1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #define DIRTY_MEMORY_VGA 0 20 #define DIRTY_MEMORY_CODE 1 21 #define DIRTY_MEMORY_MIGRATION 2 22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */ 23 24 #include <stdint.h> 25 #include <stdbool.h> 26 #include "exec/cpu-common.h" 27 #ifndef CONFIG_USER_ONLY 28 #include "exec/hwaddr.h" 29 #endif 30 #include "exec/memattrs.h" 31 #include "qemu/queue.h" 32 #include "qemu/int128.h" 33 #include "qemu/notify.h" 34 #include "qapi/error.h" 35 #include "qom/object.h" 36 #include "qemu/rcu.h" 37 38 #define MAX_PHYS_ADDR_SPACE_BITS 62 39 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 40 41 #define TYPE_MEMORY_REGION "qemu:memory-region" 42 #define MEMORY_REGION(obj) \ 43 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 44 45 typedef struct MemoryRegionOps MemoryRegionOps; 46 typedef struct MemoryRegionMmio MemoryRegionMmio; 47 48 struct MemoryRegionMmio { 49 CPUReadMemoryFunc *read[3]; 50 CPUWriteMemoryFunc *write[3]; 51 }; 52 53 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 54 55 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 56 typedef enum { 57 IOMMU_NONE = 0, 58 IOMMU_RO = 1, 59 IOMMU_WO = 2, 60 IOMMU_RW = 3, 61 } IOMMUAccessFlags; 62 63 struct IOMMUTLBEntry { 64 AddressSpace *target_as; 65 hwaddr iova; 66 hwaddr translated_addr; 67 hwaddr addr_mask; /* 0xfff = 4k translation */ 68 IOMMUAccessFlags perm; 69 }; 70 71 /* New-style MMIO accessors can indicate that the transaction failed. 72 * A zero (MEMTX_OK) response means success; anything else is a failure 73 * of some kind. The memory subsystem will bitwise-OR together results 74 * if it is synthesizing an operation from multiple smaller accesses. 75 */ 76 #define MEMTX_OK 0 77 #define MEMTX_ERROR (1U << 0) /* device returned an error */ 78 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ 79 typedef uint32_t MemTxResult; 80 81 /* 82 * Memory region callbacks 83 */ 84 struct MemoryRegionOps { 85 /* Read from the memory region. @addr is relative to @mr; @size is 86 * in bytes. */ 87 uint64_t (*read)(void *opaque, 88 hwaddr addr, 89 unsigned size); 90 /* Write to the memory region. @addr is relative to @mr; @size is 91 * in bytes. */ 92 void (*write)(void *opaque, 93 hwaddr addr, 94 uint64_t data, 95 unsigned size); 96 97 MemTxResult (*read_with_attrs)(void *opaque, 98 hwaddr addr, 99 uint64_t *data, 100 unsigned size, 101 MemTxAttrs attrs); 102 MemTxResult (*write_with_attrs)(void *opaque, 103 hwaddr addr, 104 uint64_t data, 105 unsigned size, 106 MemTxAttrs attrs); 107 108 enum device_endian endianness; 109 /* Guest-visible constraints: */ 110 struct { 111 /* If nonzero, specify bounds on access sizes beyond which a machine 112 * check is thrown. 113 */ 114 unsigned min_access_size; 115 unsigned max_access_size; 116 /* If true, unaligned accesses are supported. Otherwise unaligned 117 * accesses throw machine checks. 118 */ 119 bool unaligned; 120 /* 121 * If present, and returns #false, the transaction is not accepted 122 * by the device (and results in machine dependent behaviour such 123 * as a machine check exception). 124 */ 125 bool (*accepts)(void *opaque, hwaddr addr, 126 unsigned size, bool is_write); 127 } valid; 128 /* Internal implementation constraints: */ 129 struct { 130 /* If nonzero, specifies the minimum size implemented. Smaller sizes 131 * will be rounded upwards and a partial result will be returned. 132 */ 133 unsigned min_access_size; 134 /* If nonzero, specifies the maximum size implemented. Larger sizes 135 * will be done as a series of accesses with smaller sizes. 136 */ 137 unsigned max_access_size; 138 /* If true, unaligned accesses are supported. Otherwise all accesses 139 * are converted to (possibly multiple) naturally aligned accesses. 140 */ 141 bool unaligned; 142 } impl; 143 144 /* If .read and .write are not present, old_mmio may be used for 145 * backwards compatibility with old mmio registration 146 */ 147 const MemoryRegionMmio old_mmio; 148 }; 149 150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 151 152 struct MemoryRegionIOMMUOps { 153 /* Return a TLB entry that contains a given address. */ 154 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); 155 }; 156 157 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 159 160 struct MemoryRegion { 161 Object parent_obj; 162 163 /* All fields are private - violators will be prosecuted */ 164 165 /* The following fields should fit in a cache line */ 166 bool romd_mode; 167 bool ram; 168 bool subpage; 169 bool readonly; /* For RAM regions */ 170 bool rom_device; 171 bool flush_coalesced_mmio; 172 bool global_locking; 173 uint8_t dirty_log_mask; 174 ram_addr_t ram_addr; 175 Object *owner; 176 const MemoryRegionIOMMUOps *iommu_ops; 177 178 const MemoryRegionOps *ops; 179 void *opaque; 180 MemoryRegion *container; 181 Int128 size; 182 hwaddr addr; 183 void (*destructor)(MemoryRegion *mr); 184 uint64_t align; 185 bool terminates; 186 bool skip_dump; 187 bool enabled; 188 bool warning_printed; /* For reservations */ 189 uint8_t vga_logging_count; 190 MemoryRegion *alias; 191 hwaddr alias_offset; 192 int32_t priority; 193 bool may_overlap; 194 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 195 QTAILQ_ENTRY(MemoryRegion) subregions_link; 196 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 197 const char *name; 198 unsigned ioeventfd_nb; 199 MemoryRegionIoeventfd *ioeventfds; 200 NotifierList iommu_notify; 201 }; 202 203 /** 204 * MemoryListener: callbacks structure for updates to the physical memory map 205 * 206 * Allows a component to adjust to changes in the guest-visible memory map. 207 * Use with memory_listener_register() and memory_listener_unregister(). 