xref: /openbmc/qemu/include/exec/memory.h (revision c2387413)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38                          TYPE_MEMORY_REGION)
39 
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44 
45 #ifdef CONFIG_FUZZ
46 void fuzz_dma_read_cb(size_t addr,
47                       size_t len,
48                       MemoryRegion *mr);
49 #else
50 static inline void fuzz_dma_read_cb(size_t addr,
51                                     size_t len,
52                                     MemoryRegion *mr)
53 {
54     /* Do Nothing */
55 }
56 #endif
57 
58 extern bool global_dirty_log;
59 
60 typedef struct MemoryRegionOps MemoryRegionOps;
61 
62 struct ReservedRegion {
63     hwaddr low;
64     hwaddr high;
65     unsigned type;
66 };
67 
68 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
69 
70 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
71 typedef enum {
72     IOMMU_NONE = 0,
73     IOMMU_RO   = 1,
74     IOMMU_WO   = 2,
75     IOMMU_RW   = 3,
76 } IOMMUAccessFlags;
77 
78 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
79 
80 struct IOMMUTLBEntry {
81     AddressSpace    *target_as;
82     hwaddr           iova;
83     hwaddr           translated_addr;
84     hwaddr           addr_mask;  /* 0xfff = 4k translation */
85     IOMMUAccessFlags perm;
86 };
87 
88 /*
89  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
90  * register with one or multiple IOMMU Notifier capability bit(s).
91  */
92 typedef enum {
93     IOMMU_NOTIFIER_NONE = 0,
94     /* Notify cache invalidations */
95     IOMMU_NOTIFIER_UNMAP = 0x1,
96     /* Notify entry changes (newly created entries) */
97     IOMMU_NOTIFIER_MAP = 0x2,
98     /* Notify changes on device IOTLB entries */
99     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
100 } IOMMUNotifierFlag;
101 
102 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
103 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
104 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
105                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
106 
107 struct IOMMUNotifier;
108 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
109                             IOMMUTLBEntry *data);
110 
111 struct IOMMUNotifier {
112     IOMMUNotify notify;
113     IOMMUNotifierFlag notifier_flags;
114     /* Notify for address space range start <= addr <= end */
115     hwaddr start;
116     hwaddr end;
117     int iommu_idx;
118     QLIST_ENTRY(IOMMUNotifier) node;
119 };
120 typedef struct IOMMUNotifier IOMMUNotifier;
121 
122 typedef struct IOMMUTLBEvent {
123     IOMMUNotifierFlag type;
124     IOMMUTLBEntry entry;
125 } IOMMUTLBEvent;
126 
127 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
128 #define RAM_PREALLOC   (1 << 0)
129 
130 /* RAM is mmap-ed with MAP_SHARED */
131 #define RAM_SHARED     (1 << 1)
132 
133 /* Only a portion of RAM (used_length) is actually used, and migrated.
134  * This used_length size can change across reboots.
135  */
136 #define RAM_RESIZEABLE (1 << 2)
137 
138 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
139  * zero the page and wake waiting processes.
140  * (Set during postcopy)
141  */
142 #define RAM_UF_ZEROPAGE (1 << 3)
143 
144 /* RAM can be migrated */
145 #define RAM_MIGRATABLE (1 << 4)
146 
147 /* RAM is a persistent kind memory */
148 #define RAM_PMEM (1 << 5)
149 
150 
151 /*
152  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
153  * support 'write-tracking' migration type.
154  * Implies ram_state->ram_wt_enabled.
155  */
156 #define RAM_UF_WRITEPROTECT (1 << 6)
157 
158 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
159                                        IOMMUNotifierFlag flags,
160                                        hwaddr start, hwaddr end,
161                                        int iommu_idx)
162 {
163     n->notify = fn;
164     n->notifier_flags = flags;
165     n->start = start;
166     n->end = end;
167     n->iommu_idx = iommu_idx;
168 }
169 
170 /*
171  * Memory region callbacks
172  */
173 struct MemoryRegionOps {
174     /* Read from the memory region. @addr is relative to @mr; @size is
175      * in bytes. */
176     uint64_t (*read)(void *opaque,
177                      hwaddr addr,
178                      unsigned size);
179     /* Write to the memory region. @addr is relative to @mr; @size is
180      * in bytes. */
181     void (*write)(void *opaque,
182                   hwaddr addr,
183                   uint64_t data,
184                   unsigned size);
185 
186     MemTxResult (*read_with_attrs)(void *opaque,
187                                    hwaddr addr,
188                                    uint64_t *data,
189                                    unsigned size,
190                                    MemTxAttrs attrs);
191     MemTxResult (*write_with_attrs)(void *opaque,
192                                     hwaddr addr,
193                                     uint64_t data,
194                                     unsigned size,
195                                     MemTxAttrs attrs);
196 
197     enum device_endian endianness;
198     /* Guest-visible constraints: */
199     struct {
200         /* If nonzero, specify bounds on access sizes beyond which a machine
201          * check is thrown.
202          */
203         unsigned min_access_size;
204         unsigned max_access_size;
205         /* If true, unaligned accesses are supported.  Otherwise unaligned
206          * accesses throw machine checks.
207          */
208          bool unaligned;
209         /*
210          * If present, and returns #false, the transaction is not accepted
211          * by the device (and results in machine dependent behaviour such
212          * as a machine check exception).
213          */
214         bool (*accepts)(void *opaque, hwaddr addr,
215                         unsigned size, bool is_write,
216                         MemTxAttrs attrs);
217     } valid;
218     /* Internal implementation constraints: */
219     struct {
220         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
221          * will be rounded upwards and a partial result will be returned.
222          */
223         unsigned min_access_size;
224         /* If nonzero, specifies the maximum size implemented.  Larger sizes
225          * will be done as a series of accesses with smaller sizes.
226          */
227         unsigned max_access_size;
228         /* If true, unaligned accesses are supported.  Otherwise all accesses
229          * are converted to (possibly multiple) naturally aligned accesses.
230          */
231         bool unaligned;
232     } impl;
233 };
234 
235 typedef struct MemoryRegionClass {
236     /* private */
237     ObjectClass parent_class;
238 } MemoryRegionClass;
239 
240 
241 enum IOMMUMemoryRegionAttr {
242     IOMMU_ATTR_SPAPR_TCE_FD
243 };
244 
245 /*
246  * IOMMUMemoryRegionClass:
247  *
248  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
249  * and provide an implementation of at least the @translate method here
250  * to handle requests to the memory region. Other methods are optional.
251  *
252  * The IOMMU implementation must use the IOMMU notifier infrastructure
253  * to report whenever mappings are changed, by calling
254  * memory_region_notify_iommu() (or, if necessary, by calling
255  * memory_region_notify_iommu_one() for each registered notifier).
256  *
257  * Conceptually an IOMMU provides a mapping from input address
258  * to an output TLB entry. If the IOMMU is aware of memory transaction
259  * attributes and the output TLB entry depends on the transaction
260  * attributes, we represent this using IOMMU indexes. Each index
261  * selects a particular translation table that the IOMMU has:
262  *
263  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
264  *
265  *   @translate takes an input address and an IOMMU index
266  *
267  * and the mapping returned can only depend on the input address and the
268  * IOMMU index.
269  *
270  * Most IOMMUs don't care about the transaction attributes and support
271  * only a single IOMMU index. A more complex IOMMU might have one index
272  * for secure transactions and one for non-secure transactions.
273  */
274 struct IOMMUMemoryRegionClass {
275     /* private: */
276     MemoryRegionClass parent_class;
277 
278     /* public: */
279     /**
280      * @translate:
281      *
282      * Return a TLB entry that contains a given address.
283      *
284      * The IOMMUAccessFlags indicated via @flag are optional and may
285      * be specified as IOMMU_NONE to indicate that the caller needs
286      * the full translation information for both reads and writes. If
287      * the access flags are specified then the IOMMU implementation
288      * may use this as an optimization, to stop doing a page table
289      * walk as soon as it knows that the requested permissions are not
290      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
291      * full page table walk and report the permissions in the returned
292      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
293      * return different mappings for reads and writes.)
294      *
295      * The returned information remains valid while the caller is
296      * holding the big QEMU lock or is inside an RCU critical section;
297      * if the caller wishes to cache the mapping beyond that it must
298      * register an IOMMU notifier so it can invalidate its cached
299      * information when the IOMMU mapping changes.
300      *
301      * @iommu: the IOMMUMemoryRegion
302      *
303      * @hwaddr: address to be translated within the memory region
304      *
305      * @flag: requested access permission
306      *
307      * @iommu_idx: IOMMU index for the translation
308      */
309     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
310                                IOMMUAccessFlags flag, int iommu_idx);
311     /**
312      * @get_min_page_size:
313      *
314      * Returns minimum supported page size in bytes.
315      *
316      * If this method is not provided then the minimum is assumed to
317      * be TARGET_PAGE_SIZE.
318      *
319      * @iommu: the IOMMUMemoryRegion
320      */
321     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
322     /**
323      * @notify_flag_changed:
324      *
325      * Called when IOMMU Notifier flag changes (ie when the set of
326      * events which IOMMU users are requesting notification for changes).
327      * Optional method -- need not be provided if the IOMMU does not
328      * need to know exactly which events must be notified.
329      *
330      * @iommu: the IOMMUMemoryRegion
331      *
332      * @old_flags: events which previously needed to be notified
333      *
334      * @new_flags: events which now need to be notified
335      *
336      * Returns 0 on success, or a negative errno; in particular
337      * returns -EINVAL if the new flag bitmap is not supported by the
338      * IOMMU memory region. In case of failure, the error object
339      * must be created
340      */
341     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
342                                IOMMUNotifierFlag old_flags,
343                                IOMMUNotifierFlag new_flags,
344                                Error **errp);
345     /**
346      * @replay:
347      *
348      * Called to handle memory_region_iommu_replay().
349      *
350      * The default implementation of memory_region_iommu_replay() is to
351      * call the IOMMU translate method for every page in the address space
352      * with flag == IOMMU_NONE and then call the notifier if translate
353      * returns a valid mapping. If this method is implemented then it
354      * overrides the default behaviour, and must provide the full semantics
355      * of memory_region_iommu_replay(), by calling @notifier for every
356      * translation present in the IOMMU.
357      *
358      * Optional method -- an IOMMU only needs to provide this method
359      * if the default is inefficient or produces undesirable side effects.
360      *
361      * Note: this is not related to record-and-replay functionality.
