1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #define DIRTY_MEMORY_VGA 0 20 #define DIRTY_MEMORY_CODE 1 21 #define DIRTY_MEMORY_MIGRATION 2 22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */ 23 24 #include "exec/cpu-common.h" 25 #ifndef CONFIG_USER_ONLY 26 #include "exec/hwaddr.h" 27 #endif 28 #include "exec/memattrs.h" 29 #include "qemu/queue.h" 30 #include "qemu/int128.h" 31 #include "qemu/notify.h" 32 #include "qom/object.h" 33 #include "qemu/rcu.h" 34 35 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 36 37 #define MAX_PHYS_ADDR_SPACE_BITS 62 38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 39 40 #define TYPE_MEMORY_REGION "qemu:memory-region" 41 #define MEMORY_REGION(obj) \ 42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 43 44 typedef struct MemoryRegionOps MemoryRegionOps; 45 typedef struct MemoryRegionMmio MemoryRegionMmio; 46 47 struct MemoryRegionMmio { 48 CPUReadMemoryFunc *read[3]; 49 CPUWriteMemoryFunc *write[3]; 50 }; 51 52 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 53 54 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 55 typedef enum { 56 IOMMU_NONE = 0, 57 IOMMU_RO = 1, 58 IOMMU_WO = 2, 59 IOMMU_RW = 3, 60 } IOMMUAccessFlags; 61 62 struct IOMMUTLBEntry { 63 AddressSpace *target_as; 64 hwaddr iova; 65 hwaddr translated_addr; 66 hwaddr addr_mask; /* 0xfff = 4k translation */ 67 IOMMUAccessFlags perm; 68 }; 69 70 /* New-style MMIO accessors can indicate that the transaction failed. 71 * A zero (MEMTX_OK) response means success; anything else is a failure 72 * of some kind. The memory subsystem will bitwise-OR together results 73 * if it is synthesizing an operation from multiple smaller accesses. 74 */ 75 #define MEMTX_OK 0 76 #define MEMTX_ERROR (1U << 0) /* device returned an error */ 77 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ 78 typedef uint32_t MemTxResult; 79 80 /* 81 * Memory region callbacks 82 */ 83 struct MemoryRegionOps { 84 /* Read from the memory region. @addr is relative to @mr; @size is 85 * in bytes. */ 86 uint64_t (*read)(void *opaque, 87 hwaddr addr, 88 unsigned size); 89 /* Write to the memory region. @addr is relative to @mr; @size is 90 * in bytes. */ 91 void (*write)(void *opaque, 92 hwaddr addr, 93 uint64_t data, 94 unsigned size); 95 96 MemTxResult (*read_with_attrs)(void *opaque, 97 hwaddr addr, 98 uint64_t *data, 99 unsigned size, 100 MemTxAttrs attrs); 101 MemTxResult (*write_with_attrs)(void *opaque, 102 hwaddr addr, 103 uint64_t data, 104 unsigned size, 105 MemTxAttrs attrs); 106 107 enum device_endian endianness; 108 /* Guest-visible constraints: */ 109 struct { 110 /* If nonzero, specify bounds on access sizes beyond which a machine 111 * check is thrown. 112 */ 113 unsigned min_access_size; 114 unsigned max_access_size; 115 /* If true, unaligned accesses are supported. Otherwise unaligned 116 * accesses throw machine checks. 117 */ 118 bool unaligned; 119 /* 120 * If present, and returns #false, the transaction is not accepted 121 * by the device (and results in machine dependent behaviour such 122 * as a machine check exception). 123 */ 124 bool (*accepts)(void *opaque, hwaddr addr, 125 unsigned size, bool is_write); 126 } valid; 127 /* Internal implementation constraints: */ 128 struct { 129 /* If nonzero, specifies the minimum size implemented. Smaller sizes 130 * will be rounded upwards and a partial result will be returned. 131 */ 132 unsigned min_access_size; 133 /* If nonzero, specifies the maximum size implemented. Larger sizes 134 * will be done as a series of accesses with smaller sizes. 135 */ 136 unsigned max_access_size; 137 /* If true, unaligned accesses are supported. Otherwise all accesses 138 * are converted to (possibly multiple) naturally aligned accesses. 139 */ 140 bool unaligned; 141 } impl; 142 143 /* If .read and .write are not present, old_mmio may be used for 144 * backwards compatibility with old mmio registration 145 */ 146 const MemoryRegionMmio old_mmio; 147 }; 148 149 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 150 151 struct MemoryRegionIOMMUOps { 152 /* Return a TLB entry that contains a given address. */ 153 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); 154 }; 155 156 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 157 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 158 159 struct MemoryRegion { 160 Object parent_obj; 161 162 /* All fields are private - violators will be prosecuted */ 163 164 /* The following fields should fit in a cache line */ 165 bool romd_mode; 166 bool ram; 167 bool subpage; 168 bool readonly; /* For RAM regions */ 169 bool rom_device; 170 bool flush_coalesced_mmio; 171 bool global_locking; 172 uint8_t dirty_log_mask; 173 RAMBlock *ram_block; 174 Object *owner; 175 const MemoryRegionIOMMUOps *iommu_ops; 176 177 const MemoryRegionOps *ops; 178 void *opaque; 179 MemoryRegion *container; 180 Int128 size; 181 hwaddr addr; 182 void (*destructor)(MemoryRegion *mr); 183 uint64_t align; 184 bool terminates; 185 bool skip_dump; 186 bool enabled; 187 bool warning_printed; /* For reservations */ 188 uint8_t vga_logging_count; 189 MemoryRegion *alias; 190 hwaddr alias_offset; 191 int32_t priority; 192 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 193 QTAILQ_ENTRY(MemoryRegion) subregions_link; 194 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 195 const char *name; 196 unsigned ioeventfd_nb; 197 MemoryRegionIoeventfd *ioeventfds; 198 NotifierList iommu_notify; 199 }; 200 201 /** 202 * MemoryListener: callbacks structure for updates to the physical memory map 203 * 204 * Allows a component to adjust to changes in the guest-visible memory map. 205 * Use with memory_listener_register() and memory_listener_unregister(). 