xref: /openbmc/qemu/include/exec/memory.h (revision c85cad81)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38                          TYPE_MEMORY_REGION)
39 
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44 
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50 
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53                       size_t len,
54                       MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57                                     size_t len,
58                                     MemoryRegion *mr)
59 {
60     /* Do Nothing */
61 }
62 #endif
63 
64 /* Possible bits for global_dirty_log_{start|stop} */
65 
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
68 
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71 
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
74 
75 #define GLOBAL_DIRTY_MASK  (0x7)
76 
77 extern unsigned int global_dirty_tracking;
78 
79 typedef struct MemoryRegionOps MemoryRegionOps;
80 
81 struct ReservedRegion {
82     hwaddr low;
83     hwaddr high;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  */
99 struct MemoryRegionSection {
100     Int128 size;
101     MemoryRegion *mr;
102     FlatView *fv;
103     hwaddr offset_within_region;
104     hwaddr offset_within_address_space;
105     bool readonly;
106     bool nonvolatile;
107 };
108 
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
110 
111 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
112 typedef enum {
113     IOMMU_NONE = 0,
114     IOMMU_RO   = 1,
115     IOMMU_WO   = 2,
116     IOMMU_RW   = 3,
117 } IOMMUAccessFlags;
118 
119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
120 
121 struct IOMMUTLBEntry {
122     AddressSpace    *target_as;
123     hwaddr           iova;
124     hwaddr           translated_addr;
125     hwaddr           addr_mask;  /* 0xfff = 4k translation */
126     IOMMUAccessFlags perm;
127 };
128 
129 /*
130  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
131  * register with one or multiple IOMMU Notifier capability bit(s).
132  *
133  * Normally there're two use cases for the notifiers:
134  *
135  *   (1) When the device needs accurate synchronizations of the vIOMMU page
136  *       tables, it needs to register with both MAP|UNMAP notifies (which
137  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
138  *
139  *       Regarding to accurate synchronization, it's when the notified
140  *       device maintains a shadow page table and must be notified on each
141  *       guest MAP (page table entry creation) and UNMAP (invalidation)
142  *       events (e.g. VFIO). Both notifications must be accurate so that
143  *       the shadow page table is fully in sync with the guest view.
144  *
145  *   (2) When the device doesn't need accurate synchronizations of the
146  *       vIOMMU page tables, it needs to register only with UNMAP or
147  *       DEVIOTLB_UNMAP notifies.
148  *
149  *       It's when the device maintains a cache of IOMMU translations
150  *       (IOTLB) and is able to fill that cache by requesting translations
151  *       from the vIOMMU through a protocol similar to ATS (Address
152  *       Translation Service).
153  *
154  *       Note that in this mode the vIOMMU will not maintain a shadowed
155  *       page table for the address space, and the UNMAP messages can cover
156  *       more than the pages that used to get mapped.  The IOMMU notifiee
157  *       should be able to take care of over-sized invalidations.
158  */
159 typedef enum {
160     IOMMU_NOTIFIER_NONE = 0,
161     /* Notify cache invalidations */
162     IOMMU_NOTIFIER_UNMAP = 0x1,
163     /* Notify entry changes (newly created entries) */
164     IOMMU_NOTIFIER_MAP = 0x2,
165     /* Notify changes on device IOTLB entries */
166     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
167 } IOMMUNotifierFlag;
168 
169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
172                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
173 
174 struct IOMMUNotifier;
175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
176                             IOMMUTLBEntry *data);
177 
178 struct IOMMUNotifier {
179     IOMMUNotify notify;
180     IOMMUNotifierFlag notifier_flags;
181     /* Notify for address space range start <= addr <= end */
182     hwaddr start;
183     hwaddr end;
184     int iommu_idx;
185     QLIST_ENTRY(IOMMUNotifier) node;
186 };
187 typedef struct IOMMUNotifier IOMMUNotifier;
188 
189 typedef struct IOMMUTLBEvent {
190     IOMMUNotifierFlag type;
191     IOMMUTLBEntry entry;
192 } IOMMUTLBEvent;
193 
194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
195 #define RAM_PREALLOC   (1 << 0)
196 
197 /* RAM is mmap-ed with MAP_SHARED */
198 #define RAM_SHARED     (1 << 1)
199 
200 /* Only a portion of RAM (used_length) is actually used, and migrated.
201  * Resizing RAM while migrating can result in the migration being canceled.
202  */
203 #define RAM_RESIZEABLE (1 << 2)
204 
205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
206  * zero the page and wake waiting processes.
207  * (Set during postcopy)
208  */
209 #define RAM_UF_ZEROPAGE (1 << 3)
210 
211 /* RAM can be migrated */
212 #define RAM_MIGRATABLE (1 << 4)
213 
214 /* RAM is a persistent kind memory */
215 #define RAM_PMEM (1 << 5)
216 
217 
218 /*
219  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
220  * support 'write-tracking' migration type.
221  * Implies ram_state->ram_wt_enabled.
222  */
223 #define RAM_UF_WRITEPROTECT (1 << 6)
224 
225 /*
226  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
227  * pages if applicable) is skipped: will bail out if not supported. When not
228  * set, the OS will do the reservation, if supported for the memory type.
229  */
230 #define RAM_NORESERVE (1 << 7)
231 
232 /* RAM that isn't accessible through normal means. */
233 #define RAM_PROTECTED (1 << 8)
234 
235 /* RAM is an mmap-ed named file */
236 #define RAM_NAMED_FILE (1 << 9)
237 
238 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
239                                        IOMMUNotifierFlag flags,
240                                        hwaddr start, hwaddr end,
241                                        int iommu_idx)
242 {
243     n->notify = fn;
244     n->notifier_flags = flags;
245     n->start = start;
246     n->end = end;
247     n->iommu_idx = iommu_idx;
248 }
249 
250 /*
251  * Memory region callbacks
252  */
253 struct MemoryRegionOps {
254     /* Read from the memory region. @addr is relative to @mr; @size is
255      * in bytes. */
256     uint64_t (*read)(void *opaque,
257                      hwaddr addr,
258                      unsigned size);
259     /* Write to the memory region. @addr is relative to @mr; @size is
260      * in bytes. */
261     void (*write)(void *opaque,
262                   hwaddr addr,
263                   uint64_t data,
264                   unsigned size);
265 
266     MemTxResult (*read_with_attrs)(void *opaque,
267                                    hwaddr addr,
268                                    uint64_t *data,
269                                    unsigned size,
270                                    MemTxAttrs attrs);
271     MemTxResult (*write_with_attrs)(void *opaque,
272                                     hwaddr addr,
273                                     uint64_t data,
274                                     unsigned size,
275                                     MemTxAttrs attrs);
276 
277     enum device_endian endianness;
278     /* Guest-visible constraints: */
279     struct {
280         /* If nonzero, specify bounds on access sizes beyond which a machine
281          * check is thrown.
282          */
283         unsigned min_access_size;
284         unsigned max_access_size;
285         /* If true, unaligned accesses are supported.  Otherwise unaligned
286          * accesses throw machine checks.
287          */
288          bool unaligned;
289         /*
290          * If present, and returns #false, the transaction is not accepted
291          * by the device (and results in machine dependent behaviour such
292          * as a machine check exception).
293          */
294         bool (*accepts)(void *opaque, hwaddr addr,
295                         unsigned size, bool is_write,
296                         MemTxAttrs attrs);
297     } valid;
298     /* Internal implementation constraints: */
299     struct {
300         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
301          * will be rounded upwards and a partial result will be returned.
302          */
303         unsigned min_access_size;
304         /* If nonzero, specifies the maximum size implemented.  Larger sizes
305          * will be done as a series of accesses with smaller sizes.
306          */
307         unsigned max_access_size;
308         /* If true, unaligned accesses are supported.  Otherwise all accesses
309          * are converted to (possibly multiple) naturally aligned accesses.
310          */
311         bool unaligned;
312     } impl;
313 };
314 
315 typedef struct MemoryRegionClass {
316     /* private */
317     ObjectClass parent_class;
318 } MemoryRegionClass;
319 
320 
321 enum IOMMUMemoryRegionAttr {
322     IOMMU_ATTR_SPAPR_TCE_FD
323 };
324 
325 /*
326  * IOMMUMemoryRegionClass:
327  *
328  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
329  * and provide an implementation of at least the @translate method here
330  * to handle requests to the memory region. Other methods are optional.
331  *
332  * The IOMMU implementation must use the IOMMU notifier infrastructure
333  * to report whenever mappings are changed, by calling
334  * memory_region_notify_iommu() (or, if necessary, by calling
335  * memory_region_notify_iommu_one() for each registered notifier).
336  *
337  * Conceptually an IOMMU provides a mapping from input address
338  * to an output TLB entry. If the IOMMU is aware of memory transaction
339  * attributes and the output TLB entry depends on the transaction
340  * attributes, we represent this using IOMMU indexes. Each index
341  * selects a particular translation table that the IOMMU has:
342  *
343  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
344  *
345  *   @translate takes an input address and an IOMMU index
346  *
347  * and the mapping returned can only depend on the input address and the
348  * IOMMU index.
349  *
350  * Most IOMMUs don't care about the transaction attributes and support
351  * only a single IOMMU index. A more complex IOMMU might have one index
352  * for secure transactions and one for non-secure transactions.
353  */
354 struct IOMMUMemoryRegionClass {
355     /* private: */
356     MemoryRegionClass parent_class;
357 
358     /* public: */
359     /**
360      * @translate:
361      *
362      * Return a TLB entry that contains a given address.
363      *
364      * The IOMMUAccessFlags indicated via @flag are optional and may
365      * be specified as IOMMU_NONE to indicate that the caller needs
366      * the full translation information for both reads and writes. If
367      * the access flags are specified then the IOMMU implementation
368      * may use this as an optimization, to stop doing a page table
369      * walk as soon as it knows that the requested permissions are not
370      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
371      * full page table walk and report the permissions in the returned
372      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
373      * return different mappings for reads and writes.)
374      *
375      * The returned information remains valid while the caller is
376      * holding the big QEMU lock or is inside an RCU critical section;
377      * if the caller wishes to cache the mapping beyond that it must
378      * register an IOMMU notifier so it can invalidate its cached
379      * information when the IOMMU mapping changes.
380      *
381      * @iommu: the IOMMUMemoryRegion
382      *
383      * @hwaddr: address to be translated within the memory region
384      *
385      * @flag: requested access permission
386      *
387      * @iommu_idx: IOMMU index for the translation
388      */
389     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
390                                IOMMUAccessFlags flag, int iommu_idx);
391     /**
392      * @get_min_page_size:
393      *
394      * Returns minimum supported page size in bytes.
395      *
396      * If this method is not provided then the minimum is assumed to
397      * be TARGET_PAGE_SIZE.
398      *
399      * @iommu: the IOMMUMemoryRegion
400      */
401     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
402     /**
403      * @notify_flag_changed:
404      *
405      * Called when IOMMU Notifier flag changes (ie when the set of
406      * events which IOMMU users are requesting notification for changes).
407      * Optional method -- need not be provided if the IOMMU does not
408      * need to know exactly which events must be notified.
409      *
410      * @iommu: the IOMMUMemoryRegion
411      *
412      * @old_flags: events which previously needed to be notified
413      *
414      * @new_flags: events which now need to be notified
415      *
416      * Returns 0 on success, or a negative errno; in particular
417      * returns -EINVAL if the new flag bitmap is not supported by the
418      * IOMMU memory region. In case of failure, the error object
419      * must be created
420      */
421     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
422                                IOMMUNotifierFlag old_flags,
423                                IOMMUNotifierFlag new_flags,
424                                Error **errp);
425     /**
426      * @replay:
427      *
428      * Called to handle memory_region_iommu_replay().
429      *
430      * The default implementation of memory_region_iommu_replay() is to
431      * call the IOMMU translate method for every page in the address space
432      * with flag == IOMMU_NONE and then call the notifier if translate
433      * returns a valid mapping. If this method is implemented then it
434      * overrides the default behaviour, and must provide the full semantics
435      * of memory_region_iommu_replay(), by calling @notifier for every
436      * translation present in the IOMMU.
437      *
438      * Optional method -- an IOMMU only needs to provide this method
439      * if the default is inefficient or produces undesirable side effects.