362      */
363     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
364 
365     /**
366      * @get_attr:
367      *
368      * Get IOMMU misc attributes. This is an optional method that
369      * can be used to allow users of the IOMMU to get implementation-specific
370      * information. The IOMMU implements this method to handle calls
371      * by IOMMU users to memory_region_iommu_get_attr() by filling in
372      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
373      * the IOMMU supports. If the method is unimplemented then
374      * memory_region_iommu_get_attr() will always return -EINVAL.
375      *
376      * @iommu: the IOMMUMemoryRegion
377      *
378      * @attr: attribute being queried
379      *
380      * @data: memory to fill in with the attribute data
381      *
382      * Returns 0 on success, or a negative errno; in particular
383      * returns -EINVAL for unrecognized or unimplemented attribute types.
384      */
385     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
386                     void *data);
387 
388     /**
389      * @attrs_to_index:
390      *
391      * Return the IOMMU index to use for a given set of transaction attributes.
392      *
393      * Optional method: if an IOMMU only supports a single IOMMU index then
394      * the default implementation of memory_region_iommu_attrs_to_index()
395      * will return 0.
396      *
397      * The indexes supported by an IOMMU must be contiguous, starting at 0.
398      *
399      * @iommu: the IOMMUMemoryRegion
400      * @attrs: memory transaction attributes
401      */
402     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
403 
404     /**
405      * @num_indexes:
406      *
407      * Return the number of IOMMU indexes this IOMMU supports.
408      *
409      * Optional method: if this method is not provided, then
410      * memory_region_iommu_num_indexes() will return 1, indicating that
411      * only a single IOMMU index is supported.
412      *
413      * @iommu: the IOMMUMemoryRegion
414      */
415     int (*num_indexes)(IOMMUMemoryRegion *iommu);
416 
417     /**
418      * @iommu_set_page_size_mask:
419      *
420      * Restrict the page size mask that can be supported with a given IOMMU
421      * memory region. Used for example to propagate host physical IOMMU page
422      * size mask limitations to the virtual IOMMU.
423      *
424      * Optional method: if this method is not provided, then the default global
425      * page mask is used.
426      *
427      * @iommu: the IOMMUMemoryRegion
428      *
429      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
430      * representing the smallest page size, must be set. Additional set bits
431      * represent supported block sizes. For example a host physical IOMMU that
432      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
433      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
434      * block sizes is specified with mask 0xfffffffffffff000.
435      *
436      * Returns 0 on success, or a negative error. In case of failure, the error
437      * object must be created.
438      */
439      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
440                                      uint64_t page_size_mask,
441                                      Error **errp);
442 };
443 
444 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
445 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
446 
447 /** MemoryRegion:
448  *
449  * A struct representing a memory region.
450  */
451 struct MemoryRegion {
452     Object parent_obj;
453 
454     /* private: */
455 
456     /* The following fields should fit in a cache line */
457     bool romd_mode;
458     bool ram;
459     bool subpage;
460     bool readonly; /* For RAM regions */
461     bool nonvolatile;
462     bool rom_device;
463     bool flush_coalesced_mmio;
464     uint8_t dirty_log_mask;
465     bool is_iommu;
466     RAMBlock *ram_block;
467     Object *owner;
468 
469     const MemoryRegionOps *ops;
470     void *opaque;
471     MemoryRegion *container;
472     Int128 size;
473     hwaddr addr;
474     void (*destructor)(MemoryRegion *mr);
475     uint64_t align;
476     bool terminates;
477     bool ram_device;
478     bool enabled;
479     bool warning_printed; /* For reservations */
480     uint8_t vga_logging_count;
481     MemoryRegion *alias;
482     hwaddr alias_offset;
483     int32_t priority;
484     QTAILQ_HEAD(, MemoryRegion) subregions;
485     QTAILQ_ENTRY(MemoryRegion) subregions_link;
486     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
487     const char *name;
488     unsigned ioeventfd_nb;
489     MemoryRegionIoeventfd *ioeventfds;
490 };
491 
492 struct IOMMUMemoryRegion {
493     MemoryRegion parent_obj;
494 
495     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
496     IOMMUNotifierFlag iommu_notify_flags;
497 };
498 
499 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
500     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
501 
502 /**
503  * struct MemoryListener: callbacks structure for updates to the physical memory map
504  *
505  * Allows a component to adjust to changes in the guest-visible memory map.
506  * Use with memory_listener_register() and memory_listener_unregister().
507  */
508 struct MemoryListener {
509     /**
510      * @begin:
511      *
512      * Called at the beginning of an address space update transaction.
513      * Followed by calls to #MemoryListener.region_add(),
514      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
515      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
516      * increasing address order.
517      *
518      * @listener: The #MemoryListener.
519      */
520     void (*begin)(MemoryListener *listener);
521 
522     /**
523      * @commit:
524      *
525      * Called at the end of an address space update transaction,
526      * after the last call to #MemoryListener.region_add(),
527      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
528      * #MemoryListener.log_start() and #MemoryListener.log_stop().
529      *
530      * @listener: The #MemoryListener.
531      */
532     void (*commit)(MemoryListener *listener);
533 
534     /**
535      * @region_add:
536      *
537      * Called during an address space update transaction,
538      * for a section of the address space that is new in this address space
539      * space since the last transaction.
540      *
541      * @listener: The #MemoryListener.
542      * @section: The new #MemoryRegionSection.
543      */
544     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
545 
546     /**
547      * @region_del:
548      *
549      * Called during an address space update transaction,
550      * for a section of the address space that has disappeared in the address
551      * space since the last transaction.
552      *
553      * @listener: The #MemoryListener.
554      * @section: The old #MemoryRegionSection.
555      */
556     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
557 
558     /**
559      * @region_nop:
560      *
561      * Called during an address space update transaction,
562      * for a section of the address space that is in the same place in the address
563      * space as in the last transaction.
564      *
565      * @listener: The #MemoryListener.
566      * @section: The #MemoryRegionSection.
567      */
568     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
569 
570     /**
571      * @log_start:
572      *
573      * Called during an address space update transaction, after
574      * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
575      * #MemoryListener.region_nop(), if dirty memory logging clients have
576      * become active since the last transaction.
577      *
578      * @listener: The #MemoryListener.
579      * @section: The #MemoryRegionSection.
580      * @old: A bitmap of dirty memory logging clients that were active in
581      * the previous transaction.
582      * @new: A bitmap of dirty memory logging clients that are active in
583      * the current transaction.
584      */
585     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
586                       int old, int new);
587 
588     /**
589      * @log_stop:
590      *
591      * Called during an address space update transaction, after
592      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
593      * #MemoryListener.region_nop() and possibly after
594      * #MemoryListener.log_start(), if dirty memory logging clients have
595      * become inactive since the last transaction.
596      *
597      * @listener: The #MemoryListener.
598      * @section: The #MemoryRegionSection.
599      * @old: A bitmap of dirty memory logging clients that were active in
600      * the previous transaction.
601      * @new: A bitmap of dirty memory logging clients that are active in
602      * the current transaction.
603      */
604     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
605                      int old, int new);
606 
607     /**
608      * @log_sync:
609      *
610      * Called by memory_region_snapshot_and_clear_dirty() and
611      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
612      * copy of the dirty memory bitmap for a #MemoryRegionSection.
613      *
614      * @listener: The #MemoryListener.
615      * @section: The #MemoryRegionSection.
616      */
617     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
618 
619     /**
620      * @log_clear:
621      *
622      * Called before reading the dirty memory bitmap for a
623      * #MemoryRegionSection.
624      *
625      * @listener: The #MemoryListener.
626      * @section: The #MemoryRegionSection.
627      */
628     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
629 
630     /**
631      * @log_global_start:
632      *
633      * Called by memory_global_dirty_log_start(), which
634      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
635      * the address space.  #MemoryListener.log_global_start() is also
636      * called when a #MemoryListener is added, if global dirty logging is
637      * active at that time.
638      *
639      * @listener: The #MemoryListener.
640      */
641     void (*log_global_start)(MemoryListener *listener);
642 
643     /**
644      * @log_global_stop:
645      *
646      * Called by memory_global_dirty_log_stop(), which
647      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
648      * the address space.
649      *
650      * @listener: The #MemoryListener.
651      */
652     void (*log_global_stop)(MemoryListener *listener);
653 
654     /**
655      * @log_global_after_sync:
656      *
657      * Called after reading the dirty memory bitmap
658      * for any #MemoryRegionSection.
659      *
660      * @listener: The #MemoryListener.
661      */
662     void (*log_global_after_sync)(MemoryListener *listener);
663 
664     /**
665      * @eventfd_add:
666      *
667      * Called during an address space update transaction,
668      * for a section of the address space that has had a new ioeventfd
669      * registration since the last transaction.
670      *
671      * @listener: The #MemoryListener.
672      * @section: The new #MemoryRegionSection.
673      * @match_data: The @match_data parameter for the new ioeventfd.
674      * @data: The @data parameter for the new ioeventfd.
675      * @e: The #EventNotifier parameter for the new ioeventfd.
676      */
677     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
678                         bool match_data, uint64_t data, EventNotifier *e);
679 
680     /**
681      * @eventfd_del:
682      *
683      * Called during an address space update transaction,
684      * for a section of the address space that has dropped an ioeventfd
685      * registration since the last transaction.
686      *
687      * @listener: The #MemoryListener.
688      * @section: The new #MemoryRegionSection.
689      * @match_data: The @match_data parameter for the dropped ioeventfd.
690      * @data: The @data parameter for the dropped ioeventfd.
691      * @e: The #EventNotifier parameter for the dropped ioeventfd.
692      */
693     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
694                         bool match_data, uint64_t data, EventNotifier *e);
695 
696     /**
697      * @coalesced_io_add:
698      *
699      * Called during an address space update transaction,
700      * for a section of the address space that has had a new coalesced
701      * MMIO range registration since the last transaction.
702      *
703      * @listener: The #MemoryListener.
704      * @section: The new #MemoryRegionSection.
705      * @addr: The starting address for the coalesced MMIO range.
706      * @len: The length of the coalesced MMIO range.
707      */
708     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
709                                hwaddr addr, hwaddr len);
710 
711     /**
712      * @coalesced_io_del:
713      *
714      * Called during an address space update transaction,
715      * for a section of the address space that has dropped a coalesced
716      * MMIO range since the last transaction.
717      *
718      * @listener: The #MemoryListener.
719      * @section: The new #MemoryRegionSection.
720      * @addr: The starting address for the coalesced MMIO range.
721      * @len: The length of the coalesced MMIO range.