206 */ 207 struct MemoryListener { 208 void (*begin)(MemoryListener *listener); 209 void (*commit)(MemoryListener *listener); 210 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 211 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 212 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 213 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 214 int old, int new); 215 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 216 int old, int new); 217 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 218 void (*log_global_start)(MemoryListener *listener); 219 void (*log_global_stop)(MemoryListener *listener); 220 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 221 bool match_data, uint64_t data, EventNotifier *e); 222 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 223 bool match_data, uint64_t data, EventNotifier *e); 224 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 225 hwaddr addr, hwaddr len); 226 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 227 hwaddr addr, hwaddr len); 228 /* Lower = earlier (during add), later (during del) */ 229 unsigned priority; 230 AddressSpace *address_space_filter; 231 QTAILQ_ENTRY(MemoryListener) link; 232 }; 233 234 /** 235 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 236 */ 237 struct AddressSpace { 238 /* All fields are private. */ 239 struct rcu_head rcu; 240 char *name; 241 MemoryRegion *root; 242 int ref_count; 243 bool malloced; 244 245 /* Accessed via RCU. */ 246 struct FlatView *current_map; 247 248 int ioeventfd_nb; 249 struct MemoryRegionIoeventfd *ioeventfds; 250 struct AddressSpaceDispatch *dispatch; 251 struct AddressSpaceDispatch *next_dispatch; 252 MemoryListener dispatch_listener; 253 254 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 255 }; 256 257 /** 258 * MemoryRegionSection: describes a fragment of a #MemoryRegion 259 * 260 * @mr: the region, or %NULL if empty 261 * @address_space: the address space the region is mapped in 262 * @offset_within_region: the beginning of the section, relative to @mr's start 263 * @size: the size of the section; will not exceed @mr's boundaries 264 * @offset_within_address_space: the address of the first byte of the section 265 * relative to the region's address space 266 * @readonly: writes to this section are ignored 267 */ 268 struct MemoryRegionSection { 269 MemoryRegion *mr; 270 AddressSpace *address_space; 271 hwaddr offset_within_region; 272 Int128 size; 273 hwaddr offset_within_address_space; 274 bool readonly; 275 }; 276 277 /** 278 * memory_region_init: Initialize a memory region 279 * 280 * The region typically acts as a container for other memory regions. Use 281 * memory_region_add_subregion() to add subregions. 282 * 283 * @mr: the #MemoryRegion to be initialized 284 * @owner: the object that tracks the region's reference count 285 * @name: used for debugging; not visible to the user or ABI 286 * @size: size of the region; any subregions beyond this size will be clipped 287 */ 288 void memory_region_init(MemoryRegion *mr, 289 struct Object *owner, 290 const char *name, 291 uint64_t size); 292 293 /** 294 * memory_region_ref: Add 1 to a memory region's reference count 295 * 296 * Whenever memory regions are accessed outside the BQL, they need to be 297 * preserved against hot-unplug. MemoryRegions actually do not have their 298 * own reference count; they piggyback on a QOM object, their "owner". 299 * This function adds a reference to the owner. 300 * 301 * All MemoryRegions must have an owner if they can disappear, even if the 302 * device they belong to operates exclusively under the BQL. This is because 303 * the region could be returned at any time by memory_region_find, and this 304 * is usually under guest control. 305 * 306 * @mr: the #MemoryRegion 307 */ 308 void memory_region_ref(MemoryRegion *mr); 309 310 /** 311 * memory_region_unref: Remove 1 to a memory region's reference count 312 * 313 * Whenever memory regions are accessed outside the BQL, they need to be 314 * preserved against hot-unplug. MemoryRegions actually do not have their 315 * own reference count; they piggyback on a QOM object, their "owner". 316 * This function removes a reference to the owner and possibly destroys it. 317 * 318 * @mr: the #MemoryRegion 319 */ 320 void memory_region_unref(MemoryRegion *mr); 321 322 /** 323 * memory_region_init_io: Initialize an I/O memory region. 324 * 325 * Accesses into the region will cause the callbacks in @ops to be called. 326 * if @size is nonzero, subregions will be clipped to @size. 327 * 328 * @mr: the #MemoryRegion to be initialized. 329 * @owner: the object that tracks the region's reference count 330 * @ops: a structure containing read and write callbacks to be used when 331 * I/O is performed on the region. 332 * @opaque: passed to the read and write callbacks of the @ops structure. 333 * @name: used for debugging; not visible to the user or ABI 334 * @size: size of the region. 335 */ 336 void memory_region_init_io(MemoryRegion *mr, 337 struct Object *owner, 338 const MemoryRegionOps *ops, 339 void *opaque, 340 const char *name, 341 uint64_t size); 342 343 /** 344 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 345 * region will modify memory directly. 346 * 347 * @mr: the #MemoryRegion to be initialized. 348 * @owner: the object that tracks the region's reference count 349 * @name: the name of the region. 350 * @size: size of the region. 351 * @errp: pointer to Error*, to store an error if it happens. 352 */ 353 void memory_region_init_ram(MemoryRegion *mr, 354 struct Object *owner, 355 const char *name, 356 uint64_t size, 357 Error **errp); 358 359 /** 360 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 361 * RAM. Accesses into the region will 362 * modify memory directly. Only an initial 363 * portion of this RAM is actually used. 364 * The used size can change across reboots. 365 * 366 * @mr: the #MemoryRegion to be initialized. 367 * @owner: the object that tracks the region's reference count 368 * @name: the name of the region. 369 * @size: used size of the region. 370 * @max_size: max size of the region. 371 * @resized: callback to notify owner about used size change. 372 * @errp: pointer to Error*, to store an error if it happens. 373 */ 374 void memory_region_init_resizeable_ram(MemoryRegion *mr, 375 struct Object *owner, 376 const char *name, 377 uint64_t size, 378 uint64_t max_size, 379 void (*resized)(const char*, 380 uint64_t length, 381 void *host), 382 Error **errp); 383 #ifdef __linux__ 384 /** 385 * memory_region_init_ram_from_file: Initialize RAM memory region with a 386 * mmap-ed backend. 387 * 388 * @mr: the #MemoryRegion to be initialized. 389 * @owner: the object that tracks the region's reference count 390 * @name: the name of the region. 391 * @size: size of the region. 392 * @share: %true if memory must be mmaped with the MAP_SHARED flag 393 * @path: the path in which to allocate the RAM. 394 * @errp: pointer to Error*, to store an error if it happens. 