440      *
441      * Note: this is not related to record-and-replay functionality.
442      */
443     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
444 
445     /**
446      * @get_attr:
447      *
448      * Get IOMMU misc attributes. This is an optional method that
449      * can be used to allow users of the IOMMU to get implementation-specific
450      * information. The IOMMU implements this method to handle calls
451      * by IOMMU users to memory_region_iommu_get_attr() by filling in
452      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
453      * the IOMMU supports. If the method is unimplemented then
454      * memory_region_iommu_get_attr() will always return -EINVAL.
455      *
456      * @iommu: the IOMMUMemoryRegion
457      *
458      * @attr: attribute being queried
459      *
460      * @data: memory to fill in with the attribute data
461      *
462      * Returns 0 on success, or a negative errno; in particular
463      * returns -EINVAL for unrecognized or unimplemented attribute types.
464      */
465     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
466                     void *data);
467 
468     /**
469      * @attrs_to_index:
470      *
471      * Return the IOMMU index to use for a given set of transaction attributes.
472      *
473      * Optional method: if an IOMMU only supports a single IOMMU index then
474      * the default implementation of memory_region_iommu_attrs_to_index()
475      * will return 0.
476      *
477      * The indexes supported by an IOMMU must be contiguous, starting at 0.
478      *
479      * @iommu: the IOMMUMemoryRegion
480      * @attrs: memory transaction attributes
481      */
482     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
483 
484     /**
485      * @num_indexes:
486      *
487      * Return the number of IOMMU indexes this IOMMU supports.
488      *
489      * Optional method: if this method is not provided, then
490      * memory_region_iommu_num_indexes() will return 1, indicating that
491      * only a single IOMMU index is supported.
492      *
493      * @iommu: the IOMMUMemoryRegion
494      */
495     int (*num_indexes)(IOMMUMemoryRegion *iommu);
496 
497     /**
498      * @iommu_set_page_size_mask:
499      *
500      * Restrict the page size mask that can be supported with a given IOMMU
501      * memory region. Used for example to propagate host physical IOMMU page
502      * size mask limitations to the virtual IOMMU.
503      *
504      * Optional method: if this method is not provided, then the default global
505      * page mask is used.
506      *
507      * @iommu: the IOMMUMemoryRegion
508      *
509      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
510      * representing the smallest page size, must be set. Additional set bits
511      * represent supported block sizes. For example a host physical IOMMU that
512      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
513      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
514      * block sizes is specified with mask 0xfffffffffffff000.
515      *
516      * Returns 0 on success, or a negative error. In case of failure, the error
517      * object must be created.
518      */
519      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
520                                      uint64_t page_size_mask,
521                                      Error **errp);
522 };
523 
524 typedef struct RamDiscardListener RamDiscardListener;
525 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
526                                  MemoryRegionSection *section);
527 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
528                                  MemoryRegionSection *section);
529 
530 struct RamDiscardListener {
531     /*
532      * @notify_populate:
533      *
534      * Notification that previously discarded memory is about to get populated.
535      * Listeners are able to object. If any listener objects, already
536      * successfully notified listeners are notified about a discard again.
537      *
538      * @rdl: the #RamDiscardListener getting notified
539      * @section: the #MemoryRegionSection to get populated. The section
540      *           is aligned within the memory region to the minimum granularity
541      *           unless it would exceed the registered section.
542      *
543      * Returns 0 on success. If the notification is rejected by the listener,
544      * an error is returned.
545      */
546     NotifyRamPopulate notify_populate;
547 
548     /*
549      * @notify_discard:
550      *
551      * Notification that previously populated memory was discarded successfully
552      * and listeners should drop all references to such memory and prevent
553      * new population (e.g., unmap).
554      *
555      * @rdl: the #RamDiscardListener getting notified
556      * @section: the #MemoryRegionSection to get populated. The section
557      *           is aligned within the memory region to the minimum granularity
558      *           unless it would exceed the registered section.
559      */
560     NotifyRamDiscard notify_discard;
561 
562     /*
563      * @double_discard_supported:
564      *
565      * The listener suppors getting @notify_discard notifications that span
566      * already discarded parts.
567      */
568     bool double_discard_supported;
569 
570     MemoryRegionSection *section;
571     QLIST_ENTRY(RamDiscardListener) next;
572 };
573 
574 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
575                                              NotifyRamPopulate populate_fn,
576                                              NotifyRamDiscard discard_fn,
577                                              bool double_discard_supported)
578 {
579     rdl->notify_populate = populate_fn;
580     rdl->notify_discard = discard_fn;
581     rdl->double_discard_supported = double_discard_supported;
582 }
583 
584 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
585 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
586 
587 /*
588  * RamDiscardManagerClass:
589  *
590  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
591  * regions are currently populated to be used/accessed by the VM, notifying
592  * after parts were discarded (freeing up memory) and before parts will be
593  * populated (consuming memory), to be used/accessed by the VM.
594  *
595  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
596  * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
597  * mapped.
598  *
599  * The #RamDiscardManager is intended to be used by technologies that are
600  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
601  * memory inside a #MemoryRegion), and require proper coordination to only
602  * map the currently populated parts, to hinder parts that are expected to
603  * remain discarded from silently getting populated and consuming memory.
604  * Technologies that support discarding of RAM don't have to bother and can
605  * simply map the whole #MemoryRegion.
606  *
607  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
608  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
609  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
610  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
611  * properly coordinate with listeners before memory is plugged (populated),
612  * and after memory is unplugged (discarded).
613  *
614  * Listeners are called in multiples of the minimum granularity (unless it
615  * would exceed the registered range) and changes are aligned to the minimum
616  * granularity within the #MemoryRegion. Listeners have to prepare for memory
617  * becoming discarded in a different granularity than it was populated and the
618  * other way around.
619  */
620 struct RamDiscardManagerClass {
621     /* private */
622     InterfaceClass parent_class;
623 
624     /* public */
625 
626     /**
627      * @get_min_granularity:
628      *
629      * Get the minimum granularity in which listeners will get notified
630      * about changes within the #MemoryRegion via the #RamDiscardManager.
631      *
632      * @rdm: the #RamDiscardManager
633      * @mr: the #MemoryRegion
634      *
635      * Returns the minimum granularity.
636      */
637     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
638                                     const MemoryRegion *mr);
639 
640     /**
641      * @is_populated:
642      *
643      * Check whether the given #MemoryRegionSection is completely populated
644      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
645      * There are no alignment requirements.
646      *
647      * @rdm: the #RamDiscardManager
648      * @section: the #MemoryRegionSection
649      *
650      * Returns whether the given range is completely populated.
651      */
652     bool (*is_populated)(const RamDiscardManager *rdm,
653                          const MemoryRegionSection *section);
654 
655     /**
656      * @replay_populated:
657      *
658      * Call the #ReplayRamPopulate callback for all populated parts within the
659      * #MemoryRegionSection via the #RamDiscardManager.
660      *
661      * In case any call fails, no further calls are made.
662      *
663      * @rdm: the #RamDiscardManager
664      * @section: the #MemoryRegionSection
665      * @replay_fn: the #ReplayRamPopulate callback
666      * @opaque: pointer to forward to the callback
667      *
668      * Returns 0 on success, or a negative error if any notification failed.
669      */
670     int (*replay_populated)(const RamDiscardManager *rdm,
671                             MemoryRegionSection *section,
672                             ReplayRamPopulate replay_fn, void *opaque);
673 
674     /**
675      * @replay_discarded:
676      *
677      * Call the #ReplayRamDiscard callback for all discarded parts within the
678      * #MemoryRegionSection via the #RamDiscardManager.
679      *
680      * @rdm: the #RamDiscardManager
681      * @section: the #MemoryRegionSection
682      * @replay_fn: the #ReplayRamDiscard callback
683      * @opaque: pointer to forward to the callback
684      */
685     void (*replay_discarded)(const RamDiscardManager *rdm,
686                              MemoryRegionSection *section,
687                              ReplayRamDiscard replay_fn, void *opaque);
688 
689     /**
690      * @register_listener:
691      *
692      * Register a #RamDiscardListener for the given #MemoryRegionSection and
693      * immediately notify the #RamDiscardListener about all populated parts
694      * within the #MemoryRegionSection via the #RamDiscardManager.
695      *
696      * In case any notification fails, no further notifications are triggered
697      * and an error is logged.
698      *
699      * @rdm: the #RamDiscardManager
700      * @rdl: the #RamDiscardListener
701      * @section: the #MemoryRegionSection
702      */
703     void (*register_listener)(RamDiscardManager *rdm,
704                               RamDiscardListener *rdl,
705                               MemoryRegionSection *section);
706 
707     /**
708      * @unregister_listener:
709      *
710      * Unregister a previously registered #RamDiscardListener via the
711      * #RamDiscardManager after notifying the #RamDiscardListener about all
712      * populated parts becoming unpopulated within the registered
713      * #MemoryRegionSection.
714      *
715      * @rdm: the #RamDiscardManager
716      * @rdl: the #RamDiscardListener
717      */
718     void (*unregister_listener)(RamDiscardManager *rdm,
719                                 RamDiscardListener *rdl);
720 };
721 
722 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
723                                                  const MemoryRegion *mr);
724 
725 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
726                                       const MemoryRegionSection *section);
727 
728 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
729                                          MemoryRegionSection *section,
730                                          ReplayRamPopulate replay_fn,
731                                          void *opaque);
732 
733 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
734                                           MemoryRegionSection *section,
735                                           ReplayRamDiscard replay_fn,
736                                           void *opaque);
737 
738 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
739                                            RamDiscardListener *rdl,
740                                            MemoryRegionSection *section);
741 
742 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
743                                              RamDiscardListener *rdl);
744 
745 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
746                           ram_addr_t *ram_addr, bool *read_only,
747                           bool *mr_has_discard_manager);
748 
749 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
750 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
751 
752 /** MemoryRegion:
753  *
754  * A struct representing a memory region.
755  */
756 struct MemoryRegion {
757     Object parent_obj;
758 
759     /* private: */
760 
761     /* The following fields should fit in a cache line */
762     bool romd_mode;
763     bool ram;
764     bool subpage;
765     bool readonly; /* For RAM regions */
766     bool nonvolatile;
767     bool rom_device;
768     bool flush_coalesced_mmio;
769     uint8_t dirty_log_mask;
770     bool is_iommu;
771     RAMBlock *ram_block;
772     Object *owner;
773     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
774     DeviceState *dev;
775 
776     const MemoryRegionOps *ops;
777     void *opaque;
778     MemoryRegion *container;
779     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
780     Int128 size;
781     hwaddr addr;
782     void (*destructor)(MemoryRegion *mr);
783     uint64_t align;
784     bool terminates;
785     bool ram_device;
786     bool enabled;
787     bool warning_printed; /* For reservations */
788     uint8_t vga_logging_count;
789     MemoryRegion *alias;
790     hwaddr alias_offset;
791     int32_t priority;
792     QTAILQ_HEAD(, MemoryRegion) subregions;
793     QTAILQ_ENTRY(MemoryRegion) subregions_link;
794     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
795     const char *name;
796     unsigned ioeventfd_nb;
797     MemoryRegionIoeventfd *ioeventfds;
798     RamDiscardManager *rdm; /* Only for RAM */
799 
800     /* For devices designed to perform re-entrant IO into their own IO MRs */
801     bool disable_reentrancy_guard;
802 };
803 
804 struct IOMMUMemoryRegion {
805     MemoryRegion parent_obj;
806 
807     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
808     IOMMUNotifierFlag iommu_notify_flags;
809 };
810 
811 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
812     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
813 
814 /**
815  * struct MemoryListener: callbacks structure for updates to the physical memory map
816  *
817  * Allows a component to adjust to changes in the guest-visible memory map.
818  * Use with memory_listener_register() and memory_listener_unregister().
819  */
820 struct MemoryListener {
821     /**
822      * @begin:
823      *
824      * Called at the beginning of an address space update transaction.
825      * Followed by calls to #MemoryListener.region_add(),
826      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
827      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
828      * increasing address order.
829      *
830      * @listener: The #MemoryListener.
831      */
832     void (*begin)(MemoryListener *listener);
833 
834     /**
835      * @commit:
836      *
837      * Called at the end of an address space update transaction,
838      * after the last call to #MemoryListener.region_add(),
839      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
840      * #MemoryListener.log_start() and #MemoryListener.log_stop().
