1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 extern bool global_dirty_log; 46 47 typedef struct MemoryRegionOps MemoryRegionOps; 48 49 struct ReservedRegion { 50 hwaddr low; 51 hwaddr high; 52 unsigned type; 53 }; 54 55 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 56 57 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 58 typedef enum { 59 IOMMU_NONE = 0, 60 IOMMU_RO = 1, 61 IOMMU_WO = 2, 62 IOMMU_RW = 3, 63 } IOMMUAccessFlags; 64 65 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 66 67 struct IOMMUTLBEntry { 68 AddressSpace *target_as; 69 hwaddr iova; 70 hwaddr translated_addr; 71 hwaddr addr_mask; /* 0xfff = 4k translation */ 72 IOMMUAccessFlags perm; 73 }; 74 75 /* 76 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 77 * register with one or multiple IOMMU Notifier capability bit(s). 78 */ 79 typedef enum { 80 IOMMU_NOTIFIER_NONE = 0, 81 /* Notify cache invalidations */ 82 IOMMU_NOTIFIER_UNMAP = 0x1, 83 /* Notify entry changes (newly created entries) */ 84 IOMMU_NOTIFIER_MAP = 0x2, 85 } IOMMUNotifierFlag; 86 87 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 88 89 struct IOMMUNotifier; 90 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 91 IOMMUTLBEntry *data); 92 93 struct IOMMUNotifier { 94 IOMMUNotify notify; 95 IOMMUNotifierFlag notifier_flags; 96 /* Notify for address space range start <= addr <= end */ 97 hwaddr start; 98 hwaddr end; 99 int iommu_idx; 100 QLIST_ENTRY(IOMMUNotifier) node; 101 }; 102 typedef struct IOMMUNotifier IOMMUNotifier; 103 104 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 105 #define RAM_PREALLOC (1 << 0) 106 107 /* RAM is mmap-ed with MAP_SHARED */ 108 #define RAM_SHARED (1 << 1) 109 110 /* Only a portion of RAM (used_length) is actually used, and migrated. 111 * This used_length size can change across reboots. 112 */ 113 #define RAM_RESIZEABLE (1 << 2) 114 115 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 116 * zero the page and wake waiting processes. 117 * (Set during postcopy) 118 */ 119 #define RAM_UF_ZEROPAGE (1 << 3) 120 121 /* RAM can be migrated */ 122 #define RAM_MIGRATABLE (1 << 4) 123 124 /* RAM is a persistent kind memory */ 125 #define RAM_PMEM (1 << 5) 126 127 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 128 IOMMUNotifierFlag flags, 129 hwaddr start, hwaddr end, 130 int iommu_idx) 131 { 132 n->notify = fn; 133 n->notifier_flags = flags; 134 n->start = start; 135 n->end = end; 136 n->iommu_idx = iommu_idx; 137 } 138 139 /* 140 * Memory region callbacks 141 */ 142 struct MemoryRegionOps { 143 /* Read from the memory region. @addr is relative to @mr; @size is 144 * in bytes. */ 145 uint64_t (*read)(void *opaque, 146 hwaddr addr, 147 unsigned size); 148 /* Write to the memory region. @addr is relative to @mr; @size is 149 * in bytes. */ 150 void (*write)(void *opaque, 151 hwaddr addr, 152 uint64_t data, 153 unsigned size); 154 155 MemTxResult (*read_with_attrs)(void *opaque, 156 hwaddr addr, 157 uint64_t *data, 158 unsigned size, 159 MemTxAttrs attrs); 160 MemTxResult (*write_with_attrs)(void *opaque, 161 hwaddr addr, 162 uint64_t data, 163 unsigned size, 164 MemTxAttrs attrs); 165 166 enum device_endian endianness; 167 /* Guest-visible constraints: */ 168 struct { 169 /* If nonzero, specify bounds on access sizes beyond which a machine 170 * check is thrown. 171 */ 172 unsigned min_access_size; 173 unsigned max_access_size; 174 /* If true, unaligned accesses are supported. Otherwise unaligned 175 * accesses throw machine checks. 176 */ 177 bool unaligned; 178 /* 179 * If present, and returns #false, the transaction is not accepted 180 * by the device (and results in machine dependent behaviour such 181 * as a machine check exception). 182 */ 183 bool (*accepts)(void *opaque, hwaddr addr, 184 unsigned size, bool is_write, 185 MemTxAttrs attrs); 186 } valid; 187 /* Internal implementation constraints: */ 188 struct { 189 /* If nonzero, specifies the minimum size implemented. Smaller sizes 190 * will be rounded upwards and a partial result will be returned. 191 */ 192 unsigned min_access_size; 193 /* If nonzero, specifies the maximum size implemented. Larger sizes 194 * will be done as a series of accesses with smaller sizes. 195 */ 196 unsigned max_access_size; 197 /* If true, unaligned accesses are supported. Otherwise all accesses 198 * are converted to (possibly multiple) naturally aligned accesses. 199 */ 200 bool unaligned; 201 } impl; 202 }; 203 204 typedef struct MemoryRegionClass { 205 /* private */ 206 ObjectClass parent_class; 207 } MemoryRegionClass; 208 209 210 enum IOMMUMemoryRegionAttr { 211 IOMMU_ATTR_SPAPR_TCE_FD 212 }; 213 214 /* 215 * IOMMUMemoryRegionClass: 216 * 217 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 218 * and provide an implementation of at least the @translate method here 219 * to handle requests to the memory region. Other methods are optional. 220 * 221 * The IOMMU implementation must use the IOMMU notifier infrastructure 222 * to report whenever mappings are changed, by calling 223 * memory_region_notify_iommu() (or, if necessary, by calling 224 * memory_region_notify_one() for each registered notifier). 225 * 226 * Conceptually an IOMMU provides a mapping from input address 227 * to an output TLB entry. If the IOMMU is aware of memory transaction 228 * attributes and the output TLB entry depends on the transaction 229 * attributes, we represent this using IOMMU indexes. Each index 230 * selects a particular translation table that the IOMMU has: 231 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 232 * @translate takes an input address and an IOMMU index 233 * and the mapping returned can only depend on the input address and the 234 * IOMMU index. 235 * 236 * Most IOMMUs don't care about the transaction attributes and support 237 * only a single IOMMU index. A more complex IOMMU might have one index 238 * for secure transactions and one for non-secure transactions. 239 */ 240 struct IOMMUMemoryRegionClass { 241 /* private */ 242 MemoryRegionClass parent_class; 243 244 /* 245 * Return a TLB entry that contains a given address. 246 * 247 * The IOMMUAccessFlags indicated via @flag are optional and may 248 * be specified as IOMMU_NONE to indicate that the caller needs 249 * the full translation information for both reads and writes. If 250 * the access flags are specified then the IOMMU implementation 251 * may use this as an optimization, to stop doing a page table 252 * walk as soon as it knows that the requested permissions are not 253 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 254 * full page table walk and report the permissions in the returned 255 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 256 * return different mappings for reads and writes.) 257 * 258 * The returned information remains valid while the caller is 259 * holding the big QEMU lock or is inside an RCU critical section; 260 * if the caller wishes to cache the mapping beyond that it must 261 * register an IOMMU notifier so it can invalidate its cached 262 * information when the IOMMU mapping changes. 263 * 264 * @iommu: the IOMMUMemoryRegion 265 * @hwaddr: address to be translated within the memory region 266 * @flag: requested access permissions 267 * @iommu_idx: IOMMU index for the translation 268 */ 269 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 270 IOMMUAccessFlags flag, int iommu_idx); 271 /* Returns minimum supported page size in bytes. 272 * If this method is not provided then the minimum is assumed to 273 * be TARGET_PAGE_SIZE. 274 * 275 * @iommu: the IOMMUMemoryRegion 276 */ 277 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 278 /* Called when IOMMU Notifier flag changes (ie when the set of 279 * events which IOMMU users are requesting notification for changes). 280 * Optional method -- need not be provided if the IOMMU does not 281 * need to know exactly which events must be notified. 282 * 283 * @iommu: the IOMMUMemoryRegion 284 * @old_flags: events which previously needed to be notified 285 * @new_flags: events which now need to be notified 286 * 287 * Returns 0 on success, or a negative errno; in particular 288 * returns -EINVAL if the new flag bitmap is not supported by the 289 * IOMMU memory region. In case of failure, the error object 290 * must be created 291 */ 292 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 293 IOMMUNotifierFlag old_flags, 294 IOMMUNotifierFlag new_flags, 295 Error **errp); 296 /* Called to handle memory_region_iommu_replay(). 297 * 298 * The default implementation of memory_region_iommu_replay() is to 299 * call the IOMMU translate method for every page in the address space 300 * with flag == IOMMU_NONE and then call the notifier if translate 301 * returns a valid mapping. If this method is implemented then it 302 * overrides the default behaviour, and must provide the full semantics 303 * of memory_region_iommu_replay(), by calling @notifier for every 304 * translation present in the IOMMU. 305 * 306 * Optional method -- an IOMMU only needs to provide this method 307 * if the default is inefficient or produces undesirable side effects. 308 * 309 * Note: this is not related to record-and-replay functionality. 310 */ 311 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 312 313 /* Get IOMMU misc attributes. This is an optional method that 314 * can be used to allow users of the IOMMU to get implementation-specific 315 * information. The IOMMU implements this method to handle calls 316 * by IOMMU users to memory_region_iommu_get_attr() by filling in 317 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 318 * the IOMMU supports. If the method is unimplemented then 319 * memory_region_iommu_get_attr() will always return -EINVAL. 320 * 321 * @iommu: the IOMMUMemoryRegion 322 * @attr: attribute being queried 323 * @data: memory to fill in with the attribute data 324 * 325 * Returns 0 on success, or a negative errno; in particular 326 * returns -EINVAL for unrecognized or unimplemented attribute types. 327 */ 328 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 329 void *data); 330 331 /* Return the IOMMU index to use for a given set of transaction attributes. 332 * 333 * Optional method: if an IOMMU only supports a single IOMMU index then 334 * the default implementation of memory_region_iommu_attrs_to_index() 335 * will return 0. 336 * 337 * The indexes supported by an IOMMU must be contiguous, starting at 0. 338 * 339 * @iommu: the IOMMUMemoryRegion 340 * @attrs: memory transaction attributes 341 */ 342 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 343 344 /* Return the number of IOMMU indexes this IOMMU supports. 345 * 346 * Optional method: if this method is not provided, then 347 * memory_region_iommu_num_indexes() will return 1, indicating that 348 * only a single IOMMU index is supported. 349 * 350 * @iommu: the IOMMUMemoryRegion 351 */ 352 int (*num_indexes)(IOMMUMemoryRegion *iommu); 353 }; 354 355 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 356 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 357 358 /** MemoryRegion: 359 * 360 * A struct representing a memory region. 