208 */ 209 struct MemoryListener { 210 void (*begin)(MemoryListener *listener); 211 void (*commit)(MemoryListener *listener); 212 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 213 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 214 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 215 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 216 int old, int new); 217 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 218 int old, int new); 219 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 220 void (*log_global_start)(MemoryListener *listener); 221 void (*log_global_stop)(MemoryListener *listener); 222 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 223 bool match_data, uint64_t data, EventNotifier *e); 224 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 225 bool match_data, uint64_t data, EventNotifier *e); 226 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 227 hwaddr addr, hwaddr len); 228 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 229 hwaddr addr, hwaddr len); 230 /* Lower = earlier (during add), later (during del) */ 231 unsigned priority; 232 AddressSpace *address_space_filter; 233 QTAILQ_ENTRY(MemoryListener) link; 234 }; 235 236 /** 237 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 238 */ 239 struct AddressSpace { 240 /* All fields are private. */ 241 struct rcu_head rcu; 242 char *name; 243 MemoryRegion *root; 244 int ref_count; 245 bool malloced; 246 247 /* Accessed via RCU. */ 248 struct FlatView *current_map; 249 250 int ioeventfd_nb; 251 struct MemoryRegionIoeventfd *ioeventfds; 252 struct AddressSpaceDispatch *dispatch; 253 struct AddressSpaceDispatch *next_dispatch; 254 MemoryListener dispatch_listener; 255 256 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 257 }; 258 259 /** 260 * MemoryRegionSection: describes a fragment of a #MemoryRegion 261 * 262 * @mr: the region, or %NULL if empty 263 * @address_space: the address space the region is mapped in 264 * @offset_within_region: the beginning of the section, relative to @mr's start 265 * @size: the size of the section; will not exceed @mr's boundaries 266 * @offset_within_address_space: the address of the first byte of the section 267 * relative to the region's address space 268 * @readonly: writes to this section are ignored 269 */ 270 struct MemoryRegionSection { 271 MemoryRegion *mr; 272 AddressSpace *address_space; 273 hwaddr offset_within_region; 274 Int128 size; 275 hwaddr offset_within_address_space; 276 bool readonly; 277 }; 278 279 /** 280 * memory_region_init: Initialize a memory region 281 * 282 * The region typically acts as a container for other memory regions. Use 283 * memory_region_add_subregion() to add subregions. 284 * 285 * @mr: the #MemoryRegion to be initialized 286 * @owner: the object that tracks the region's reference count 287 * @name: used for debugging; not visible to the user or ABI 288 * @size: size of the region; any subregions beyond this size will be clipped 289 */ 290 void memory_region_init(MemoryRegion *mr, 291 struct Object *owner, 292 const char *name, 293 uint64_t size); 294 295 /** 296 * memory_region_ref: Add 1 to a memory region's reference count 297 * 298 * Whenever memory regions are accessed outside the BQL, they need to be 299 * preserved against hot-unplug. MemoryRegions actually do not have their 300 * own reference count; they piggyback on a QOM object, their "owner". 301 * This function adds a reference to the owner. 302 * 303 * All MemoryRegions must have an owner if they can disappear, even if the 304 * device they belong to operates exclusively under the BQL. This is because 305 * the region could be returned at any time by memory_region_find, and this 306 * is usually under guest control. 307 * 308 * @mr: the #MemoryRegion 309 */ 310 void memory_region_ref(MemoryRegion *mr); 311 312 /** 313 * memory_region_unref: Remove 1 to a memory region's reference count 314 * 315 * Whenever memory regions are accessed outside the BQL, they need to be 316 * preserved against hot-unplug. MemoryRegions actually do not have their 317 * own reference count; they piggyback on a QOM object, their "owner". 318 * This function removes a reference to the owner and possibly destroys it. 319 * 320 * @mr: the #MemoryRegion 321 */ 322 void memory_region_unref(MemoryRegion *mr); 323 324 /** 325 * memory_region_init_io: Initialize an I/O memory region. 326 * 327 * Accesses into the region will cause the callbacks in @ops to be called. 328 * if @size is nonzero, subregions will be clipped to @size. 329 * 330 * @mr: the #MemoryRegion to be initialized. 331 * @owner: the object that tracks the region's reference count 332 * @ops: a structure containing read and write callbacks to be used when 333 * I/O is performed on the region. 334 * @opaque: passed to the read and write callbacks of the @ops structure. 335 * @name: used for debugging; not visible to the user or ABI 336 * @size: size of the region. 337 */ 338 void memory_region_init_io(MemoryRegion *mr, 339 struct Object *owner, 340 const MemoryRegionOps *ops, 341 void *opaque, 342 const char *name, 343 uint64_t size); 344 345 /** 346 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 347 * region will modify memory directly. 348 * 349 * @mr: the #MemoryRegion to be initialized. 350 * @owner: the object that tracks the region's reference count 351 * @name: the name of the region. 352 * @size: size of the region. 353 * @errp: pointer to Error*, to store an error if it happens. 354 */ 355 void memory_region_init_ram(MemoryRegion *mr, 356 struct Object *owner, 357 const char *name, 358 uint64_t size, 359 Error **errp); 360 361 /** 362 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 363 * RAM. Accesses into the region will 364 * modify memory directly. Only an initial 365 * portion of this RAM is actually used. 366 * The used size can change across reboots. 367 * 368 * @mr: the #MemoryRegion to be initialized. 369 * @owner: the object that tracks the region's reference count 370 * @name: the name of the region. 371 * @size: used size of the region. 372 * @max_size: max size of the region. 373 * @resized: callback to notify owner about used size change. 374 * @errp: pointer to Error*, to store an error if it happens. 375 */ 376 void memory_region_init_resizeable_ram(MemoryRegion *mr, 377 struct Object *owner, 378 const char *name, 379 uint64_t size, 380 uint64_t max_size, 381 void (*resized)(const char*, 382 uint64_t length, 383 void *host), 384 Error **errp); 385 #ifdef __linux__ 386 /** 387 * memory_region_init_ram_from_file: Initialize RAM memory region with a 388 * mmap-ed backend. 389 * 390 * @mr: the #MemoryRegion to be initialized. 391 * @owner: the object that tracks the region's reference count 392 * @name: the name of the region. 393 * @size: size of the region. 394 * @share: %true if memory must be mmaped with the MAP_SHARED flag 395 * @path: the path in which to allocate the RAM. 396 * @errp: pointer to Error*, to store an error if it happens. 