722      */
723     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
724                                hwaddr addr, hwaddr len);
725     /**
726      * @priority:
727      *
728      * Govern the order in which memory listeners are invoked. Lower priorities
729      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
730      * or "stop" callbacks.
731      */
732     unsigned priority;
733 
734     /* private: */
735     AddressSpace *address_space;
736     QTAILQ_ENTRY(MemoryListener) link;
737     QTAILQ_ENTRY(MemoryListener) link_as;
738 };
739 
740 /**
741  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
742  */
743 struct AddressSpace {
744     /* private: */
745     struct rcu_head rcu;
746     char *name;
747     MemoryRegion *root;
748 
749     /* Accessed via RCU.  */
750     struct FlatView *current_map;
751 
752     int ioeventfd_nb;
753     struct MemoryRegionIoeventfd *ioeventfds;
754     QTAILQ_HEAD(, MemoryListener) listeners;
755     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
756 };
757 
758 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
759 typedef struct FlatRange FlatRange;
760 
761 /* Flattened global view of current active memory hierarchy.  Kept in sorted
762  * order.
763  */
764 struct FlatView {
765     struct rcu_head rcu;
766     unsigned ref;
767     FlatRange *ranges;
768     unsigned nr;
769     unsigned nr_allocated;
770     struct AddressSpaceDispatch *dispatch;
771     MemoryRegion *root;
772 };
773 
774 static inline FlatView *address_space_to_flatview(AddressSpace *as)
775 {
776     return qatomic_rcu_read(&as->current_map);
777 }
778 
779 typedef int (*flatview_cb)(Int128 start,
780                            Int128 len,
781                            const MemoryRegion*, void*);
782 
783 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque);
784 
785 /**
786  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
787  *
788  * @mr: the region, or %NULL if empty
789  * @fv: the flat view of the address space the region is mapped in
790  * @offset_within_region: the beginning of the section, relative to @mr's start
791  * @size: the size of the section; will not exceed @mr's boundaries
792  * @offset_within_address_space: the address of the first byte of the section
793  *     relative to the region's address space
794  * @readonly: writes to this section are ignored
795  * @nonvolatile: this section is non-volatile
796  */
797 struct MemoryRegionSection {
798     Int128 size;
799     MemoryRegion *mr;
800     FlatView *fv;
801     hwaddr offset_within_region;
802     hwaddr offset_within_address_space;
803     bool readonly;
804     bool nonvolatile;
805 };
806 
807 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
808                                           MemoryRegionSection *b)
809 {
810     return a->mr == b->mr &&
811            a->fv == b->fv &&
812            a->offset_within_region == b->offset_within_region &&
813            a->offset_within_address_space == b->offset_within_address_space &&
814            int128_eq(a->size, b->size) &&
815            a->readonly == b->readonly &&
816            a->nonvolatile == b->nonvolatile;
817 }
818 
819 /**
820  * memory_region_init: Initialize a memory region
821  *
822  * The region typically acts as a container for other memory regions.  Use
823  * memory_region_add_subregion() to add subregions.
824  *
825  * @mr: the #MemoryRegion to be initialized
826  * @owner: the object that tracks the region's reference count
827  * @name: used for debugging; not visible to the user or ABI
828  * @size: size of the region; any subregions beyond this size will be clipped
829  */
830 void memory_region_init(MemoryRegion *mr,
831                         struct Object *owner,
832                         const char *name,
833                         uint64_t size);
834 
835 /**
836  * memory_region_ref: Add 1 to a memory region's reference count
837  *
838  * Whenever memory regions are accessed outside the BQL, they need to be
839  * preserved against hot-unplug.  MemoryRegions actually do not have their
840  * own reference count; they piggyback on a QOM object, their "owner".
841  * This function adds a reference to the owner.
842  *
843  * All MemoryRegions must have an owner if they can disappear, even if the
844  * device they belong to operates exclusively under the BQL.  This is because
845  * the region could be returned at any time by memory_region_find, and this
846  * is usually under guest control.
847  *
848  * @mr: the #MemoryRegion
849  */
850 void memory_region_ref(MemoryRegion *mr);
851 
852 /**
853  * memory_region_unref: Remove 1 to a memory region's reference count
854  *
855  * Whenever memory regions are accessed outside the BQL, they need to be
856  * preserved against hot-unplug.  MemoryRegions actually do not have their
857  * own reference count; they piggyback on a QOM object, their "owner".
858  * This function removes a reference to the owner and possibly destroys it.
859  *
860  * @mr: the #MemoryRegion
861  */
862 void memory_region_unref(MemoryRegion *mr);
863 
864 /**
865  * memory_region_init_io: Initialize an I/O memory region.
866  *
867  * Accesses into the region will cause the callbacks in @ops to be called.
868  * if @size is nonzero, subregions will be clipped to @size.
869  *
870  * @mr: the #MemoryRegion to be initialized.
871  * @owner: the object that tracks the region's reference count
872  * @ops: a structure containing read and write callbacks to be used when
873  *       I/O is performed on the region.
874  * @opaque: passed to the read and write callbacks of the @ops structure.
875  * @name: used for debugging; not visible to the user or ABI
876  * @size: size of the region.
877  */
878 void memory_region_init_io(MemoryRegion *mr,
879                            struct Object *owner,
880                            const MemoryRegionOps *ops,
881                            void *opaque,
882                            const char *name,
883                            uint64_t size);
884 
885 /**
886  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
887  *                                    into the region will modify memory
888  *                                    directly.
889  *
890  * @mr: the #MemoryRegion to be initialized.
891  * @owner: the object that tracks the region's reference count
892  * @name: Region name, becomes part of RAMBlock name used in migration stream
893  *        must be unique within any device
894  * @size: size of the region.
895  * @errp: pointer to Error*, to store an error if it happens.
896  *
897  * Note that this function does not do anything to cause the data in the
898  * RAM memory region to be migrated; that is the responsibility of the caller.
899  */
900 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
901                                       struct Object *owner,
902                                       const char *name,
903                                       uint64_t size,
904                                       Error **errp);
905 
906 /**
907  * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
908  *                                           Accesses into the region will
909  *                                           modify memory directly.
910  *
911  * @mr: the #MemoryRegion to be initialized.
912  * @owner: the object that tracks the region's reference count
913  * @name: Region name, becomes part of RAMBlock name used in migration stream
914  *        must be unique within any device
915  * @size: size of the region.
916  * @share: allow remapping RAM to different addresses
917  * @errp: pointer to Error*, to store an error if it happens.
918  *
919  * Note that this function is similar to memory_region_init_ram_nomigrate.
920  * The only difference is part of the RAM region can be remapped.
921  */
922 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
923                                              struct Object *owner,
924                                              const char *name,
925                                              uint64_t size,
926                                              bool share,
927                                              Error **errp);
928 
929 /**
930  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
931  *                                     RAM.  Accesses into the region will
932  *                                     modify memory directly.  Only an initial
933  *                                     portion of this RAM is actually used.
934  *                                     The used size can change across reboots.
935  *
936  * @mr: the #MemoryRegion to be initialized.
937  * @owner: the object that tracks the region's reference count
938  * @name: Region name, becomes part of RAMBlock name used in migration stream
939  *        must be unique within any device
940  * @size: used size of the region.
941  * @max_size: max size of the region.
942  * @resized: callback to notify owner about used size change.
943  * @errp: pointer to Error*, to store an error if it happens.
944  *
945  * Note that this function does not do anything to cause the data in the
946  * RAM memory region to be migrated; that is the responsibility of the caller.
947  */
948 void memory_region_init_resizeable_ram(MemoryRegion *mr,
949                                        struct Object *owner,
950                                        const char *name,
951                                        uint64_t size,
952                                        uint64_t max_size,
953                                        void (*resized)(const char*,
954                                                        uint64_t length,
955                                                        void *host),
956                                        Error **errp);
957 #ifdef CONFIG_POSIX
958 
959 /**
960  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
961  *                                    mmap-ed backend.
962  *
963  * @mr: the #MemoryRegion to be initialized.
964  * @owner: the object that tracks the region's reference count
965  * @name: Region name, becomes part of RAMBlock name used in migration stream
966  *        must be unique within any device
967  * @size: size of the region.
968  * @align: alignment of the region base address; if 0, the default alignment
969  *         (getpagesize()) will be used.
970  * @ram_flags: Memory region features:
971  *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
972  *             - RAM_PMEM: the memory is persistent memory
973  *             Other bits are ignored now.
974  * @path: the path in which to allocate the RAM.
975  * @readonly: true to open @path for reading, false for read/write.
976  * @errp: pointer to Error*, to store an error if it happens.
977  *
978  * Note that this function does not do anything to cause the data in the
979  * RAM memory region to be migrated; that is the responsibility of the caller.
980  */
981 void memory_region_init_ram_from_file(MemoryRegion *mr,
982                                       struct Object *owner,
983                                       const char *name,
984                                       uint64_t size,
985                                       uint64_t align,
986                                       uint32_t ram_flags,
987                                       const char *path,
988                                       bool readonly,
989                                       Error **errp);
990 
991 /**
992  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
993  *                                  mmap-ed backend.
994  *
995  * @mr: the #MemoryRegion to be initialized.
996  * @owner: the object that tracks the region's reference count
997  * @name: the name of the region.
998  * @size: size of the region.
999  * @share: %true if memory must be mmaped with the MAP_SHARED flag
1000  * @fd: the fd to mmap.
1001  * @offset: offset within the file referenced by fd
1002  * @errp: pointer to Error*, to store an error if it happens.
1003  *
1004  * Note that this function does not do anything to cause the data in the
1005  * RAM memory region to be migrated; that is the responsibility of the caller.
1006  */
1007 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1008                                     struct Object *owner,
1009                                     const char *name,
1010                                     uint64_t size,
1011                                     bool share,
1012                                     int fd,
1013                                     ram_addr_t offset,
1014                                     Error **errp);
1015 #endif
1016 
1017 /**
1018  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1019  *                              user-provided pointer.  Accesses into the
1020  *                              region will modify memory directly.
1021  *
1022  * @mr: the #MemoryRegion to be initialized.
1023  * @owner: the object that tracks the region's reference count
1024  * @name: Region name, becomes part of RAMBlock name used in migration stream
1025  *        must be unique within any device
1026  * @size: size of the region.
1027  * @ptr: memory to be mapped; must contain at least @size bytes.
1028  *
1029  * Note that this function does not do anything to cause the data in the
1030  * RAM memory region to be migrated; that is the responsibility of the caller.