361 */ 362 struct MemoryRegion { 363 Object parent_obj; 364 365 /* private: */ 366 367 /* The following fields should fit in a cache line */ 368 bool romd_mode; 369 bool ram; 370 bool subpage; 371 bool readonly; /* For RAM regions */ 372 bool nonvolatile; 373 bool rom_device; 374 bool flush_coalesced_mmio; 375 bool global_locking; 376 uint8_t dirty_log_mask; 377 bool is_iommu; 378 RAMBlock *ram_block; 379 Object *owner; 380 381 const MemoryRegionOps *ops; 382 void *opaque; 383 MemoryRegion *container; 384 Int128 size; 385 hwaddr addr; 386 void (*destructor)(MemoryRegion *mr); 387 uint64_t align; 388 bool terminates; 389 bool ram_device; 390 bool enabled; 391 bool warning_printed; /* For reservations */ 392 uint8_t vga_logging_count; 393 MemoryRegion *alias; 394 hwaddr alias_offset; 395 int32_t priority; 396 QTAILQ_HEAD(, MemoryRegion) subregions; 397 QTAILQ_ENTRY(MemoryRegion) subregions_link; 398 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 399 const char *name; 400 unsigned ioeventfd_nb; 401 MemoryRegionIoeventfd *ioeventfds; 402 }; 403 404 struct IOMMUMemoryRegion { 405 MemoryRegion parent_obj; 406 407 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 408 IOMMUNotifierFlag iommu_notify_flags; 409 }; 410 411 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 412 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 413 414 /** 415 * MemoryListener: callbacks structure for updates to the physical memory map 416 * 417 * Allows a component to adjust to changes in the guest-visible memory map. 418 * Use with memory_listener_register() and memory_listener_unregister(). 419 */ 420 struct MemoryListener { 421 /** 422 * @begin: 423 * 424 * Called at the beginning of an address space update transaction. 425 * Followed by calls to #MemoryListener.region_add(), 426 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 427 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 428 * increasing address order. 429 * 430 * @listener: The #MemoryListener. 431 */ 432 void (*begin)(MemoryListener *listener); 433 434 /** 435 * @commit: 436 * 437 * Called at the end of an address space update transaction, 438 * after the last call to #MemoryListener.region_add(), 439 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 440 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 441 * 442 * @listener: The #MemoryListener. 443 */ 444 void (*commit)(MemoryListener *listener); 445 446 /** 447 * @region_add: 448 * 449 * Called during an address space update transaction, 450 * for a section of the address space that is new in this address space 451 * space since the last transaction. 452 * 453 * @listener: The #MemoryListener. 454 * @section: The new #MemoryRegionSection. 455 */ 456 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 457 458 /** 459 * @region_del: 460 * 461 * Called during an address space update transaction, 462 * for a section of the address space that has disappeared in the address 463 * space since the last transaction. 464 * 465 * @listener: The #MemoryListener. 466 * @section: The old #MemoryRegionSection. 467 */ 468 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 469 470 /** 471 * @region_nop: 472 * 473 * Called during an address space update transaction, 474 * for a section of the address space that is in the same place in the address 475 * space as in the last transaction. 476 * 477 * @listener: The #MemoryListener. 478 * @section: The #MemoryRegionSection. 479 */ 480 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 481 482 /** 483 * @log_start: 484 * 485 * Called during an address space update transaction, after 486 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or 487 * #MemoryListener.region_nop(), if dirty memory logging clients have 488 * become active since the last transaction. 489 * 490 * @listener: The #MemoryListener. 491 * @section: The #MemoryRegionSection. 492 * @old: A bitmap of dirty memory logging clients that were active in 493 * the previous transaction. 494 * @new: A bitmap of dirty memory logging clients that are active in 495 * the current transaction. 496 */ 497 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 498 int old, int new); 499 500 /** 501 * @log_stop: 502 * 503 * Called during an address space update transaction, after 504 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 505 * #MemoryListener.region_nop() and possibly after 506 * #MemoryListener.log_start(), if dirty memory logging clients have 507 * become inactive since the last transaction. 508 * 509 * @listener: The #MemoryListener. 510 * @section: The #MemoryRegionSection. 511 * @old: A bitmap of dirty memory logging clients that were active in 512 * the previous transaction. 513 * @new: A bitmap of dirty memory logging clients that are active in 514 * the current transaction. 515 */ 516 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 517 int old, int new); 518 519 /** 520 * @log_sync: 521 * 522 * Called by memory_region_snapshot_and_clear_dirty() and 523 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 524 * copy of the dirty memory bitmap for a #MemoryRegionSection. 525 * 526 * @listener: The #MemoryListener. 527 * @section: The #MemoryRegionSection. 528 */ 529 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 530 531 /** 532 * @log_clear: 533 * 534 * Called before reading the dirty memory bitmap for a 535 * #MemoryRegionSection. 536 * 537 * @listener: The #MemoryListener. 538 * @section: The #MemoryRegionSection. 539 */ 540 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 541 542 /** 543 * @log_global_start: 544 * 545 * Called by memory_global_dirty_log_start(), which 546 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 547 * the address space. #MemoryListener.log_global_start() is also 548 * called when a #MemoryListener is added, if global dirty logging is 549 * active at that time. 550 * 551 * @listener: The #MemoryListener. 552 */ 553 void (*log_global_start)(MemoryListener *listener); 554 555 /** 556 * @log_global_stop: 557 * 558 * Called by memory_global_dirty_log_stop(), which 559 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 560 * the address space. 561 * 562 * @listener: The #MemoryListener. 563 */ 564 void (*log_global_stop)(MemoryListener *listener); 565 566 /** 567 * @log_global_after_sync: 568 * 569 * Called after reading the dirty memory bitmap 570 * for any #MemoryRegionSection. 571 * 572 * @listener: The #MemoryListener. 573 */ 574 void (*log_global_after_sync)(MemoryListener *listener); 575 576 /** 577 * @eventfd_add: 578 * 579 * Called during an address space update transaction, 580 * for a section of the address space that has had a new ioeventfd 581 * registration since the last transaction. 582 * 583 * @listener: The #MemoryListener. 584 * @section: The new #MemoryRegionSection. 585 * @match_data: The @match_data parameter for the new ioeventfd. 586 * @data: The @data parameter for the new ioeventfd. 587 * @e: The #EventNotifier parameter for the new ioeventfd. 588 */ 589 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 590 bool match_data, uint64_t data, EventNotifier *e); 591 592 /** 593 * @eventfd_del: 594 * 595 * Called during an address space update transaction, 596 * for a section of the address space that has dropped an ioeventfd 597 * registration since the last transaction. 598 * 599 * @listener: The #MemoryListener. 600 * @section: The new #MemoryRegionSection. 601 * @match_data: The @match_data parameter for the dropped ioeventfd. 602 * @data: The @data parameter for the dropped ioeventfd. 603 * @e: The #EventNotifier parameter for the dropped ioeventfd. 604 */ 605 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 606 bool match_data, uint64_t data, EventNotifier *e); 607 608 /** 609 * @coalesced_io_add: 610 * 611 * Called during an address space update transaction, 612 * for a section of the address space that has had a new coalesced 613 * MMIO range registration since the last transaction. 614 * 615 * @listener: The #MemoryListener. 616 * @section: The new #MemoryRegionSection. 617 * @addr: The starting address for the coalesced MMIO range. 618 * @len: The length of the coalesced MMIO range. 619 */ 620 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 621 hwaddr addr, hwaddr len); 622 623 /** 624 * @coalesced_io_del: 625 * 626 * Called during an address space update transaction, 627 * for a section of the address space that has dropped a coalesced 628 * MMIO range since the last transaction. 629 * 630 * @listener: The #MemoryListener. 631 * @section: The new #MemoryRegionSection. 632 * @addr: The starting address for the coalesced MMIO range. 633 * @len: The length of the coalesced MMIO range. 634 */ 635 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 636 hwaddr addr, hwaddr len); 637 /** 638 * @priority: 639 * 640 * Govern the order in which memory listeners are invoked. Lower priorities 641 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 642 * or "stop" callbacks. 643 */ 644 unsigned priority; 645 646 /* private: */ 647 AddressSpace *address_space; 648 QTAILQ_ENTRY(MemoryListener) link; 649 QTAILQ_ENTRY(MemoryListener) link_as; 650 }; 651 652 /** 653 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 654 */ 655 struct AddressSpace { 656 /* private: */ 657 struct rcu_head rcu; 658 char *name; 659 MemoryRegion *root; 660 661 /* Accessed via RCU. */ 662 struct FlatView *current_map; 663 664 int ioeventfd_nb; 665 struct MemoryRegionIoeventfd *ioeventfds; 666 QTAILQ_HEAD(, MemoryListener) listeners; 667 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 668 }; 669 670 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 671 typedef struct FlatRange FlatRange; 672 673 /* Flattened global view of current active memory hierarchy. Kept in sorted 674 * order. 675 */ 676 struct FlatView { 677 struct rcu_head rcu; 678 unsigned ref; 679 FlatRange *ranges; 680 unsigned nr; 681 unsigned nr_allocated; 682 struct AddressSpaceDispatch *dispatch; 683 MemoryRegion *root; 684 }; 685 686 static inline FlatView *address_space_to_flatview(AddressSpace *as) 687 { 688 return qatomic_rcu_read(&as->current_map); 689 } 690 691 692 /** 693 * MemoryRegionSection: describes a fragment of a #MemoryRegion 694 * 695 * @mr: the region, or %NULL if empty 696 * @fv: the flat view of the address space the region is mapped in 697 * @offset_within_region: the beginning of the section, relative to @mr's start 698 * @size: the size of the section; will not exceed @mr's boundaries 699 * @offset_within_address_space: the address of the first byte of the section 700 * relative to the region's address space 701 * @readonly: writes to this section are ignored 702 * @nonvolatile: this section is non-volatile 703 */ 704 struct MemoryRegionSection { 705 Int128 size; 706 MemoryRegion *mr; 707 FlatView *fv; 708 hwaddr offset_within_region; 709 hwaddr offset_within_address_space; 710 bool readonly; 711 bool nonvolatile; 712 }; 713 714 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 715 MemoryRegionSection *b) 716 { 717 return a->mr == b->mr && 718 a->fv == b->fv && 719 a->offset_within_region == b->offset_within_region && 720 a->offset_within_address_space == b->offset_within_address_space && 721 int128_eq(a->size, b->size) && 722 a->readonly == b->readonly && 723 a->nonvolatile == b->nonvolatile; 724 } 725 726 /** 727 * memory_region_init: Initialize a memory region 728 * 729 * The region typically acts as a container for other memory regions. Use 730 * memory_region_add_subregion() to add subregions. 