395 */ 396 void memory_region_init_ram_from_file(MemoryRegion *mr, 397 struct Object *owner, 398 const char *name, 399 uint64_t size, 400 bool share, 401 const char *path, 402 Error **errp); 403 #endif 404 405 /** 406 * memory_region_init_ram_ptr: Initialize RAM memory region from a 407 * user-provided pointer. Accesses into the 408 * region will modify memory directly. 409 * 410 * @mr: the #MemoryRegion to be initialized. 411 * @owner: the object that tracks the region's reference count 412 * @name: the name of the region. 413 * @size: size of the region. 414 * @ptr: memory to be mapped; must contain at least @size bytes. 415 */ 416 void memory_region_init_ram_ptr(MemoryRegion *mr, 417 struct Object *owner, 418 const char *name, 419 uint64_t size, 420 void *ptr); 421 422 /** 423 * memory_region_init_alias: Initialize a memory region that aliases all or a 424 * part of another memory region. 425 * 426 * @mr: the #MemoryRegion to be initialized. 427 * @owner: the object that tracks the region's reference count 428 * @name: used for debugging; not visible to the user or ABI 429 * @orig: the region to be referenced; @mr will be equivalent to 430 * @orig between @offset and @offset + @size - 1. 431 * @offset: start of the section in @orig to be referenced. 432 * @size: size of the region. 433 */ 434 void memory_region_init_alias(MemoryRegion *mr, 435 struct Object *owner, 436 const char *name, 437 MemoryRegion *orig, 438 hwaddr offset, 439 uint64_t size); 440 441 /** 442 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 443 * handled via callbacks. 444 * 445 * If NULL callbacks pointer is given, then I/O space is not supposed to be 446 * handled by QEMU itself. Any access via the memory API will cause an abort(). 447 * 448 * @mr: the #MemoryRegion to be initialized. 449 * @owner: the object that tracks the region's reference count 450 * @ops: callbacks for write access handling. 451 * @name: the name of the region. 452 * @size: size of the region. 453 * @errp: pointer to Error*, to store an error if it happens. 454 */ 455 void memory_region_init_rom_device(MemoryRegion *mr, 456 struct Object *owner, 457 const MemoryRegionOps *ops, 458 void *opaque, 459 const char *name, 460 uint64_t size, 461 Error **errp); 462 463 /** 464 * memory_region_init_reservation: Initialize a memory region that reserves 465 * I/O space. 466 * 467 * A reservation region primariy serves debugging purposes. It claims I/O 468 * space that is not supposed to be handled by QEMU itself. Any access via 469 * the memory API will cause an abort(). 470 * This function is deprecated. Use memory_region_init_io() with NULL 471 * callbacks instead. 472 * 473 * @mr: the #MemoryRegion to be initialized 474 * @owner: the object that tracks the region's reference count 475 * @name: used for debugging; not visible to the user or ABI 476 * @size: size of the region. 477 */ 478 static inline void memory_region_init_reservation(MemoryRegion *mr, 479 Object *owner, 480 const char *name, 481 uint64_t size) 482 { 483 memory_region_init_io(mr, owner, NULL, mr, name, size); 484 } 485 486 /** 487 * memory_region_init_iommu: Initialize a memory region that translates 488 * addresses 489 * 490 * An IOMMU region translates addresses and forwards accesses to a target 491 * memory region. 492 * 493 * @mr: the #MemoryRegion to be initialized 494 * @owner: the object that tracks the region's reference count 495 * @ops: a function that translates addresses into the @target region 496 * @name: used for debugging; not visible to the user or ABI 497 * @size: size of the region. 498 */ 499 void memory_region_init_iommu(MemoryRegion *mr, 500 struct Object *owner, 501 const MemoryRegionIOMMUOps *ops, 502 const char *name, 503 uint64_t size); 504 505 /** 506 * memory_region_owner: get a memory region's owner. 507 * 508 * @mr: the memory region being queried. 509 */ 510 struct Object *memory_region_owner(MemoryRegion *mr); 511 512 /** 513 * memory_region_size: get a memory region's size. 514 * 515 * @mr: the memory region being queried. 516 */ 517 uint64_t memory_region_size(MemoryRegion *mr); 518 519 /** 520 * memory_region_is_ram: check whether a memory region is random access 521 * 522 * Returns %true is a memory region is random access. 523 * 524 * @mr: the memory region being queried 525 */ 526 static inline bool memory_region_is_ram(MemoryRegion *mr) 527 { 528 return mr->ram; 529 } 530 531 /** 532 * memory_region_is_skip_dump: check whether a memory region should not be 533 * dumped 534 * 535 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP). 536 * 537 * @mr: the memory region being queried 538 */ 539 bool memory_region_is_skip_dump(MemoryRegion *mr); 540 541 /** 542 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory 543 * region 544 * 545 * @mr: the memory region being queried 546 */ 547 void memory_region_set_skip_dump(MemoryRegion *mr); 548 549 /** 550 * memory_region_is_romd: check whether a memory region is in ROMD mode 551 * 552 * Returns %true if a memory region is a ROM device and currently set to allow 553 * direct reads. 554 * 555 * @mr: the memory region being queried 556 */ 557 static inline bool memory_region_is_romd(MemoryRegion *mr) 558 { 559 return mr->rom_device && mr->romd_mode; 560 } 561 562 /** 563 * memory_region_is_iommu: check whether a memory region is an iommu 564 * 565 * Returns %true is a memory region is an iommu. 566 * 567 * @mr: the memory region being queried 568 */ 569 static inline bool memory_region_is_iommu(MemoryRegion *mr) 570 { 571 return mr->iommu_ops; 572 } 573 574 575 /** 576 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 577 * 578 * @mr: the memory region that was changed 579 * @entry: the new entry in the IOMMU translation table. The entry 580 * replaces all old entries for the same virtual I/O address range. 581 * Deleted entries have .@perm == 0. 582 */ 583 void memory_region_notify_iommu(MemoryRegion *mr, 584 IOMMUTLBEntry entry); 585 586 /** 587 * memory_region_register_iommu_notifier: register a notifier for changes to 588 * IOMMU translation entries. 589 * 590 * @mr: the memory region to observe 591 * @n: the notifier to be added; the notifier receives a pointer to an 592 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be 593 * valid on exit from the notifier. 