found 1033 * .@mr is non-%NULL iff an overlap was found 1034 * 1035 * Remember that in the return value the @offset_within_region is 1036 * relative to the returned region (in the .@mr field), not to the 1037 * @mr argument. 1038 * 1039 * Similarly, the .@offset_within_address_space is relative to the 1040 * address space that contains both regions, the passed and the 1041 * returned one. However, in the special case where the @mr argument 1042 * has no container (and thus is the root of the address space), the 1043 * following will hold: 1044 * .@offset_within_address_space >= @addr 1045 * .@offset_within_address_space + .@size <= @addr + @size 1046 * 1047 * @mr: a MemoryRegion within which @addr is a relative address 1048 * @addr: start of the area within @as to be searched 1049 * @size: size of the area to be searched 1050 */ 1051 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1052 hwaddr addr, uint64_t size); 1053 1054 /** 1055 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory 1056 * 1057 * Synchronizes the dirty page log for an entire address space. 1058 * @as: the address space that contains the memory being synchronized 1059 */ 1060 void address_space_sync_dirty_bitmap(AddressSpace *as); 1061 1062 /** 1063 * memory_region_transaction_begin: Start a transaction. 1064 * 1065 * During a transaction, changes will be accumulated and made visible 1066 * only when the transaction ends (is committed). 1067 */ 1068 void memory_region_transaction_begin(void); 1069 1070 /** 1071 * memory_region_transaction_commit: Commit a transaction and make changes 1072 * visible to the guest. 1073 */ 1074 void memory_region_transaction_commit(void); 1075 1076 /** 1077 * memory_listener_register: register callbacks to be called when memory 1078 * sections are mapped or unmapped into an address 1079 * space 1080 * 1081 * @listener: an object containing the callbacks to be called 1082 * @filter: if non-%NULL, only regions in this address space will be observed 1083 */ 1084 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1085 1086 /** 1087 * memory_listener_unregister: undo the effect of memory_listener_register() 1088 * 1089 * @listener: an object containing the callbacks to be removed 1090 */ 1091 void memory_listener_unregister(MemoryListener *listener); 1092 1093 /** 1094 * memory_global_dirty_log_start: begin dirty logging for all regions 1095 */ 1096 void memory_global_dirty_log_start(void); 1097 1098 /** 1099 * memory_global_dirty_log_stop: end dirty logging for all regions 1100 */ 1101 void memory_global_dirty_log_stop(void); 1102 1103 void mtree_info(fprintf_function mon_printf, void *f); 1104 1105 /** 1106 * memory_region_dispatch_read: perform a read directly to the specified 1107 * MemoryRegion. 1108 * 1109 * @mr: #MemoryRegion to access 1110 * @addr: address within that region 1111 * @pval: pointer to uint64_t which the data is written to 1112 * @size: size of the access in bytes 1113 * @attrs: memory transaction attributes to use for the access 1114 */ 1115 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1116 hwaddr addr, 1117 uint64_t *pval, 1118 unsigned size, 1119 MemTxAttrs attrs); 1120 /** 1121 * memory_region_dispatch_write: perform a write directly to the specified 1122 * MemoryRegion. 1123 * 1124 * @mr: #MemoryRegion to access 1125 * @addr: address within that region 1126 * @data: data to write 1127 * @size: size of the access in bytes 1128 * @attrs: memory transaction attributes to use for the access 1129 */ 1130 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1131 hwaddr addr, 1132 uint64_t data, 1133 unsigned size, 1134 MemTxAttrs attrs); 1135 1136 /** 1137 * address_space_init: initializes an address space 1138 * 1139 * @as: an uninitialized #AddressSpace 1140 * @root: a #MemoryRegion that routes addesses for the address space 1141 * @name: an address space name. The name is only used for debugging 1142 * output. 1143 */ 1144 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1145 1146 1147 /** 1148 * address_space_destroy: destroy an address space 1149 * 1150 * Releases all resources associated with an address space. After an address space 1151 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1152 * as well. 1153 * 1154 * @as: address space to be destroyed 1155 */ 1156 void address_space_destroy(AddressSpace *as); 1157 1158 /** 1159 * address_space_rw: read from or write to an address space. 1160 * 1161 * Return a MemTxResult indicating whether the operation succeeded 1162 * or failed (eg unassigned memory, device rejected the transaction, 1163 * IOMMU fault). 1164 * 1165 * @as: #AddressSpace to be accessed 1166 * @addr: address within that address space 1167 * @attrs: memory transaction attributes 1168 * @buf: buffer with the data transferred 1169 * @is_write: indicates the transfer direction 1170 */ 1171 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1172 MemTxAttrs attrs, uint8_t *buf, 1173 int len, bool is_write); 1174 1175 /** 1176 * address_space_write: write to address space. 1177 * 1178 * Return a MemTxResult indicating whether the operation succeeded 1179 * or failed (eg unassigned memory, device rejected the transaction, 1180 * IOMMU fault). 1181 * 1182 * @as: #AddressSpace to be accessed 1183 * @addr: address within that address space 1184 * @attrs: memory transaction attributes 1185 * @buf: buffer with the data transferred 1186 */ 1187 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1188 MemTxAttrs attrs, 1189 const uint8_t *buf, int len); 1190 1191 /** 1192 * address_space_read: read from an address space. 1193 * 1194 * Return a MemTxResult indicating whether the operation succeeded 1195 * or failed (eg unassigned memory, device rejected the transaction, 1196 * IOMMU fault). 