841      *
842      * @listener: The #MemoryListener.
843      */
844     void (*commit)(MemoryListener *listener);
845 
846     /**
847      * @region_add:
848      *
849      * Called during an address space update transaction,
850      * for a section of the address space that is new in this address space
851      * space since the last transaction.
852      *
853      * @listener: The #MemoryListener.
854      * @section: The new #MemoryRegionSection.
855      */
856     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
857 
858     /**
859      * @region_del:
860      *
861      * Called during an address space update transaction,
862      * for a section of the address space that has disappeared in the address
863      * space since the last transaction.
864      *
865      * @listener: The #MemoryListener.
866      * @section: The old #MemoryRegionSection.
867      */
868     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
869 
870     /**
871      * @region_nop:
872      *
873      * Called during an address space update transaction,
874      * for a section of the address space that is in the same place in the address
875      * space as in the last transaction.
876      *
877      * @listener: The #MemoryListener.
878      * @section: The #MemoryRegionSection.
879      */
880     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
881 
882     /**
883      * @log_start:
884      *
885      * Called during an address space update transaction, after
886      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
887      * #MemoryListener.region_nop(), if dirty memory logging clients have
888      * become active since the last transaction.
889      *
890      * @listener: The #MemoryListener.
891      * @section: The #MemoryRegionSection.
892      * @old: A bitmap of dirty memory logging clients that were active in
893      * the previous transaction.
894      * @new: A bitmap of dirty memory logging clients that are active in
895      * the current transaction.
896      */
897     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
898                       int old, int new);
899 
900     /**
901      * @log_stop:
902      *
903      * Called during an address space update transaction, after
904      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
905      * #MemoryListener.region_nop() and possibly after
906      * #MemoryListener.log_start(), if dirty memory logging clients have
907      * become inactive since the last transaction.
908      *
909      * @listener: The #MemoryListener.
910      * @section: The #MemoryRegionSection.
911      * @old: A bitmap of dirty memory logging clients that were active in
912      * the previous transaction.
913      * @new: A bitmap of dirty memory logging clients that are active in
914      * the current transaction.
915      */
916     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
917                      int old, int new);
918 
919     /**
920      * @log_sync:
921      *
922      * Called by memory_region_snapshot_and_clear_dirty() and
923      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
924      * copy of the dirty memory bitmap for a #MemoryRegionSection.
925      *
926      * @listener: The #MemoryListener.
927      * @section: The #MemoryRegionSection.
928      */
929     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
930 
931     /**
932      * @log_sync_global:
933      *
934      * This is the global version of @log_sync when the listener does
935      * not have a way to synchronize the log with finer granularity.
936      * When the listener registers with @log_sync_global defined, then
937      * its @log_sync must be NULL.  Vice versa.
938      *
939      * @listener: The #MemoryListener.
940      * @last_stage: The last stage to synchronize the log during migration.
941      * The caller should gurantee that the synchronization with true for
942      * @last_stage is triggered for once after all VCPUs have been stopped.
943      */
944     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
945 
946     /**
947      * @log_clear:
948      *
949      * Called before reading the dirty memory bitmap for a
950      * #MemoryRegionSection.
951      *
952      * @listener: The #MemoryListener.
953      * @section: The #MemoryRegionSection.
954      */
955     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
956 
957     /**
958      * @log_global_start:
959      *
960      * Called by memory_global_dirty_log_start(), which
961      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
962      * the address space.  #MemoryListener.log_global_start() is also
963      * called when a #MemoryListener is added, if global dirty logging is
964      * active at that time.
965      *
966      * @listener: The #MemoryListener.
967      */
968     void (*log_global_start)(MemoryListener *listener);
969 
970     /**
971      * @log_global_stop:
972      *
973      * Called by memory_global_dirty_log_stop(), which
974      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
975      * the address space.
976      *
977      * @listener: The #MemoryListener.
978      */
979     void (*log_global_stop)(MemoryListener *listener);
980 
981     /**
982      * @log_global_after_sync:
983      *
984      * Called after reading the dirty memory bitmap
985      * for any #MemoryRegionSection.
986      *
987      * @listener: The #MemoryListener.
988      */
989     void (*log_global_after_sync)(MemoryListener *listener);
990 
991     /**
992      * @eventfd_add:
993      *
994      * Called during an address space update transaction,
995      * for a section of the address space that has had a new ioeventfd
996      * registration since the last transaction.
997      *
998      * @listener: The #MemoryListener.
999      * @section: The new #MemoryRegionSection.
1000      * @match_data: The @match_data parameter for the new ioeventfd.
1001      * @data: The @data parameter for the new ioeventfd.
1002      * @e: The #EventNotifier parameter for the new ioeventfd.
1003      */
1004     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1005                         bool match_data, uint64_t data, EventNotifier *e);
1006 
1007     /**
1008      * @eventfd_del:
1009      *
1010      * Called during an address space update transaction,
1011      * for a section of the address space that has dropped an ioeventfd
1012      * registration since the last transaction.
1013      *
1014      * @listener: The #MemoryListener.
1015      * @section: The new #MemoryRegionSection.
1016      * @match_data: The @match_data parameter for the dropped ioeventfd.
1017      * @data: The @data parameter for the dropped ioeventfd.
1018      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1019      */
1020     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1021                         bool match_data, uint64_t data, EventNotifier *e);
1022 
1023     /**
1024      * @coalesced_io_add:
1025      *
1026      * Called during an address space update transaction,
1027      * for a section of the address space that has had a new coalesced
1028      * MMIO range registration since the last transaction.
1029      *
1030      * @listener: The #MemoryListener.
1031      * @section: The new #MemoryRegionSection.
1032      * @addr: The starting address for the coalesced MMIO range.
1033      * @len: The length of the coalesced MMIO range.
1034      */
1035     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1036                                hwaddr addr, hwaddr len);
1037 
1038     /**
1039      * @coalesced_io_del:
1040      *
1041      * Called during an address space update transaction,
1042      * for a section of the address space that has dropped a coalesced
1043      * MMIO range since the last transaction.
1044      *
1045      * @listener: The #MemoryListener.
1046      * @section: The new #MemoryRegionSection.
1047      * @addr: The starting address for the coalesced MMIO range.
1048      * @len: The length of the coalesced MMIO range.
1049      */
1050     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1051                                hwaddr addr, hwaddr len);
1052     /**
1053      * @priority:
1054      *
1055      * Govern the order in which memory listeners are invoked. Lower priorities
1056      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1057      * or "stop" callbacks.
1058      */
1059     unsigned priority;
1060 
1061     /**
1062      * @name:
1063      *
1064      * Name of the listener.  It can be used in contexts where we'd like to
1065      * identify one memory listener with the rest.
1066      */
1067     const char *name;
1068 
1069     /* private: */
1070     AddressSpace *address_space;
1071     QTAILQ_ENTRY(MemoryListener) link;
1072     QTAILQ_ENTRY(MemoryListener) link_as;
1073 };
1074 
1075 /**
1076  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1077  */
1078 struct AddressSpace {
1079     /* private: */
1080     struct rcu_head rcu;
1081     char *name;
1082     MemoryRegion *root;
1083 
1084     /* Accessed via RCU.  */
1085     struct FlatView *current_map;
1086 
1087     int ioeventfd_nb;
1088     struct MemoryRegionIoeventfd *ioeventfds;
1089     QTAILQ_HEAD(, MemoryListener) listeners;
1090     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1091 };
1092 
1093 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1094 typedef struct FlatRange FlatRange;
1095 
1096 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1097  * order.
1098  */
1099 struct FlatView {
1100     struct rcu_head rcu;
1101     unsigned ref;
1102     FlatRange *ranges;
1103     unsigned nr;
1104     unsigned nr_allocated;
1105     struct AddressSpaceDispatch *dispatch;
1106     MemoryRegion *root;
1107 };
1108 
1109 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1110 {
1111     return qatomic_rcu_read(&as->current_map);
1112 }
1113 
1114 /**
1115  * typedef flatview_cb: callback for flatview_for_each_range()
1116  *
1117  * @start: start address of the range within the FlatView
1118  * @len: length of the range in bytes
1119  * @mr: MemoryRegion covering this range
1120  * @offset_in_region: offset of the first byte of the range within @mr
1121  * @opaque: data pointer passed to flatview_for_each_range()
1122  *
1123  * Returns: true to stop the iteration, false to keep going.
1124  */
1125 typedef bool (*flatview_cb)(Int128 start,
1126                             Int128 len,
1127                             const MemoryRegion *mr,
1128                             hwaddr offset_in_region,
1129                             void *opaque);
1130 
1131 /**
1132  * flatview_for_each_range: Iterate through a FlatView
1133  * @fv: the FlatView to iterate through
1134  * @cb: function to call for each range
1135  * @opaque: opaque data pointer to pass to @cb
1136  *
1137  * A FlatView is made up of a list of non-overlapping ranges, each of
1138  * which is a slice of a MemoryRegion. This function iterates through
1139  * each range in @fv, calling @cb. The callback function can terminate
1140  * iteration early by returning 'true'.
1141  */
1142 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1143 
1144 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1145                                           MemoryRegionSection *b)
1146 {
1147     return a->mr == b->mr &&
1148            a->fv == b->fv &&
1149            a->offset_within_region == b->offset_within_region &&
1150            a->offset_within_address_space == b->offset_within_address_space &&
1151            int128_eq(a->size, b->size) &&
1152            a->readonly == b->readonly &&
1153            a->nonvolatile == b->nonvolatile;
1154 }
1155 
1156 /**
1157  * memory_region_section_new_copy: Copy a memory region section
1158  *
1159  * Allocate memory for a new copy, copy the memory region section, and
1160  * properly take a reference on all relevant members.
1161  *
1162  * @s: the #MemoryRegionSection to copy
1163  */
1164 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1165 
1166 /**
1167  * memory_region_section_new_copy: Free a copied memory region section
1168  *
1169  * Free a copy of a memory section created via memory_region_section_new_copy().
1170  * properly dropping references on all relevant members.
1171  *
1172  * @s: the #MemoryRegionSection to copy
1173  */
1174 void memory_region_section_free_copy(MemoryRegionSection *s);
1175 
1176 /**
1177  * memory_region_init: Initialize a memory region
1178  *
1179  * The region typically acts as a container for other memory regions.  Use
1180  * memory_region_add_subregion() to add subregions.
1181  *
1182  * @mr: the #MemoryRegion to be initialized
1183  * @owner: the object that tracks the region's reference count
1184  * @name: used for debugging; not visible to the user or ABI
1185  * @size: size of the region; any subregions beyond this size will be clipped
1186  */
1187 void memory_region_init(MemoryRegion *mr,
1188                         Object *owner,
1189                         const char *name,
1190                         uint64_t size);
1191 
1192 /**
1193  * memory_region_ref: Add 1 to a memory region's reference count
1194  *
1195  * Whenever memory regions are accessed outside the BQL, they need to be
1196  * preserved against hot-unplug.  MemoryRegions actually do not have their
1197  * own reference count; they piggyback on a QOM object, their "owner".
1198  * This function adds a reference to the owner.
1199  *
1200  * All MemoryRegions must have an owner if they can disappear, even if the
1201  * device they belong to operates exclusively under the BQL.  This is because
1202  * the region could be returned at any time by memory_region_find, and this
1203  * is usually under guest control.
1204  *
1205  * @mr: the #MemoryRegion
1206  */
1207 void memory_region_ref(MemoryRegion *mr);
1208 
1209 /**
1210  * memory_region_unref: Remove 1 to a memory region's reference count
1211  *
1212  * Whenever memory regions are accessed outside the BQL, they need to be
1213  * preserved against hot-unplug.  MemoryRegions actually do not have their
1214  * own reference count; they piggyback on a QOM object, their "owner".
1215  * This function removes a reference to the owner and possibly destroys it.
1216  *
1217  * @mr: the #MemoryRegion
1218  */
1219 void memory_region_unref(MemoryRegion *mr);
1220 
1221 /**
1222  * memory_region_init_io: Initialize an I/O memory region.
1223  *
1224  * Accesses into the region will cause the callbacks in @ops to be called.
1225  * if @size is nonzero, subregions will be clipped to @size.