731 * 732 * @mr: the #MemoryRegion to be initialized 733 * @owner: the object that tracks the region's reference count 734 * @name: used for debugging; not visible to the user or ABI 735 * @size: size of the region; any subregions beyond this size will be clipped 736 */ 737 void memory_region_init(MemoryRegion *mr, 738 struct Object *owner, 739 const char *name, 740 uint64_t size); 741 742 /** 743 * memory_region_ref: Add 1 to a memory region's reference count 744 * 745 * Whenever memory regions are accessed outside the BQL, they need to be 746 * preserved against hot-unplug. MemoryRegions actually do not have their 747 * own reference count; they piggyback on a QOM object, their "owner". 748 * This function adds a reference to the owner. 749 * 750 * All MemoryRegions must have an owner if they can disappear, even if the 751 * device they belong to operates exclusively under the BQL. This is because 752 * the region could be returned at any time by memory_region_find, and this 753 * is usually under guest control. 754 * 755 * @mr: the #MemoryRegion 756 */ 757 void memory_region_ref(MemoryRegion *mr); 758 759 /** 760 * memory_region_unref: Remove 1 to a memory region's reference count 761 * 762 * Whenever memory regions are accessed outside the BQL, they need to be 763 * preserved against hot-unplug. MemoryRegions actually do not have their 764 * own reference count; they piggyback on a QOM object, their "owner". 765 * This function removes a reference to the owner and possibly destroys it. 766 * 767 * @mr: the #MemoryRegion 768 */ 769 void memory_region_unref(MemoryRegion *mr); 770 771 /** 772 * memory_region_init_io: Initialize an I/O memory region. 773 * 774 * Accesses into the region will cause the callbacks in @ops to be called. 775 * if @size is nonzero, subregions will be clipped to @size. 776 * 777 * @mr: the #MemoryRegion to be initialized. 778 * @owner: the object that tracks the region's reference count 779 * @ops: a structure containing read and write callbacks to be used when 780 * I/O is performed on the region. 781 * @opaque: passed to the read and write callbacks of the @ops structure. 782 * @name: used for debugging; not visible to the user or ABI 783 * @size: size of the region. 784 */ 785 void memory_region_init_io(MemoryRegion *mr, 786 struct Object *owner, 787 const MemoryRegionOps *ops, 788 void *opaque, 789 const char *name, 790 uint64_t size); 791 792 /** 793 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 794 * into the region will modify memory 795 * directly. 796 * 797 * @mr: the #MemoryRegion to be initialized. 798 * @owner: the object that tracks the region's reference count 799 * @name: Region name, becomes part of RAMBlock name used in migration stream 800 * must be unique within any device 801 * @size: size of the region. 802 * @errp: pointer to Error*, to store an error if it happens. 803 * 804 * Note that this function does not do anything to cause the data in the 805 * RAM memory region to be migrated; that is the responsibility of the caller. 806 */ 807 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 808 struct Object *owner, 809 const char *name, 810 uint64_t size, 811 Error **errp); 812 813 /** 814 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 815 * Accesses into the region will 816 * modify memory directly. 817 * 818 * @mr: the #MemoryRegion to be initialized. 819 * @owner: the object that tracks the region's reference count 820 * @name: Region name, becomes part of RAMBlock name used in migration stream 821 * must be unique within any device 822 * @size: size of the region. 823 * @share: allow remapping RAM to different addresses 824 * @errp: pointer to Error*, to store an error if it happens. 825 * 826 * Note that this function is similar to memory_region_init_ram_nomigrate. 827 * The only difference is part of the RAM region can be remapped. 828 */ 829 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 830 struct Object *owner, 831 const char *name, 832 uint64_t size, 833 bool share, 834 Error **errp); 835 836 /** 837 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 838 * RAM. Accesses into the region will 839 * modify memory directly. Only an initial 840 * portion of this RAM is actually used. 841 * The used size can change across reboots. 842 * 843 * @mr: the #MemoryRegion to be initialized. 844 * @owner: the object that tracks the region's reference count 845 * @name: Region name, becomes part of RAMBlock name used in migration stream 846 * must be unique within any device 847 * @size: used size of the region. 848 * @max_size: max size of the region. 849 * @resized: callback to notify owner about used size change. 850 * @errp: pointer to Error*, to store an error if it happens. 851 * 852 * Note that this function does not do anything to cause the data in the 853 * RAM memory region to be migrated; that is the responsibility of the caller. 854 */ 855 void memory_region_init_resizeable_ram(MemoryRegion *mr, 856 struct Object *owner, 857 const char *name, 858 uint64_t size, 859 uint64_t max_size, 860 void (*resized)(const char*, 861 uint64_t length, 862 void *host), 863 Error **errp); 864 #ifdef CONFIG_POSIX 865 866 /** 867 * memory_region_init_ram_from_file: Initialize RAM memory region with a 868 * mmap-ed backend. 869 * 870 * @mr: the #MemoryRegion to be initialized. 871 * @owner: the object that tracks the region's reference count 872 * @name: Region name, becomes part of RAMBlock name used in migration stream 873 * must be unique within any device 874 * @size: size of the region. 875 * @align: alignment of the region base address; if 0, the default alignment 876 * (getpagesize()) will be used. 877 * @ram_flags: Memory region features: 878 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 879 * - RAM_PMEM: the memory is persistent memory 880 * Other bits are ignored now. 881 * @path: the path in which to allocate the RAM. 882 * @errp: pointer to Error*, to store an error if it happens. 883 * 884 * Note that this function does not do anything to cause the data in the 885 * RAM memory region to be migrated; that is the responsibility of the caller. 886 */ 887 void memory_region_init_ram_from_file(MemoryRegion *mr, 888 struct Object *owner, 889 const char *name, 890 uint64_t size, 891 uint64_t align, 892 uint32_t ram_flags, 893 const char *path, 894 Error **errp); 895 896 /** 897 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 898 * mmap-ed backend. 899 * 900 * @mr: the #MemoryRegion to be initialized. 901 * @owner: the object that tracks the region's reference count 902 * @name: the name of the region. 903 * @size: size of the region. 904 * @share: %true if memory must be mmaped with the MAP_SHARED flag 905 * @fd: the fd to mmap. 906 * @errp: pointer to Error*, to store an error if it happens. 907 * 908 * Note that this function does not do anything to cause the data in the 909 * RAM memory region to be migrated; that is the responsibility of the caller. 910 */ 911 void memory_region_init_ram_from_fd(MemoryRegion *mr, 912 struct Object *owner, 913 const char *name, 914 uint64_t size, 915 bool share, 916 int fd, 917 Error **errp); 918 #endif 919 920 /** 921 * memory_region_init_ram_ptr: Initialize RAM memory region from a 922 * user-provided pointer. Accesses into the 923 * region will modify memory directly. 924 * 925 * @mr: the #MemoryRegion to be initialized. 926 * @owner: the object that tracks the region's reference count 927 * @name: Region name, becomes part of RAMBlock name used in migration stream 928 * must be unique within any device 929 * @size: size of the region. 930 * @ptr: memory to be mapped; must contain at least @size bytes. 931 * 932 * Note that this function does not do anything to cause the data in the 933 * RAM memory region to be migrated; that is the responsibility of the caller. 934 */ 935 void memory_region_init_ram_ptr(MemoryRegion *mr, 936 struct Object *owner, 937 const char *name, 938 uint64_t size, 939 void *ptr); 940 941 /** 942 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 943 * a user-provided pointer. 944 * 945 * A RAM device represents a mapping to a physical device, such as to a PCI 946 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 947 * into the VM address space and access to the region will modify memory 948 * directly. However, the memory region should not be included in a memory 949 * dump (device may not be enabled/mapped at the time of the dump), and 950 * operations incompatible with manipulating MMIO should be avoided. Replaces 951 * skip_dump flag. 952 * 953 * @mr: the #MemoryRegion to be initialized. 954 * @owner: the object that tracks the region's reference count 955 * @name: the name of the region. 956 * @size: size of the region. 957 * @ptr: memory to be mapped; must contain at least @size bytes. 958 * 959 * Note that this function does not do anything to cause the data in the 960 * RAM memory region to be migrated; that is the responsibility of the caller. 961 * (For RAM device memory regions, migrating the contents rarely makes sense.) 962 */ 963 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 964 struct Object *owner, 965 const char *name, 966 uint64_t size, 967 void *ptr); 968 969 /** 970 * memory_region_init_alias: Initialize a memory region that aliases all or a 971 * part of another memory region. 972 * 973 * @mr: the #MemoryRegion to be initialized. 974 * @owner: the object that tracks the region's reference count 975 * @name: used for debugging; not visible to the user or ABI 976 * @orig: the region to be referenced; @mr will be equivalent to 977 * @orig between @offset and @offset + @size - 1. 978 * @offset: start of the section in @orig to be referenced. 979 * @size: size of the region. 980 */ 981 void memory_region_init_alias(MemoryRegion *mr, 982 struct Object *owner, 983 const char *name, 984 MemoryRegion *orig, 985 hwaddr offset, 986 uint64_t size); 987 988 /** 989 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 990 * 991 * This has the same effect as calling memory_region_init_ram_nomigrate() 992 * and then marking the resulting region read-only with 993 * memory_region_set_readonly(). 994 * 995 * Note that this function does not do anything to cause the data in the 996 * RAM side of the memory region to be migrated; that is the responsibility 997 * of the caller. 998 * 999 * @mr: the #MemoryRegion to be initialized. 1000 * @owner: the object that tracks the region's reference count 1001 * @name: Region name, becomes part of RAMBlock name used in migration stream 1002 * must be unique within any device 1003 * @size: size of the region. 