594 */ 595 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n); 596 597 /** 598 * memory_region_iommu_replay: replay existing IOMMU translations to 599 * a notifier 600 * 601 * @mr: the memory region to observe 602 * @n: the notifier to which to replay iommu mappings 603 * @granularity: Minimum page granularity to replay notifications for 604 * @is_write: Whether to treat the replay as a translate "write" 605 * through the iommu 606 */ 607 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n, 608 hwaddr granularity, bool is_write); 609 610 /** 611 * memory_region_unregister_iommu_notifier: unregister a notifier for 612 * changes to IOMMU translation entries. 613 * 614 * @n: the notifier to be removed. 615 */ 616 void memory_region_unregister_iommu_notifier(Notifier *n); 617 618 /** 619 * memory_region_name: get a memory region's name 620 * 621 * Returns the string that was used to initialize the memory region. 622 * 623 * @mr: the memory region being queried 624 */ 625 const char *memory_region_name(const MemoryRegion *mr); 626 627 /** 628 * memory_region_is_logging: return whether a memory region is logging writes 629 * 630 * Returns %true if the memory region is logging writes for the given client 631 * 632 * @mr: the memory region being queried 633 * @client: the client being queried 634 */ 635 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 636 637 /** 638 * memory_region_get_dirty_log_mask: return the clients for which a 639 * memory region is logging writes. 640 * 641 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 642 * are the bit indices. 643 * 644 * @mr: the memory region being queried 645 */ 646 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 647 648 /** 649 * memory_region_is_rom: check whether a memory region is ROM 650 * 651 * Returns %true is a memory region is read-only memory. 652 * 653 * @mr: the memory region being queried 654 */ 655 static inline bool memory_region_is_rom(MemoryRegion *mr) 656 { 657 return mr->ram && mr->readonly; 658 } 659 660 661 /** 662 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 663 * 664 * Returns a file descriptor backing a file-based RAM memory region, 665 * or -1 if the region is not a file-based RAM memory region. 666 * 667 * @mr: the RAM or alias memory region being queried. 668 */ 669 int memory_region_get_fd(MemoryRegion *mr); 670 671 /** 672 * memory_region_set_fd: Mark a RAM memory region as backed by a 673 * file descriptor. 674 * 675 * This function is typically used after memory_region_init_ram_ptr(). 676 * 677 * @mr: the memory region being queried. 678 * @fd: the file descriptor that backs @mr. 679 */ 680 void memory_region_set_fd(MemoryRegion *mr, int fd); 681 682 /** 683 * memory_region_from_host: Convert a pointer into a RAM memory region 684 * and an offset within it. 685 * 686 * Given a host pointer inside a RAM memory region (created with 687 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 688 * the MemoryRegion and the offset within it. 689 * 690 * Use with care; by the time this function returns, the returned pointer is 691 * not protected by RCU anymore. If the caller is not within an RCU critical 692 * section and does not hold the iothread lock, it must have other means of 693 * protecting the pointer, such as a reference to the region that includes 694 * the incoming ram_addr_t. 695 * 696 * @mr: the memory region being queried. 697 */ 698 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 699 700 /** 701 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 702 * 703 * Returns a host pointer to a RAM memory region (created with 704 * memory_region_init_ram() or memory_region_init_ram_ptr()). 705 * 706 * Use with care; by the time this function returns, the returned pointer is 707 * not protected by RCU anymore. If the caller is not within an RCU critical 708 * section and does not hold the iothread lock, it must have other means of 709 * protecting the pointer, such as a reference to the region that includes 710 * the incoming ram_addr_t. 711 * 712 * @mr: the memory region being queried. 713 */ 714 void *memory_region_get_ram_ptr(MemoryRegion *mr); 715 716 /* memory_region_ram_resize: Resize a RAM region. 717 * 718 * Only legal before guest might have detected the memory size: e.g. on 719 * incoming migration, or right after reset. 720 * 721 * @mr: a memory region created with @memory_region_init_resizeable_ram. 722 * @newsize: the new size the region 723 * @errp: pointer to Error*, to store an error if it happens. 724 */ 725 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 726 Error **errp); 727 728 /** 729 * memory_region_set_log: Turn dirty logging on or off for a region. 730 * 731 * Turns dirty logging on or off for a specified client (display, migration). 732 * Only meaningful for RAM regions. 733 * 734 * @mr: the memory region being updated. 735 * @log: whether dirty logging is to be enabled or disabled. 736 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 737 */ 738 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 739 740 /** 741 * memory_region_get_dirty: Check whether a range of bytes is dirty 742 * for a specified client. 743 * 744 * Checks whether a range of bytes has been written to since the last 745 * call to memory_region_reset_dirty() with the same @client. Dirty logging 746 * must be enabled. 747 * 748 * @mr: the memory region being queried. 749 * @addr: the address (relative to the start of the region) being queried. 750 * @size: the size of the range being queried. 751 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 752 * %DIRTY_MEMORY_VGA. 753 */ 754 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 755 hwaddr size, unsigned client); 756 757 /** 758 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 759 * 760 * Marks a range of bytes as dirty, after it has been dirtied outside 761 * guest code. 762 * 763 * @mr: the memory region being dirtied. 764 * @addr: the address (relative to the start of the region) being dirtied. 765 * @size: size of the range being dirtied. 766 */ 767 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 768 hwaddr size); 769 770 /** 771 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 772 * for a specified client. It clears them. 773 * 774 * Checks whether a range of bytes has been written to since the last 775 * call to memory_region_reset_dirty() with the same @client. Dirty logging 776 * must be enabled. 