1226  *
1227  * @mr: the #MemoryRegion to be initialized.
1228  * @owner: the object that tracks the region's reference count
1229  * @ops: a structure containing read and write callbacks to be used when
1230  *       I/O is performed on the region.
1231  * @opaque: passed to the read and write callbacks of the @ops structure.
1232  * @name: used for debugging; not visible to the user or ABI
1233  * @size: size of the region.
1234  */
1235 void memory_region_init_io(MemoryRegion *mr,
1236                            Object *owner,
1237                            const MemoryRegionOps *ops,
1238                            void *opaque,
1239                            const char *name,
1240                            uint64_t size);
1241 
1242 /**
1243  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1244  *                                    into the region will modify memory
1245  *                                    directly.
1246  *
1247  * @mr: the #MemoryRegion to be initialized.
1248  * @owner: the object that tracks the region's reference count
1249  * @name: Region name, becomes part of RAMBlock name used in migration stream
1250  *        must be unique within any device
1251  * @size: size of the region.
1252  * @errp: pointer to Error*, to store an error if it happens.
1253  *
1254  * Note that this function does not do anything to cause the data in the
1255  * RAM memory region to be migrated; that is the responsibility of the caller.
1256  */
1257 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1258                                       Object *owner,
1259                                       const char *name,
1260                                       uint64_t size,
1261                                       Error **errp);
1262 
1263 /**
1264  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1265  *                                          Accesses into the region will
1266  *                                          modify memory directly.
1267  *
1268  * @mr: the #MemoryRegion to be initialized.
1269  * @owner: the object that tracks the region's reference count
1270  * @name: Region name, becomes part of RAMBlock name used in migration stream
1271  *        must be unique within any device
1272  * @size: size of the region.
1273  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1274  * @errp: pointer to Error*, to store an error if it happens.
1275  *
1276  * Note that this function does not do anything to cause the data in the
1277  * RAM memory region to be migrated; that is the responsibility of the caller.
1278  */
1279 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1280                                             Object *owner,
1281                                             const char *name,
1282                                             uint64_t size,
1283                                             uint32_t ram_flags,
1284                                             Error **errp);
1285 
1286 /**
1287  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1288  *                                     RAM.  Accesses into the region will
1289  *                                     modify memory directly.  Only an initial
1290  *                                     portion of this RAM is actually used.
1291  *                                     Changing the size while migrating
1292  *                                     can result in the migration being
1293  *                                     canceled.
1294  *
1295  * @mr: the #MemoryRegion to be initialized.
1296  * @owner: the object that tracks the region's reference count
1297  * @name: Region name, becomes part of RAMBlock name used in migration stream
1298  *        must be unique within any device
1299  * @size: used size of the region.
1300  * @max_size: max size of the region.
1301  * @resized: callback to notify owner about used size change.
1302  * @errp: pointer to Error*, to store an error if it happens.
1303  *
1304  * Note that this function does not do anything to cause the data in the
1305  * RAM memory region to be migrated; that is the responsibility of the caller.
1306  */
1307 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1308                                        Object *owner,
1309                                        const char *name,
1310                                        uint64_t size,
1311                                        uint64_t max_size,
1312                                        void (*resized)(const char*,
1313                                                        uint64_t length,
1314                                                        void *host),
1315                                        Error **errp);
1316 #ifdef CONFIG_POSIX
1317 
1318 /**
1319  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1320  *                                    mmap-ed backend.
1321  *
1322  * @mr: the #MemoryRegion to be initialized.
1323  * @owner: the object that tracks the region's reference count
1324  * @name: Region name, becomes part of RAMBlock name used in migration stream
1325  *        must be unique within any device
1326  * @size: size of the region.
1327  * @align: alignment of the region base address; if 0, the default alignment
1328  *         (getpagesize()) will be used.
1329  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1330  *             RAM_NORESERVE,
1331  * @path: the path in which to allocate the RAM.
1332  * @offset: offset within the file referenced by path
1333  * @readonly: true to open @path for reading, false for read/write.
1334  * @errp: pointer to Error*, to store an error if it happens.
1335  *
1336  * Note that this function does not do anything to cause the data in the
1337  * RAM memory region to be migrated; that is the responsibility of the caller.
1338  */
1339 void memory_region_init_ram_from_file(MemoryRegion *mr,
1340                                       Object *owner,
1341                                       const char *name,
1342                                       uint64_t size,
1343                                       uint64_t align,
1344                                       uint32_t ram_flags,
1345                                       const char *path,
1346                                       ram_addr_t offset,
1347                                       bool readonly,
1348                                       Error **errp);
1349 
1350 /**
1351  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1352  *                                  mmap-ed backend.
1353  *
1354  * @mr: the #MemoryRegion to be initialized.
1355  * @owner: the object that tracks the region's reference count
1356  * @name: the name of the region.
1357  * @size: size of the region.
1358  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1359  *             RAM_NORESERVE, RAM_PROTECTED.
1360  * @fd: the fd to mmap.
1361  * @offset: offset within the file referenced by fd
1362  * @errp: pointer to Error*, to store an error if it happens.
1363  *
1364  * Note that this function does not do anything to cause the data in the
1365  * RAM memory region to be migrated; that is the responsibility of the caller.
1366  */
1367 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1368                                     Object *owner,
1369                                     const char *name,
1370                                     uint64_t size,
1371                                     uint32_t ram_flags,
1372                                     int fd,
1373                                     ram_addr_t offset,
1374                                     Error **errp);
1375 #endif
1376 
1377 /**
1378  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1379  *                              user-provided pointer.  Accesses into the
1380  *                              region will modify memory directly.
1381  *
1382  * @mr: the #MemoryRegion to be initialized.
1383  * @owner: the object that tracks the region's reference count
1384  * @name: Region name, becomes part of RAMBlock name used in migration stream
1385  *        must be unique within any device
1386  * @size: size of the region.
1387  * @ptr: memory to be mapped; must contain at least @size bytes.
1388  *
1389  * Note that this function does not do anything to cause the data in the
1390  * RAM memory region to be migrated; that is the responsibility of the caller.
1391  */
1392 void memory_region_init_ram_ptr(MemoryRegion *mr,
1393                                 Object *owner,
1394                                 const char *name,
1395                                 uint64_t size,
1396                                 void *ptr);
1397 
1398 /**
1399  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1400  *                                     a user-provided pointer.
1401  *
1402  * A RAM device represents a mapping to a physical device, such as to a PCI
1403  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1404  * into the VM address space and access to the region will modify memory
1405  * directly.  However, the memory region should not be included in a memory
1406  * dump (device may not be enabled/mapped at the time of the dump), and
1407  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1408  * skip_dump flag.
1409  *
1410  * @mr: the #MemoryRegion to be initialized.
1411  * @owner: the object that tracks the region's reference count
1412  * @name: the name of the region.
1413  * @size: size of the region.
1414  * @ptr: memory to be mapped; must contain at least @size bytes.
1415  *
1416  * Note that this function does not do anything to cause the data in the
1417  * RAM memory region to be migrated; that is the responsibility of the caller.
1418  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1419  */
1420 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1421                                        Object *owner,
1422                                        const char *name,
1423                                        uint64_t size,
1424                                        void *ptr);
1425 
1426 /**
1427  * memory_region_init_alias: Initialize a memory region that aliases all or a
1428  *                           part of another memory region.
1429  *
1430  * @mr: the #MemoryRegion to be initialized.
1431  * @owner: the object that tracks the region's reference count
1432  * @name: used for debugging; not visible to the user or ABI
1433  * @orig: the region to be referenced; @mr will be equivalent to
1434  *        @orig between @offset and @offset + @size - 1.
1435  * @offset: start of the section in @orig to be referenced.
1436  * @size: size of the region.
1437  */
1438 void memory_region_init_alias(MemoryRegion *mr,
1439                               Object *owner,
1440                               const char *name,
1441                               MemoryRegion *orig,
1442                               hwaddr offset,
1443                               uint64_t size);
1444 
1445 /**
1446  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1447  *
1448  * This has the same effect as calling memory_region_init_ram_nomigrate()
1449  * and then marking the resulting region read-only with
1450  * memory_region_set_readonly().
1451  *
1452  * Note that this function does not do anything to cause the data in the
1453  * RAM side of the memory region to be migrated; that is the responsibility
1454  * of the caller.
1455  *
1456  * @mr: the #MemoryRegion to be initialized.
1457  * @owner: the object that tracks the region's reference count
1458  * @name: Region name, becomes part of RAMBlock name used in migration stream
1459  *        must be unique within any device
1460  * @size: size of the region.
1461  * @errp: pointer to Error*, to store an error if it happens.
1462  */
1463 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1464                                       Object *owner,
1465                                       const char *name,
1466                                       uint64_t size,
1467                                       Error **errp);
1468 
1469 /**
1470  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1471  *                                 Writes are handled via callbacks.
1472  *
1473  * Note that this function does not do anything to cause the data in the
1474  * RAM side of the memory region to be migrated; that is the responsibility
1475  * of the caller.
1476  *
1477  * @mr: the #MemoryRegion to be initialized.
1478  * @owner: the object that tracks the region's reference count
1479  * @ops: callbacks for write access handling (must not be NULL).
1480  * @opaque: passed to the read and write callbacks of the @ops structure.
1481  * @name: Region name, becomes part of RAMBlock name used in migration stream
1482  *        must be unique within any device
1483  * @size: size of the region.
1484  * @errp: pointer to Error*, to store an error if it happens.
1485  */
1486 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1487                                              Object *owner,
1488                                              const MemoryRegionOps *ops,
1489                                              void *opaque,
1490                                              const char *name,
1491                                              uint64_t size,
1492                                              Error **errp);
1493 
1494 /**
1495  * memory_region_init_iommu: Initialize a memory region of a custom type
1496  * that translates addresses
1497  *
1498  * An IOMMU region translates addresses and forwards accesses to a target
1499  * memory region.
1500  *
1501  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1502  * @_iommu_mr should be a pointer to enough memory for an instance of
1503  * that subclass, @instance_size is the size of that subclass, and
1504  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1505  * instance of the subclass, and its methods will then be called to handle
1506  * accesses to the memory region. See the documentation of
1507  * #IOMMUMemoryRegionClass for further details.
1508  *
1509  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1510  * @instance_size: the IOMMUMemoryRegion subclass instance size
1511  * @mrtypename: the type name of the #IOMMUMemoryRegion
1512  * @owner: the object that tracks the region's reference count
1513  * @name: used for debugging; not visible to the user or ABI
1514  * @size: size of the region.
1515  */
1516 void memory_region_init_iommu(void *_iommu_mr,
1517                               size_t instance_size,
1518                               const char *mrtypename,
1519                               Object *owner,
1520                               const char *name,
1521                               uint64_t size);
1522 
1523 /**
1524  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1525  *                          region will modify memory directly.
1526  *
1527  * @mr: the #MemoryRegion to be initialized
1528  * @owner: the object that tracks the region's reference count (must be
1529  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1530  * @name: name of the memory region
1531  * @size: size of the region in bytes
1532  * @errp: pointer to Error*, to store an error if it happens.
1533  *
1534  * This function allocates RAM for a board model or device, and
1535  * arranges for it to be migrated (by calling vmstate_register_ram()
1536  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1537  * @owner is NULL).
1538  *
1539  * TODO: Currently we restrict @owner to being either NULL (for
1540  * global RAM regions with no owner) or devices, so that we can
1541  * give the RAM block a unique name for migration purposes.
1542  * We should lift this restriction and allow arbitrary Objects.
1543  * If you pass a non-NULL non-device @owner then we will assert.
1544  */
1545 void memory_region_init_ram(MemoryRegion *mr,
1546                             Object *owner,
1547                             const char *name,
1548                             uint64_t size,
1549                             Error **errp);
1550 
1551 /**
1552  * memory_region_init_rom: Initialize a ROM memory region.
1553  *
1554  * This has the same effect as calling memory_region_init_ram()
1555  * and then marking the resulting region read-only with
1556  * memory_region_set_readonly(). This includes arranging for the
1557  * contents to be migrated.
1558  *
1559  * TODO: Currently we restrict @owner to being either NULL (for
1560  * global RAM regions with no owner) or devices, so that we can
1561  * give the RAM block a unique name for migration purposes.