1004 * @errp: pointer to Error*, to store an error if it happens. 1005 */ 1006 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1007 struct Object *owner, 1008 const char *name, 1009 uint64_t size, 1010 Error **errp); 1011 1012 /** 1013 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1014 * Writes are handled via callbacks. 1015 * 1016 * Note that this function does not do anything to cause the data in the 1017 * RAM side of the memory region to be migrated; that is the responsibility 1018 * of the caller. 1019 * 1020 * @mr: the #MemoryRegion to be initialized. 1021 * @owner: the object that tracks the region's reference count 1022 * @ops: callbacks for write access handling (must not be NULL). 1023 * @opaque: passed to the read and write callbacks of the @ops structure. 1024 * @name: Region name, becomes part of RAMBlock name used in migration stream 1025 * must be unique within any device 1026 * @size: size of the region. 1027 * @errp: pointer to Error*, to store an error if it happens. 1028 */ 1029 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1030 struct Object *owner, 1031 const MemoryRegionOps *ops, 1032 void *opaque, 1033 const char *name, 1034 uint64_t size, 1035 Error **errp); 1036 1037 /** 1038 * memory_region_init_iommu: Initialize a memory region of a custom type 1039 * that translates addresses 1040 * 1041 * An IOMMU region translates addresses and forwards accesses to a target 1042 * memory region. 1043 * 1044 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1045 * @_iommu_mr should be a pointer to enough memory for an instance of 1046 * that subclass, @instance_size is the size of that subclass, and 1047 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1048 * instance of the subclass, and its methods will then be called to handle 1049 * accesses to the memory region. See the documentation of 1050 * #IOMMUMemoryRegionClass for further details. 1051 * 1052 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1053 * @instance_size: the IOMMUMemoryRegion subclass instance size 1054 * @mrtypename: the type name of the #IOMMUMemoryRegion 1055 * @owner: the object that tracks the region's reference count 1056 * @name: used for debugging; not visible to the user or ABI 1057 * @size: size of the region. 1058 */ 1059 void memory_region_init_iommu(void *_iommu_mr, 1060 size_t instance_size, 1061 const char *mrtypename, 1062 Object *owner, 1063 const char *name, 1064 uint64_t size); 1065 1066 /** 1067 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1068 * region will modify memory directly. 1069 * 1070 * @mr: the #MemoryRegion to be initialized 1071 * @owner: the object that tracks the region's reference count (must be 1072 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1073 * @name: name of the memory region 1074 * @size: size of the region in bytes 1075 * @errp: pointer to Error*, to store an error if it happens. 1076 * 1077 * This function allocates RAM for a board model or device, and 1078 * arranges for it to be migrated (by calling vmstate_register_ram() 1079 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1080 * @owner is NULL). 1081 * 1082 * TODO: Currently we restrict @owner to being either NULL (for 1083 * global RAM regions with no owner) or devices, so that we can 1084 * give the RAM block a unique name for migration purposes. 1085 * We should lift this restriction and allow arbitrary Objects. 1086 * If you pass a non-NULL non-device @owner then we will assert. 1087 */ 1088 void memory_region_init_ram(MemoryRegion *mr, 1089 struct Object *owner, 1090 const char *name, 1091 uint64_t size, 1092 Error **errp); 1093 1094 /** 1095 * memory_region_init_rom: Initialize a ROM memory region. 1096 * 1097 * This has the same effect as calling memory_region_init_ram() 1098 * and then marking the resulting region read-only with 1099 * memory_region_set_readonly(). This includes arranging for the 1100 * contents to be migrated. 1101 * 1102 * TODO: Currently we restrict @owner to being either NULL (for 1103 * global RAM regions with no owner) or devices, so that we can 1104 * give the RAM block a unique name for migration purposes. 1105 * We should lift this restriction and allow arbitrary Objects. 1106 * If you pass a non-NULL non-device @owner then we will assert. 1107 * 1108 * @mr: the #MemoryRegion to be initialized. 1109 * @owner: the object that tracks the region's reference count 1110 * @name: Region name, becomes part of RAMBlock name used in migration stream 1111 * must be unique within any device 1112 * @size: size of the region. 1113 * @errp: pointer to Error*, to store an error if it happens. 1114 */ 1115 void memory_region_init_rom(MemoryRegion *mr, 1116 struct Object *owner, 1117 const char *name, 1118 uint64_t size, 1119 Error **errp); 1120 1121 /** 1122 * memory_region_init_rom_device: Initialize a ROM memory region. 1123 * Writes are handled via callbacks. 1124 * 1125 * This function initializes a memory region backed by RAM for reads 1126 * and callbacks for writes, and arranges for the RAM backing to 1127 * be migrated (by calling vmstate_register_ram() 1128 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1129 * @owner is NULL). 1130 * 1131 * TODO: Currently we restrict @owner to being either NULL (for 1132 * global RAM regions with no owner) or devices, so that we can 1133 * give the RAM block a unique name for migration purposes. 1134 * We should lift this restriction and allow arbitrary Objects. 1135 * If you pass a non-NULL non-device @owner then we will assert. 1136 * 1137 * @mr: the #MemoryRegion to be initialized. 1138 * @owner: the object that tracks the region's reference count 1139 * @ops: callbacks for write access handling (must not be NULL). 1140 * @opaque: passed to the read and write callbacks of the @ops structure. 1141 * @name: Region name, becomes part of RAMBlock name used in migration stream 1142 * must be unique within any device 1143 * @size: size of the region. 1144 * @errp: pointer to Error*, to store an error if it happens. 1145 */ 1146 void memory_region_init_rom_device(MemoryRegion *mr, 1147 struct Object *owner, 1148 const MemoryRegionOps *ops, 1149 void *opaque, 1150 const char *name, 1151 uint64_t size, 1152 Error **errp); 1153 1154 1155 /** 1156 * memory_region_owner: get a memory region's owner. 1157 * 1158 * @mr: the memory region being queried. 1159 */ 1160 struct Object *memory_region_owner(MemoryRegion *mr); 1161 1162 /** 1163 * memory_region_size: get a memory region's size. 1164 * 1165 * @mr: the memory region being queried. 1166 */ 1167 uint64_t memory_region_size(MemoryRegion *mr); 1168 1169 /** 1170 * memory_region_is_ram: check whether a memory region is random access 1171 * 1172 * Returns %true if a memory region is random access. 1173 * 1174 * @mr: the memory region being queried 1175 */ 1176 static inline bool memory_region_is_ram(MemoryRegion *mr) 1177 { 1178 return mr->ram; 1179 } 1180 1181 /** 1182 * memory_region_is_ram_device: check whether a memory region is a ram device 1183 * 1184 * Returns %true if a memory region is a device backed ram region 1185 * 1186 * @mr: the memory region being queried 1187 */ 1188 bool memory_region_is_ram_device(MemoryRegion *mr); 1189 1190 /** 1191 * memory_region_is_romd: check whether a memory region is in ROMD mode 1192 * 1193 * Returns %true if a memory region is a ROM device and currently set to allow 1194 * direct reads. 1195 * 1196 * @mr: the memory region being queried 1197 */ 1198 static inline bool memory_region_is_romd(MemoryRegion *mr) 1199 { 1200 return mr->rom_device && mr->romd_mode; 1201 } 1202 1203 /** 1204 * memory_region_get_iommu: check whether a memory region is an iommu 1205 * 1206 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1207 * otherwise NULL. 1208 * 1209 * @mr: the memory region being queried 1210 */ 1211 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1212 { 1213 if (mr->alias) { 1214 return memory_region_get_iommu(mr->alias); 1215 } 1216 if (mr->is_iommu) { 1217 return (IOMMUMemoryRegion *) mr; 1218 } 1219 return NULL; 1220 } 1221 1222 /** 1223 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1224 * if an iommu or NULL if not 1225 * 1226 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1227 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1228 * 1229 * @iommu_mr: the memory region being queried 1230 */ 1231 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1232 IOMMUMemoryRegion *iommu_mr) 1233 { 1234 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1235 } 1236 1237 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1238 1239 /** 1240 * memory_region_iommu_get_min_page_size: get minimum supported page size 1241 * for an iommu 1242 * 1243 * Returns minimum supported page size for an iommu. 1244 * 1245 * @iommu_mr: the memory region being queried 1246 */ 1247 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1248 1249 /** 1250 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1251 * 1252 * The notification type will be decided by entry.perm bits: 1253 * 1254 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1255 * - For MAP (newly added entry) notifies: set entry.perm to the 1256 * permission of the page (which is definitely !IOMMU_NONE). 1257 * 1258 * Note: for any IOMMU implementation, an in-place mapping change 1259 * should be notified with an UNMAP followed by a MAP. 1260 * 1261 * @iommu_mr: the memory region that was changed 1262 * @iommu_idx: the IOMMU index for the translation table which has changed 1263 * @entry: the new entry in the IOMMU translation table. The entry 1264 * replaces all old entries for the same virtual I/O address range. 1265 * Deleted entries have .@perm == 0. 1266 */ 1267 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1268 int iommu_idx, 1269 IOMMUTLBEntry entry); 1270 1271 /** 1272 * memory_region_notify_one: notify a change in an IOMMU translation 1273 * entry to a single notifier 1274 * 1275 * This works just like memory_region_notify_iommu(), but it only 1276 * notifies a specific notifier, not all of them. 1277 * 1278 * @notifier: the notifier to be notified 1279 * @entry: the new entry in the IOMMU translation table. The entry 1280 * replaces all old entries for the same virtual I/O address range. 1281 * Deleted entries have .@perm == 0. 1282 */ 1283 void memory_region_notify_one(IOMMUNotifier *notifier, 1284 IOMMUTLBEntry *entry); 1285 1286 /** 1287 * memory_region_register_iommu_notifier: register a notifier for changes to 1288 * IOMMU translation entries. 1289 * 1290 * Returns 0 on success, or a negative errno otherwise. In particular, 1291 * -EINVAL indicates that at least one of the attributes of the notifier 1292 * is not supported (flag/range) by the IOMMU memory region. In case of error 1293 * the error object must be created. 1294 * 1295 * @mr: the memory region to observe 1296 * @n: the IOMMUNotifier to be added; the notify callback receives a 1297 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1298 * ceases to be valid on exit from the notifier. 