1031  */
1032 void memory_region_init_ram_ptr(MemoryRegion *mr,
1033                                 struct Object *owner,
1034                                 const char *name,
1035                                 uint64_t size,
1036                                 void *ptr);
1037 
1038 /**
1039  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1040  *                                     a user-provided pointer.
1041  *
1042  * A RAM device represents a mapping to a physical device, such as to a PCI
1043  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1044  * into the VM address space and access to the region will modify memory
1045  * directly.  However, the memory region should not be included in a memory
1046  * dump (device may not be enabled/mapped at the time of the dump), and
1047  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1048  * skip_dump flag.
1049  *
1050  * @mr: the #MemoryRegion to be initialized.
1051  * @owner: the object that tracks the region's reference count
1052  * @name: the name of the region.
1053  * @size: size of the region.
1054  * @ptr: memory to be mapped; must contain at least @size bytes.
1055  *
1056  * Note that this function does not do anything to cause the data in the
1057  * RAM memory region to be migrated; that is the responsibility of the caller.
1058  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1059  */
1060 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1061                                        struct Object *owner,
1062                                        const char *name,
1063                                        uint64_t size,
1064                                        void *ptr);
1065 
1066 /**
1067  * memory_region_init_alias: Initialize a memory region that aliases all or a
1068  *                           part of another memory region.
1069  *
1070  * @mr: the #MemoryRegion to be initialized.
1071  * @owner: the object that tracks the region's reference count
1072  * @name: used for debugging; not visible to the user or ABI
1073  * @orig: the region to be referenced; @mr will be equivalent to
1074  *        @orig between @offset and @offset + @size - 1.
1075  * @offset: start of the section in @orig to be referenced.
1076  * @size: size of the region.
1077  */
1078 void memory_region_init_alias(MemoryRegion *mr,
1079                               struct Object *owner,
1080                               const char *name,
1081                               MemoryRegion *orig,
1082                               hwaddr offset,
1083                               uint64_t size);
1084 
1085 /**
1086  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1087  *
1088  * This has the same effect as calling memory_region_init_ram_nomigrate()
1089  * and then marking the resulting region read-only with
1090  * memory_region_set_readonly().
1091  *
1092  * Note that this function does not do anything to cause the data in the
1093  * RAM side of the memory region to be migrated; that is the responsibility
1094  * of the caller.
1095  *
1096  * @mr: the #MemoryRegion to be initialized.
1097  * @owner: the object that tracks the region's reference count
1098  * @name: Region name, becomes part of RAMBlock name used in migration stream
1099  *        must be unique within any device
1100  * @size: size of the region.
1101  * @errp: pointer to Error*, to store an error if it happens.
1102  */
1103 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1104                                       struct Object *owner,
1105                                       const char *name,
1106                                       uint64_t size,
1107                                       Error **errp);
1108 
1109 /**
1110  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1111  *                                 Writes are handled via callbacks.
1112  *
1113  * Note that this function does not do anything to cause the data in the
1114  * RAM side of the memory region to be migrated; that is the responsibility
1115  * of the caller.
1116  *
1117  * @mr: the #MemoryRegion to be initialized.
1118  * @owner: the object that tracks the region's reference count
1119  * @ops: callbacks for write access handling (must not be NULL).
1120  * @opaque: passed to the read and write callbacks of the @ops structure.
1121  * @name: Region name, becomes part of RAMBlock name used in migration stream
1122  *        must be unique within any device
1123  * @size: size of the region.
1124  * @errp: pointer to Error*, to store an error if it happens.
1125  */
1126 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1127                                              struct Object *owner,
1128                                              const MemoryRegionOps *ops,
1129                                              void *opaque,
1130                                              const char *name,
1131                                              uint64_t size,
1132                                              Error **errp);
1133 
1134 /**
1135  * memory_region_init_iommu: Initialize a memory region of a custom type
1136  * that translates addresses
1137  *
1138  * An IOMMU region translates addresses and forwards accesses to a target
1139  * memory region.
1140  *
1141  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1142  * @_iommu_mr should be a pointer to enough memory for an instance of
1143  * that subclass, @instance_size is the size of that subclass, and
1144  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1145  * instance of the subclass, and its methods will then be called to handle
1146  * accesses to the memory region. See the documentation of
1147  * #IOMMUMemoryRegionClass for further details.
1148  *
1149  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1150  * @instance_size: the IOMMUMemoryRegion subclass instance size
1151  * @mrtypename: the type name of the #IOMMUMemoryRegion
1152  * @owner: the object that tracks the region's reference count
1153  * @name: used for debugging; not visible to the user or ABI
1154  * @size: size of the region.
1155  */
1156 void memory_region_init_iommu(void *_iommu_mr,
1157                               size_t instance_size,
1158                               const char *mrtypename,
1159                               Object *owner,
1160                               const char *name,
1161                               uint64_t size);
1162 
1163 /**
1164  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1165  *                          region will modify memory directly.
1166  *
1167  * @mr: the #MemoryRegion to be initialized
1168  * @owner: the object that tracks the region's reference count (must be
1169  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1170  * @name: name of the memory region
1171  * @size: size of the region in bytes
1172  * @errp: pointer to Error*, to store an error if it happens.
1173  *
1174  * This function allocates RAM for a board model or device, and
1175  * arranges for it to be migrated (by calling vmstate_register_ram()
1176  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1177  * @owner is NULL).
1178  *
1179  * TODO: Currently we restrict @owner to being either NULL (for
1180  * global RAM regions with no owner) or devices, so that we can
1181  * give the RAM block a unique name for migration purposes.
1182  * We should lift this restriction and allow arbitrary Objects.
1183  * If you pass a non-NULL non-device @owner then we will assert.
1184  */
1185 void memory_region_init_ram(MemoryRegion *mr,
1186                             struct Object *owner,
1187                             const char *name,
1188                             uint64_t size,
1189                             Error **errp);
1190 
1191 /**
1192  * memory_region_init_rom: Initialize a ROM memory region.
1193  *
1194  * This has the same effect as calling memory_region_init_ram()
1195  * and then marking the resulting region read-only with
1196  * memory_region_set_readonly(). This includes arranging for the
1197  * contents to be migrated.
1198  *
1199  * TODO: Currently we restrict @owner to being either NULL (for
1200  * global RAM regions with no owner) or devices, so that we can
1201  * give the RAM block a unique name for migration purposes.
1202  * We should lift this restriction and allow arbitrary Objects.
1203  * If you pass a non-NULL non-device @owner then we will assert.
1204  *
1205  * @mr: the #MemoryRegion to be initialized.
1206  * @owner: the object that tracks the region's reference count
1207  * @name: Region name, becomes part of RAMBlock name used in migration stream
1208  *        must be unique within any device
1209  * @size: size of the region.
1210  * @errp: pointer to Error*, to store an error if it happens.
1211  */
1212 void memory_region_init_rom(MemoryRegion *mr,
1213                             struct Object *owner,
1214                             const char *name,
1215                             uint64_t size,
1216                             Error **errp);
1217 
1218 /**
1219  * memory_region_init_rom_device:  Initialize a ROM memory region.
1220  *                                 Writes are handled via callbacks.
1221  *
1222  * This function initializes a memory region backed by RAM for reads
1223  * and callbacks for writes, and arranges for the RAM backing to
1224  * be migrated (by calling vmstate_register_ram()
1225  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1226  * @owner is NULL).
1227  *
1228  * TODO: Currently we restrict @owner to being either NULL (for
1229  * global RAM regions with no owner) or devices, so that we can
1230  * give the RAM block a unique name for migration purposes.
1231  * We should lift this restriction and allow arbitrary Objects.
1232  * If you pass a non-NULL non-device @owner then we will assert.
1233  *
1234  * @mr: the #MemoryRegion to be initialized.
1235  * @owner: the object that tracks the region's reference count
1236  * @ops: callbacks for write access handling (must not be NULL).
1237  * @opaque: passed to the read and write callbacks of the @ops structure.
1238  * @name: Region name, becomes part of RAMBlock name used in migration stream
1239  *        must be unique within any device
1240  * @size: size of the region.
1241  * @errp: pointer to Error*, to store an error if it happens.
1242  */
1243 void memory_region_init_rom_device(MemoryRegion *mr,
1244                                    struct Object *owner,
1245                                    const MemoryRegionOps *ops,
1246                                    void *opaque,
1247                                    const char *name,
1248                                    uint64_t size,
1249                                    Error **errp);
1250 
1251 
1252 /**
1253  * memory_region_owner: get a memory region's owner.
1254  *
1255  * @mr: the memory region being queried.
1256  */
1257 struct Object *memory_region_owner(MemoryRegion *mr);
1258 
1259 /**
1260  * memory_region_size: get a memory region's size.
1261  *
1262  * @mr: the memory region being queried.
1263  */
1264 uint64_t memory_region_size(MemoryRegion *mr);
1265 
1266 /**
1267  * memory_region_is_ram: check whether a memory region is random access
1268  *
1269  * Returns %true if a memory region is random access.
1270  *
1271  * @mr: the memory region being queried
1272  */
1273 static inline bool memory_region_is_ram(MemoryRegion *mr)
1274 {
1275     return mr->ram;
1276 }
1277 
1278 /**
1279  * memory_region_is_ram_device: check whether a memory region is a ram device
1280  *
1281  * Returns %true if a memory region is a device backed ram region
1282  *
1283  * @mr: the memory region being queried
1284  */
1285 bool memory_region_is_ram_device(MemoryRegion *mr);
1286 
1287 /**
1288  * memory_region_is_romd: check whether a memory region is in ROMD mode
1289  *
1290  * Returns %true if a memory region is a ROM device and currently set to allow
1291  * direct reads.
1292  *
1293  * @mr: the memory region being queried
1294  */
1295 static inline bool memory_region_is_romd(MemoryRegion *mr)
1296 {
1297     return mr->rom_device && mr->romd_mode;
1298 }
1299 
1300 /**
1301  * memory_region_get_iommu: check whether a memory region is an iommu
1302  *
1303  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1304  * otherwise NULL.
1305  *
1306  * @mr: the memory region being queried
1307  */
1308 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1309 {
1310     if (mr->alias) {
1311         return memory_region_get_iommu(mr->alias);
1312     }
1313     if (mr->is_iommu) {
1314         return (IOMMUMemoryRegion *) mr;
1315     }
1316     return NULL;
1317 }
1318 
1319 /**
1320  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1321  *   if an iommu or NULL if not
1322  *
1323  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1324  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1325  *
1326  * @iommu_mr: the memory region being queried
1327  */
1328 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1329         IOMMUMemoryRegion *iommu_mr)
1330 {
1331     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1332 }
1333 
1334 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1335 
1336 /**
1337  * memory_region_iommu_get_min_page_size: get minimum supported page size
1338  * for an iommu
1339  *
1340  * Returns minimum supported page size for an iommu.