397 */ 398 void memory_region_init_ram_from_file(MemoryRegion *mr, 399 struct Object *owner, 400 const char *name, 401 uint64_t size, 402 bool share, 403 const char *path, 404 Error **errp); 405 #endif 406 407 /** 408 * memory_region_init_ram_ptr: Initialize RAM memory region from a 409 * user-provided pointer. Accesses into the 410 * region will modify memory directly. 411 * 412 * @mr: the #MemoryRegion to be initialized. 413 * @owner: the object that tracks the region's reference count 414 * @name: the name of the region. 415 * @size: size of the region. 416 * @ptr: memory to be mapped; must contain at least @size bytes. 417 */ 418 void memory_region_init_ram_ptr(MemoryRegion *mr, 419 struct Object *owner, 420 const char *name, 421 uint64_t size, 422 void *ptr); 423 424 /** 425 * memory_region_init_alias: Initialize a memory region that aliases all or a 426 * part of another memory region. 427 * 428 * @mr: the #MemoryRegion to be initialized. 429 * @owner: the object that tracks the region's reference count 430 * @name: used for debugging; not visible to the user or ABI 431 * @orig: the region to be referenced; @mr will be equivalent to 432 * @orig between @offset and @offset + @size - 1. 433 * @offset: start of the section in @orig to be referenced. 434 * @size: size of the region. 435 */ 436 void memory_region_init_alias(MemoryRegion *mr, 437 struct Object *owner, 438 const char *name, 439 MemoryRegion *orig, 440 hwaddr offset, 441 uint64_t size); 442 443 /** 444 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 445 * handled via callbacks. 446 * 447 * If NULL callbacks pointer is given, then I/O space is not supposed to be 448 * handled by QEMU itself. Any access via the memory API will cause an abort(). 449 * 450 * @mr: the #MemoryRegion to be initialized. 451 * @owner: the object that tracks the region's reference count 452 * @ops: callbacks for write access handling. 453 * @name: the name of the region. 454 * @size: size of the region. 455 * @errp: pointer to Error*, to store an error if it happens. 456 */ 457 void memory_region_init_rom_device(MemoryRegion *mr, 458 struct Object *owner, 459 const MemoryRegionOps *ops, 460 void *opaque, 461 const char *name, 462 uint64_t size, 463 Error **errp); 464 465 /** 466 * memory_region_init_reservation: Initialize a memory region that reserves 467 * I/O space. 468 * 469 * A reservation region primariy serves debugging purposes. It claims I/O 470 * space that is not supposed to be handled by QEMU itself. Any access via 471 * the memory API will cause an abort(). 472 * This function is deprecated. Use memory_region_init_io() with NULL 473 * callbacks instead. 474 * 475 * @mr: the #MemoryRegion to be initialized 476 * @owner: the object that tracks the region's reference count 477 * @name: used for debugging; not visible to the user or ABI 478 * @size: size of the region. 479 */ 480 static inline void memory_region_init_reservation(MemoryRegion *mr, 481 Object *owner, 482 const char *name, 483 uint64_t size) 484 { 485 memory_region_init_io(mr, owner, NULL, mr, name, size); 486 } 487 488 /** 489 * memory_region_init_iommu: Initialize a memory region that translates 490 * addresses 491 * 492 * An IOMMU region translates addresses and forwards accesses to a target 493 * memory region. 494 * 495 * @mr: the #MemoryRegion to be initialized 496 * @owner: the object that tracks the region's reference count 497 * @ops: a function that translates addresses into the @target region 498 * @name: used for debugging; not visible to the user or ABI 499 * @size: size of the region. 500 */ 501 void memory_region_init_iommu(MemoryRegion *mr, 502 struct Object *owner, 503 const MemoryRegionIOMMUOps *ops, 504 const char *name, 505 uint64_t size); 506 507 /** 508 * memory_region_owner: get a memory region's owner. 509 * 510 * @mr: the memory region being queried. 511 */ 512 struct Object *memory_region_owner(MemoryRegion *mr); 513 514 /** 515 * memory_region_size: get a memory region's size. 516 * 517 * @mr: the memory region being queried. 518 */ 519 uint64_t memory_region_size(MemoryRegion *mr); 520 521 /** 522 * memory_region_is_ram: check whether a memory region is random access 523 * 524 * Returns %true is a memory region is random access. 525 * 526 * @mr: the memory region being queried 527 */ 528 static inline bool memory_region_is_ram(MemoryRegion *mr) 529 { 530 return mr->ram; 531 } 532 533 /** 534 * memory_region_is_skip_dump: check whether a memory region should not be 535 * dumped 536 * 537 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP). 538 * 539 * @mr: the memory region being queried 540 */ 541 bool memory_region_is_skip_dump(MemoryRegion *mr); 542 543 /** 544 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory 545 * region 546 * 547 * @mr: the memory region being queried 548 */ 549 void memory_region_set_skip_dump(MemoryRegion *mr); 550 551 /** 552 * memory_region_is_romd: check whether a memory region is in ROMD mode 553 * 554 * Returns %true if a memory region is a ROM device and currently set to allow 555 * direct reads. 556 * 557 * @mr: the memory region being queried 558 */ 559 static inline bool memory_region_is_romd(MemoryRegion *mr) 560 { 561 return mr->rom_device && mr->romd_mode; 562 } 563 564 /** 565 * memory_region_is_iommu: check whether a memory region is an iommu 566 * 567 * Returns %true is a memory region is an iommu. 568 * 569 * @mr: the memory region being queried 570 */ 571 static inline bool memory_region_is_iommu(MemoryRegion *mr) 572 { 573 return mr->iommu_ops; 574 } 575 576 577 /** 578 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 579 * 580 * @mr: the memory region that was changed 581 * @entry: the new entry in the IOMMU translation table. The entry 582 * replaces all old entries for the same virtual I/O address range. 583 * Deleted entries have .@perm == 0. 584 */ 585 void memory_region_notify_iommu(MemoryRegion *mr, 586 IOMMUTLBEntry entry); 587 588 /** 589 * memory_region_register_iommu_notifier: register a notifier for changes to 590 * IOMMU translation entries. 591 * 592 * @mr: the memory region to observe 593 * @n: the notifier to be added; the notifier receives a pointer to an 594 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be 595 * valid on exit from the notifier. 