777 * 778 * @mr: the memory region being queried. 779 * @addr: the address (relative to the start of the region) being queried. 780 * @size: the size of the range being queried. 781 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 782 * %DIRTY_MEMORY_VGA. 783 */ 784 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 785 hwaddr size, unsigned client); 786 /** 787 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 788 * any external TLBs (e.g. kvm) 789 * 790 * Flushes dirty information from accelerators such as kvm and vhost-net 791 * and makes it available to users of the memory API. 792 * 793 * @mr: the region being flushed. 794 */ 795 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 796 797 /** 798 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 799 * client. 800 * 801 * Marks a range of pages as no longer dirty. 802 * 803 * @mr: the region being updated. 804 * @addr: the start of the subrange being cleaned. 805 * @size: the size of the subrange being cleaned. 806 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 807 * %DIRTY_MEMORY_VGA. 808 */ 809 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 810 hwaddr size, unsigned client); 811 812 /** 813 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 814 * 815 * Allows a memory region to be marked as read-only (turning it into a ROM). 816 * only useful on RAM regions. 817 * 818 * @mr: the region being updated. 819 * @readonly: whether rhe region is to be ROM or RAM. 820 */ 821 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 822 823 /** 824 * memory_region_rom_device_set_romd: enable/disable ROMD mode 825 * 826 * Allows a ROM device (initialized with memory_region_init_rom_device() to 827 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 828 * device is mapped to guest memory and satisfies read access directly. 829 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 830 * Writes are always handled by the #MemoryRegion.write function. 831 * 832 * @mr: the memory region to be updated 833 * @romd_mode: %true to put the region into ROMD mode 834 */ 835 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 836 837 /** 838 * memory_region_set_coalescing: Enable memory coalescing for the region. 839 * 840 * Enabled writes to a region to be queued for later processing. MMIO ->write 841 * callbacks may be delayed until a non-coalesced MMIO is issued. 842 * Only useful for IO regions. Roughly similar to write-combining hardware. 843 * 844 * @mr: the memory region to be write coalesced 845 */ 846 void memory_region_set_coalescing(MemoryRegion *mr); 847 848 /** 849 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 850 * a region. 851 * 852 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 853 * Multiple calls can be issued coalesced disjoint ranges. 854 * 855 * @mr: the memory region to be updated. 856 * @offset: the start of the range within the region to be coalesced. 857 * @size: the size of the subrange to be coalesced. 858 */ 859 void memory_region_add_coalescing(MemoryRegion *mr, 860 hwaddr offset, 861 uint64_t size); 862 863 /** 864 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 865 * 866 * Disables any coalescing caused by memory_region_set_coalescing() or 867 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 868 * hardware. 869 * 870 * @mr: the memory region to be updated. 871 */ 872 void memory_region_clear_coalescing(MemoryRegion *mr); 873 874 /** 875 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 876 * accesses. 877 * 878 * Ensure that pending coalesced MMIO request are flushed before the memory 879 * region is accessed. This property is automatically enabled for all regions 880 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 881 * 882 * @mr: the memory region to be updated. 883 */ 884 void memory_region_set_flush_coalesced(MemoryRegion *mr); 885 886 /** 887 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 888 * accesses. 889 * 890 * Clear the automatic coalesced MMIO flushing enabled via 891 * memory_region_set_flush_coalesced. Note that this service has no effect on 892 * memory regions that have MMIO coalescing enabled for themselves. For them, 893 * automatic flushing will stop once coalescing is disabled. 894 * 895 * @mr: the memory region to be updated. 896 */ 897 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 898 899 /** 900 * memory_region_set_global_locking: Declares the access processing requires 901 * QEMU's global lock. 902 * 903 * When this is invoked, accesses to the memory region will be processed while 904 * holding the global lock of QEMU. This is the default behavior of memory 905 * regions. 906 * 907 * @mr: the memory region to be updated. 908 */ 909 void memory_region_set_global_locking(MemoryRegion *mr); 910 911 /** 912 * memory_region_clear_global_locking: Declares that access processing does 913 * not depend on the QEMU global lock. 914 * 915 * By clearing this property, accesses to the memory region will be processed 916 * outside of QEMU's global lock (unless the lock is held on when issuing the 917 * access request). In this case, the device model implementing the access 918 * handlers is responsible for synchronization of concurrency. 919 * 920 * @mr: the memory region to be updated. 921 */ 922 void memory_region_clear_global_locking(MemoryRegion *mr); 923 924 /** 925 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 926 * is written to a location. 927 * 928 * Marks a word in an IO region (initialized with memory_region_init_io()) 929 * as a trigger for an eventfd event. The I/O callback will not be called. 930 * The caller must be prepared to handle failure (that is, take the required 931 * action if the callback _is_ called). 932 * 933 * @mr: the memory region being updated. 934 * @addr: the address within @mr that is to be monitored 935 * @size: the size of the access to trigger the eventfd 936 * @match_data: whether to match against @data, instead of just @addr 937 * @data: the data to match against the guest write 938 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 939 **/ 940 void memory_region_add_eventfd(MemoryRegion *mr, 941 hwaddr addr, 942 unsigned size, 943 bool match_data, 944 uint64_t data, 945 EventNotifier *e); 946 947 /** 948 * memory_region_del_eventfd: Cancel an eventfd. 