1299 * @errp: pointer to Error*, to store an error if it happens. 1300 */ 1301 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1302 IOMMUNotifier *n, Error **errp); 1303 1304 /** 1305 * memory_region_iommu_replay: replay existing IOMMU translations to 1306 * a notifier with the minimum page granularity returned by 1307 * mr->iommu_ops->get_page_size(). 1308 * 1309 * Note: this is not related to record-and-replay functionality. 1310 * 1311 * @iommu_mr: the memory region to observe 1312 * @n: the notifier to which to replay iommu mappings 1313 */ 1314 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1315 1316 /** 1317 * memory_region_unregister_iommu_notifier: unregister a notifier for 1318 * changes to IOMMU translation entries. 1319 * 1320 * @mr: the memory region which was observed and for which notity_stopped() 1321 * needs to be called 1322 * @n: the notifier to be removed. 1323 */ 1324 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1325 IOMMUNotifier *n); 1326 1327 /** 1328 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1329 * defined on the IOMMU. 1330 * 1331 * Returns 0 on success, or a negative errno otherwise. In particular, 1332 * -EINVAL indicates that the IOMMU does not support the requested 1333 * attribute. 1334 * 1335 * @iommu_mr: the memory region 1336 * @attr: the requested attribute 1337 * @data: a pointer to the requested attribute data 1338 */ 1339 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1340 enum IOMMUMemoryRegionAttr attr, 1341 void *data); 1342 1343 /** 1344 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1345 * use for translations with the given memory transaction attributes. 1346 * 1347 * @iommu_mr: the memory region 1348 * @attrs: the memory transaction attributes 1349 */ 1350 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1351 MemTxAttrs attrs); 1352 1353 /** 1354 * memory_region_iommu_num_indexes: return the total number of IOMMU 1355 * indexes that this IOMMU supports. 1356 * 1357 * @iommu_mr: the memory region 1358 */ 1359 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1360 1361 /** 1362 * memory_region_name: get a memory region's name 1363 * 1364 * Returns the string that was used to initialize the memory region. 1365 * 1366 * @mr: the memory region being queried 1367 */ 1368 const char *memory_region_name(const MemoryRegion *mr); 1369 1370 /** 1371 * memory_region_is_logging: return whether a memory region is logging writes 1372 * 1373 * Returns %true if the memory region is logging writes for the given client 1374 * 1375 * @mr: the memory region being queried 1376 * @client: the client being queried 1377 */ 1378 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1379 1380 /** 1381 * memory_region_get_dirty_log_mask: return the clients for which a 1382 * memory region is logging writes. 1383 * 1384 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1385 * are the bit indices. 1386 * 1387 * @mr: the memory region being queried 1388 */ 1389 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1390 1391 /** 1392 * memory_region_is_rom: check whether a memory region is ROM 1393 * 1394 * Returns %true if a memory region is read-only memory. 1395 * 1396 * @mr: the memory region being queried 1397 */ 1398 static inline bool memory_region_is_rom(MemoryRegion *mr) 1399 { 1400 return mr->ram && mr->readonly; 1401 } 1402 1403 /** 1404 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1405 * 1406 * Returns %true is a memory region is non-volatile memory. 1407 * 1408 * @mr: the memory region being queried 1409 */ 1410 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1411 { 1412 return mr->nonvolatile; 1413 } 1414 1415 /** 1416 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1417 * 1418 * Returns a file descriptor backing a file-based RAM memory region, 1419 * or -1 if the region is not a file-based RAM memory region. 1420 * 1421 * @mr: the RAM or alias memory region being queried. 1422 */ 1423 int memory_region_get_fd(MemoryRegion *mr); 1424 1425 /** 1426 * memory_region_from_host: Convert a pointer into a RAM memory region 1427 * and an offset within it. 1428 * 1429 * Given a host pointer inside a RAM memory region (created with 1430 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1431 * the MemoryRegion and the offset within it. 1432 * 1433 * Use with care; by the time this function returns, the returned pointer is 1434 * not protected by RCU anymore. If the caller is not within an RCU critical 1435 * section and does not hold the iothread lock, it must have other means of 1436 * protecting the pointer, such as a reference to the region that includes 1437 * the incoming ram_addr_t. 1438 * 1439 * @ptr: the host pointer to be converted 1440 * @offset: the offset within memory region 1441 */ 1442 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1443 1444 /** 1445 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1446 * 1447 * Returns a host pointer to a RAM memory region (created with 1448 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1449 * 1450 * Use with care; by the time this function returns, the returned pointer is 1451 * not protected by RCU anymore. If the caller is not within an RCU critical 1452 * section and does not hold the iothread lock, it must have other means of 1453 * protecting the pointer, such as a reference to the region that includes 1454 * the incoming ram_addr_t. 1455 * 1456 * @mr: the memory region being queried. 1457 */ 1458 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1459 1460 /* memory_region_ram_resize: Resize a RAM region. 1461 * 1462 * Only legal before guest might have detected the memory size: e.g. on 1463 * incoming migration, or right after reset. 1464 * 1465 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1466 * @newsize: the new size the region 1467 * @errp: pointer to Error*, to store an error if it happens. 1468 */ 1469 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1470 Error **errp); 1471 1472 /** 1473 * memory_region_msync: Synchronize selected address range of 1474 * a memory mapped region 1475 * 1476 * @mr: the memory region to be msync 1477 * @addr: the initial address of the range to be sync 1478 * @size: the size of the range to be sync 1479 */ 1480 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1481 1482 /** 1483 * memory_region_writeback: Trigger cache writeback for 1484 * selected address range 1485 * 1486 * @mr: the memory region to be updated 1487 * @addr: the initial address of the range to be written back 1488 * @size: the size of the range to be written back 1489 */ 1490 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1491 1492 /** 1493 * memory_region_set_log: Turn dirty logging on or off for a region. 1494 * 1495 * Turns dirty logging on or off for a specified client (display, migration). 1496 * Only meaningful for RAM regions. 1497 * 1498 * @mr: the memory region being updated. 1499 * @log: whether dirty logging is to be enabled or disabled. 1500 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1501 */ 1502 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1503 1504 /** 1505 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1506 * 1507 * Marks a range of bytes as dirty, after it has been dirtied outside 1508 * guest code. 1509 * 1510 * @mr: the memory region being dirtied. 1511 * @addr: the address (relative to the start of the region) being dirtied. 1512 * @size: size of the range being dirtied. 1513 */ 1514 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1515 hwaddr size); 1516 1517 /** 1518 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1519 * 1520 * This function is called when the caller wants to clear the remote 1521 * dirty bitmap of a memory range within the memory region. This can 1522 * be used by e.g. KVM to manually clear dirty log when 1523 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1524 * kernel. 1525 * 1526 * @mr: the memory region to clear the dirty log upon 1527 * @start: start address offset within the memory region 1528 * @len: length of the memory region to clear dirty bitmap 1529 */ 1530 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1531 hwaddr len); 1532 1533 /** 1534 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1535 * bitmap and clear it. 1536 * 1537 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1538 * returns the snapshot. The snapshot can then be used to query dirty 1539 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1540 * querying the same page multiple times, which is especially useful for 1541 * display updates where the scanlines often are not page aligned. 1542 * 1543 * The dirty bitmap region which gets copyed into the snapshot (and 1544 * cleared afterwards) can be larger than requested. The boundaries 1545 * are rounded up/down so complete bitmap longs (covering 64 pages on 1546 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1547 * isn't a problem for display updates as the extra pages are outside 1548 * the visible area, and in case the visible area changes a full 1549 * display redraw is due anyway. Should other use cases for this 1550 * function emerge we might have to revisit this implementation 1551 * detail. 1552 * 1553 * Use g_free to release DirtyBitmapSnapshot. 1554 * 1555 * @mr: the memory region being queried. 1556 * @addr: the address (relative to the start of the region) being queried. 1557 * @size: the size of the range being queried. 1558 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1559 */ 1560 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1561 hwaddr addr, 1562 hwaddr size, 1563 unsigned client); 1564 1565 /** 1566 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1567 * in the specified dirty bitmap snapshot. 1568 * 1569 * @mr: the memory region being queried. 1570 * @snap: the dirty bitmap snapshot 1571 * @addr: the address (relative to the start of the region) being queried. 1572 * @size: the size of the range being queried. 1573 */ 1574 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1575 DirtyBitmapSnapshot *snap, 1576 hwaddr addr, hwaddr size); 1577 1578 /** 1579 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1580 * client. 1581 * 1582 * Marks a range of pages as no longer dirty. 1583 * 1584 * @mr: the region being updated. 1585 * @addr: the start of the subrange being cleaned. 1586 * @size: the size of the subrange being cleaned. 1587 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1588 * %DIRTY_MEMORY_VGA. 1589 */ 1590 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1591 hwaddr size, unsigned client); 1592 1593 /** 1594 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1595 * TBs (for self-modifying code). 1596 * 1597 * The MemoryRegionOps->write() callback of a ROM device must use this function 1598 * to mark byte ranges that have been modified internally, such as by directly 1599 * accessing the memory returned by memory_region_get_ram_ptr(). 1600 * 1601 * This function marks the range dirty and invalidates TBs so that TCG can 1602 * detect self-modifying code. 1603 * 1604 * @mr: the region being flushed. 