596 */ 597 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n); 598 599 /** 600 * memory_region_iommu_replay: replay existing IOMMU translations to 601 * a notifier 602 * 603 * @mr: the memory region to observe 604 * @n: the notifier to which to replay iommu mappings 605 * @granularity: Minimum page granularity to replay notifications for 606 * @is_write: Whether to treat the replay as a translate "write" 607 * through the iommu 608 */ 609 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n, 610 hwaddr granularity, bool is_write); 611 612 /** 613 * memory_region_unregister_iommu_notifier: unregister a notifier for 614 * changes to IOMMU translation entries. 615 * 616 * @n: the notifier to be removed. 617 */ 618 void memory_region_unregister_iommu_notifier(Notifier *n); 619 620 /** 621 * memory_region_name: get a memory region's name 622 * 623 * Returns the string that was used to initialize the memory region. 624 * 625 * @mr: the memory region being queried 626 */ 627 const char *memory_region_name(const MemoryRegion *mr); 628 629 /** 630 * memory_region_is_logging: return whether a memory region is logging writes 631 * 632 * Returns %true if the memory region is logging writes for the given client 633 * 634 * @mr: the memory region being queried 635 * @client: the client being queried 636 */ 637 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 638 639 /** 640 * memory_region_get_dirty_log_mask: return the clients for which a 641 * memory region is logging writes. 642 * 643 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 644 * are the bit indices. 645 * 646 * @mr: the memory region being queried 647 */ 648 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 649 650 /** 651 * memory_region_is_rom: check whether a memory region is ROM 652 * 653 * Returns %true is a memory region is read-only memory. 654 * 655 * @mr: the memory region being queried 656 */ 657 static inline bool memory_region_is_rom(MemoryRegion *mr) 658 { 659 return mr->ram && mr->readonly; 660 } 661 662 663 /** 664 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 665 * 666 * Returns a file descriptor backing a file-based RAM memory region, 667 * or -1 if the region is not a file-based RAM memory region. 668 * 669 * @mr: the RAM or alias memory region being queried. 670 */ 671 int memory_region_get_fd(MemoryRegion *mr); 672 673 /** 674 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 675 * 676 * Returns a host pointer to a RAM memory region (created with 677 * memory_region_init_ram() or memory_region_init_ram_ptr()). 678 * 679 * Use with care; by the time this function returns, the returned pointer is 680 * not protected by RCU anymore. If the caller is not within an RCU critical 681 * section and does not hold the iothread lock, it must have other means of 682 * protecting the pointer, such as a reference to the region that includes 683 * the incoming ram_addr_t. 684 * 685 * @mr: the memory region being queried. 686 */ 687 void *memory_region_get_ram_ptr(MemoryRegion *mr); 688 689 /* memory_region_ram_resize: Resize a RAM region. 690 * 691 * Only legal before guest might have detected the memory size: e.g. on 692 * incoming migration, or right after reset. 693 * 694 * @mr: a memory region created with @memory_region_init_resizeable_ram. 695 * @newsize: the new size the region 696 * @errp: pointer to Error*, to store an error if it happens. 697 */ 698 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 699 Error **errp); 700 701 /** 702 * memory_region_set_log: Turn dirty logging on or off for a region. 703 * 704 * Turns dirty logging on or off for a specified client (display, migration). 705 * Only meaningful for RAM regions. 706 * 707 * @mr: the memory region being updated. 708 * @log: whether dirty logging is to be enabled or disabled. 709 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 710 */ 711 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 712 713 /** 714 * memory_region_get_dirty: Check whether a range of bytes is dirty 715 * for a specified client. 716 * 717 * Checks whether a range of bytes has been written to since the last 718 * call to memory_region_reset_dirty() with the same @client. Dirty logging 719 * must be enabled. 720 * 721 * @mr: the memory region being queried. 722 * @addr: the address (relative to the start of the region) being queried. 723 * @size: the size of the range being queried. 724 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 725 * %DIRTY_MEMORY_VGA. 726 */ 727 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 728 hwaddr size, unsigned client); 729 730 /** 731 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 732 * 733 * Marks a range of bytes as dirty, after it has been dirtied outside 734 * guest code. 735 * 736 * @mr: the memory region being dirtied. 737 * @addr: the address (relative to the start of the region) being dirtied. 738 * @size: size of the range being dirtied. 739 */ 740 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 741 hwaddr size); 742 743 /** 744 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 745 * for a specified client. It clears them. 746 * 747 * Checks whether a range of bytes has been written to since the last 748 * call to memory_region_reset_dirty() with the same @client. Dirty logging 749 * must be enabled. 750 * 751 * @mr: the memory region being queried. 752 * @addr: the address (relative to the start of the region) being queried. 753 * @size: the size of the range being queried. 754 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 755 * %DIRTY_MEMORY_VGA. 756 */ 757 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 758 hwaddr size, unsigned client); 759 /** 760 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 761 * any external TLBs (e.g. kvm) 762 * 763 * Flushes dirty information from accelerators such as kvm and vhost-net 764 * and makes it available to users of the memory API. 765 * 766 * @mr: the region being flushed. 767 */ 768 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 769 770 /** 771 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 772 * client. 773 * 774 * Marks a range of pages as no longer dirty. 775 * 776 * @mr: the region being updated. 777 * @addr: the start of the subrange being cleaned. 778 * @size: the size of the subrange being cleaned. 