949 * 950 * Cancels an eventfd trigger requested by a previous 951 * memory_region_add_eventfd() call. 952 * 953 * @mr: the memory region being updated. 954 * @addr: the address within @mr that is to be monitored 955 * @size: the size of the access to trigger the eventfd 956 * @match_data: whether to match against @data, instead of just @addr 957 * @data: the data to match against the guest write 958 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 959 */ 960 void memory_region_del_eventfd(MemoryRegion *mr, 961 hwaddr addr, 962 unsigned size, 963 bool match_data, 964 uint64_t data, 965 EventNotifier *e); 966 967 /** 968 * memory_region_add_subregion: Add a subregion to a container. 969 * 970 * Adds a subregion at @offset. The subregion may not overlap with other 971 * subregions (except for those explicitly marked as overlapping). A region 972 * may only be added once as a subregion (unless removed with 973 * memory_region_del_subregion()); use memory_region_init_alias() if you 974 * want a region to be a subregion in multiple locations. 975 * 976 * @mr: the region to contain the new subregion; must be a container 977 * initialized with memory_region_init(). 978 * @offset: the offset relative to @mr where @subregion is added. 979 * @subregion: the subregion to be added. 980 */ 981 void memory_region_add_subregion(MemoryRegion *mr, 982 hwaddr offset, 983 MemoryRegion *subregion); 984 /** 985 * memory_region_add_subregion_overlap: Add a subregion to a container 986 * with overlap. 987 * 988 * Adds a subregion at @offset. The subregion may overlap with other 989 * subregions. Conflicts are resolved by having a higher @priority hide a 990 * lower @priority. Subregions without priority are taken as @priority 0. 991 * A region may only be added once as a subregion (unless removed with 992 * memory_region_del_subregion()); use memory_region_init_alias() if you 993 * want a region to be a subregion in multiple locations. 994 * 995 * @mr: the region to contain the new subregion; must be a container 996 * initialized with memory_region_init(). 997 * @offset: the offset relative to @mr where @subregion is added. 998 * @subregion: the subregion to be added. 999 * @priority: used for resolving overlaps; highest priority wins. 1000 */ 1001 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1002 hwaddr offset, 1003 MemoryRegion *subregion, 1004 int priority); 1005 1006 /** 1007 * memory_region_get_ram_addr: Get the ram address associated with a memory 1008 * region 1009 */ 1010 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1011 1012 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1013 /** 1014 * memory_region_del_subregion: Remove a subregion. 1015 * 1016 * Removes a subregion from its container. 1017 * 1018 * @mr: the container to be updated. 1019 * @subregion: the region being removed; must be a current subregion of @mr. 1020 */ 1021 void memory_region_del_subregion(MemoryRegion *mr, 1022 MemoryRegion *subregion); 1023 1024 /* 1025 * memory_region_set_enabled: dynamically enable or disable a region 1026 * 1027 * Enables or disables a memory region. A disabled memory region 1028 * ignores all accesses to itself and its subregions. It does not 1029 * obscure sibling subregions with lower priority - it simply behaves as 1030 * if it was removed from the hierarchy. 1031 * 1032 * Regions default to being enabled. 1033 * 1034 * @mr: the region to be updated 1035 * @enabled: whether to enable or disable the region 1036 */ 1037 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1038 1039 /* 1040 * memory_region_set_address: dynamically update the address of a region 1041 * 1042 * Dynamically updates the address of a region, relative to its container. 1043 * May be used on regions are currently part of a memory hierarchy. 1044 * 1045 * @mr: the region to be updated 1046 * @addr: new address, relative to container region 1047 */ 1048 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1049 1050 /* 1051 * memory_region_set_size: dynamically update the size of a region. 1052 * 1053 * Dynamically updates the size of a region. 1054 * 1055 * @mr: the region to be updated 1056 * @size: used size of the region. 1057 */ 1058 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1059 1060 /* 1061 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1062 * 1063 * Dynamically updates the offset into the target region that an alias points 1064 * to, as if the fourth argument to memory_region_init_alias() has changed. 1065 * 1066 * @mr: the #MemoryRegion to be updated; should be an alias. 1067 * @offset: the new offset into the target memory region 1068 */ 1069 void memory_region_set_alias_offset(MemoryRegion *mr, 1070 hwaddr offset); 1071 1072 /** 1073 * memory_region_present: checks if an address relative to a @container 1074 * translates into #MemoryRegion within @container 1075 * 1076 * Answer whether a #MemoryRegion within @container covers the address 1077 * @addr. 1078 * 1079 * @container: a #MemoryRegion within which @addr is a relative address 1080 * @addr: the area within @container to be searched 1081 */ 1082 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1083 1084 /** 1085 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1086 * into any address space. 1087 * 1088 * @mr: a #MemoryRegion which should be checked if it's mapped 1089 */ 1090 bool memory_region_is_mapped(MemoryRegion *mr); 1091 1092 /** 1093 * memory_region_find: translate an address/size relative to a 1094 * MemoryRegion into a #MemoryRegionSection. 1095 * 1096 * Locates the first #MemoryRegion within @mr that overlaps the range 1097 * given by @addr and @size. 1098 * 1099 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1100 * It will have the following characteristics: 1101 * .@size = 0 iff no overlap was found 1102 * .@mr is non-%NULL iff an overlap was found 1103 * 1104 * Remember that in the return value the @offset_within_region is 1105 * relative to the returned region (in the .@mr field), not to the 1106 * @mr argument. 1107 * 1108 * Similarly, the .@offset_within_address_space is relative to the 1109 * address space that contains both regions, the passed and the 1110 * returned one. However, in the special case where the @mr argument 1111 * has no container (and thus is the root of the address space), the 1112 * following will hold: 1113 * .