1605 * @addr: the start, relative to the start of the region, of the range being 1606 * flushed. 1607 * @size: the size, in bytes, of the range being flushed. 1608 */ 1609 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1610 1611 /** 1612 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1613 * 1614 * Allows a memory region to be marked as read-only (turning it into a ROM). 1615 * only useful on RAM regions. 1616 * 1617 * @mr: the region being updated. 1618 * @readonly: whether rhe region is to be ROM or RAM. 1619 */ 1620 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1621 1622 /** 1623 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1624 * 1625 * Allows a memory region to be marked as non-volatile. 1626 * only useful on RAM regions. 1627 * 1628 * @mr: the region being updated. 1629 * @nonvolatile: whether rhe region is to be non-volatile. 1630 */ 1631 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1632 1633 /** 1634 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1635 * 1636 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1637 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1638 * device is mapped to guest memory and satisfies read access directly. 1639 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1640 * Writes are always handled by the #MemoryRegion.write function. 1641 * 1642 * @mr: the memory region to be updated 1643 * @romd_mode: %true to put the region into ROMD mode 1644 */ 1645 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1646 1647 /** 1648 * memory_region_set_coalescing: Enable memory coalescing for the region. 1649 * 1650 * Enabled writes to a region to be queued for later processing. MMIO ->write 1651 * callbacks may be delayed until a non-coalesced MMIO is issued. 1652 * Only useful for IO regions. Roughly similar to write-combining hardware. 1653 * 1654 * @mr: the memory region to be write coalesced 1655 */ 1656 void memory_region_set_coalescing(MemoryRegion *mr); 1657 1658 /** 1659 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1660 * a region. 1661 * 1662 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1663 * Multiple calls can be issued coalesced disjoint ranges. 1664 * 1665 * @mr: the memory region to be updated. 1666 * @offset: the start of the range within the region to be coalesced. 1667 * @size: the size of the subrange to be coalesced. 1668 */ 1669 void memory_region_add_coalescing(MemoryRegion *mr, 1670 hwaddr offset, 1671 uint64_t size); 1672 1673 /** 1674 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1675 * 1676 * Disables any coalescing caused by memory_region_set_coalescing() or 1677 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1678 * hardware. 1679 * 1680 * @mr: the memory region to be updated. 1681 */ 1682 void memory_region_clear_coalescing(MemoryRegion *mr); 1683 1684 /** 1685 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1686 * accesses. 1687 * 1688 * Ensure that pending coalesced MMIO request are flushed before the memory 1689 * region is accessed. This property is automatically enabled for all regions 1690 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1691 * 1692 * @mr: the memory region to be updated. 1693 */ 1694 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1695 1696 /** 1697 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1698 * accesses. 1699 * 1700 * Clear the automatic coalesced MMIO flushing enabled via 1701 * memory_region_set_flush_coalesced. Note that this service has no effect on 1702 * memory regions that have MMIO coalescing enabled for themselves. For them, 1703 * automatic flushing will stop once coalescing is disabled. 1704 * 1705 * @mr: the memory region to be updated. 1706 */ 1707 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1708 1709 /** 1710 * memory_region_clear_global_locking: Declares that access processing does 1711 * not depend on the QEMU global lock. 1712 * 1713 * By clearing this property, accesses to the memory region will be processed 1714 * outside of QEMU's global lock (unless the lock is held on when issuing the 1715 * access request). In this case, the device model implementing the access 1716 * handlers is responsible for synchronization of concurrency. 1717 * 1718 * @mr: the memory region to be updated. 1719 */ 1720 void memory_region_clear_global_locking(MemoryRegion *mr); 1721 1722 /** 1723 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1724 * is written to a location. 1725 * 1726 * Marks a word in an IO region (initialized with memory_region_init_io()) 1727 * as a trigger for an eventfd event. The I/O callback will not be called. 1728 * The caller must be prepared to handle failure (that is, take the required 1729 * action if the callback _is_ called). 1730 * 1731 * @mr: the memory region being updated. 1732 * @addr: the address within @mr that is to be monitored 1733 * @size: the size of the access to trigger the eventfd 1734 * @match_data: whether to match against @data, instead of just @addr 1735 * @data: the data to match against the guest write 1736 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1737 **/ 1738 void memory_region_add_eventfd(MemoryRegion *mr, 1739 hwaddr addr, 1740 unsigned size, 1741 bool match_data, 1742 uint64_t data, 1743 EventNotifier *e); 1744 1745 /** 1746 * memory_region_del_eventfd: Cancel an eventfd. 1747 * 1748 * Cancels an eventfd trigger requested by a previous 1749 * memory_region_add_eventfd() call. 1750 * 1751 * @mr: the memory region being updated. 1752 * @addr: the address within @mr that is to be monitored 1753 * @size: the size of the access to trigger the eventfd 1754 * @match_data: whether to match against @data, instead of just @addr 1755 * @data: the data to match against the guest write 1756 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1757 */ 1758 void memory_region_del_eventfd(MemoryRegion *mr, 1759 hwaddr addr, 1760 unsigned size, 1761 bool match_data, 1762 uint64_t data, 1763 EventNotifier *e); 1764 1765 /** 1766 * memory_region_add_subregion: Add a subregion to a container. 1767 * 1768 * Adds a subregion at @offset. The subregion may not overlap with other 1769 * subregions (except for those explicitly marked as overlapping). A region 1770 * may only be added once as a subregion (unless removed with 1771 * memory_region_del_subregion()); use memory_region_init_alias() if you 1772 * want a region to be a subregion in multiple locations. 1773 * 1774 * @mr: the region to contain the new subregion; must be a container 1775 * initialized with memory_region_init(). 1776 * @offset: the offset relative to @mr where @subregion is added. 1777 * @subregion: the subregion to be added. 1778 */ 1779 void memory_region_add_subregion(MemoryRegion *mr, 1780 hwaddr offset, 1781 MemoryRegion *subregion); 1782 /** 1783 * memory_region_add_subregion_overlap: Add a subregion to a container 1784 * with overlap. 1785 * 1786 * Adds a subregion at @offset. The subregion may overlap with other 1787 * subregions. Conflicts are resolved by having a higher @priority hide a 1788 * lower @priority. Subregions without priority are taken as @priority 0. 1789 * A region may only be added once as a subregion (unless removed with 1790 * memory_region_del_subregion()); use memory_region_init_alias() if you 1791 * want a region to be a subregion in multiple locations. 1792 * 1793 * @mr: the region to contain the new subregion; must be a container 1794 * initialized with memory_region_init(). 1795 * @offset: the offset relative to @mr where @subregion is added. 1796 * @subregion: the subregion to be added. 1797 * @priority: used for resolving overlaps; highest priority wins. 1798 */ 1799 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1800 hwaddr offset, 1801 MemoryRegion *subregion, 1802 int priority); 1803 1804 /** 1805 * memory_region_get_ram_addr: Get the ram address associated with a memory 1806 * region 1807 * 1808 * @mr: the region to be queried 1809 */ 1810 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1811 1812 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1813 /** 1814 * memory_region_del_subregion: Remove a subregion. 1815 * 1816 * Removes a subregion from its container. 1817 * 1818 * @mr: the container to be updated. 1819 * @subregion: the region being removed; must be a current subregion of @mr. 1820 */ 1821 void memory_region_del_subregion(MemoryRegion *mr, 1822 MemoryRegion *subregion); 1823 1824 /* 1825 * memory_region_set_enabled: dynamically enable or disable a region 1826 * 1827 * Enables or disables a memory region. A disabled memory region 1828 * ignores all accesses to itself and its subregions. It does not 1829 * obscure sibling subregions with lower priority - it simply behaves as 1830 * if it was removed from the hierarchy. 1831 * 1832 * Regions default to being enabled. 1833 * 1834 * @mr: the region to be updated 1835 * @enabled: whether to enable or disable the region 1836 */ 1837 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1838 1839 /* 1840 * memory_region_set_address: dynamically update the address of a region 1841 * 1842 * Dynamically updates the address of a region, relative to its container. 1843 * May be used on regions are currently part of a memory hierarchy. 1844 * 1845 * @mr: the region to be updated 1846 * @addr: new address, relative to container region 1847 */ 1848 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1849 1850 /* 1851 * memory_region_set_size: dynamically update the size of a region. 1852 * 1853 * Dynamically updates the size of a region. 1854 * 1855 * @mr: the region to be updated 1856 * @size: used size of the region. 1857 */ 1858 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1859 1860 /* 1861 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1862 * 1863 * Dynamically updates the offset into the target region that an alias points 1864 * to, as if the fourth argument to memory_region_init_alias() has changed. 1865 * 1866 * @mr: the #MemoryRegion to be updated; should be an alias. 1867 * @offset: the new offset into the target memory region 1868 */ 1869 void memory_region_set_alias_offset(MemoryRegion *mr, 1870 hwaddr offset); 1871 1872 /** 1873 * memory_region_present: checks if an address relative to a @container 1874 * translates into #MemoryRegion within @container 1875 * 1876 * Answer whether a #MemoryRegion within @container covers the address 1877 * @addr. 1878 * 1879 * @container: a #MemoryRegion within which @addr is a relative address 1880 * @addr: the area within @container to be searched 1881 */ 1882 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1883 1884 /** 1885 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1886 * into any address space. 1887 * 1888 * @mr: a #MemoryRegion which should be checked if it's mapped 1889 */ 1890 bool memory_region_is_mapped(MemoryRegion *mr); 1891 1892 /** 1893 * memory_region_find: translate an address/size relative to a 1894 * MemoryRegion into a #MemoryRegionSection. 