779 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 780 * %DIRTY_MEMORY_VGA. 781 */ 782 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 783 hwaddr size, unsigned client); 784 785 /** 786 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 787 * 788 * Allows a memory region to be marked as read-only (turning it into a ROM). 789 * only useful on RAM regions. 790 * 791 * @mr: the region being updated. 792 * @readonly: whether rhe region is to be ROM or RAM. 793 */ 794 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 795 796 /** 797 * memory_region_rom_device_set_romd: enable/disable ROMD mode 798 * 799 * Allows a ROM device (initialized with memory_region_init_rom_device() to 800 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 801 * device is mapped to guest memory and satisfies read access directly. 802 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 803 * Writes are always handled by the #MemoryRegion.write function. 804 * 805 * @mr: the memory region to be updated 806 * @romd_mode: %true to put the region into ROMD mode 807 */ 808 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 809 810 /** 811 * memory_region_set_coalescing: Enable memory coalescing for the region. 812 * 813 * Enabled writes to a region to be queued for later processing. MMIO ->write 814 * callbacks may be delayed until a non-coalesced MMIO is issued. 815 * Only useful for IO regions. Roughly similar to write-combining hardware. 816 * 817 * @mr: the memory region to be write coalesced 818 */ 819 void memory_region_set_coalescing(MemoryRegion *mr); 820 821 /** 822 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 823 * a region. 824 * 825 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 826 * Multiple calls can be issued coalesced disjoint ranges. 827 * 828 * @mr: the memory region to be updated. 829 * @offset: the start of the range within the region to be coalesced. 830 * @size: the size of the subrange to be coalesced. 831 */ 832 void memory_region_add_coalescing(MemoryRegion *mr, 833 hwaddr offset, 834 uint64_t size); 835 836 /** 837 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 838 * 839 * Disables any coalescing caused by memory_region_set_coalescing() or 840 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 841 * hardware. 842 * 843 * @mr: the memory region to be updated. 844 */ 845 void memory_region_clear_coalescing(MemoryRegion *mr); 846 847 /** 848 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 849 * accesses. 850 * 851 * Ensure that pending coalesced MMIO request are flushed before the memory 852 * region is accessed. This property is automatically enabled for all regions 853 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 854 * 855 * @mr: the memory region to be updated. 856 */ 857 void memory_region_set_flush_coalesced(MemoryRegion *mr); 858 859 /** 860 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 861 * accesses. 862 * 863 * Clear the automatic coalesced MMIO flushing enabled via 864 * memory_region_set_flush_coalesced. Note that this service has no effect on 865 * memory regions that have MMIO coalescing enabled for themselves. For them, 866 * automatic flushing will stop once coalescing is disabled. 867 * 868 * @mr: the memory region to be updated. 869 */ 870 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 871 872 /** 873 * memory_region_set_global_locking: Declares the access processing requires 874 * QEMU's global lock. 875 * 876 * When this is invoked, accesses to the memory region will be processed while 877 * holding the global lock of QEMU. This is the default behavior of memory 878 * regions. 879 * 880 * @mr: the memory region to be updated. 881 */ 882 void memory_region_set_global_locking(MemoryRegion *mr); 883 884 /** 885 * memory_region_clear_global_locking: Declares that access processing does 886 * not depend on the QEMU global lock. 887 * 888 * By clearing this property, accesses to the memory region will be processed 889 * outside of QEMU's global lock (unless the lock is held on when issuing the 890 * access request). In this case, the device model implementing the access 891 * handlers is responsible for synchronization of concurrency. 892 * 893 * @mr: the memory region to be updated. 894 */ 895 void memory_region_clear_global_locking(MemoryRegion *mr); 896 897 /** 898 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 899 * is written to a location. 900 * 901 * Marks a word in an IO region (initialized with memory_region_init_io()) 902 * as a trigger for an eventfd event. The I/O callback will not be called. 903 * The caller must be prepared to handle failure (that is, take the required 904 * action if the callback _is_ called). 905 * 906 * @mr: the memory region being updated. 907 * @addr: the address within @mr that is to be monitored 908 * @size: the size of the access to trigger the eventfd 909 * @match_data: whether to match against @data, instead of just @addr 910 * @data: the data to match against the guest write 911 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 912 **/ 913 void memory_region_add_eventfd(MemoryRegion *mr, 914 hwaddr addr, 915 unsigned size, 916 bool match_data, 917 uint64_t data, 918 EventNotifier *e); 919 920 /** 921 * memory_region_del_eventfd: Cancel an eventfd. 922 * 923 * Cancels an eventfd trigger requested by a previous 924 * memory_region_add_eventfd() call. 925 * 926 * @mr: the memory region being updated. 927 * @addr: the address within @mr that is to be monitored 928 * @size: the size of the access to trigger the eventfd 929 * @match_data: whether to match against @data, instead of just @addr 930 * @data: the data to match against the guest write 931 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 932 */ 933 void memory_region_del_eventfd(MemoryRegion *mr, 934 hwaddr addr, 935 unsigned size, 936 bool match_data, 937 uint64_t data, 938 EventNotifier *e); 939 940 /** 941 * memory_region_add_subregion: Add a subregion to a container. 942 * 943 * Adds a subregion at @offset. The subregion may not overlap with other 944 * subregions (except for those explicitly marked as overlapping). A region 945 * may only be added once as a subregion (unless removed with 946 * memory_region_del_subregion()); use memory_region_init_alias() if you 947 * want a region to be a subregion in multiple locations. 