@offset_within_address_space >= @addr 1114 * .@offset_within_address_space + .@size <= @addr + @size 1115 * 1116 * @mr: a MemoryRegion within which @addr is a relative address 1117 * @addr: start of the area within @as to be searched 1118 * @size: size of the area to be searched 1119 */ 1120 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1121 hwaddr addr, uint64_t size); 1122 1123 /** 1124 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory 1125 * 1126 * Synchronizes the dirty page log for an entire address space. 1127 * @as: the address space that contains the memory being synchronized 1128 */ 1129 void address_space_sync_dirty_bitmap(AddressSpace *as); 1130 1131 /** 1132 * memory_region_transaction_begin: Start a transaction. 1133 * 1134 * During a transaction, changes will be accumulated and made visible 1135 * only when the transaction ends (is committed). 1136 */ 1137 void memory_region_transaction_begin(void); 1138 1139 /** 1140 * memory_region_transaction_commit: Commit a transaction and make changes 1141 * visible to the guest. 1142 */ 1143 void memory_region_transaction_commit(void); 1144 1145 /** 1146 * memory_listener_register: register callbacks to be called when memory 1147 * sections are mapped or unmapped into an address 1148 * space 1149 * 1150 * @listener: an object containing the callbacks to be called 1151 * @filter: if non-%NULL, only regions in this address space will be observed 1152 */ 1153 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1154 1155 /** 1156 * memory_listener_unregister: undo the effect of memory_listener_register() 1157 * 1158 * @listener: an object containing the callbacks to be removed 1159 */ 1160 void memory_listener_unregister(MemoryListener *listener); 1161 1162 /** 1163 * memory_global_dirty_log_start: begin dirty logging for all regions 1164 */ 1165 void memory_global_dirty_log_start(void); 1166 1167 /** 1168 * memory_global_dirty_log_stop: end dirty logging for all regions 1169 */ 1170 void memory_global_dirty_log_stop(void); 1171 1172 void mtree_info(fprintf_function mon_printf, void *f); 1173 1174 /** 1175 * memory_region_dispatch_read: perform a read directly to the specified 1176 * MemoryRegion. 1177 * 1178 * @mr: #MemoryRegion to access 1179 * @addr: address within that region 1180 * @pval: pointer to uint64_t which the data is written to 1181 * @size: size of the access in bytes 1182 * @attrs: memory transaction attributes to use for the access 1183 */ 1184 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1185 hwaddr addr, 1186 uint64_t *pval, 1187 unsigned size, 1188 MemTxAttrs attrs); 1189 /** 1190 * memory_region_dispatch_write: perform a write directly to the specified 1191 * MemoryRegion. 1192 * 1193 * @mr: #MemoryRegion to access 1194 * @addr: address within that region 1195 * @data: data to write 1196 * @size: size of the access in bytes 1197 * @attrs: memory transaction attributes to use for the access 1198 */ 1199 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1200 hwaddr addr, 1201 uint64_t data, 1202 unsigned size, 1203 MemTxAttrs attrs); 1204 1205 /** 1206 * address_space_init: initializes an address space 1207 * 1208 * @as: an uninitialized #AddressSpace 1209 * @root: a #MemoryRegion that routes addresses for the address space 1210 * @name: an address space name. The name is only used for debugging 1211 * output. 1212 */ 1213 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1214 1215 /** 1216 * address_space_init_shareable: return an address space for a memory region, 1217 * creating it if it does not already exist 1218 * 1219 * @root: a #MemoryRegion that routes addresses for the address space 1220 * @name: an address space name. The name is only used for debugging 1221 * output. 1222 * 1223 * This function will return a pointer to an existing AddressSpace 1224 * which was initialized with the specified MemoryRegion, or it will 1225 * create and initialize one if it does not already exist. The ASes 1226 * are reference-counted, so the memory will be freed automatically 1227 * when the AddressSpace is destroyed via address_space_destroy. 1228 */ 1229 AddressSpace *address_space_init_shareable(MemoryRegion *root, 1230 const char *name); 1231 1232 /** 1233 * address_space_destroy: destroy an address space 1234 * 1235 * Releases all resources associated with an address space. After an address space 1236 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1237 * as well. 1238 * 1239 * @as: address space to be destroyed 1240 */ 1241 void address_space_destroy(AddressSpace *as); 1242 1243 /** 1244 * address_space_rw: read from or write to an address space. 1245 * 1246 * Return a MemTxResult indicating whether the operation succeeded 1247 * or failed (eg unassigned memory, device rejected the transaction, 1248 * IOMMU fault). 1249 * 1250 * @as: #AddressSpace to be accessed 1251 * @addr: address within that address space 1252 * @attrs: memory transaction attributes 1253 * @buf: buffer with the data transferred 1254 * @is_write: indicates the transfer direction 1255 */ 1256 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1257 MemTxAttrs attrs, uint8_t *buf, 1258 int len, bool is_write); 1259 1260 /** 1261 * address_space_write: write to address space. 1262 * 1263 * Return a MemTxResult indicating whether the operation succeeded 1264 * or failed (eg unassigned memory, device rejected the transaction, 1265 * IOMMU fault). 1266 * 1267 * @as: #AddressSpace to be accessed 1268 * @addr: address within that address space 1269 * @attrs: memory transaction attributes 1270 * @buf: buffer with the data transferred 1271 */ 1272 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1273 MemTxAttrs attrs, 1274 const uint8_t *buf, int len); 1275 1276 /* address_space_ld*: load from an address space 1277 * address_space_st*: store to an address space 1278 * 1279 * These functions perform a load or store of the byte, word, 1280 * longword or quad to the specified address within the AddressSpace. 1281 * The _le suffixed functions treat the data as little endian; 1282 * _be indicates big endian; no suffix indicates "same endianness 1283 * as guest CPU". 1284 * 1285 * The "guest CPU endianness" accessors are deprecated for use outside 1286 * target-* code; devices should be CPU-agnostic and use either the LE 1287 * or the BE accessors. 