1562  * We should lift this restriction and allow arbitrary Objects.
1563  * If you pass a non-NULL non-device @owner then we will assert.
1564  *
1565  * @mr: the #MemoryRegion to be initialized.
1566  * @owner: the object that tracks the region's reference count
1567  * @name: Region name, becomes part of RAMBlock name used in migration stream
1568  *        must be unique within any device
1569  * @size: size of the region.
1570  * @errp: pointer to Error*, to store an error if it happens.
1571  */
1572 void memory_region_init_rom(MemoryRegion *mr,
1573                             Object *owner,
1574                             const char *name,
1575                             uint64_t size,
1576                             Error **errp);
1577 
1578 /**
1579  * memory_region_init_rom_device:  Initialize a ROM memory region.
1580  *                                 Writes are handled via callbacks.
1581  *
1582  * This function initializes a memory region backed by RAM for reads
1583  * and callbacks for writes, and arranges for the RAM backing to
1584  * be migrated (by calling vmstate_register_ram()
1585  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1586  * @owner is NULL).
1587  *
1588  * TODO: Currently we restrict @owner to being either NULL (for
1589  * global RAM regions with no owner) or devices, so that we can
1590  * give the RAM block a unique name for migration purposes.
1591  * We should lift this restriction and allow arbitrary Objects.
1592  * If you pass a non-NULL non-device @owner then we will assert.
1593  *
1594  * @mr: the #MemoryRegion to be initialized.
1595  * @owner: the object that tracks the region's reference count
1596  * @ops: callbacks for write access handling (must not be NULL).
1597  * @opaque: passed to the read and write callbacks of the @ops structure.
1598  * @name: Region name, becomes part of RAMBlock name used in migration stream
1599  *        must be unique within any device
1600  * @size: size of the region.
1601  * @errp: pointer to Error*, to store an error if it happens.
1602  */
1603 void memory_region_init_rom_device(MemoryRegion *mr,
1604                                    Object *owner,
1605                                    const MemoryRegionOps *ops,
1606                                    void *opaque,
1607                                    const char *name,
1608                                    uint64_t size,
1609                                    Error **errp);
1610 
1611 
1612 /**
1613  * memory_region_owner: get a memory region's owner.
1614  *
1615  * @mr: the memory region being queried.
1616  */
1617 Object *memory_region_owner(MemoryRegion *mr);
1618 
1619 /**
1620  * memory_region_size: get a memory region's size.
1621  *
1622  * @mr: the memory region being queried.
1623  */
1624 uint64_t memory_region_size(MemoryRegion *mr);
1625 
1626 /**
1627  * memory_region_is_ram: check whether a memory region is random access
1628  *
1629  * Returns %true if a memory region is random access.
1630  *
1631  * @mr: the memory region being queried
1632  */
1633 static inline bool memory_region_is_ram(MemoryRegion *mr)
1634 {
1635     return mr->ram;
1636 }
1637 
1638 /**
1639  * memory_region_is_ram_device: check whether a memory region is a ram device
1640  *
1641  * Returns %true if a memory region is a device backed ram region
1642  *
1643  * @mr: the memory region being queried
1644  */
1645 bool memory_region_is_ram_device(MemoryRegion *mr);
1646 
1647 /**
1648  * memory_region_is_romd: check whether a memory region is in ROMD mode
1649  *
1650  * Returns %true if a memory region is a ROM device and currently set to allow
1651  * direct reads.
1652  *
1653  * @mr: the memory region being queried
1654  */
1655 static inline bool memory_region_is_romd(MemoryRegion *mr)
1656 {
1657     return mr->rom_device && mr->romd_mode;
1658 }
1659 
1660 /**
1661  * memory_region_is_protected: check whether a memory region is protected
1662  *
1663  * Returns %true if a memory region is protected RAM and cannot be accessed
1664  * via standard mechanisms, e.g. DMA.
1665  *
1666  * @mr: the memory region being queried
1667  */
1668 bool memory_region_is_protected(MemoryRegion *mr);
1669 
1670 /**
1671  * memory_region_get_iommu: check whether a memory region is an iommu
1672  *
1673  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1674  * otherwise NULL.
1675  *
1676  * @mr: the memory region being queried
1677  */
1678 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1679 {
1680     if (mr->alias) {
1681         return memory_region_get_iommu(mr->alias);
1682     }
1683     if (mr->is_iommu) {
1684         return (IOMMUMemoryRegion *) mr;
1685     }
1686     return NULL;
1687 }
1688 
1689 /**
1690  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1691  *   if an iommu or NULL if not
1692  *
1693  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1694  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1695  *
1696  * @iommu_mr: the memory region being queried
1697  */
1698 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1699         IOMMUMemoryRegion *iommu_mr)
1700 {
1701     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1702 }
1703 
1704 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1705 
1706 /**
1707  * memory_region_iommu_get_min_page_size: get minimum supported page size
1708  * for an iommu
1709  *
1710  * Returns minimum supported page size for an iommu.
1711  *
1712  * @iommu_mr: the memory region being queried
1713  */
1714 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1715 
1716 /**
1717  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1718  *
1719  * Note: for any IOMMU implementation, an in-place mapping change
1720  * should be notified with an UNMAP followed by a MAP.
1721  *
1722  * @iommu_mr: the memory region that was changed
1723  * @iommu_idx: the IOMMU index for the translation table which has changed
1724  * @event: TLB event with the new entry in the IOMMU translation table.
1725  *         The entry replaces all old entries for the same virtual I/O address
1726  *         range.
1727  */
1728 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1729                                 int iommu_idx,
1730                                 IOMMUTLBEvent event);
1731 
1732 /**
1733  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1734  *                           entry to a single notifier
1735  *
1736  * This works just like memory_region_notify_iommu(), but it only
1737  * notifies a specific notifier, not all of them.
1738  *
1739  * @notifier: the notifier to be notified
1740  * @event: TLB event with the new entry in the IOMMU translation table.
1741  *         The entry replaces all old entries for the same virtual I/O address
1742  *         range.
1743  */
1744 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1745                                     IOMMUTLBEvent *event);
1746 
1747 /**
1748  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1749  *                                           translation that covers the
1750  *                                           range of a notifier
1751  *
1752  * @notifier: the notifier to be notified
1753  */
1754 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1755 
1756 
1757 /**
1758  * memory_region_register_iommu_notifier: register a notifier for changes to
1759  * IOMMU translation entries.
1760  *
1761  * Returns 0 on success, or a negative errno otherwise. In particular,
1762  * -EINVAL indicates that at least one of the attributes of the notifier
1763  * is not supported (flag/range) by the IOMMU memory region. In case of error
1764  * the error object must be created.
1765  *
1766  * @mr: the memory region to observe
1767  * @n: the IOMMUNotifier to be added; the notify callback receives a
1768  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1769  *     ceases to be valid on exit from the notifier.
1770  * @errp: pointer to Error*, to store an error if it happens.
1771  */
1772 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1773                                           IOMMUNotifier *n, Error **errp);
1774 
1775 /**
1776  * memory_region_iommu_replay: replay existing IOMMU translations to
1777  * a notifier with the minimum page granularity returned by
1778  * mr->iommu_ops->get_page_size().
1779  *
1780  * Note: this is not related to record-and-replay functionality.
1781  *
1782  * @iommu_mr: the memory region to observe
1783  * @n: the notifier to which to replay iommu mappings
1784  */
1785 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1786 
1787 /**
1788  * memory_region_unregister_iommu_notifier: unregister a notifier for
1789  * changes to IOMMU translation entries.
1790  *
1791  * @mr: the memory region which was observed and for which notity_stopped()
1792  *      needs to be called
1793  * @n: the notifier to be removed.
1794  */
1795 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1796                                              IOMMUNotifier *n);
1797 
1798 /**
1799  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1800  * defined on the IOMMU.
1801  *
1802  * Returns 0 on success, or a negative errno otherwise. In particular,
1803  * -EINVAL indicates that the IOMMU does not support the requested
1804  * attribute.
1805  *
1806  * @iommu_mr: the memory region
1807  * @attr: the requested attribute
1808  * @data: a pointer to the requested attribute data
1809  */
1810 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1811                                  enum IOMMUMemoryRegionAttr attr,
1812                                  void *data);
1813 
1814 /**
1815  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1816  * use for translations with the given memory transaction attributes.
1817  *
1818  * @iommu_mr: the memory region
1819  * @attrs: the memory transaction attributes
1820  */
1821 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1822                                        MemTxAttrs attrs);
1823 
1824 /**
1825  * memory_region_iommu_num_indexes: return the total number of IOMMU
1826  * indexes that this IOMMU supports.
1827  *
1828  * @iommu_mr: the memory region
1829  */
1830 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1831 
1832 /**
1833  * memory_region_iommu_set_page_size_mask: set the supported page
1834  * sizes for a given IOMMU memory region
1835  *
1836  * @iommu_mr: IOMMU memory region
1837  * @page_size_mask: supported page size mask
1838  * @errp: pointer to Error*, to store an error if it happens.
1839  */
1840 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1841                                            uint64_t page_size_mask,
1842                                            Error **errp);
1843 
1844 /**
1845  * memory_region_name: get a memory region's name
1846  *
1847  * Returns the string that was used to initialize the memory region.
1848  *
1849  * @mr: the memory region being queried
1850  */
1851 const char *memory_region_name(const MemoryRegion *mr);
1852 
1853 /**
1854  * memory_region_is_logging: return whether a memory region is logging writes
1855  *
1856  * Returns %true if the memory region is logging writes for the given client
1857  *
1858  * @mr: the memory region being queried
1859  * @client: the client being queried
1860  */
1861 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1862 
1863 /**
1864  * memory_region_get_dirty_log_mask: return the clients for which a
1865  * memory region is logging writes.
1866  *
1867  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1868  * are the bit indices.
1869  *
1870  * @mr: the memory region being queried
1871  */
1872 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1873 
1874 /**
1875  * memory_region_is_rom: check whether a memory region is ROM
1876  *
1877  * Returns %true if a memory region is read-only memory.
1878  *
1879  * @mr: the memory region being queried
1880  */
1881 static inline bool memory_region_is_rom(MemoryRegion *mr)
1882 {
1883     return mr->ram && mr->readonly;
1884 }
1885 
1886 /**
1887  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1888  *
1889  * Returns %true is a memory region is non-volatile memory.
1890  *
1891  * @mr: the memory region being queried
1892  */
1893 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1894 {
1895     return mr->nonvolatile;
1896 }
1897 
1898 /**
1899  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1900  *
1901  * Returns a file descriptor backing a file-based RAM memory region,
1902  * or -1 if the region is not a file-based RAM memory region.
1903  *
1904  * @mr: the RAM or alias memory region being queried.
1905  */
1906 int memory_region_get_fd(MemoryRegion *mr);
1907 
1908 /**
1909  * memory_region_from_host: Convert a pointer into a RAM memory region
1910  * and an offset within it.
1911  *
1912  * Given a host pointer inside a RAM memory region (created with
1913  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1914  * the MemoryRegion and the offset within it.
1915  *
1916  * Use with care; by the time this function returns, the returned pointer is
1917  * not protected by RCU anymore.  If the caller is not within an RCU critical
1918  * section and does not hold the iothread lock, it must have other means of
1919  * protecting the pointer, such as a reference to the region that includes
1920  * the incoming ram_addr_t.
1921  *
1922  * @ptr: the host pointer to be converted
1923  * @offset: the offset within memory region
1924  */
1925 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1926 
1927 /**
1928  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1929  *
1930  * Returns a host pointer to a RAM memory region (created with
1931  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1932  *
1933  * Use with care; by the time this function returns, the returned pointer is
1934  * not protected by RCU anymore.  If the caller is not within an RCU critical
1935  * section and does not hold the iothread lock, it must have other means of
1936  * protecting the pointer, such as a reference to the region that includes
1937  * the incoming ram_addr_t.
1938  *
1939  * @mr: the memory region being queried.
1940  */
1941 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1942 
1943 /* memory_region_ram_resize: Resize a RAM region.
1944  *
1945  * Resizing RAM while migrating can result in the migration being canceled.
1946  * Care has to be taken if the guest might have already detected the memory.
1947  *
1948  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1949  * @newsize: the new size the region
1950  * @errp: pointer to Error*, to store an error if it happens.