1197 * 1198 * @as: #AddressSpace to be accessed 1199 * @addr: address within that address space 1200 * @attrs: memory transaction attributes 1201 * @buf: buffer with the data transferred 1202 */ 1203 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 1204 uint8_t *buf, int len); 1205 1206 /** 1207 * address_space_ld*: load from an address space 1208 * address_space_st*: store to an address space 1209 * 1210 * These functions perform a load or store of the byte, word, 1211 * longword or quad to the specified address within the AddressSpace. 1212 * The _le suffixed functions treat the data as little endian; 1213 * _be indicates big endian; no suffix indicates "same endianness 1214 * as guest CPU". 1215 * 1216 * The "guest CPU endianness" accessors are deprecated for use outside 1217 * target-* code; devices should be CPU-agnostic and use either the LE 1218 * or the BE accessors. 1219 * 1220 * @as #AddressSpace to be accessed 1221 * @addr: address within that address space 1222 * @val: data value, for stores 1223 * @attrs: memory transaction attributes 1224 * @result: location to write the success/failure of the transaction; 1225 * if NULL, this information is discarded 1226 */ 1227 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1228 MemTxAttrs attrs, MemTxResult *result); 1229 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1230 MemTxAttrs attrs, MemTxResult *result); 1231 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1232 MemTxAttrs attrs, MemTxResult *result); 1233 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1234 MemTxAttrs attrs, MemTxResult *result); 1235 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1236 MemTxAttrs attrs, MemTxResult *result); 1237 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1238 MemTxAttrs attrs, MemTxResult *result); 1239 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1240 MemTxAttrs attrs, MemTxResult *result); 1241 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1242 MemTxAttrs attrs, MemTxResult *result); 1243 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1244 MemTxAttrs attrs, MemTxResult *result); 1245 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1246 MemTxAttrs attrs, MemTxResult *result); 1247 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1248 MemTxAttrs attrs, MemTxResult *result); 1249 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1250 MemTxAttrs attrs, MemTxResult *result); 1251 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1252 MemTxAttrs attrs, MemTxResult *result); 1253 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1254 MemTxAttrs attrs, MemTxResult *result); 1255 1256 #ifdef NEED_CPU_H 1257 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, 1258 MemTxAttrs attrs, MemTxResult *result); 1259 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, 1260 MemTxAttrs attrs, MemTxResult *result); 1261 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, 1262 MemTxAttrs attrs, MemTxResult *result); 1263 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, 1264 MemTxAttrs attrs, MemTxResult *result); 1265 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, 1266 MemTxAttrs attrs, MemTxResult *result); 1267 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, 1268 MemTxAttrs attrs, MemTxResult *result); 1269 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, 1270 MemTxAttrs attrs, MemTxResult *result); 1271 #endif 1272 1273 /* address_space_translate: translate an address range into an address space 1274 * into a MemoryRegion and an address range into that section. Should be 1275 * called from an RCU critical section, to avoid that the last reference 1276 * to the returned region disappears after address_space_translate returns. 1277 * 1278 * @as: #AddressSpace to be accessed 1279 * @addr: address within that address space 1280 * @xlat: pointer to address within the returned memory region section's 1281 * #MemoryRegion. 1282 * @len: pointer to length 1283 * @is_write: indicates the transfer direction 1284 */ 1285 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1286 hwaddr *xlat, hwaddr *len, 1287 bool is_write); 1288 1289 /* address_space_access_valid: check for validity of accessing an address 1290 * space range 1291 * 1292 * Check whether memory is assigned to the given address space range, and 1293 * access is permitted by any IOMMU regions that are active for the address 1294 * space. 1295 * 1296 * For now, addr and len should be aligned to a page size. This limitation 1297 * will be lifted in the future. 1298 * 1299 * @as: #AddressSpace to be accessed 1300 * @addr: address within that address space 1301 * @len: length of the area to be checked 1302 * @is_write: indicates the transfer direction 1303 */ 1304 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1305 1306 /* address_space_map: map a physical memory region into a host virtual address 1307 * 1308 * May map a subset of the requested range, given by and returned in @plen. 1309 * May return %NULL if resources needed to perform the mapping are exhausted. 1310 * Use only for reads OR writes - not for read-modify-write operations. 1311 * Use cpu_register_map_client() to know when retrying the map operation is 1312 * likely to succeed. 1313 * 1314 * @as: #AddressSpace to be accessed 1315 * @addr: address within that address space 1316 * @plen: pointer to length of buffer; updated on return 1317 * @is_write: indicates the transfer direction 1318 */ 1319 void *address_space_map(AddressSpace *as, hwaddr addr, 1320 hwaddr *plen, bool is_write); 1321 1322 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1323 * 1324 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1325 * the amount of memory that was actually read or written by the caller. 1326 * 1327 * @as: #AddressSpace used 1328 * @addr: address within that address space 1329 * @len: buffer length as returned by address_space_map() 1330 * @access_len: amount of data actually transferred 1331 * @is_write: indicates the transfer direction 1332 */ 1333 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1334 int is_write, hwaddr access_len); 1335 1336 1337 #endif 1338 1339 #endif 1340