1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #define DIRTY_MEMORY_VGA 0 20 #define DIRTY_MEMORY_CODE 1 21 #define DIRTY_MEMORY_MIGRATION 2 22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */ 23 24 #include <stdint.h> 25 #include <stdbool.h> 26 #include "exec/cpu-common.h" 27 #ifndef CONFIG_USER_ONLY 28 #include "exec/hwaddr.h" 29 #endif 30 #include "exec/memattrs.h" 31 #include "qemu/queue.h" 32 #include "qemu/int128.h" 33 #include "qemu/notify.h" 34 #include "qapi/error.h" 35 #include "qom/object.h" 36 #include "qemu/rcu.h" 37 38 #define MAX_PHYS_ADDR_SPACE_BITS 62 39 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 40 41 #define TYPE_MEMORY_REGION "qemu:memory-region" 42 #define MEMORY_REGION(obj) \ 43 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 44 45 typedef struct MemoryRegionOps MemoryRegionOps; 46 typedef struct MemoryRegionMmio MemoryRegionMmio; 47 48 struct MemoryRegionMmio { 49 CPUReadMemoryFunc *read[3]; 50 CPUWriteMemoryFunc *write[3]; 51 }; 52 53 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 54 55 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 56 typedef enum { 57 IOMMU_NONE = 0, 58 IOMMU_RO = 1, 59 IOMMU_WO = 2, 60 IOMMU_RW = 3, 61 } IOMMUAccessFlags; 62 63 struct IOMMUTLBEntry { 64 AddressSpace *target_as; 65 hwaddr iova; 66 hwaddr translated_addr; 67 hwaddr addr_mask; /* 0xfff = 4k translation */ 68 IOMMUAccessFlags perm; 69 }; 70 71 /* New-style MMIO accessors can indicate that the transaction failed. 72 * A zero (MEMTX_OK) response means success; anything else is a failure 73 * of some kind. The memory subsystem will bitwise-OR together results 74 * if it is synthesizing an operation from multiple smaller accesses. 75 */ 76 #define MEMTX_OK 0 77 #define MEMTX_ERROR (1U << 0) /* device returned an error */ 78 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ 79 typedef uint32_t MemTxResult; 80 81 /* 82 * Memory region callbacks 83 */ 84 struct MemoryRegionOps { 85 /* Read from the memory region. @addr is relative to @mr; @size is 86 * in bytes. */ 87 uint64_t (*read)(void *opaque, 88 hwaddr addr, 89 unsigned size); 90 /* Write to the memory region. @addr is relative to @mr; @size is 91 * in bytes. */ 92 void (*write)(void *opaque, 93 hwaddr addr, 94 uint64_t data, 95 unsigned size); 96 97 MemTxResult (*read_with_attrs)(void *opaque, 98 hwaddr addr, 99 uint64_t *data, 100 unsigned size, 101 MemTxAttrs attrs); 102 MemTxResult (*write_with_attrs)(void *opaque, 103 hwaddr addr, 104 uint64_t data, 105 unsigned size, 106 MemTxAttrs attrs); 107 108 enum device_endian endianness; 109 /* Guest-visible constraints: */ 110 struct { 111 /* If nonzero, specify bounds on access sizes beyond which a machine 112 * check is thrown. 113 */ 114 unsigned min_access_size; 115 unsigned max_access_size; 116 /* If true, unaligned accesses are supported. Otherwise unaligned 117 * accesses throw machine checks. 118 */ 119 bool unaligned; 120 /* 121 * If present, and returns #false, the transaction is not accepted 122 * by the device (and results in machine dependent behaviour such 123 * as a machine check exception). 124 */ 125 bool (*accepts)(void *opaque, hwaddr addr, 126 unsigned size, bool is_write); 127 } valid; 128 /* Internal implementation constraints: */ 129 struct { 130 /* If nonzero, specifies the minimum size implemented. Smaller sizes 131 * will be rounded upwards and a partial result will be returned. 132 */ 133 unsigned min_access_size; 134 /* If nonzero, specifies the maximum size implemented. Larger sizes 135 * will be done as a series of accesses with smaller sizes. 136 */ 137 unsigned max_access_size; 138 /* If true, unaligned accesses are supported. Otherwise all accesses 139 * are converted to (possibly multiple) naturally aligned accesses. 