1951  */
1952 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1953                               Error **errp);
1954 
1955 /**
1956  * memory_region_msync: Synchronize selected address range of
1957  * a memory mapped region
1958  *
1959  * @mr: the memory region to be msync
1960  * @addr: the initial address of the range to be sync
1961  * @size: the size of the range to be sync
1962  */
1963 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1964 
1965 /**
1966  * memory_region_writeback: Trigger cache writeback for
1967  * selected address range
1968  *
1969  * @mr: the memory region to be updated
1970  * @addr: the initial address of the range to be written back
1971  * @size: the size of the range to be written back
1972  */
1973 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1974 
1975 /**
1976  * memory_region_set_log: Turn dirty logging on or off for a region.
1977  *
1978  * Turns dirty logging on or off for a specified client (display, migration).
1979  * Only meaningful for RAM regions.
1980  *
1981  * @mr: the memory region being updated.
1982  * @log: whether dirty logging is to be enabled or disabled.
1983  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1984  */
1985 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1986 
1987 /**
1988  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1989  *
1990  * Marks a range of bytes as dirty, after it has been dirtied outside
1991  * guest code.
1992  *
1993  * @mr: the memory region being dirtied.
1994  * @addr: the address (relative to the start of the region) being dirtied.
1995  * @size: size of the range being dirtied.
1996  */
1997 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1998                              hwaddr size);
1999 
2000 /**
2001  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2002  *
2003  * This function is called when the caller wants to clear the remote
2004  * dirty bitmap of a memory range within the memory region.  This can
2005  * be used by e.g. KVM to manually clear dirty log when
2006  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2007  * kernel.
2008  *
2009  * @mr:     the memory region to clear the dirty log upon
2010  * @start:  start address offset within the memory region
2011  * @len:    length of the memory region to clear dirty bitmap
2012  */
2013 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2014                                       hwaddr len);
2015 
2016 /**
2017  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2018  *                                         bitmap and clear it.
2019  *
2020  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2021  * returns the snapshot.  The snapshot can then be used to query dirty
2022  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2023  * querying the same page multiple times, which is especially useful for
2024  * display updates where the scanlines often are not page aligned.
2025  *
2026  * The dirty bitmap region which gets copied into the snapshot (and
2027  * cleared afterwards) can be larger than requested.  The boundaries
2028  * are rounded up/down so complete bitmap longs (covering 64 pages on
2029  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2030  * isn't a problem for display updates as the extra pages are outside
2031  * the visible area, and in case the visible area changes a full
2032  * display redraw is due anyway.  Should other use cases for this
2033  * function emerge we might have to revisit this implementation
2034  * detail.
2035  *
2036  * Use g_free to release DirtyBitmapSnapshot.
2037  *
2038  * @mr: the memory region being queried.
2039  * @addr: the address (relative to the start of the region) being queried.
2040  * @size: the size of the range being queried.
2041  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2042  */
2043 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2044                                                             hwaddr addr,
2045                                                             hwaddr size,
2046                                                             unsigned client);
2047 
2048 /**
2049  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2050  *                                   in the specified dirty bitmap snapshot.
2051  *
2052  * @mr: the memory region being queried.
2053  * @snap: the dirty bitmap snapshot
2054  * @addr: the address (relative to the start of the region) being queried.
2055  * @size: the size of the range being queried.
2056  */
2057 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2058                                       DirtyBitmapSnapshot *snap,
2059                                       hwaddr addr, hwaddr size);
2060 
2061 /**
2062  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2063  *                            client.
2064  *
2065  * Marks a range of pages as no longer dirty.
2066  *
2067  * @mr: the region being updated.
2068  * @addr: the start of the subrange being cleaned.
2069  * @size: the size of the subrange being cleaned.
2070  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2071  *          %DIRTY_MEMORY_VGA.
2072  */
2073 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2074                                hwaddr size, unsigned client);
2075 
2076 /**
2077  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2078  *                                 TBs (for self-modifying code).
2079  *
2080  * The MemoryRegionOps->write() callback of a ROM device must use this function
2081  * to mark byte ranges that have been modified internally, such as by directly
2082  * accessing the memory returned by memory_region_get_ram_ptr().
2083  *
2084  * This function marks the range dirty and invalidates TBs so that TCG can
2085  * detect self-modifying code.
2086  *
2087  * @mr: the region being flushed.
2088  * @addr: the start, relative to the start of the region, of the range being
2089  *        flushed.
2090  * @size: the size, in bytes, of the range being flushed.
2091  */
2092 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2093 
2094 /**
2095  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2096  *
2097  * Allows a memory region to be marked as read-only (turning it into a ROM).
2098  * only useful on RAM regions.
2099  *
2100  * @mr: the region being updated.
2101  * @readonly: whether rhe region is to be ROM or RAM.
2102  */
2103 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2104 
2105 /**
2106  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2107  *
2108  * Allows a memory region to be marked as non-volatile.
2109  * only useful on RAM regions.
2110  *
2111  * @mr: the region being updated.
2112  * @nonvolatile: whether rhe region is to be non-volatile.
2113  */
2114 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2115 
2116 /**
2117  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2118  *
2119  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2120  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2121  * device is mapped to guest memory and satisfies read access directly.
2122  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2123  * Writes are always handled by the #MemoryRegion.write function.
2124  *
2125  * @mr: the memory region to be updated
2126  * @romd_mode: %true to put the region into ROMD mode
2127  */
2128 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2129 
2130 /**
2131  * memory_region_set_coalescing: Enable memory coalescing for the region.
2132  *
2133  * Enabled writes to a region to be queued for later processing. MMIO ->write
2134  * callbacks may be delayed until a non-coalesced MMIO is issued.
2135  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2136  *
2137  * @mr: the memory region to be write coalesced
2138  */
2139 void memory_region_set_coalescing(MemoryRegion *mr);
2140 
2141 /**
2142  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2143  *                               a region.
2144  *
2145  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2146  * Multiple calls can be issued coalesced disjoint ranges.
2147  *
2148  * @mr: the memory region to be updated.
2149  * @offset: the start of the range within the region to be coalesced.
2150  * @size: the size of the subrange to be coalesced.
2151  */
2152 void memory_region_add_coalescing(MemoryRegion *mr,
2153                                   hwaddr offset,
2154                                   uint64_t size);
2155 
2156 /**
2157  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2158  *
2159  * Disables any coalescing caused by memory_region_set_coalescing() or
2160  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2161  * hardware.
2162  *
2163  * @mr: the memory region to be updated.
2164  */
2165 void memory_region_clear_coalescing(MemoryRegion *mr);
2166 
2167 /**
2168  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2169  *                                    accesses.
2170  *
2171  * Ensure that pending coalesced MMIO request are flushed before the memory
2172  * region is accessed. This property is automatically enabled for all regions
2173  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2174  *
2175  * @mr: the memory region to be updated.
2176  */
2177 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2178 
2179 /**
2180  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2181  *                                      accesses.
2182  *
2183  * Clear the automatic coalesced MMIO flushing enabled via
2184  * memory_region_set_flush_coalesced. Note that this service has no effect on
2185  * memory regions that have MMIO coalescing enabled for themselves. For them,
2186  * automatic flushing will stop once coalescing is disabled.
2187  *
2188  * @mr: the memory region to be updated.
2189  */
2190 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2191 
2192 /**
2193  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2194  *                            is written to a location.
2195  *
2196  * Marks a word in an IO region (initialized with memory_region_init_io())
2197  * as a trigger for an eventfd event.  The I/O callback will not be called.
2198  * The caller must be prepared to handle failure (that is, take the required
2199  * action if the callback _is_ called).
2200  *
2201  * @mr: the memory region being updated.
2202  * @addr: the address within @mr that is to be monitored
2203  * @size: the size of the access to trigger the eventfd
2204  * @match_data: whether to match against @data, instead of just @addr
2205  * @data: the data to match against the guest write
2206  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2207  **/
2208 void memory_region_add_eventfd(MemoryRegion *mr,
2209                                hwaddr addr,
2210                                unsigned size,
2211                                bool match_data,
2212                                uint64_t data,
2213                                EventNotifier *e);
2214 
2215 /**
2216  * memory_region_del_eventfd: Cancel an eventfd.
2217  *
2218  * Cancels an eventfd trigger requested by a previous
2219  * memory_region_add_eventfd() call.
2220  *
2221  * @mr: the memory region being updated.
2222  * @addr: the address within @mr that is to be monitored
2223  * @size: the size of the access to trigger the eventfd
2224  * @match_data: whether to match against @data, instead of just @addr
2225  * @data: the data to match against the guest write
2226  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2227  */
2228 void memory_region_del_eventfd(MemoryRegion *mr,
2229                                hwaddr addr,
2230                                unsigned size,
2231                                bool match_data,
2232                                uint64_t data,
2233                                EventNotifier *e);
2234 
2235 /**
2236  * memory_region_add_subregion: Add a subregion to a container.
2237  *
2238  * Adds a subregion at @offset.  The subregion may not overlap with other
2239  * subregions (except for those explicitly marked as overlapping).  A region
2240  * may only be added once as a subregion (unless removed with
2241  * memory_region_del_subregion()); use memory_region_init_alias() if you
2242  * want a region to be a subregion in multiple locations.
2243  *
2244  * @mr: the region to contain the new subregion; must be a container
2245  *      initialized with memory_region_init().
2246  * @offset: the offset relative to @mr where @subregion is added.
2247  * @subregion: the subregion to be added.
2248  */
2249 void memory_region_add_subregion(MemoryRegion *mr,
2250                                  hwaddr offset,
2251                                  MemoryRegion *subregion);
2252 /**
2253  * memory_region_add_subregion_overlap: Add a subregion to a container
2254  *                                      with overlap.
2255  *
2256  * Adds a subregion at @offset.  The subregion may overlap with other
2257  * subregions.  Conflicts are resolved by having a higher @priority hide a
2258  * lower @priority. Subregions without priority are taken as @priority 0.
2259  * A region may only be added once as a subregion (unless removed with
2260  * memory_region_del_subregion()); use memory_region_init_alias() if you
2261  * want a region to be a subregion in multiple locations.
2262  *
2263  * @mr: the region to contain the new subregion; must be a container
2264  *      initialized with memory_region_init().
2265  * @offset: the offset relative to @mr where @subregion is added.
2266  * @subregion: the subregion to be added.
2267  * @priority: used for resolving overlaps; highest priority wins.
2268  */
2269 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2270                                          hwaddr offset,
2271                                          MemoryRegion *subregion,
2272                                          int priority);
2273 
2274 /**
2275  * memory_region_get_ram_addr: Get the ram address associated with a memory
2276  *                             region
2277  *
2278  * @mr: the region to be queried
2279  */
2280 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2281 
2282 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2283 /**
2284  * memory_region_del_subregion: Remove a subregion.
2285  *
2286  * Removes a subregion from its container.
2287  *
2288  * @mr: the container to be updated.
2289  * @subregion: the region being removed; must be a current subregion of @mr.
2290  */
2291 void memory_region_del_subregion(MemoryRegion *mr,
2292                                  MemoryRegion *subregion);
2293 
2294 /*
2295  * memory_region_set_enabled: dynamically enable or disable a region
2296  *
2297  * Enables or disables a memory region.  A disabled memory region
2298  * ignores all accesses to itself and its subregions.  It does not
2299  * obscure sibling subregions with lower priority - it simply behaves as
2300  * if it was removed from the hierarchy.
2301  *
2302  * Regions default to being enabled.
2303  *
2304  * @mr: the region to be updated
2305  * @enabled: whether to enable or disable the region
2306  */
2307 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2308 
2309 /*
2310  * memory_region_set_address: dynamically update the address of a region
2311  *
2312  * Dynamically updates the address of a region, relative to its container.
2313  * May be used on regions are currently part of a memory hierarchy.
2314  *
2315  * @mr: the region to be updated
2316  * @addr: new address, relative to container region
2317  */
2318 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2319 
2320 /*
2321  * memory_region_set_size: dynamically update the size of a region.
2322  *
2323  * Dynamically updates the size of a region.
2324  *
2325  * @mr: the region to be updated
2326  * @size: used size of the region.