948 * 949 * @mr: the region to contain the new subregion; must be a container 950 * initialized with memory_region_init(). 951 * @offset: the offset relative to @mr where @subregion is added. 952 * @subregion: the subregion to be added. 953 */ 954 void memory_region_add_subregion(MemoryRegion *mr, 955 hwaddr offset, 956 MemoryRegion *subregion); 957 /** 958 * memory_region_add_subregion_overlap: Add a subregion to a container 959 * with overlap. 960 * 961 * Adds a subregion at @offset. The subregion may overlap with other 962 * subregions. Conflicts are resolved by having a higher @priority hide a 963 * lower @priority. Subregions without priority are taken as @priority 0. 964 * A region may only be added once as a subregion (unless removed with 965 * memory_region_del_subregion()); use memory_region_init_alias() if you 966 * want a region to be a subregion in multiple locations. 967 * 968 * @mr: the region to contain the new subregion; must be a container 969 * initialized with memory_region_init(). 970 * @offset: the offset relative to @mr where @subregion is added. 971 * @subregion: the subregion to be added. 972 * @priority: used for resolving overlaps; highest priority wins. 973 */ 974 void memory_region_add_subregion_overlap(MemoryRegion *mr, 975 hwaddr offset, 976 MemoryRegion *subregion, 977 int priority); 978 979 /** 980 * memory_region_get_ram_addr: Get the ram address associated with a memory 981 * region 982 * 983 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 984 * code is being reworked. 985 */ 986 static inline ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr) 987 { 988 return mr->ram_addr; 989 } 990 991 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 992 /** 993 * memory_region_del_subregion: Remove a subregion. 994 * 995 * Removes a subregion from its container. 996 * 997 * @mr: the container to be updated. 998 * @subregion: the region being removed; must be a current subregion of @mr. 999 */ 1000 void memory_region_del_subregion(MemoryRegion *mr, 1001 MemoryRegion *subregion); 1002 1003 /* 1004 * memory_region_set_enabled: dynamically enable or disable a region 1005 * 1006 * Enables or disables a memory region. A disabled memory region 1007 * ignores all accesses to itself and its subregions. It does not 1008 * obscure sibling subregions with lower priority - it simply behaves as 1009 * if it was removed from the hierarchy. 1010 * 1011 * Regions default to being enabled. 1012 * 1013 * @mr: the region to be updated 1014 * @enabled: whether to enable or disable the region 1015 */ 1016 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1017 1018 /* 1019 * memory_region_set_address: dynamically update the address of a region 1020 * 1021 * Dynamically updates the address of a region, relative to its container. 1022 * May be used on regions are currently part of a memory hierarchy. 1023 * 1024 * @mr: the region to be updated 1025 * @addr: new address, relative to container region 1026 */ 1027 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1028 1029 /* 1030 * memory_region_set_size: dynamically update the size of a region. 1031 * 1032 * Dynamically updates the size of a region. 1033 * 1034 * @mr: the region to be updated 1035 * @size: used size of the region. 1036 */ 1037 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1038 1039 /* 1040 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1041 * 1042 * Dynamically updates the offset into the target region that an alias points 1043 * to, as if the fourth argument to memory_region_init_alias() has changed. 1044 * 1045 * @mr: the #MemoryRegion to be updated; should be an alias. 1046 * @offset: the new offset into the target memory region 1047 */ 1048 void memory_region_set_alias_offset(MemoryRegion *mr, 1049 hwaddr offset); 1050 1051 /** 1052 * memory_region_present: checks if an address relative to a @container 1053 * translates into #MemoryRegion within @container 1054 * 1055 * Answer whether a #MemoryRegion within @container covers the address 1056 * @addr. 1057 * 1058 * @container: a #MemoryRegion within which @addr is a relative address 1059 * @addr: the area within @container to be searched 1060 */ 1061 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1062 1063 /** 1064 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1065 * into any address space. 1066 * 1067 * @mr: a #MemoryRegion which should be checked if it's mapped 1068 */ 1069 bool memory_region_is_mapped(MemoryRegion *mr); 1070 1071 /** 1072 * memory_region_find: translate an address/size relative to a 1073 * MemoryRegion into a #MemoryRegionSection. 1074 * 1075 * Locates the first #MemoryRegion within @mr that overlaps the range 1076 * given by @addr and @size. 1077 * 1078 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1079 * It will have the following characteristics: 1080 * .@size = 0 iff no overlap was found 1081 * .@mr is non-%NULL iff an overlap was found 1082 * 1083 * Remember that in the return value the @offset_within_region is 1084 * relative to the returned region (in the .@mr field), not to the 1085 * @mr argument. 1086 * 1087 * Similarly, the .@offset_within_address_space is relative to the 1088 * address space that contains both regions, the passed and the 1089 * returned one. However, in the special case where the @mr argument 1090 * has no container (and thus is the root of the address space), the 1091 * following will hold: 1092 * .@offset_within_address_space >= @addr 1093 * .@offset_within_address_space + .@size <= @addr + @size 1094 * 1095 * @mr: a MemoryRegion within which @addr is a relative address 1096 * @addr: start of the area within @as to be searched 1097 * @size: size of the area to be searched 1098 */ 1099 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1100 hwaddr addr, uint64_t size); 1101 1102 /** 1103 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory 1104 * 1105 * Synchronizes the dirty page log for an entire address space. 1106 * @as: the address space that contains the memory being synchronized 1107 */ 1108 void address_space_sync_dirty_bitmap(AddressSpace *as); 1109 1110 /** 1111 * memory_region_transaction_begin: Start a transaction. 1112 * 1113 * During a transaction, changes will be accumulated and made visible 1114 * only when the transaction ends (is committed). 