1288 * 1289 * @as #AddressSpace to be accessed 1290 * @addr: address within that address space 1291 * @val: data value, for stores 1292 * @attrs: memory transaction attributes 1293 * @result: location to write the success/failure of the transaction; 1294 * if NULL, this information is discarded 1295 */ 1296 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1297 MemTxAttrs attrs, MemTxResult *result); 1298 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1299 MemTxAttrs attrs, MemTxResult *result); 1300 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1301 MemTxAttrs attrs, MemTxResult *result); 1302 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1303 MemTxAttrs attrs, MemTxResult *result); 1304 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1305 MemTxAttrs attrs, MemTxResult *result); 1306 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1307 MemTxAttrs attrs, MemTxResult *result); 1308 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1309 MemTxAttrs attrs, MemTxResult *result); 1310 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1311 MemTxAttrs attrs, MemTxResult *result); 1312 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1313 MemTxAttrs attrs, MemTxResult *result); 1314 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1315 MemTxAttrs attrs, MemTxResult *result); 1316 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1317 MemTxAttrs attrs, MemTxResult *result); 1318 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1319 MemTxAttrs attrs, MemTxResult *result); 1320 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1321 MemTxAttrs attrs, MemTxResult *result); 1322 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1323 MemTxAttrs attrs, MemTxResult *result); 1324 1325 /* address_space_translate: translate an address range into an address space 1326 * into a MemoryRegion and an address range into that section. Should be 1327 * called from an RCU critical section, to avoid that the last reference 1328 * to the returned region disappears after address_space_translate returns. 1329 * 1330 * @as: #AddressSpace to be accessed 1331 * @addr: address within that address space 1332 * @xlat: pointer to address within the returned memory region section's 1333 * #MemoryRegion. 1334 * @len: pointer to length 1335 * @is_write: indicates the transfer direction 1336 */ 1337 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1338 hwaddr *xlat, hwaddr *len, 1339 bool is_write); 1340 1341 /* address_space_access_valid: check for validity of accessing an address 1342 * space range 1343 * 1344 * Check whether memory is assigned to the given address space range, and 1345 * access is permitted by any IOMMU regions that are active for the address 1346 * space. 1347 * 1348 * For now, addr and len should be aligned to a page size. This limitation 1349 * will be lifted in the future. 1350 * 1351 * @as: #AddressSpace to be accessed 1352 * @addr: address within that address space 1353 * @len: length of the area to be checked 1354 * @is_write: indicates the transfer direction 1355 */ 1356 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1357 1358 /* address_space_map: map a physical memory region into a host virtual address 1359 * 1360 * May map a subset of the requested range, given by and returned in @plen. 1361 * May return %NULL if resources needed to perform the mapping are exhausted. 1362 * Use only for reads OR writes - not for read-modify-write operations. 1363 * Use cpu_register_map_client() to know when retrying the map operation is 1364 * likely to succeed. 1365 * 1366 * @as: #AddressSpace to be accessed 1367 * @addr: address within that address space 1368 * @plen: pointer to length of buffer; updated on return 1369 * @is_write: indicates the transfer direction 1370 */ 1371 void *address_space_map(AddressSpace *as, hwaddr addr, 1372 hwaddr *plen, bool is_write); 1373 1374 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1375 * 1376 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1377 * the amount of memory that was actually read or written by the caller. 1378 * 1379 * @as: #AddressSpace used 1380 * @addr: address within that address space 1381 * @len: buffer length as returned by address_space_map() 1382 * @access_len: amount of data actually transferred 1383 * @is_write: indicates the transfer direction 1384 */ 1385 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1386 int is_write, hwaddr access_len); 1387 1388 1389 /* Internal functions, part of the implementation of address_space_read. */ 1390 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, 1391 MemTxAttrs attrs, uint8_t *buf, 1392 int len, hwaddr addr1, hwaddr l, 1393 MemoryRegion *mr); 1394 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 1395 MemTxAttrs attrs, uint8_t *buf, int len); 1396 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 1397 1398 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1399 { 1400 if (is_write) { 1401 return memory_region_is_ram(mr) && !mr->readonly; 1402 } else { 1403 return memory_region_is_ram(mr) || memory_region_is_romd(mr); 1404 } 1405 } 1406 1407 /** 1408 * address_space_read: read from an address space. 1409 * 1410 * Return a MemTxResult indicating whether the operation succeeded 1411 * or failed (eg unassigned memory, device rejected the transaction, 1412 * IOMMU fault). 1413 * 1414 * @as: #AddressSpace to be accessed 1415 * @addr: address within that address space 1416 * @attrs: memory transaction attributes 1417 * @buf: buffer with the data transferred 1418 */ 1419 static inline __attribute__((__always_inline__)) 1420 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 1421 uint8_t *buf, int len) 1422 { 1423 MemTxResult result = MEMTX_OK; 1424 hwaddr l, addr1; 1425 void *ptr; 1426 MemoryRegion *mr; 1427 1428 if (__builtin_constant_p(len)) { 1429 if (len) { 1430 rcu_read_lock(); 1431 l = len; 1432 mr = address_space_translate(as, addr, &addr1, &l, false); 1433 if (len == l && memory_access_is_direct(mr, false)) { 1434 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 1435 memcpy(buf, ptr, len); 1436 } else { 1437 result = address_space_read_continue(as, addr, attrs, buf, len, 1438 addr1, l, mr); 1439 } 1440 rcu_read_unlock(); 1441 } 1442 } else { 1443 result = address_space_read_full(as, addr, attrs, buf, len); 1444 } 1445 return result; 1446 } 1447 1448 #endif 1449 1450 #endif 1451