1341  *
1342  * @iommu_mr: the memory region being queried
1343  */
1344 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1345 
1346 /**
1347  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1348  *
1349  * Note: for any IOMMU implementation, an in-place mapping change
1350  * should be notified with an UNMAP followed by a MAP.
1351  *
1352  * @iommu_mr: the memory region that was changed
1353  * @iommu_idx: the IOMMU index for the translation table which has changed
1354  * @event: TLB event with the new entry in the IOMMU translation table.
1355  *         The entry replaces all old entries for the same virtual I/O address
1356  *         range.
1357  */
1358 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1359                                 int iommu_idx,
1360                                 IOMMUTLBEvent event);
1361 
1362 /**
1363  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1364  *                           entry to a single notifier
1365  *
1366  * This works just like memory_region_notify_iommu(), but it only
1367  * notifies a specific notifier, not all of them.
1368  *
1369  * @notifier: the notifier to be notified
1370  * @event: TLB event with the new entry in the IOMMU translation table.
1371  *         The entry replaces all old entries for the same virtual I/O address
1372  *         range.
1373  */
1374 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1375                                     IOMMUTLBEvent *event);
1376 
1377 /**
1378  * memory_region_register_iommu_notifier: register a notifier for changes to
1379  * IOMMU translation entries.
1380  *
1381  * Returns 0 on success, or a negative errno otherwise. In particular,
1382  * -EINVAL indicates that at least one of the attributes of the notifier
1383  * is not supported (flag/range) by the IOMMU memory region. In case of error
1384  * the error object must be created.
1385  *
1386  * @mr: the memory region to observe
1387  * @n: the IOMMUNotifier to be added; the notify callback receives a
1388  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1389  *     ceases to be valid on exit from the notifier.
1390  * @errp: pointer to Error*, to store an error if it happens.
1391  */
1392 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1393                                           IOMMUNotifier *n, Error **errp);
1394 
1395 /**
1396  * memory_region_iommu_replay: replay existing IOMMU translations to
1397  * a notifier with the minimum page granularity returned by
1398  * mr->iommu_ops->get_page_size().
1399  *
1400  * Note: this is not related to record-and-replay functionality.
1401  *
1402  * @iommu_mr: the memory region to observe
1403  * @n: the notifier to which to replay iommu mappings
1404  */
1405 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1406 
1407 /**
1408  * memory_region_unregister_iommu_notifier: unregister a notifier for
1409  * changes to IOMMU translation entries.
1410  *
1411  * @mr: the memory region which was observed and for which notity_stopped()
1412  *      needs to be called
1413  * @n: the notifier to be removed.
1414  */
1415 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1416                                              IOMMUNotifier *n);
1417 
1418 /**
1419  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1420  * defined on the IOMMU.
1421  *
1422  * Returns 0 on success, or a negative errno otherwise. In particular,
1423  * -EINVAL indicates that the IOMMU does not support the requested
1424  * attribute.
1425  *
1426  * @iommu_mr: the memory region
1427  * @attr: the requested attribute
1428  * @data: a pointer to the requested attribute data
1429  */
1430 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1431                                  enum IOMMUMemoryRegionAttr attr,
1432                                  void *data);
1433 
1434 /**
1435  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1436  * use for translations with the given memory transaction attributes.
1437  *
1438  * @iommu_mr: the memory region
1439  * @attrs: the memory transaction attributes
1440  */
1441 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1442                                        MemTxAttrs attrs);
1443 
1444 /**
1445  * memory_region_iommu_num_indexes: return the total number of IOMMU
1446  * indexes that this IOMMU supports.
1447  *
1448  * @iommu_mr: the memory region
1449  */
1450 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1451 
1452 /**
1453  * memory_region_iommu_set_page_size_mask: set the supported page
1454  * sizes for a given IOMMU memory region
1455  *
1456  * @iommu_mr: IOMMU memory region
1457  * @page_size_mask: supported page size mask
1458  * @errp: pointer to Error*, to store an error if it happens.
1459  */
1460 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1461                                            uint64_t page_size_mask,
1462                                            Error **errp);
1463 
1464 /**
1465  * memory_region_name: get a memory region's name
1466  *
1467  * Returns the string that was used to initialize the memory region.
1468  *
1469  * @mr: the memory region being queried
1470  */
1471 const char *memory_region_name(const MemoryRegion *mr);
1472 
1473 /**
1474  * memory_region_is_logging: return whether a memory region is logging writes
1475  *
1476  * Returns %true if the memory region is logging writes for the given client
1477  *
1478  * @mr: the memory region being queried
1479  * @client: the client being queried
1480  */
1481 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1482 
1483 /**
1484  * memory_region_get_dirty_log_mask: return the clients for which a
1485  * memory region is logging writes.
1486  *
1487  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1488  * are the bit indices.
1489  *
1490  * @mr: the memory region being queried
1491  */
1492 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1493 
1494 /**
1495  * memory_region_is_rom: check whether a memory region is ROM
1496  *
1497  * Returns %true if a memory region is read-only memory.
1498  *
1499  * @mr: the memory region being queried
1500  */
1501 static inline bool memory_region_is_rom(MemoryRegion *mr)
1502 {
1503     return mr->ram && mr->readonly;
1504 }
1505 
1506 /**
1507  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1508  *
1509  * Returns %true is a memory region is non-volatile memory.
1510  *
1511  * @mr: the memory region being queried
1512  */
1513 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1514 {
1515     return mr->nonvolatile;
1516 }
1517 
1518 /**
1519  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1520  *
1521  * Returns a file descriptor backing a file-based RAM memory region,
1522  * or -1 if the region is not a file-based RAM memory region.
1523  *
1524  * @mr: the RAM or alias memory region being queried.
1525  */
1526 int memory_region_get_fd(MemoryRegion *mr);
1527 
1528 /**
1529  * memory_region_from_host: Convert a pointer into a RAM memory region
1530  * and an offset within it.
1531  *
1532  * Given a host pointer inside a RAM memory region (created with
1533  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1534  * the MemoryRegion and the offset within it.
1535  *
1536  * Use with care; by the time this function returns, the returned pointer is
1537  * not protected by RCU anymore.  If the caller is not within an RCU critical
1538  * section and does not hold the iothread lock, it must have other means of
1539  * protecting the pointer, such as a reference to the region that includes
1540  * the incoming ram_addr_t.
1541  *
1542  * @ptr: the host pointer to be converted
1543  * @offset: the offset within memory region
1544  */
1545 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1546 
1547 /**
1548  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1549  *
1550  * Returns a host pointer to a RAM memory region (created with
1551  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1552  *
1553  * Use with care; by the time this function returns, the returned pointer is
1554  * not protected by RCU anymore.  If the caller is not within an RCU critical
1555  * section and does not hold the iothread lock, it must have other means of
1556  * protecting the pointer, such as a reference to the region that includes
1557  * the incoming ram_addr_t.
1558  *
1559  * @mr: the memory region being queried.
1560  */
1561 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1562 
1563 /* memory_region_ram_resize: Resize a RAM region.
1564  *
1565  * Only legal before guest might have detected the memory size: e.g. on
1566  * incoming migration, or right after reset.
1567  *
1568  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1569  * @newsize: the new size the region
1570  * @errp: pointer to Error*, to store an error if it happens.
1571  */
1572 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1573                               Error **errp);
1574 
1575 /**
1576  * memory_region_msync: Synchronize selected address range of
1577  * a memory mapped region
1578  *
1579  * @mr: the memory region to be msync
1580  * @addr: the initial address of the range to be sync
1581  * @size: the size of the range to be sync
1582  */
1583 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1584 
1585 /**
1586  * memory_region_writeback: Trigger cache writeback for
1587  * selected address range
1588  *
1589  * @mr: the memory region to be updated
1590  * @addr: the initial address of the range to be written back
1591  * @size: the size of the range to be written back
1592  */
1593 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1594 
1595 /**
1596  * memory_region_set_log: Turn dirty logging on or off for a region.
1597  *
1598  * Turns dirty logging on or off for a specified client (display, migration).
1599  * Only meaningful for RAM regions.
1600  *
1601  * @mr: the memory region being updated.
1602  * @log: whether dirty logging is to be enabled or disabled.
1603  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1604  */
1605 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1606 
1607 /**
1608  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1609  *
1610  * Marks a range of bytes as dirty, after it has been dirtied outside
1611  * guest code.
1612  *
1613  * @mr: the memory region being dirtied.
1614  * @addr: the address (relative to the start of the region) being dirtied.
1615  * @size: size of the range being dirtied.
1616  */
1617 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1618                              hwaddr size);
1619 
1620 /**
1621  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1622  *
1623  * This function is called when the caller wants to clear the remote
1624  * dirty bitmap of a memory range within the memory region.  This can
1625  * be used by e.g. KVM to manually clear dirty log when
1626  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1627  * kernel.
1628  *
1629  * @mr:     the memory region to clear the dirty log upon
1630  * @start:  start address offset within the memory region
1631  * @len:    length of the memory region to clear dirty bitmap
1632  */
1633 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1634                                       hwaddr len);
1635 
1636 /**
1637  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1638  *                                         bitmap and clear it.
1639  *
1640  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1641  * returns the snapshot.  The snapshot can then be used to query dirty
1642  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1643  * querying the same page multiple times, which is especially useful for
1644  * display updates where the scanlines often are not page aligned.
1645  *
1646  * The dirty bitmap region which gets copyed into the snapshot (and
1647  * cleared afterwards) can be larger than requested.  The boundaries
1648  * are rounded up/down so complete bitmap longs (covering 64 pages on
1649  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1650  * isn't a problem for display updates as the extra pages are outside
1651  * the visible area, and in case the visible area changes a full
1652  * display redraw is due anyway.  Should other use cases for this
1653  * function emerge we might have to revisit this implementation
1654  * detail.
1655  *
1656  * Use g_free to release DirtyBitmapSnapshot.
1657  *
1658  * @mr: the memory region being queried.
1659  * @addr: the address (relative to the start of the region) being queried.
1660  * @size: the size of the range being queried.
1661  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1662  */
1663 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1664                                                             hwaddr addr,
1665                                                             hwaddr size,
1666                                                             unsigned client);
1667 
1668 /**
1669  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1670  *                                   in the specified dirty bitmap snapshot.