1115 */ 1116 void memory_region_transaction_begin(void); 1117 1118 /** 1119 * memory_region_transaction_commit: Commit a transaction and make changes 1120 * visible to the guest. 1121 */ 1122 void memory_region_transaction_commit(void); 1123 1124 /** 1125 * memory_listener_register: register callbacks to be called when memory 1126 * sections are mapped or unmapped into an address 1127 * space 1128 * 1129 * @listener: an object containing the callbacks to be called 1130 * @filter: if non-%NULL, only regions in this address space will be observed 1131 */ 1132 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1133 1134 /** 1135 * memory_listener_unregister: undo the effect of memory_listener_register() 1136 * 1137 * @listener: an object containing the callbacks to be removed 1138 */ 1139 void memory_listener_unregister(MemoryListener *listener); 1140 1141 /** 1142 * memory_global_dirty_log_start: begin dirty logging for all regions 1143 */ 1144 void memory_global_dirty_log_start(void); 1145 1146 /** 1147 * memory_global_dirty_log_stop: end dirty logging for all regions 1148 */ 1149 void memory_global_dirty_log_stop(void); 1150 1151 void mtree_info(fprintf_function mon_printf, void *f); 1152 1153 /** 1154 * memory_region_dispatch_read: perform a read directly to the specified 1155 * MemoryRegion. 1156 * 1157 * @mr: #MemoryRegion to access 1158 * @addr: address within that region 1159 * @pval: pointer to uint64_t which the data is written to 1160 * @size: size of the access in bytes 1161 * @attrs: memory transaction attributes to use for the access 1162 */ 1163 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1164 hwaddr addr, 1165 uint64_t *pval, 1166 unsigned size, 1167 MemTxAttrs attrs); 1168 /** 1169 * memory_region_dispatch_write: perform a write directly to the specified 1170 * MemoryRegion. 1171 * 1172 * @mr: #MemoryRegion to access 1173 * @addr: address within that region 1174 * @data: data to write 1175 * @size: size of the access in bytes 1176 * @attrs: memory transaction attributes to use for the access 1177 */ 1178 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1179 hwaddr addr, 1180 uint64_t data, 1181 unsigned size, 1182 MemTxAttrs attrs); 1183 1184 /** 1185 * address_space_init: initializes an address space 1186 * 1187 * @as: an uninitialized #AddressSpace 1188 * @root: a #MemoryRegion that routes addresses for the address space 1189 * @name: an address space name. The name is only used for debugging 1190 * output. 1191 */ 1192 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1193 1194 /** 1195 * address_space_init_shareable: return an address space for a memory region, 1196 * creating it if it does not already exist 1197 * 1198 * @root: a #MemoryRegion that routes addresses for the address space 1199 * @name: an address space name. The name is only used for debugging 1200 * output. 1201 * 1202 * This function will return a pointer to an existing AddressSpace 1203 * which was initialized with the specified MemoryRegion, or it will 1204 * create and initialize one if it does not already exist. The ASes 1205 * are reference-counted, so the memory will be freed automatically 1206 * when the AddressSpace is destroyed via address_space_destroy. 1207 */ 1208 AddressSpace *address_space_init_shareable(MemoryRegion *root, 1209 const char *name); 1210 1211 /** 1212 * address_space_destroy: destroy an address space 1213 * 1214 * Releases all resources associated with an address space. After an address space 1215 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1216 * as well. 1217 * 1218 * @as: address space to be destroyed 1219 */ 1220 void address_space_destroy(AddressSpace *as); 1221 1222 /** 1223 * address_space_rw: read from or write to an address space. 1224 * 1225 * Return a MemTxResult indicating whether the operation succeeded 1226 * or failed (eg unassigned memory, device rejected the transaction, 1227 * IOMMU fault). 1228 * 1229 * @as: #AddressSpace to be accessed 1230 * @addr: address within that address space 1231 * @attrs: memory transaction attributes 1232 * @buf: buffer with the data transferred 1233 * @is_write: indicates the transfer direction 1234 */ 1235 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1236 MemTxAttrs attrs, uint8_t *buf, 1237 int len, bool is_write); 1238 1239 /** 1240 * address_space_write: write to address space. 1241 * 1242 * Return a MemTxResult indicating whether the operation succeeded 1243 * or failed (eg unassigned memory, device rejected the transaction, 1244 * IOMMU fault). 1245 * 1246 * @as: #AddressSpace to be accessed 1247 * @addr: address within that address space 1248 * @attrs: memory transaction attributes 1249 * @buf: buffer with the data transferred 1250 */ 1251 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1252 MemTxAttrs attrs, 1253 const uint8_t *buf, int len); 1254 1255 /* address_space_ld*: load from an address space 1256 * address_space_st*: store to an address space 1257 * 1258 * These functions perform a load or store of the byte, word, 1259 * longword or quad to the specified address within the AddressSpace. 1260 * The _le suffixed functions treat the data as little endian; 1261 * _be indicates big endian; no suffix indicates "same endianness 1262 * as guest CPU". 1263 * 1264 * The "guest CPU endianness" accessors are deprecated for use outside 1265 * target-* code; devices should be CPU-agnostic and use either the LE 1266 * or the BE accessors. 