1895 * 1896 * Locates the first #MemoryRegion within @mr that overlaps the range 1897 * given by @addr and @size. 1898 * 1899 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1900 * It will have the following characteristics: 1901 * - @size = 0 iff no overlap was found 1902 * - @mr is non-%NULL iff an overlap was found 1903 * 1904 * Remember that in the return value the @offset_within_region is 1905 * relative to the returned region (in the .@mr field), not to the 1906 * @mr argument. 1907 * 1908 * Similarly, the .@offset_within_address_space is relative to the 1909 * address space that contains both regions, the passed and the 1910 * returned one. However, in the special case where the @mr argument 1911 * has no container (and thus is the root of the address space), the 1912 * following will hold: 1913 * - @offset_within_address_space >= @addr 1914 * - @offset_within_address_space + .@size <= @addr + @size 1915 * 1916 * @mr: a MemoryRegion within which @addr is a relative address 1917 * @addr: start of the area within @as to be searched 1918 * @size: size of the area to be searched 1919 */ 1920 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1921 hwaddr addr, uint64_t size); 1922 1923 /** 1924 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1925 * 1926 * Synchronizes the dirty page log for all address spaces. 1927 */ 1928 void memory_global_dirty_log_sync(void); 1929 1930 /** 1931 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1932 * 1933 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 1934 * This function must be called after the dirty log bitmap is cleared, and 1935 * before dirty guest memory pages are read. If you are using 1936 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 1937 * care of doing this. 1938 */ 1939 void memory_global_after_dirty_log_sync(void); 1940 1941 /** 1942 * memory_region_transaction_begin: Start a transaction. 1943 * 1944 * During a transaction, changes will be accumulated and made visible 1945 * only when the transaction ends (is committed). 1946 */ 1947 void memory_region_transaction_begin(void); 1948 1949 /** 1950 * memory_region_transaction_commit: Commit a transaction and make changes 1951 * visible to the guest. 1952 */ 1953 void memory_region_transaction_commit(void); 1954 1955 /** 1956 * memory_listener_register: register callbacks to be called when memory 1957 * sections are mapped or unmapped into an address 1958 * space 1959 * 1960 * @listener: an object containing the callbacks to be called 1961 * @filter: if non-%NULL, only regions in this address space will be observed 1962 */ 1963 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1964 1965 /** 1966 * memory_listener_unregister: undo the effect of memory_listener_register() 1967 * 1968 * @listener: an object containing the callbacks to be removed 1969 */ 1970 void memory_listener_unregister(MemoryListener *listener); 1971 1972 /** 1973 * memory_global_dirty_log_start: begin dirty logging for all regions 1974 */ 1975 void memory_global_dirty_log_start(void); 1976 1977 /** 1978 * memory_global_dirty_log_stop: end dirty logging for all regions 1979 */ 1980 void memory_global_dirty_log_stop(void); 1981 1982 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 1983 1984 /** 1985 * memory_region_dispatch_read: perform a read directly to the specified 1986 * MemoryRegion. 1987 * 1988 * @mr: #MemoryRegion to access 1989 * @addr: address within that region 1990 * @pval: pointer to uint64_t which the data is written to 1991 * @op: size, sign, and endianness of the memory operation 1992 * @attrs: memory transaction attributes to use for the access 1993 */ 1994 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1995 hwaddr addr, 1996 uint64_t *pval, 1997 MemOp op, 1998 MemTxAttrs attrs); 1999 /** 2000 * memory_region_dispatch_write: perform a write directly to the specified 2001 * MemoryRegion. 2002 * 2003 * @mr: #MemoryRegion to access 2004 * @addr: address within that region 2005 * @data: data to write 2006 * @op: size, sign, and endianness of the memory operation 2007 * @attrs: memory transaction attributes to use for the access 2008 */ 2009 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2010 hwaddr addr, 2011 uint64_t data, 2012 MemOp op, 2013 MemTxAttrs attrs); 2014 2015 /** 2016 * address_space_init: initializes an address space 2017 * 2018 * @as: an uninitialized #AddressSpace 2019 * @root: a #MemoryRegion that routes addresses for the address space 2020 * @name: an address space name. The name is only used for debugging 2021 * output. 2022 */ 2023 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2024 2025 /** 2026 * address_space_destroy: destroy an address space 2027 * 2028 * Releases all resources associated with an address space. After an address space 2029 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2030 * as well. 2031 * 2032 * @as: address space to be destroyed 2033 */ 2034 void address_space_destroy(AddressSpace *as); 2035 2036 /** 2037 * address_space_remove_listeners: unregister all listeners of an address space 2038 * 2039 * Removes all callbacks previously registered with memory_listener_register() 2040 * for @as. 2041 * 2042 * @as: an initialized #AddressSpace 2043 */ 2044 void address_space_remove_listeners(AddressSpace *as); 2045 2046 /** 2047 * address_space_rw: read from or write to an address space. 2048 * 2049 * Return a MemTxResult indicating whether the operation succeeded 2050 * or failed (eg unassigned memory, device rejected the transaction, 2051 * IOMMU fault). 2052 * 2053 * @as: #AddressSpace to be accessed 2054 * @addr: address within that address space 2055 * @attrs: memory transaction attributes 2056 * @buf: buffer with the data transferred 2057 * @len: the number of bytes to read or write 2058 * @is_write: indicates the transfer direction 2059 */ 2060 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2061 MemTxAttrs attrs, void *buf, 2062 hwaddr len, bool is_write); 2063 2064 /** 2065 * address_space_write: write to address space. 2066 * 2067 * Return a MemTxResult indicating whether the operation succeeded 2068 * or failed (eg unassigned memory, device rejected the transaction, 2069 * IOMMU fault). 2070 * 2071 * @as: #AddressSpace to be accessed 2072 * @addr: address within that address space 2073 * @attrs: memory transaction attributes 2074 * @buf: buffer with the data transferred 2075 * @len: the number of bytes to write 2076 */ 2077 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2078 MemTxAttrs attrs, 2079 const void *buf, hwaddr len); 2080 2081 /** 2082 * address_space_write_rom: write to address space, including ROM. 2083 * 2084 * This function writes to the specified address space, but will 2085 * write data to both ROM and RAM. This is used for non-guest 2086 * writes like writes from the gdb debug stub or initial loading 2087 * of ROM contents. 2088 * 2089 * Note that portions of the write which attempt to write data to 2090 * a device will be silently ignored -- only real RAM and ROM will 2091 * be written to. 2092 * 2093 * Return a MemTxResult indicating whether the operation succeeded 2094 * or failed (eg unassigned memory, device rejected the transaction, 2095 * IOMMU fault). 2096 * 2097 * @as: #AddressSpace to be accessed 2098 * @addr: address within that address space 2099 * @attrs: memory transaction attributes 2100 * @buf: buffer with the data transferred 2101 * @len: the number of bytes to write 2102 */ 2103 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2104 MemTxAttrs attrs, 2105 const void *buf, hwaddr len); 2106 2107 /* address_space_ld*: load from an address space 2108 * address_space_st*: store to an address space 2109 * 2110 * These functions perform a load or store of the byte, word, 2111 * longword or quad to the specified address within the AddressSpace. 2112 * The _le suffixed functions treat the data as little endian; 2113 * _be indicates big endian; no suffix indicates "same endianness 2114 * as guest CPU". 2115 * 2116 * The "guest CPU endianness" accessors are deprecated for use outside 2117 * target-* code; devices should be CPU-agnostic and use either the LE 2118 * or the BE accessors. 2119 * 2120 * @as #AddressSpace to be accessed 2121 * @addr: address within that address space 2122 * @val: data value, for stores 2123 * @attrs: memory transaction attributes 2124 * @result: location to write the success/failure of the transaction; 2125 * if NULL, this information is discarded 2126 */ 2127 2128 #define SUFFIX 2129 #define ARG1 as 2130 #define ARG1_DECL AddressSpace *as 2131 #include "exec/memory_ldst.h.inc" 2132 2133 #define SUFFIX 2134 #define ARG1 as 2135 #define ARG1_DECL AddressSpace *as 2136 #include "exec/memory_ldst_phys.h.inc" 2137 2138 struct MemoryRegionCache { 2139 void *ptr; 2140 hwaddr xlat; 2141 hwaddr len; 2142 FlatView *fv; 2143 MemoryRegionSection mrs; 2144 bool is_write; 2145 }; 2146 2147 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2148 2149 2150 /* address_space_ld*_cached: load from a cached #MemoryRegion 2151 * address_space_st*_cached: store into a cached #MemoryRegion 2152 * 2153 * These functions perform a load or store of the byte, word, 2154 * longword or quad to the specified address. The address is 2155 * a physical address in the AddressSpace, but it must lie within 2156 * a #MemoryRegion that was mapped with address_space_cache_init. 2157 * 2158 * The _le suffixed functions treat the data as little endian; 2159 * _be indicates big endian; no suffix indicates "same endianness 2160 * as guest CPU". 2161 * 2162 * The "guest CPU endianness" accessors are deprecated for use outside 2163 * target-* code; devices should be CPU-agnostic and use either the LE 2164 * or the BE accessors. 2165 * 2166 * @cache: previously initialized #MemoryRegionCache to be accessed 2167 * @addr: address within the address space 2168 * @val: data value, for stores 2169 * @attrs: memory transaction attributes 2170 * @result: location to write the success/failure of the transaction; 2171 * if NULL, this information is discarded 2172 */ 2173 2174 #define SUFFIX _cached_slow 2175 #define ARG1 cache 2176 #define ARG1_DECL MemoryRegionCache *cache 2177 #include "exec/memory_ldst.h.inc" 2178 2179 /* Inline fast path for direct RAM access. */ 2180 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2181 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2182 { 2183 assert(addr < cache->len); 2184 if (likely(cache->ptr)) { 2185 return ldub_p(cache->ptr + addr); 2186 } else { 2187 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2188 } 2189 } 2190 2191 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2192 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 2193 { 2194 assert(addr < cache->len); 2195 if (likely(cache->ptr)) { 2196 stb_p(cache->ptr + addr, val); 2197 } else { 2198 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2199 } 2200 } 2201 2202 #define ENDIANNESS _le 2203 #include "exec/memory_ldst_cached.h.inc" 2204 2205 #define ENDIANNESS _be 2206 #include "exec/memory_ldst_cached.h.inc" 2207 2208 #define SUFFIX _cached 2209 #define ARG1 cache 2210 #define ARG1_DECL MemoryRegionCache *cache 2211 #include "exec/memory_ldst_phys.h.inc" 2212 2213 /* address_space_cache_init: prepare for repeated access to a physical 2214 * memory region 2215 * 2216 * @cache: #MemoryRegionCache to be filled 2217 * @as: #AddressSpace to be accessed 2218 * @addr: address within that address space 2219 * @len: length of buffer 2220 * @is_write: indicates the transfer direction 2221 * 2222 * Will only work with RAM, and may map a subset of the requested range by 2223 * returning a value that is less than @len. On failure, return a negative 2224 * errno value. 