1671  *
1672  * @mr: the memory region being queried.
1673  * @snap: the dirty bitmap snapshot
1674  * @addr: the address (relative to the start of the region) being queried.
1675  * @size: the size of the range being queried.
1676  */
1677 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1678                                       DirtyBitmapSnapshot *snap,
1679                                       hwaddr addr, hwaddr size);
1680 
1681 /**
1682  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1683  *                            client.
1684  *
1685  * Marks a range of pages as no longer dirty.
1686  *
1687  * @mr: the region being updated.
1688  * @addr: the start of the subrange being cleaned.
1689  * @size: the size of the subrange being cleaned.
1690  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1691  *          %DIRTY_MEMORY_VGA.
1692  */
1693 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1694                                hwaddr size, unsigned client);
1695 
1696 /**
1697  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1698  *                                 TBs (for self-modifying code).
1699  *
1700  * The MemoryRegionOps->write() callback of a ROM device must use this function
1701  * to mark byte ranges that have been modified internally, such as by directly
1702  * accessing the memory returned by memory_region_get_ram_ptr().
1703  *
1704  * This function marks the range dirty and invalidates TBs so that TCG can
1705  * detect self-modifying code.
1706  *
1707  * @mr: the region being flushed.
1708  * @addr: the start, relative to the start of the region, of the range being
1709  *        flushed.
1710  * @size: the size, in bytes, of the range being flushed.
1711  */
1712 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1713 
1714 /**
1715  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1716  *
1717  * Allows a memory region to be marked as read-only (turning it into a ROM).
1718  * only useful on RAM regions.
1719  *
1720  * @mr: the region being updated.
1721  * @readonly: whether rhe region is to be ROM or RAM.
1722  */
1723 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1724 
1725 /**
1726  * memory_region_set_nonvolatile: Turn a memory region non-volatile
1727  *
1728  * Allows a memory region to be marked as non-volatile.
1729  * only useful on RAM regions.
1730  *
1731  * @mr: the region being updated.
1732  * @nonvolatile: whether rhe region is to be non-volatile.
1733  */
1734 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1735 
1736 /**
1737  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1738  *
1739  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1740  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1741  * device is mapped to guest memory and satisfies read access directly.
1742  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1743  * Writes are always handled by the #MemoryRegion.write function.
1744  *
1745  * @mr: the memory region to be updated
1746  * @romd_mode: %true to put the region into ROMD mode
1747  */
1748 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1749 
1750 /**
1751  * memory_region_set_coalescing: Enable memory coalescing for the region.
1752  *
1753  * Enabled writes to a region to be queued for later processing. MMIO ->write
1754  * callbacks may be delayed until a non-coalesced MMIO is issued.
1755  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1756  *
1757  * @mr: the memory region to be write coalesced
1758  */
1759 void memory_region_set_coalescing(MemoryRegion *mr);
1760 
1761 /**
1762  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1763  *                               a region.
1764  *
1765  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1766  * Multiple calls can be issued coalesced disjoint ranges.
1767  *
1768  * @mr: the memory region to be updated.
1769  * @offset: the start of the range within the region to be coalesced.
1770  * @size: the size of the subrange to be coalesced.
1771  */
1772 void memory_region_add_coalescing(MemoryRegion *mr,
1773                                   hwaddr offset,
1774                                   uint64_t size);
1775 
1776 /**
1777  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1778  *
1779  * Disables any coalescing caused by memory_region_set_coalescing() or
1780  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1781  * hardware.
1782  *
1783  * @mr: the memory region to be updated.
1784  */
1785 void memory_region_clear_coalescing(MemoryRegion *mr);
1786 
1787 /**
1788  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1789  *                                    accesses.
1790  *
1791  * Ensure that pending coalesced MMIO request are flushed before the memory
1792  * region is accessed. This property is automatically enabled for all regions
1793  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1794  *
1795  * @mr: the memory region to be updated.
1796  */
1797 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1798 
1799 /**
1800  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1801  *                                      accesses.
1802  *
1803  * Clear the automatic coalesced MMIO flushing enabled via
1804  * memory_region_set_flush_coalesced. Note that this service has no effect on
1805  * memory regions that have MMIO coalescing enabled for themselves. For them,
1806  * automatic flushing will stop once coalescing is disabled.
1807  *
1808  * @mr: the memory region to be updated.
1809  */
1810 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1811 
1812 /**
1813  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1814  *                            is written to a location.
1815  *
1816  * Marks a word in an IO region (initialized with memory_region_init_io())
1817  * as a trigger for an eventfd event.  The I/O callback will not be called.
1818  * The caller must be prepared to handle failure (that is, take the required
1819  * action if the callback _is_ called).
1820  *
1821  * @mr: the memory region being updated.
1822  * @addr: the address within @mr that is to be monitored
1823  * @size: the size of the access to trigger the eventfd
1824  * @match_data: whether to match against @data, instead of just @addr
1825  * @data: the data to match against the guest write
1826  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1827  **/
1828 void memory_region_add_eventfd(MemoryRegion *mr,
1829                                hwaddr addr,
1830                                unsigned size,
1831                                bool match_data,
1832                                uint64_t data,
1833                                EventNotifier *e);
1834 
1835 /**
1836  * memory_region_del_eventfd: Cancel an eventfd.
1837  *
1838  * Cancels an eventfd trigger requested by a previous
1839  * memory_region_add_eventfd() call.
1840  *
1841  * @mr: the memory region being updated.
1842  * @addr: the address within @mr that is to be monitored
1843  * @size: the size of the access to trigger the eventfd
1844  * @match_data: whether to match against @data, instead of just @addr
1845  * @data: the data to match against the guest write
1846  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1847  */
1848 void memory_region_del_eventfd(MemoryRegion *mr,
1849                                hwaddr addr,
1850                                unsigned size,
1851                                bool match_data,
1852                                uint64_t data,
1853                                EventNotifier *e);
1854 
1855 /**
1856  * memory_region_add_subregion: Add a subregion to a container.
1857  *
1858  * Adds a subregion at @offset.  The subregion may not overlap with other
1859  * subregions (except for those explicitly marked as overlapping).  A region
1860  * may only be added once as a subregion (unless removed with
1861  * memory_region_del_subregion()); use memory_region_init_alias() if you
1862  * want a region to be a subregion in multiple locations.
1863  *
1864  * @mr: the region to contain the new subregion; must be a container
1865  *      initialized with memory_region_init().
1866  * @offset: the offset relative to @mr where @subregion is added.
1867  * @subregion: the subregion to be added.
1868  */
1869 void memory_region_add_subregion(MemoryRegion *mr,
1870                                  hwaddr offset,
1871                                  MemoryRegion *subregion);
1872 /**
1873  * memory_region_add_subregion_overlap: Add a subregion to a container
1874  *                                      with overlap.
1875  *
1876  * Adds a subregion at @offset.  The subregion may overlap with other
1877  * subregions.  Conflicts are resolved by having a higher @priority hide a
1878  * lower @priority. Subregions without priority are taken as @priority 0.
1879  * A region may only be added once as a subregion (unless removed with
1880  * memory_region_del_subregion()); use memory_region_init_alias() if you
1881  * want a region to be a subregion in multiple locations.
1882  *
1883  * @mr: the region to contain the new subregion; must be a container
1884  *      initialized with memory_region_init().
1885  * @offset: the offset relative to @mr where @subregion is added.
1886  * @subregion: the subregion to be added.
1887  * @priority: used for resolving overlaps; highest priority wins.
1888  */
1889 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1890                                          hwaddr offset,
1891                                          MemoryRegion *subregion,
1892                                          int priority);
1893 
1894 /**
1895  * memory_region_get_ram_addr: Get the ram address associated with a memory
1896  *                             region
1897  *
1898  * @mr: the region to be queried
1899  */
1900 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1901 
1902 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1903 /**
1904  * memory_region_del_subregion: Remove a subregion.
1905  *
1906  * Removes a subregion from its container.
1907  *
1908  * @mr: the container to be updated.
1909  * @subregion: the region being removed; must be a current subregion of @mr.
1910  */
1911 void memory_region_del_subregion(MemoryRegion *mr,
1912                                  MemoryRegion *subregion);
1913 
1914 /*
1915  * memory_region_set_enabled: dynamically enable or disable a region
1916  *
1917  * Enables or disables a memory region.  A disabled memory region
1918  * ignores all accesses to itself and its subregions.  It does not
1919  * obscure sibling subregions with lower priority - it simply behaves as
1920  * if it was removed from the hierarchy.
1921  *
1922  * Regions default to being enabled.
1923  *
1924  * @mr: the region to be updated
1925  * @enabled: whether to enable or disable the region
1926  */
1927 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1928 
1929 /*
1930  * memory_region_set_address: dynamically update the address of a region
1931  *
1932  * Dynamically updates the address of a region, relative to its container.
1933  * May be used on regions are currently part of a memory hierarchy.
1934  *
1935  * @mr: the region to be updated
1936  * @addr: new address, relative to container region
1937  */
1938 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1939 
1940 /*
1941  * memory_region_set_size: dynamically update the size of a region.
1942  *
1943  * Dynamically updates the size of a region.
1944  *
1945  * @mr: the region to be updated
1946  * @size: used size of the region.
1947  */
1948 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1949 
1950 /*
1951  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1952  *
1953  * Dynamically updates the offset into the target region that an alias points
1954  * to, as if the fourth argument to memory_region_init_alias() has changed.
1955  *
1956  * @mr: the #MemoryRegion to be updated; should be an alias.
1957  * @offset: the new offset into the target memory region
1958  */
1959 void memory_region_set_alias_offset(MemoryRegion *mr,
1960                                     hwaddr offset);
1961 
1962 /**
1963  * memory_region_present: checks if an address relative to a @container
1964  * translates into #MemoryRegion within @container
1965  *
1966  * Answer whether a #MemoryRegion within @container covers the address
1967  * @addr.
1968  *
1969  * @container: a #MemoryRegion within which @addr is a relative address
1970  * @addr: the area within @container to be searched
1971  */
1972 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1973 
1974 /**
1975  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1976  * into any address space.
1977  *
1978  * @mr: a #MemoryRegion which should be checked if it's mapped
1979  */
1980 bool memory_region_is_mapped(MemoryRegion *mr);
1981 
1982 /**
1983  * memory_region_find: translate an address/size relative to a
1984  * MemoryRegion into a #MemoryRegionSection.