140 */ 141 bool unaligned; 142 } impl; 143 144 /* If .read and .write are not present, old_mmio may be used for 145 * backwards compatibility with old mmio registration 146 */ 147 const MemoryRegionMmio old_mmio; 148 }; 149 150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 151 152 struct MemoryRegionIOMMUOps { 153 /* Return a TLB entry that contains a given address. */ 154 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); 155 }; 156 157 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 159 160 struct MemoryRegion { 161 Object parent_obj; 162 /* All fields are private - violators will be prosecuted */ 163 const MemoryRegionOps *ops; 164 const MemoryRegionIOMMUOps *iommu_ops; 165 void *opaque; 166 MemoryRegion *container; 167 Int128 size; 168 hwaddr addr; 169 void (*destructor)(MemoryRegion *mr); 170 ram_addr_t ram_addr; 171 uint64_t align; 172 bool subpage; 173 bool terminates; 174 bool romd_mode; 175 bool ram; 176 bool skip_dump; 177 bool readonly; /* For RAM regions */ 178 bool enabled; 179 bool rom_device; 180 bool warning_printed; /* For reservations */ 181 bool flush_coalesced_mmio; 182 bool global_locking; 183 uint8_t vga_logging_count; 184 MemoryRegion *alias; 185 hwaddr alias_offset; 186 int32_t priority; 187 bool may_overlap; 188 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 189 QTAILQ_ENTRY(MemoryRegion) subregions_link; 190 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 191 const char *name; 192 uint8_t dirty_log_mask; 193 unsigned ioeventfd_nb; 194 MemoryRegionIoeventfd *ioeventfds; 195 NotifierList iommu_notify; 196 }; 197 198 /** 199 * MemoryListener: callbacks structure for updates to the physical memory map 200 * 201 * Allows a component to adjust to changes in the guest-visible memory map. 202 * Use with memory_listener_register() and memory_listener_unregister(). 203 */ 204 struct MemoryListener { 205 void (*begin)(MemoryListener *listener); 206 void (*commit)(MemoryListener *listener); 207 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 208 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 209 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 210 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 211 int old, int new); 212 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 213 int old, int new); 214 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 215 void (*log_global_start)(MemoryListener *listener); 216 void (*log_global_stop)(MemoryListener *listener); 217 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 218 bool match_data, uint64_t data, EventNotifier *e); 219 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 220 bool match_data, uint64_t data, EventNotifier *e); 221 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 222 hwaddr addr, hwaddr len); 223 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 224 hwaddr addr, hwaddr len); 225 /* Lower = earlier (during add), later (during del) */ 226 unsigned priority; 227 AddressSpace *address_space_filter; 228 QTAILQ_ENTRY(MemoryListener) link; 229 }; 230 231 /** 232 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 233 */ 234 struct AddressSpace { 235 /* All fields are private. */ 236 struct rcu_head rcu; 237 char *name; 238 MemoryRegion *root; 239 240 /* Accessed via RCU. */ 241 struct FlatView *current_map; 242 243 int ioeventfd_nb; 244 struct MemoryRegionIoeventfd *ioeventfds; 245 struct AddressSpaceDispatch *dispatch; 246 struct AddressSpaceDispatch *next_dispatch; 247 MemoryListener dispatch_listener; 248 249 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 250 }; 251 252 /** 253 * MemoryRegionSection: describes a fragment of a #MemoryRegion 254 * 255 * @mr: the region, or %NULL if empty 256 * @address_space: the address space the region is mapped in 257 * @offset_within_region: the beginning of the section, relative to @mr's start 258 * @size: the size of the section; will not exceed @mr's boundaries 259 * @offset_within_address_space: the address of the first byte of the section 260 * relative to the region's address space 261 * @readonly: writes to this section are ignored 262 */ 263 struct MemoryRegionSection { 264 MemoryRegion *mr; 265 AddressSpace *address_space; 266 hwaddr offset_within_region; 267 Int128 size; 268 hwaddr offset_within_address_space; 269 bool readonly; 270 }; 271 272 /** 273 * memory_region_init: Initialize a memory region 274 * 275 * The region typically acts as a container for other memory regions. Use 276 * memory_region_add_subregion() to add subregions. 