2225 * 2226 * Because it only works with RAM, this function can be used for 2227 * read-modify-write operations. In this case, is_write should be %true. 2228 * 2229 * Note that addresses passed to the address_space_*_cached functions 2230 * are relative to @addr. 2231 */ 2232 int64_t address_space_cache_init(MemoryRegionCache *cache, 2233 AddressSpace *as, 2234 hwaddr addr, 2235 hwaddr len, 2236 bool is_write); 2237 2238 /** 2239 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2240 * 2241 * @cache: The #MemoryRegionCache to operate on. 2242 * @addr: The first physical address that was written, relative to the 2243 * address that was passed to @address_space_cache_init. 2244 * @access_len: The number of bytes that were written starting at @addr. 2245 */ 2246 void address_space_cache_invalidate(MemoryRegionCache *cache, 2247 hwaddr addr, 2248 hwaddr access_len); 2249 2250 /** 2251 * address_space_cache_destroy: free a #MemoryRegionCache 2252 * 2253 * @cache: The #MemoryRegionCache whose memory should be released. 2254 */ 2255 void address_space_cache_destroy(MemoryRegionCache *cache); 2256 2257 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2258 * entry. Should be called from an RCU critical section. 2259 */ 2260 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2261 bool is_write, MemTxAttrs attrs); 2262 2263 /* address_space_translate: translate an address range into an address space 2264 * into a MemoryRegion and an address range into that section. Should be 2265 * called from an RCU critical section, to avoid that the last reference 2266 * to the returned region disappears after address_space_translate returns. 2267 * 2268 * @fv: #FlatView to be accessed 2269 * @addr: address within that address space 2270 * @xlat: pointer to address within the returned memory region section's 2271 * #MemoryRegion. 2272 * @len: pointer to length 2273 * @is_write: indicates the transfer direction 2274 * @attrs: memory attributes 2275 */ 2276 MemoryRegion *flatview_translate(FlatView *fv, 2277 hwaddr addr, hwaddr *xlat, 2278 hwaddr *len, bool is_write, 2279 MemTxAttrs attrs); 2280 2281 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2282 hwaddr addr, hwaddr *xlat, 2283 hwaddr *len, bool is_write, 2284 MemTxAttrs attrs) 2285 { 2286 return flatview_translate(address_space_to_flatview(as), 2287 addr, xlat, len, is_write, attrs); 2288 } 2289 2290 /* address_space_access_valid: check for validity of accessing an address 2291 * space range 2292 * 2293 * Check whether memory is assigned to the given address space range, and 2294 * access is permitted by any IOMMU regions that are active for the address 2295 * space. 2296 * 2297 * For now, addr and len should be aligned to a page size. This limitation 2298 * will be lifted in the future. 2299 * 2300 * @as: #AddressSpace to be accessed 2301 * @addr: address within that address space 2302 * @len: length of the area to be checked 2303 * @is_write: indicates the transfer direction 2304 * @attrs: memory attributes 2305 */ 2306 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2307 bool is_write, MemTxAttrs attrs); 2308 2309 /* address_space_map: map a physical memory region into a host virtual address 2310 * 2311 * May map a subset of the requested range, given by and returned in @plen. 2312 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2313 * the mapping are exhausted. 2314 * Use only for reads OR writes - not for read-modify-write operations. 2315 * Use cpu_register_map_client() to know when retrying the map operation is 2316 * likely to succeed. 2317 * 2318 * @as: #AddressSpace to be accessed 2319 * @addr: address within that address space 2320 * @plen: pointer to length of buffer; updated on return 2321 * @is_write: indicates the transfer direction 2322 * @attrs: memory attributes 2323 */ 2324 void *address_space_map(AddressSpace *as, hwaddr addr, 2325 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2326 2327 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2328 * 2329 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2330 * the amount of memory that was actually read or written by the caller. 2331 * 2332 * @as: #AddressSpace used 2333 * @buffer: host pointer as returned by address_space_map() 2334 * @len: buffer length as returned by address_space_map() 2335 * @access_len: amount of data actually transferred 2336 * @is_write: indicates the transfer direction 2337 */ 2338 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2339 bool is_write, hwaddr access_len); 2340 2341 2342 /* Internal functions, part of the implementation of address_space_read. */ 2343 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2344 MemTxAttrs attrs, void *buf, hwaddr len); 2345 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2346 MemTxAttrs attrs, void *buf, 2347 hwaddr len, hwaddr addr1, hwaddr l, 2348 MemoryRegion *mr); 2349 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2350 2351 /* Internal functions, part of the implementation of address_space_read_cached 2352 * and address_space_write_cached. */ 2353 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2354 hwaddr addr, void *buf, hwaddr len); 2355 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2356 hwaddr addr, const void *buf, 2357 hwaddr len); 2358 2359 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2360 { 2361 if (is_write) { 2362 return memory_region_is_ram(mr) && !mr->readonly && 2363 !mr->rom_device && !memory_region_is_ram_device(mr); 2364 } else { 2365 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2366 memory_region_is_romd(mr); 2367 } 2368 } 2369 2370 /** 2371 * address_space_read: read from an address space. 2372 * 2373 * Return a MemTxResult indicating whether the operation succeeded 2374 * or failed (eg unassigned memory, device rejected the transaction, 2375 * IOMMU fault). Called within RCU critical section. 2376 * 2377 * @as: #AddressSpace to be accessed 2378 * @addr: address within that address space 2379 * @attrs: memory transaction attributes 2380 * @buf: buffer with the data transferred 2381 * @len: length of the data transferred 2382 */ 2383 static inline __attribute__((__always_inline__)) 2384 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2385 MemTxAttrs attrs, void *buf, 2386 hwaddr len) 2387 { 2388 MemTxResult result = MEMTX_OK; 2389 hwaddr l, addr1; 2390 void *ptr; 2391 MemoryRegion *mr; 2392 FlatView *fv; 2393 2394 if (__builtin_constant_p(len)) { 2395 if (len) { 2396 RCU_READ_LOCK_GUARD(); 2397 fv = address_space_to_flatview(as); 2398 l = len; 2399 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2400 if (len == l && memory_access_is_direct(mr, false)) { 2401 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2402 memcpy(buf, ptr, len); 2403 } else { 2404 result = flatview_read_continue(fv, addr, attrs, buf, len, 2405 addr1, l, mr); 2406 } 2407 } 2408 } else { 2409 result = address_space_read_full(as, addr, attrs, buf, len); 2410 } 2411 return result; 2412 } 2413 2414 /** 2415 * address_space_read_cached: read from a cached RAM region 2416 * 2417 * @cache: Cached region to be addressed 2418 * @addr: address relative to the base of the RAM region 2419 * @buf: buffer with the data transferred 2420 * @len: length of the data transferred 2421 */ 2422 static inline MemTxResult 2423 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2424 void *buf, hwaddr len) 2425 { 2426 assert(addr < cache->len && len <= cache->len - addr); 2427 if (likely(cache->ptr)) { 2428 memcpy(buf, cache->ptr + addr, len); 2429 return MEMTX_OK; 2430 } else { 2431 return address_space_read_cached_slow(cache, addr, buf, len); 2432 } 2433 } 2434 2435 /** 2436 * address_space_write_cached: write to a cached RAM region 2437 * 2438 * @cache: Cached region to be addressed 2439 * @addr: address relative to the base of the RAM region 2440 * @buf: buffer with the data transferred 2441 * @len: length of the data transferred 2442 */ 2443 static inline MemTxResult 2444 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2445 const void *buf, hwaddr len) 2446 { 2447 assert(addr < cache->len && len <= cache->len - addr); 2448 if (likely(cache->ptr)) { 2449 memcpy(cache->ptr + addr, buf, len); 2450 return MEMTX_OK; 2451 } else { 2452 return address_space_write_cached_slow(cache, addr, buf, len); 2453 } 2454 } 2455 2456 #ifdef NEED_CPU_H 2457 /* enum device_endian to MemOp. */ 2458 static inline MemOp devend_memop(enum device_endian end) 2459 { 2460 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2461 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2462 2463 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2464 /* Swap if non-host endianness or native (target) endianness */ 2465 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2466 #else 2467 const int non_host_endianness = 2468 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2469 2470 /* In this case, native (target) endianness needs no swap. */ 2471 return (end == non_host_endianness) ? MO_BSWAP : 0; 2472 #endif 2473 } 2474 #endif 2475 2476 /* 2477 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2478 * to manage the actual amount of memory consumed by the VM (then, the memory 2479 * provided by RAM blocks might be bigger than the desired memory consumption). 2480 * This *must* be set if: 2481 * - Discarding parts of a RAM blocks does not result in the change being 2482 * reflected in the VM and the pages getting freed. 2483 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2484 * discards blindly. 2485 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2486 * encrypted VMs). 2487 * Technologies that only temporarily pin the current working set of a 2488 * driver are fine, because we don't expect such pages to be discarded 2489 * (esp. based on guest action like balloon inflation). 2490 * 2491 * This is *not* to be used to protect from concurrent discards (esp., 2492 * postcopy). 2493 * 2494 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2495 * discards to work reliably is active. 2496 */ 2497 int ram_block_discard_disable(bool state); 2498 2499 /* 2500 * Inhibit technologies that disable discarding of pages in RAM blocks. 2501 * 2502 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2503 * broken. 2504 */ 2505 int ram_block_discard_require(bool state); 2506 2507 /* 2508 * Test if discarding of memory in ram blocks is disabled. 2509 */ 2510 bool ram_block_discard_is_disabled(void); 2511 2512 /* 2513 * Test if discarding of memory in ram blocks is required to work reliably. 2514 */ 2515 bool ram_block_discard_is_required(void); 2516 2517 #endif 2518 2519 #endif 2520