1985  *
1986  * Locates the first #MemoryRegion within @mr that overlaps the range
1987  * given by @addr and @size.
1988  *
1989  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1990  * It will have the following characteristics:
1991  * - @size = 0 iff no overlap was found
1992  * - @mr is non-%NULL iff an overlap was found
1993  *
1994  * Remember that in the return value the @offset_within_region is
1995  * relative to the returned region (in the .@mr field), not to the
1996  * @mr argument.
1997  *
1998  * Similarly, the .@offset_within_address_space is relative to the
1999  * address space that contains both regions, the passed and the
2000  * returned one.  However, in the special case where the @mr argument
2001  * has no container (and thus is the root of the address space), the
2002  * following will hold:
2003  * - @offset_within_address_space >= @addr
2004  * - @offset_within_address_space + .@size <= @addr + @size
2005  *
2006  * @mr: a MemoryRegion within which @addr is a relative address
2007  * @addr: start of the area within @as to be searched
2008  * @size: size of the area to be searched
2009  */
2010 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2011                                        hwaddr addr, uint64_t size);
2012 
2013 /**
2014  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2015  *
2016  * Synchronizes the dirty page log for all address spaces.
2017  */
2018 void memory_global_dirty_log_sync(void);
2019 
2020 /**
2021  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2022  *
2023  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2024  * This function must be called after the dirty log bitmap is cleared, and
2025  * before dirty guest memory pages are read.  If you are using
2026  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2027  * care of doing this.
2028  */
2029 void memory_global_after_dirty_log_sync(void);
2030 
2031 /**
2032  * memory_region_transaction_begin: Start a transaction.
2033  *
2034  * During a transaction, changes will be accumulated and made visible
2035  * only when the transaction ends (is committed).
2036  */
2037 void memory_region_transaction_begin(void);
2038 
2039 /**
2040  * memory_region_transaction_commit: Commit a transaction and make changes
2041  *                                   visible to the guest.
2042  */
2043 void memory_region_transaction_commit(void);
2044 
2045 /**
2046  * memory_listener_register: register callbacks to be called when memory
2047  *                           sections are mapped or unmapped into an address
2048  *                           space
2049  *
2050  * @listener: an object containing the callbacks to be called
2051  * @filter: if non-%NULL, only regions in this address space will be observed
2052  */
2053 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2054 
2055 /**
2056  * memory_listener_unregister: undo the effect of memory_listener_register()
2057  *
2058  * @listener: an object containing the callbacks to be removed
2059  */
2060 void memory_listener_unregister(MemoryListener *listener);
2061 
2062 /**
2063  * memory_global_dirty_log_start: begin dirty logging for all regions
2064  */
2065 void memory_global_dirty_log_start(void);
2066 
2067 /**
2068  * memory_global_dirty_log_stop: end dirty logging for all regions
2069  */
2070 void memory_global_dirty_log_stop(void);
2071 
2072 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2073 
2074 /**
2075  * memory_region_dispatch_read: perform a read directly to the specified
2076  * MemoryRegion.
2077  *
2078  * @mr: #MemoryRegion to access
2079  * @addr: address within that region
2080  * @pval: pointer to uint64_t which the data is written to
2081  * @op: size, sign, and endianness of the memory operation
2082  * @attrs: memory transaction attributes to use for the access
2083  */
2084 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2085                                         hwaddr addr,
2086                                         uint64_t *pval,
2087                                         MemOp op,
2088                                         MemTxAttrs attrs);
2089 /**
2090  * memory_region_dispatch_write: perform a write directly to the specified
2091  * MemoryRegion.
2092  *
2093  * @mr: #MemoryRegion to access
2094  * @addr: address within that region
2095  * @data: data to write
2096  * @op: size, sign, and endianness of the memory operation
2097  * @attrs: memory transaction attributes to use for the access
2098  */
2099 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2100                                          hwaddr addr,
2101                                          uint64_t data,
2102                                          MemOp op,
2103                                          MemTxAttrs attrs);
2104 
2105 /**
2106  * address_space_init: initializes an address space
2107  *
2108  * @as: an uninitialized #AddressSpace
2109  * @root: a #MemoryRegion that routes addresses for the address space
2110  * @name: an address space name.  The name is only used for debugging
2111  *        output.
2112  */
2113 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2114 
2115 /**
2116  * address_space_destroy: destroy an address space
2117  *
2118  * Releases all resources associated with an address space.  After an address space
2119  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2120  * as well.
2121  *
2122  * @as: address space to be destroyed
2123  */
2124 void address_space_destroy(AddressSpace *as);
2125 
2126 /**
2127  * address_space_remove_listeners: unregister all listeners of an address space
2128  *
2129  * Removes all callbacks previously registered with memory_listener_register()
2130  * for @as.
2131  *
2132  * @as: an initialized #AddressSpace
2133  */
2134 void address_space_remove_listeners(AddressSpace *as);
2135 
2136 /**
2137  * address_space_rw: read from or write to an address space.
2138  *
2139  * Return a MemTxResult indicating whether the operation succeeded
2140  * or failed (eg unassigned memory, device rejected the transaction,
2141  * IOMMU fault).
2142  *
2143  * @as: #AddressSpace to be accessed
2144  * @addr: address within that address space
2145  * @attrs: memory transaction attributes
2146  * @buf: buffer with the data transferred
2147  * @len: the number of bytes to read or write
2148  * @is_write: indicates the transfer direction
2149  */
2150 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2151                              MemTxAttrs attrs, void *buf,
2152                              hwaddr len, bool is_write);
2153 
2154 /**
2155  * address_space_write: write to address space.
2156  *
2157  * Return a MemTxResult indicating whether the operation succeeded
2158  * or failed (eg unassigned memory, device rejected the transaction,
2159  * IOMMU fault).
2160  *
2161  * @as: #AddressSpace to be accessed
2162  * @addr: address within that address space
2163  * @attrs: memory transaction attributes
2164  * @buf: buffer with the data transferred
2165  * @len: the number of bytes to write
2166  */
2167 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2168                                 MemTxAttrs attrs,
2169                                 const void *buf, hwaddr len);
2170 
2171 /**
2172  * address_space_write_rom: write to address space, including ROM.
2173  *
2174  * This function writes to the specified address space, but will
2175  * write data to both ROM and RAM. This is used for non-guest
2176  * writes like writes from the gdb debug stub or initial loading
2177  * of ROM contents.
2178  *
2179  * Note that portions of the write which attempt to write data to
2180  * a device will be silently ignored -- only real RAM and ROM will
2181  * be written to.
2182  *
2183  * Return a MemTxResult indicating whether the operation succeeded
2184  * or failed (eg unassigned memory, device rejected the transaction,
2185  * IOMMU fault).
2186  *
2187  * @as: #AddressSpace to be accessed
2188  * @addr: address within that address space
2189  * @attrs: memory transaction attributes
2190  * @buf: buffer with the data transferred
2191  * @len: the number of bytes to write
2192  */
2193 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2194                                     MemTxAttrs attrs,
2195                                     const void *buf, hwaddr len);
2196 
2197 /* address_space_ld*: load from an address space
2198  * address_space_st*: store to an address space
2199  *
2200  * These functions perform a load or store of the byte, word,
2201  * longword or quad to the specified address within the AddressSpace.
2202  * The _le suffixed functions treat the data as little endian;
2203  * _be indicates big endian; no suffix indicates "same endianness
2204  * as guest CPU".
2205  *
2206  * The "guest CPU endianness" accessors are deprecated for use outside
2207  * target-* code; devices should be CPU-agnostic and use either the LE
2208  * or the BE accessors.
2209  *
2210  * @as #AddressSpace to be accessed
2211  * @addr: address within that address space
2212  * @val: data value, for stores
2213  * @attrs: memory transaction attributes
2214  * @result: location to write the success/failure of the transaction;
2215  *   if NULL, this information is discarded
2216  */
2217 
2218 #define SUFFIX
2219 #define ARG1         as
2220 #define ARG1_DECL    AddressSpace *as
2221 #include "exec/memory_ldst.h.inc"
2222 
2223 #define SUFFIX
2224 #define ARG1         as
2225 #define ARG1_DECL    AddressSpace *as
2226 #include "exec/memory_ldst_phys.h.inc"
2227 
2228 struct MemoryRegionCache {
2229     void *ptr;
2230     hwaddr xlat;
2231     hwaddr len;
2232     FlatView *fv;
2233     MemoryRegionSection mrs;
2234     bool is_write;
2235 };
2236 
2237 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2238 
2239 
2240 /* address_space_ld*_cached: load from a cached #MemoryRegion
2241  * address_space_st*_cached: store into a cached #MemoryRegion
2242  *
2243  * These functions perform a load or store of the byte, word,
2244  * longword or quad to the specified address.  The address is
2245  * a physical address in the AddressSpace, but it must lie within
2246  * a #MemoryRegion that was mapped with address_space_cache_init.
2247  *
2248  * The _le suffixed functions treat the data as little endian;
2249  * _be indicates big endian; no suffix indicates "same endianness
2250  * as guest CPU".
2251  *
2252  * The "guest CPU endianness" accessors are deprecated for use outside
2253  * target-* code; devices should be CPU-agnostic and use either the LE
2254  * or the BE accessors.
2255  *
2256  * @cache: previously initialized #MemoryRegionCache to be accessed
2257  * @addr: address within the address space
2258  * @val: data value, for stores
2259  * @attrs: memory transaction attributes
2260  * @result: location to write the success/failure of the transaction;
2261  *   if NULL, this information is discarded
2262  */
2263 
2264 #define SUFFIX       _cached_slow
2265 #define ARG1         cache
2266 #define ARG1_DECL    MemoryRegionCache *cache
2267 #include "exec/memory_ldst.h.inc"
2268 
2269 /* Inline fast path for direct RAM access.  */
2270 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2271     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2272 {
2273     assert(addr < cache->len);
2274     if (likely(cache->ptr)) {
2275         return ldub_p(cache->ptr + addr);
2276     } else {
2277         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2278     }
2279 }
2280 
2281 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2282     hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2283 {
2284     assert(addr < cache->len);
2285     if (likely(cache->ptr)) {
2286         stb_p(cache->ptr + addr, val);
2287     } else {
2288         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2289     }
2290 }
2291 
2292 #define ENDIANNESS   _le
2293 #include "exec/memory_ldst_cached.h.inc"
2294 
2295 #define ENDIANNESS   _be
2296 #include "exec/memory_ldst_cached.h.inc"
2297 
2298 #define SUFFIX       _cached
2299 #define ARG1         cache
2300 #define ARG1_DECL    MemoryRegionCache *cache
2301 #include "exec/memory_ldst_phys.h.inc"
2302 
2303 /* address_space_cache_init: prepare for repeated access to a physical
2304  * memory region
2305  *
2306  * @cache: #MemoryRegionCache to be filled
2307  * @as: #AddressSpace to be accessed
2308  * @addr: address within that address space
2309  * @len: length of buffer
2310  * @is_write: indicates the transfer direction
2311  *
2312  * Will only work with RAM, and may map a subset of the requested range by
2313  * returning a value that is less than @len.  On failure, return a negative
2314  * errno value.