2327  */
2328 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2329 
2330 /*
2331  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2332  *
2333  * Dynamically updates the offset into the target region that an alias points
2334  * to, as if the fourth argument to memory_region_init_alias() has changed.
2335  *
2336  * @mr: the #MemoryRegion to be updated; should be an alias.
2337  * @offset: the new offset into the target memory region
2338  */
2339 void memory_region_set_alias_offset(MemoryRegion *mr,
2340                                     hwaddr offset);
2341 
2342 /**
2343  * memory_region_present: checks if an address relative to a @container
2344  * translates into #MemoryRegion within @container
2345  *
2346  * Answer whether a #MemoryRegion within @container covers the address
2347  * @addr.
2348  *
2349  * @container: a #MemoryRegion within which @addr is a relative address
2350  * @addr: the area within @container to be searched
2351  */
2352 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2353 
2354 /**
2355  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2356  * into another memory region, which does not necessarily imply that it is
2357  * mapped into an address space.
2358  *
2359  * @mr: a #MemoryRegion which should be checked if it's mapped
2360  */
2361 bool memory_region_is_mapped(MemoryRegion *mr);
2362 
2363 /**
2364  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2365  * #MemoryRegion
2366  *
2367  * The #RamDiscardManager cannot change while a memory region is mapped.
2368  *
2369  * @mr: the #MemoryRegion
2370  */
2371 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2372 
2373 /**
2374  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2375  * #RamDiscardManager assigned
2376  *
2377  * @mr: the #MemoryRegion
2378  */
2379 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2380 {
2381     return !!memory_region_get_ram_discard_manager(mr);
2382 }
2383 
2384 /**
2385  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2386  * #MemoryRegion
2387  *
2388  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2389  * that does not cover RAM, or a #MemoryRegion that already has a
2390  * #RamDiscardManager assigned.
2391  *
2392  * @mr: the #MemoryRegion
2393  * @rdm: #RamDiscardManager to set
2394  */
2395 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2396                                            RamDiscardManager *rdm);
2397 
2398 /**
2399  * memory_region_find: translate an address/size relative to a
2400  * MemoryRegion into a #MemoryRegionSection.
2401  *
2402  * Locates the first #MemoryRegion within @mr that overlaps the range
2403  * given by @addr and @size.
2404  *
2405  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2406  * It will have the following characteristics:
2407  * - @size = 0 iff no overlap was found
2408  * - @mr is non-%NULL iff an overlap was found
2409  *
2410  * Remember that in the return value the @offset_within_region is
2411  * relative to the returned region (in the .@mr field), not to the
2412  * @mr argument.
2413  *
2414  * Similarly, the .@offset_within_address_space is relative to the
2415  * address space that contains both regions, the passed and the
2416  * returned one.  However, in the special case where the @mr argument
2417  * has no container (and thus is the root of the address space), the
2418  * following will hold:
2419  * - @offset_within_address_space >= @addr
2420  * - @offset_within_address_space + .@size <= @addr + @size
2421  *
2422  * @mr: a MemoryRegion within which @addr is a relative address
2423  * @addr: start of the area within @as to be searched
2424  * @size: size of the area to be searched
2425  */
2426 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2427                                        hwaddr addr, uint64_t size);
2428 
2429 /**
2430  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2431  *
2432  * Synchronizes the dirty page log for all address spaces.
2433  *
2434  * @last_stage: whether this is the last stage of live migration
2435  */
2436 void memory_global_dirty_log_sync(bool last_stage);
2437 
2438 /**
2439  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2440  *
2441  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2442  * This function must be called after the dirty log bitmap is cleared, and
2443  * before dirty guest memory pages are read.  If you are using
2444  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2445  * care of doing this.
2446  */
2447 void memory_global_after_dirty_log_sync(void);
2448 
2449 /**
2450  * memory_region_transaction_begin: Start a transaction.
2451  *
2452  * During a transaction, changes will be accumulated and made visible
2453  * only when the transaction ends (is committed).
2454  */
2455 void memory_region_transaction_begin(void);
2456 
2457 /**
2458  * memory_region_transaction_commit: Commit a transaction and make changes
2459  *                                   visible to the guest.
2460  */
2461 void memory_region_transaction_commit(void);
2462 
2463 /**
2464  * memory_listener_register: register callbacks to be called when memory
2465  *                           sections are mapped or unmapped into an address
2466  *                           space
2467  *
2468  * @listener: an object containing the callbacks to be called
2469  * @filter: if non-%NULL, only regions in this address space will be observed
2470  */
2471 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2472 
2473 /**
2474  * memory_listener_unregister: undo the effect of memory_listener_register()
2475  *
2476  * @listener: an object containing the callbacks to be removed
2477  */
2478 void memory_listener_unregister(MemoryListener *listener);
2479 
2480 /**
2481  * memory_global_dirty_log_start: begin dirty logging for all regions
2482  *
2483  * @flags: purpose of starting dirty log, migration or dirty rate
2484  */
2485 void memory_global_dirty_log_start(unsigned int flags);
2486 
2487 /**
2488  * memory_global_dirty_log_stop: end dirty logging for all regions
2489  *
2490  * @flags: purpose of stopping dirty log, migration or dirty rate
2491  */
2492 void memory_global_dirty_log_stop(unsigned int flags);
2493 
2494 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2495 
2496 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2497                                 unsigned size, bool is_write,
2498                                 MemTxAttrs attrs);
2499 
2500 /**
2501  * memory_region_dispatch_read: perform a read directly to the specified
2502  * MemoryRegion.
2503  *
2504  * @mr: #MemoryRegion to access
2505  * @addr: address within that region
2506  * @pval: pointer to uint64_t which the data is written to
2507  * @op: size, sign, and endianness of the memory operation
2508  * @attrs: memory transaction attributes to use for the access
2509  */
2510 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2511                                         hwaddr addr,
2512                                         uint64_t *pval,
2513                                         MemOp op,
2514                                         MemTxAttrs attrs);
2515 /**
2516  * memory_region_dispatch_write: perform a write directly to the specified
2517  * MemoryRegion.
2518  *
2519  * @mr: #MemoryRegion to access
2520  * @addr: address within that region
2521  * @data: data to write
2522  * @op: size, sign, and endianness of the memory operation
2523  * @attrs: memory transaction attributes to use for the access
2524  */
2525 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2526                                          hwaddr addr,
2527                                          uint64_t data,
2528                                          MemOp op,
2529                                          MemTxAttrs attrs);
2530 
2531 /**
2532  * address_space_init: initializes an address space
2533  *
2534  * @as: an uninitialized #AddressSpace
2535  * @root: a #MemoryRegion that routes addresses for the address space
2536  * @name: an address space name.  The name is only used for debugging
2537  *        output.
2538  */
2539 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2540 
2541 /**
2542  * address_space_destroy: destroy an address space
2543  *
2544  * Releases all resources associated with an address space.  After an address space
2545  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2546  * as well.
2547  *
2548  * @as: address space to be destroyed
2549  */
2550 void address_space_destroy(AddressSpace *as);
2551 
2552 /**
2553  * address_space_remove_listeners: unregister all listeners of an address space
2554  *
2555  * Removes all callbacks previously registered with memory_listener_register()
2556  * for @as.
2557  *
2558  * @as: an initialized #AddressSpace
2559  */
2560 void address_space_remove_listeners(AddressSpace *as);
2561 
2562 /**
2563  * address_space_rw: read from or write to an address space.
2564  *
2565  * Return a MemTxResult indicating whether the operation succeeded
2566  * or failed (eg unassigned memory, device rejected the transaction,
2567  * IOMMU fault).
2568  *
2569  * @as: #AddressSpace to be accessed
2570  * @addr: address within that address space
2571  * @attrs: memory transaction attributes
2572  * @buf: buffer with the data transferred
2573  * @len: the number of bytes to read or write
2574  * @is_write: indicates the transfer direction
2575  */
2576 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2577                              MemTxAttrs attrs, void *buf,
2578                              hwaddr len, bool is_write);
2579 
2580 /**
2581  * address_space_write: write to address space.
2582  *
2583  * Return a MemTxResult indicating whether the operation succeeded
2584  * or failed (eg unassigned memory, device rejected the transaction,
2585  * IOMMU fault).
2586  *
2587  * @as: #AddressSpace to be accessed
2588  * @addr: address within that address space
2589  * @attrs: memory transaction attributes
2590  * @buf: buffer with the data transferred
2591  * @len: the number of bytes to write
2592  */
2593 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2594                                 MemTxAttrs attrs,
2595                                 const void *buf, hwaddr len);
2596 
2597 /**
2598  * address_space_write_rom: write to address space, including ROM.
2599  *
2600  * This function writes to the specified address space, but will
2601  * write data to both ROM and RAM. This is used for non-guest
2602  * writes like writes from the gdb debug stub or initial loading
2603  * of ROM contents.
2604  *
2605  * Note that portions of the write which attempt to write data to
2606  * a device will be silently ignored -- only real RAM and ROM will
2607  * be written to.
2608  *
2609  * Return a MemTxResult indicating whether the operation succeeded
2610  * or failed (eg unassigned memory, device rejected the transaction,
2611  * IOMMU fault).
2612  *
2613  * @as: #AddressSpace to be accessed
2614  * @addr: address within that address space
2615  * @attrs: memory transaction attributes
2616  * @buf: buffer with the data transferred
2617  * @len: the number of bytes to write
2618  */
2619 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2620                                     MemTxAttrs attrs,
2621                                     const void *buf, hwaddr len);
2622 
2623 /* address_space_ld*: load from an address space
2624  * address_space_st*: store to an address space
2625  *
2626  * These functions perform a load or store of the byte, word,
2627  * longword or quad to the specified address within the AddressSpace.
2628  * The _le suffixed functions treat the data as little endian;
2629  * _be indicates big endian; no suffix indicates "same endianness
2630  * as guest CPU".
2631  *
2632  * The "guest CPU endianness" accessors are deprecated for use outside
2633  * target-* code; devices should be CPU-agnostic and use either the LE
2634  * or the BE accessors.
2635  *
2636  * @as #AddressSpace to be accessed
2637  * @addr: address within that address space
2638  * @val: data value, for stores
2639  * @attrs: memory transaction attributes
2640  * @result: location to write the success/failure of the transaction;
2641  *   if NULL, this information is discarded
2642  */
2643 
2644 #define SUFFIX
2645 #define ARG1         as
2646 #define ARG1_DECL    AddressSpace *as
2647 #include "exec/memory_ldst.h.inc"
2648 
2649 #define SUFFIX
2650 #define ARG1         as
2651 #define ARG1_DECL    AddressSpace *as
2652 #include "exec/memory_ldst_phys.h.inc"
2653 
2654 struct MemoryRegionCache {
2655     void *ptr;
2656     hwaddr xlat;
2657     hwaddr len;
2658     FlatView *fv;
2659     MemoryRegionSection mrs;
2660     bool is_write;
2661 };
2662 
2663 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2664 
2665 
2666 /* address_space_ld*_cached: load from a cached #MemoryRegion
2667  * address_space_st*_cached: store into a cached #MemoryRegion
2668  *
2669  * These functions perform a load or store of the byte, word,
2670  * longword or quad to the specified address.  The address is
2671  * a physical address in the AddressSpace, but it must lie within
2672  * a #MemoryRegion that was mapped with address_space_cache_init.
2673  *
2674  * The _le suffixed functions treat the data as little endian;
2675  * _be indicates big endian; no suffix indicates "same endianness
2676  * as guest CPU".
2677  *
2678  * The "guest CPU endianness" accessors are deprecated for use outside
2679  * target-* code; devices should be CPU-agnostic and use either the LE
2680  * or the BE accessors.