1267 * 1268 * @as #AddressSpace to be accessed 1269 * @addr: address within that address space 1270 * @val: data value, for stores 1271 * @attrs: memory transaction attributes 1272 * @result: location to write the success/failure of the transaction; 1273 * if NULL, this information is discarded 1274 */ 1275 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1276 MemTxAttrs attrs, MemTxResult *result); 1277 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1278 MemTxAttrs attrs, MemTxResult *result); 1279 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1280 MemTxAttrs attrs, MemTxResult *result); 1281 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1282 MemTxAttrs attrs, MemTxResult *result); 1283 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1284 MemTxAttrs attrs, MemTxResult *result); 1285 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1286 MemTxAttrs attrs, MemTxResult *result); 1287 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1288 MemTxAttrs attrs, MemTxResult *result); 1289 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1290 MemTxAttrs attrs, MemTxResult *result); 1291 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1292 MemTxAttrs attrs, MemTxResult *result); 1293 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1294 MemTxAttrs attrs, MemTxResult *result); 1295 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1296 MemTxAttrs attrs, MemTxResult *result); 1297 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1298 MemTxAttrs attrs, MemTxResult *result); 1299 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1300 MemTxAttrs attrs, MemTxResult *result); 1301 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1302 MemTxAttrs attrs, MemTxResult *result); 1303 1304 #ifdef NEED_CPU_H 1305 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, 1306 MemTxAttrs attrs, MemTxResult *result); 1307 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, 1308 MemTxAttrs attrs, MemTxResult *result); 1309 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, 1310 MemTxAttrs attrs, MemTxResult *result); 1311 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, 1312 MemTxAttrs attrs, MemTxResult *result); 1313 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, 1314 MemTxAttrs attrs, MemTxResult *result); 1315 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, 1316 MemTxAttrs attrs, MemTxResult *result); 1317 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, 1318 MemTxAttrs attrs, MemTxResult *result); 1319 #endif 1320 1321 /* address_space_translate: translate an address range into an address space 1322 * into a MemoryRegion and an address range into that section. Should be 1323 * called from an RCU critical section, to avoid that the last reference 1324 * to the returned region disappears after address_space_translate returns. 1325 * 1326 * @as: #AddressSpace to be accessed 1327 * @addr: address within that address space 1328 * @xlat: pointer to address within the returned memory region section's 1329 * #MemoryRegion. 1330 * @len: pointer to length 1331 * @is_write: indicates the transfer direction 1332 */ 1333 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1334 hwaddr *xlat, hwaddr *len, 1335 bool is_write); 1336 1337 /* address_space_access_valid: check for validity of accessing an address 1338 * space range 1339 * 1340 * Check whether memory is assigned to the given address space range, and 1341 * access is permitted by any IOMMU regions that are active for the address 1342 * space. 1343 * 1344 * For now, addr and len should be aligned to a page size. This limitation 1345 * will be lifted in the future. 1346 * 1347 * @as: #AddressSpace to be accessed 1348 * @addr: address within that address space 1349 * @len: length of the area to be checked 1350 * @is_write: indicates the transfer direction 1351 */ 1352 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1353 1354 /* address_space_map: map a physical memory region into a host virtual address 1355 * 1356 * May map a subset of the requested range, given by and returned in @plen. 1357 * May return %NULL if resources needed to perform the mapping are exhausted. 1358 * Use only for reads OR writes - not for read-modify-write operations. 1359 * Use cpu_register_map_client() to know when retrying the map operation is 1360 * likely to succeed. 1361 * 1362 * @as: #AddressSpace to be accessed 1363 * @addr: address within that address space 1364 * @plen: pointer to length of buffer; updated on return 1365 * @is_write: indicates the transfer direction 1366 */ 1367 void *address_space_map(AddressSpace *as, hwaddr addr, 1368 hwaddr *plen, bool is_write); 1369 1370 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1371 * 1372 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1373 * the amount of memory that was actually read or written by the caller. 1374 * 1375 * @as: #AddressSpace used 1376 * @addr: address within that address space 1377 * @len: buffer length as returned by address_space_map() 1378 * @access_len: amount of data actually transferred 1379 * @is_write: indicates the transfer direction 1380 */ 1381 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1382 int is_write, hwaddr access_len); 1383 1384 1385 /* Internal functions, part of the implementation of address_space_read. */ 1386 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, 1387 MemTxAttrs attrs, uint8_t *buf, 1388 int len, hwaddr addr1, hwaddr l, 1389 MemoryRegion *mr); 1390 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 1391 MemTxAttrs attrs, uint8_t *buf, int len); 1392 void *qemu_get_ram_ptr(ram_addr_t addr); 1393 1394 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1395 { 1396 if (is_write) { 1397 return memory_region_is_ram(mr) && !mr->readonly; 1398 } else { 1399 return memory_region_is_ram(mr) || memory_region_is_romd(mr); 1400 } 1401 1402 return false; 1403 } 1404 1405 /** 1406 * address_space_read: read from an address space. 1407 * 1408 * Return a MemTxResult indicating whether the operation succeeded 1409 * or failed (eg unassigned memory, device rejected the transaction, 1410 * IOMMU fault). 1411 * 1412 * @as: #AddressSpace to be accessed 1413 * @addr: address within that address space 1414 * @attrs: memory transaction attributes 1415 * @buf: buffer with the data transferred 1416 */ 1417 static inline __attribute__((__always_inline__)) 1418 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 1419 uint8_t *buf, int len) 1420 { 1421 MemTxResult result = MEMTX_OK; 1422 hwaddr l, addr1; 1423 void *ptr; 1424 MemoryRegion *mr; 1425 1426 if (__builtin_constant_p(len)) { 1427 if (len) { 1428 rcu_read_lock(); 1429 l = len; 1430 mr = address_space_translate(as, addr, &addr1, &l, false); 1431 if (len == l && memory_access_is_direct(mr, false)) { 1432 addr1 += memory_region_get_ram_addr(mr); 1433 ptr = qemu_get_ram_ptr(addr1); 1434 memcpy(buf, ptr, len); 1435 } else { 1436 result = address_space_read_continue(as, addr, attrs, buf, len, 1437 addr1, l, mr); 1438 } 1439 rcu_read_unlock(); 1440 } 1441 } else { 1442 result = address_space_read_full(as, addr, attrs, buf, len); 1443 } 1444 return result; 1445 } 1446 1447 #endif 1448 1449 #endif 1450