2315  *
2316  * Because it only works with RAM, this function can be used for
2317  * read-modify-write operations.  In this case, is_write should be %true.
2318  *
2319  * Note that addresses passed to the address_space_*_cached functions
2320  * are relative to @addr.
2321  */
2322 int64_t address_space_cache_init(MemoryRegionCache *cache,
2323                                  AddressSpace *as,
2324                                  hwaddr addr,
2325                                  hwaddr len,
2326                                  bool is_write);
2327 
2328 /**
2329  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2330  *
2331  * @cache: The #MemoryRegionCache to operate on.
2332  * @addr: The first physical address that was written, relative to the
2333  * address that was passed to @address_space_cache_init.
2334  * @access_len: The number of bytes that were written starting at @addr.
2335  */
2336 void address_space_cache_invalidate(MemoryRegionCache *cache,
2337                                     hwaddr addr,
2338                                     hwaddr access_len);
2339 
2340 /**
2341  * address_space_cache_destroy: free a #MemoryRegionCache
2342  *
2343  * @cache: The #MemoryRegionCache whose memory should be released.
2344  */
2345 void address_space_cache_destroy(MemoryRegionCache *cache);
2346 
2347 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2348  * entry. Should be called from an RCU critical section.
2349  */
2350 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2351                                             bool is_write, MemTxAttrs attrs);
2352 
2353 /* address_space_translate: translate an address range into an address space
2354  * into a MemoryRegion and an address range into that section.  Should be
2355  * called from an RCU critical section, to avoid that the last reference
2356  * to the returned region disappears after address_space_translate returns.
2357  *
2358  * @fv: #FlatView to be accessed
2359  * @addr: address within that address space
2360  * @xlat: pointer to address within the returned memory region section's
2361  * #MemoryRegion.
2362  * @len: pointer to length
2363  * @is_write: indicates the transfer direction
2364  * @attrs: memory attributes
2365  */
2366 MemoryRegion *flatview_translate(FlatView *fv,
2367                                  hwaddr addr, hwaddr *xlat,
2368                                  hwaddr *len, bool is_write,
2369                                  MemTxAttrs attrs);
2370 
2371 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2372                                                     hwaddr addr, hwaddr *xlat,
2373                                                     hwaddr *len, bool is_write,
2374                                                     MemTxAttrs attrs)
2375 {
2376     return flatview_translate(address_space_to_flatview(as),
2377                               addr, xlat, len, is_write, attrs);
2378 }
2379 
2380 /* address_space_access_valid: check for validity of accessing an address
2381  * space range
2382  *
2383  * Check whether memory is assigned to the given address space range, and
2384  * access is permitted by any IOMMU regions that are active for the address
2385  * space.
2386  *
2387  * For now, addr and len should be aligned to a page size.  This limitation
2388  * will be lifted in the future.
2389  *
2390  * @as: #AddressSpace to be accessed
2391  * @addr: address within that address space
2392  * @len: length of the area to be checked
2393  * @is_write: indicates the transfer direction
2394  * @attrs: memory attributes
2395  */
2396 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2397                                 bool is_write, MemTxAttrs attrs);
2398 
2399 /* address_space_map: map a physical memory region into a host virtual address
2400  *
2401  * May map a subset of the requested range, given by and returned in @plen.
2402  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2403  * the mapping are exhausted.
2404  * Use only for reads OR writes - not for read-modify-write operations.
2405  * Use cpu_register_map_client() to know when retrying the map operation is
2406  * likely to succeed.
2407  *
2408  * @as: #AddressSpace to be accessed
2409  * @addr: address within that address space
2410  * @plen: pointer to length of buffer; updated on return
2411  * @is_write: indicates the transfer direction
2412  * @attrs: memory attributes
2413  */
2414 void *address_space_map(AddressSpace *as, hwaddr addr,
2415                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2416 
2417 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2418  *
2419  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2420  * the amount of memory that was actually read or written by the caller.
2421  *
2422  * @as: #AddressSpace used
2423  * @buffer: host pointer as returned by address_space_map()
2424  * @len: buffer length as returned by address_space_map()
2425  * @access_len: amount of data actually transferred
2426  * @is_write: indicates the transfer direction
2427  */
2428 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2429                          bool is_write, hwaddr access_len);
2430 
2431 
2432 /* Internal functions, part of the implementation of address_space_read.  */
2433 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2434                                     MemTxAttrs attrs, void *buf, hwaddr len);
2435 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2436                                    MemTxAttrs attrs, void *buf,
2437                                    hwaddr len, hwaddr addr1, hwaddr l,
2438                                    MemoryRegion *mr);
2439 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2440 
2441 /* Internal functions, part of the implementation of address_space_read_cached
2442  * and address_space_write_cached.  */
2443 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2444                                            hwaddr addr, void *buf, hwaddr len);
2445 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2446                                             hwaddr addr, const void *buf,
2447                                             hwaddr len);
2448 
2449 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2450 {
2451     if (is_write) {
2452         return memory_region_is_ram(mr) && !mr->readonly &&
2453                !mr->rom_device && !memory_region_is_ram_device(mr);
2454     } else {
2455         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2456                memory_region_is_romd(mr);
2457     }
2458 }
2459 
2460 /**
2461  * address_space_read: read from an address space.
2462  *
2463  * Return a MemTxResult indicating whether the operation succeeded
2464  * or failed (eg unassigned memory, device rejected the transaction,
2465  * IOMMU fault).  Called within RCU critical section.
2466  *
2467  * @as: #AddressSpace to be accessed
2468  * @addr: address within that address space
2469  * @attrs: memory transaction attributes
2470  * @buf: buffer with the data transferred
2471  * @len: length of the data transferred
2472  */
2473 static inline __attribute__((__always_inline__))
2474 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2475                                MemTxAttrs attrs, void *buf,
2476                                hwaddr len)
2477 {
2478     MemTxResult result = MEMTX_OK;
2479     hwaddr l, addr1;
2480     void *ptr;
2481     MemoryRegion *mr;
2482     FlatView *fv;
2483 
2484     if (__builtin_constant_p(len)) {
2485         if (len) {
2486             RCU_READ_LOCK_GUARD();
2487             fv = address_space_to_flatview(as);
2488             l = len;
2489             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2490             if (len == l && memory_access_is_direct(mr, false)) {
2491                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2492                 memcpy(buf, ptr, len);
2493             } else {
2494                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2495                                                 addr1, l, mr);
2496             }
2497         }
2498     } else {
2499         result = address_space_read_full(as, addr, attrs, buf, len);
2500     }
2501     return result;
2502 }
2503 
2504 /**
2505  * address_space_read_cached: read from a cached RAM region
2506  *
2507  * @cache: Cached region to be addressed
2508  * @addr: address relative to the base of the RAM region
2509  * @buf: buffer with the data transferred
2510  * @len: length of the data transferred
2511  */
2512 static inline MemTxResult
2513 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2514                           void *buf, hwaddr len)
2515 {
2516     assert(addr < cache->len && len <= cache->len - addr);
2517     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2518     if (likely(cache->ptr)) {
2519         memcpy(buf, cache->ptr + addr, len);
2520         return MEMTX_OK;
2521     } else {
2522         return address_space_read_cached_slow(cache, addr, buf, len);
2523     }
2524 }
2525 
2526 /**
2527  * address_space_write_cached: write to a cached RAM region
2528  *
2529  * @cache: Cached region to be addressed
2530  * @addr: address relative to the base of the RAM region
2531  * @buf: buffer with the data transferred
2532  * @len: length of the data transferred
2533  */
2534 static inline MemTxResult
2535 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2536                            const void *buf, hwaddr len)
2537 {
2538     assert(addr < cache->len && len <= cache->len - addr);
2539     if (likely(cache->ptr)) {
2540         memcpy(cache->ptr + addr, buf, len);
2541         return MEMTX_OK;
2542     } else {
2543         return address_space_write_cached_slow(cache, addr, buf, len);
2544     }
2545 }
2546 
2547 #ifdef NEED_CPU_H
2548 /* enum device_endian to MemOp.  */
2549 static inline MemOp devend_memop(enum device_endian end)
2550 {
2551     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2552                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2553 
2554 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2555     /* Swap if non-host endianness or native (target) endianness */
2556     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2557 #else
2558     const int non_host_endianness =
2559         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2560 
2561     /* In this case, native (target) endianness needs no swap.  */
2562     return (end == non_host_endianness) ? MO_BSWAP : 0;
2563 #endif
2564 }
2565 #endif
2566 
2567 /*
2568  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2569  * to manage the actual amount of memory consumed by the VM (then, the memory
2570  * provided by RAM blocks might be bigger than the desired memory consumption).
2571  * This *must* be set if:
2572  * - Discarding parts of a RAM blocks does not result in the change being
2573  *   reflected in the VM and the pages getting freed.
2574  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2575  *   discards blindly.
2576  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2577  *   encrypted VMs).
2578  * Technologies that only temporarily pin the current working set of a
2579  * driver are fine, because we don't expect such pages to be discarded
2580  * (esp. based on guest action like balloon inflation).
2581  *
2582  * This is *not* to be used to protect from concurrent discards (esp.,
2583  * postcopy).
2584  *
2585  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2586  * discards to work reliably is active.
2587  */
2588 int ram_block_discard_disable(bool state);
2589 
2590 /*
2591  * Inhibit technologies that disable discarding of pages in RAM blocks.
2592  *
2593  * Returns 0 if successful. Returns -EBUSY if discards are already set to
2594  * broken.
2595  */
2596 int ram_block_discard_require(bool state);
2597 
2598 /*
2599  * Test if discarding of memory in ram blocks is disabled.
2600  */
2601 bool ram_block_discard_is_disabled(void);
2602 
2603 /*
2604  * Test if discarding of memory in ram blocks is required to work reliably.
2605  */
2606 bool ram_block_discard_is_required(void);
2607 
2608 #endif
2609 
2610 #endif
2611