2681  *
2682  * @cache: previously initialized #MemoryRegionCache to be accessed
2683  * @addr: address within the address space
2684  * @val: data value, for stores
2685  * @attrs: memory transaction attributes
2686  * @result: location to write the success/failure of the transaction;
2687  *   if NULL, this information is discarded
2688  */
2689 
2690 #define SUFFIX       _cached_slow
2691 #define ARG1         cache
2692 #define ARG1_DECL    MemoryRegionCache *cache
2693 #include "exec/memory_ldst.h.inc"
2694 
2695 /* Inline fast path for direct RAM access.  */
2696 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2697     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2698 {
2699     assert(addr < cache->len);
2700     if (likely(cache->ptr)) {
2701         return ldub_p(cache->ptr + addr);
2702     } else {
2703         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2704     }
2705 }
2706 
2707 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2708     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2709 {
2710     assert(addr < cache->len);
2711     if (likely(cache->ptr)) {
2712         stb_p(cache->ptr + addr, val);
2713     } else {
2714         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2715     }
2716 }
2717 
2718 #define ENDIANNESS   _le
2719 #include "exec/memory_ldst_cached.h.inc"
2720 
2721 #define ENDIANNESS   _be
2722 #include "exec/memory_ldst_cached.h.inc"
2723 
2724 #define SUFFIX       _cached
2725 #define ARG1         cache
2726 #define ARG1_DECL    MemoryRegionCache *cache
2727 #include "exec/memory_ldst_phys.h.inc"
2728 
2729 /* address_space_cache_init: prepare for repeated access to a physical
2730  * memory region
2731  *
2732  * @cache: #MemoryRegionCache to be filled
2733  * @as: #AddressSpace to be accessed
2734  * @addr: address within that address space
2735  * @len: length of buffer
2736  * @is_write: indicates the transfer direction
2737  *
2738  * Will only work with RAM, and may map a subset of the requested range by
2739  * returning a value that is less than @len.  On failure, return a negative
2740  * errno value.
2741  *
2742  * Because it only works with RAM, this function can be used for
2743  * read-modify-write operations.  In this case, is_write should be %true.
2744  *
2745  * Note that addresses passed to the address_space_*_cached functions
2746  * are relative to @addr.
2747  */
2748 int64_t address_space_cache_init(MemoryRegionCache *cache,
2749                                  AddressSpace *as,
2750                                  hwaddr addr,
2751                                  hwaddr len,
2752                                  bool is_write);
2753 
2754 /**
2755  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2756  *
2757  * @cache: The #MemoryRegionCache to operate on.
2758  * @addr: The first physical address that was written, relative to the
2759  * address that was passed to @address_space_cache_init.
2760  * @access_len: The number of bytes that were written starting at @addr.
2761  */
2762 void address_space_cache_invalidate(MemoryRegionCache *cache,
2763                                     hwaddr addr,
2764                                     hwaddr access_len);
2765 
2766 /**
2767  * address_space_cache_destroy: free a #MemoryRegionCache
2768  *
2769  * @cache: The #MemoryRegionCache whose memory should be released.
2770  */
2771 void address_space_cache_destroy(MemoryRegionCache *cache);
2772 
2773 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2774  * entry. Should be called from an RCU critical section.
2775  */
2776 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2777                                             bool is_write, MemTxAttrs attrs);
2778 
2779 /* address_space_translate: translate an address range into an address space
2780  * into a MemoryRegion and an address range into that section.  Should be
2781  * called from an RCU critical section, to avoid that the last reference
2782  * to the returned region disappears after address_space_translate returns.
2783  *
2784  * @fv: #FlatView to be accessed
2785  * @addr: address within that address space
2786  * @xlat: pointer to address within the returned memory region section's
2787  * #MemoryRegion.
2788  * @len: pointer to length
2789  * @is_write: indicates the transfer direction
2790  * @attrs: memory attributes
2791  */
2792 MemoryRegion *flatview_translate(FlatView *fv,
2793                                  hwaddr addr, hwaddr *xlat,
2794                                  hwaddr *len, bool is_write,
2795                                  MemTxAttrs attrs);
2796 
2797 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2798                                                     hwaddr addr, hwaddr *xlat,
2799                                                     hwaddr *len, bool is_write,
2800                                                     MemTxAttrs attrs)
2801 {
2802     return flatview_translate(address_space_to_flatview(as),
2803                               addr, xlat, len, is_write, attrs);
2804 }
2805 
2806 /* address_space_access_valid: check for validity of accessing an address
2807  * space range
2808  *
2809  * Check whether memory is assigned to the given address space range, and
2810  * access is permitted by any IOMMU regions that are active for the address
2811  * space.
2812  *
2813  * For now, addr and len should be aligned to a page size.  This limitation
2814  * will be lifted in the future.
2815  *
2816  * @as: #AddressSpace to be accessed
2817  * @addr: address within that address space
2818  * @len: length of the area to be checked
2819  * @is_write: indicates the transfer direction
2820  * @attrs: memory attributes
2821  */
2822 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2823                                 bool is_write, MemTxAttrs attrs);
2824 
2825 /* address_space_map: map a physical memory region into a host virtual address
2826  *
2827  * May map a subset of the requested range, given by and returned in @plen.
2828  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2829  * the mapping are exhausted.
2830  * Use only for reads OR writes - not for read-modify-write operations.
2831  * Use cpu_register_map_client() to know when retrying the map operation is
2832  * likely to succeed.
2833  *
2834  * @as: #AddressSpace to be accessed
2835  * @addr: address within that address space
2836  * @plen: pointer to length of buffer; updated on return
2837  * @is_write: indicates the transfer direction
2838  * @attrs: memory attributes
2839  */
2840 void *address_space_map(AddressSpace *as, hwaddr addr,
2841                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2842 
2843 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2844  *
2845  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2846  * the amount of memory that was actually read or written by the caller.
2847  *
2848  * @as: #AddressSpace used
2849  * @buffer: host pointer as returned by address_space_map()
2850  * @len: buffer length as returned by address_space_map()
2851  * @access_len: amount of data actually transferred
2852  * @is_write: indicates the transfer direction
2853  */
2854 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2855                          bool is_write, hwaddr access_len);
2856 
2857 
2858 /* Internal functions, part of the implementation of address_space_read.  */
2859 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2860                                     MemTxAttrs attrs, void *buf, hwaddr len);
2861 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2862                                    MemTxAttrs attrs, void *buf,
2863                                    hwaddr len, hwaddr addr1, hwaddr l,
2864                                    MemoryRegion *mr);
2865 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2866 
2867 /* Internal functions, part of the implementation of address_space_read_cached
2868  * and address_space_write_cached.  */
2869 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2870                                            hwaddr addr, void *buf, hwaddr len);
2871 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2872                                             hwaddr addr, const void *buf,
2873                                             hwaddr len);
2874 
2875 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2876 bool prepare_mmio_access(MemoryRegion *mr);
2877 
2878 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2879 {
2880     if (is_write) {
2881         return memory_region_is_ram(mr) && !mr->readonly &&
2882                !mr->rom_device && !memory_region_is_ram_device(mr);
2883     } else {
2884         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2885                memory_region_is_romd(mr);
2886     }
2887 }
2888 
2889 /**
2890  * address_space_read: read from an address space.
2891  *
2892  * Return a MemTxResult indicating whether the operation succeeded
2893  * or failed (eg unassigned memory, device rejected the transaction,
2894  * IOMMU fault).  Called within RCU critical section.
2895  *
2896  * @as: #AddressSpace to be accessed
2897  * @addr: address within that address space
2898  * @attrs: memory transaction attributes
2899  * @buf: buffer with the data transferred
2900  * @len: length of the data transferred
2901  */
2902 static inline __attribute__((__always_inline__))
2903 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2904                                MemTxAttrs attrs, void *buf,
2905                                hwaddr len)
2906 {
2907     MemTxResult result = MEMTX_OK;
2908     hwaddr l, addr1;
2909     void *ptr;
2910     MemoryRegion *mr;
2911     FlatView *fv;
2912 
2913     if (__builtin_constant_p(len)) {
2914         if (len) {
2915             RCU_READ_LOCK_GUARD();
2916             fv = address_space_to_flatview(as);
2917             l = len;
2918             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2919             if (len == l && memory_access_is_direct(mr, false)) {
2920                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2921                 memcpy(buf, ptr, len);
2922             } else {
2923                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2924                                                 addr1, l, mr);
2925             }
2926         }
2927     } else {
2928         result = address_space_read_full(as, addr, attrs, buf, len);
2929     }
2930     return result;
2931 }
2932 
2933 /**
2934  * address_space_read_cached: read from a cached RAM region
2935  *
2936  * @cache: Cached region to be addressed
2937  * @addr: address relative to the base of the RAM region
2938  * @buf: buffer with the data transferred
2939  * @len: length of the data transferred
2940  */
2941 static inline MemTxResult
2942 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2943                           void *buf, hwaddr len)
2944 {
2945     assert(addr < cache->len && len <= cache->len - addr);
2946     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2947     if (likely(cache->ptr)) {
2948         memcpy(buf, cache->ptr + addr, len);
2949         return MEMTX_OK;
2950     } else {
2951         return address_space_read_cached_slow(cache, addr, buf, len);
2952     }
2953 }
2954 
2955 /**
2956  * address_space_write_cached: write to a cached RAM region
2957  *
2958  * @cache: Cached region to be addressed
2959  * @addr: address relative to the base of the RAM region
2960  * @buf: buffer with the data transferred
2961  * @len: length of the data transferred
2962  */
2963 static inline MemTxResult
2964 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2965                            const void *buf, hwaddr len)
2966 {
2967     assert(addr < cache->len && len <= cache->len - addr);
2968     if (likely(cache->ptr)) {
2969         memcpy(cache->ptr + addr, buf, len);
2970         return MEMTX_OK;
2971     } else {
2972         return address_space_write_cached_slow(cache, addr, buf, len);
2973     }
2974 }
2975 
2976 /**
2977  * address_space_set: Fill address space with a constant byte.
2978  *
2979  * Return a MemTxResult indicating whether the operation succeeded
2980  * or failed (eg unassigned memory, device rejected the transaction,
2981  * IOMMU fault).
2982  *
2983  * @as: #AddressSpace to be accessed
2984  * @addr: address within that address space
2985  * @c: constant byte to fill the memory
2986  * @len: the number of bytes to fill with the constant byte
2987  * @attrs: memory transaction attributes
2988  */
2989 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2990                               uint8_t c, hwaddr len, MemTxAttrs attrs);
2991 
2992 #ifdef NEED_CPU_H
2993 /* enum device_endian to MemOp.  */
2994 static inline MemOp devend_memop(enum device_endian end)
2995 {
2996     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2997                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2998 
2999 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3000     /* Swap if non-host endianness or native (target) endianness */
3001     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3002 #else
3003     const int non_host_endianness =
3004         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3005 
3006     /* In this case, native (target) endianness needs no swap.  */
3007     return (end == non_host_endianness) ? MO_BSWAP : 0;
3008 #endif
3009 }
3010 #endif
3011 
3012 /*
3013  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3014  * to manage the actual amount of memory consumed by the VM (then, the memory
3015  * provided by RAM blocks might be bigger than the desired memory consumption).
3016  * This *must* be set if:
3017  * - Discarding parts of a RAM blocks does not result in the change being
3018  *   reflected in the VM and the pages getting freed.
3019  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3020  *   discards blindly.
3021  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3022  *   encrypted VMs).
3023  * Technologies that only temporarily pin the current working set of a
3024  * driver are fine, because we don't expect such pages to be discarded
3025  * (esp. based on guest action like balloon inflation).
3026  *
3027  * This is *not* to be used to protect from concurrent discards (esp.,
3028  * postcopy).
3029  *
3030  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3031  * discards to work reliably is active.
3032  */
3033 int ram_block_discard_disable(bool state);
3034 
3035 /*
3036  * See ram_block_discard_disable(): only disable uncoordinated discards,
3037  * keeping coordinated discards (via the RamDiscardManager) enabled.
3038  */
3039 int ram_block_uncoordinated_discard_disable(bool state);
3040 
3041 /*
3042  * Inhibit technologies that disable discarding of pages in RAM blocks.
3043  *
3044  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3045  * broken.
3046  */
3047 int ram_block_discard_require(bool state);
3048 
3049 /*
3050  * See ram_block_discard_require(): only inhibit technologies that disable
3051  * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3052  * technologies that only inhibit uncoordinated discards (via the
3053  * RamDiscardManager).
3054  */
3055 int ram_block_coordinated_discard_require(bool state);
3056 
3057 /*
3058  * Test if any discarding of memory in ram blocks is disabled.
3059  */
3060 bool ram_block_discard_is_disabled(void);
3061 
3062 /*
3063  * Test if any discarding of memory in ram blocks is required to work reliably.
3064  */
3065 bool ram_block_discard_is_required(void);
3066 
3067 #endif
3068 
3069 #endif
3070