277 * 278 * @mr: the #MemoryRegion to be initialized 279 * @owner: the object that tracks the region's reference count 280 * @name: used for debugging; not visible to the user or ABI 281 * @size: size of the region; any subregions beyond this size will be clipped 282 */ 283 void memory_region_init(MemoryRegion *mr, 284 struct Object *owner, 285 const char *name, 286 uint64_t size); 287 288 /** 289 * memory_region_ref: Add 1 to a memory region's reference count 290 * 291 * Whenever memory regions are accessed outside the BQL, they need to be 292 * preserved against hot-unplug. MemoryRegions actually do not have their 293 * own reference count; they piggyback on a QOM object, their "owner". 294 * This function adds a reference to the owner. 295 * 296 * All MemoryRegions must have an owner if they can disappear, even if the 297 * device they belong to operates exclusively under the BQL. This is because 298 * the region could be returned at any time by memory_region_find, and this 299 * is usually under guest control. 300 * 301 * @mr: the #MemoryRegion 302 */ 303 void memory_region_ref(MemoryRegion *mr); 304 305 /** 306 * memory_region_unref: Remove 1 to a memory region's reference count 307 * 308 * Whenever memory regions are accessed outside the BQL, they need to be 309 * preserved against hot-unplug. MemoryRegions actually do not have their 310 * own reference count; they piggyback on a QOM object, their "owner". 311 * This function removes a reference to the owner and possibly destroys it. 312 * 313 * @mr: the #MemoryRegion 314 */ 315 void memory_region_unref(MemoryRegion *mr); 316 317 /** 318 * memory_region_init_io: Initialize an I/O memory region. 319 * 320 * Accesses into the region will cause the callbacks in @ops to be called. 321 * if @size is nonzero, subregions will be clipped to @size. 322 * 323 * @mr: the #MemoryRegion to be initialized. 324 * @owner: the object that tracks the region's reference count 325 * @ops: a structure containing read and write callbacks to be used when 326 * I/O is performed on the region. 327 * @opaque: passed to the read and write callbacks of the @ops structure. 328 * @name: used for debugging; not visible to the user or ABI 329 * @size: size of the region. 330 */ 331 void memory_region_init_io(MemoryRegion *mr, 332 struct Object *owner, 333 const MemoryRegionOps *ops, 334 void *opaque, 335 const char *name, 336 uint64_t size); 337 338 /** 339 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 340 * region will modify memory directly. 341 * 342 * @mr: the #MemoryRegion to be initialized. 343 * @owner: the object that tracks the region's reference count 344 * @name: the name of the region. 345 * @size: size of the region. 346 * @errp: pointer to Error*, to store an error if it happens. 347 */ 348 void memory_region_init_ram(MemoryRegion *mr, 349 struct Object *owner, 350 const char *name, 351 uint64_t size, 352 Error **errp); 353 354 /** 355 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 356 * RAM. Accesses into the region will 357 * modify memory directly. Only an initial 358 * portion of this RAM is actually used. 359 * The used size can change across reboots. 360 * 361 * @mr: the #MemoryRegion to be initialized. 362 * @owner: the object that tracks the region's reference count 363 * @name: the name of the region. 364 * @size: used size of the region. 365 * @max_size: max size of the region. 366 * @resized: callback to notify owner about used size change. 367 * @errp: pointer to Error*, to store an error if it happens. 368 */ 369 void memory_region_init_resizeable_ram(MemoryRegion *mr, 370 struct Object *owner, 371 const char *name, 372 uint64_t size, 373 uint64_t max_size, 374 void (*resized)(const char*, 375 uint64_t length, 376 void *host), 377 Error **errp); 378 #ifdef __linux__ 379 /** 380 * memory_region_init_ram_from_file: Initialize RAM memory region with a 381 * mmap-ed backend. 382 * 383 * @mr: the #MemoryRegion to be initialized. 384 * @owner: the object that tracks the region's reference count 385 * @name: the name of the region. 386 * @size: size of the region. 387 * @share: %true if memory must be mmaped with the MAP_SHARED flag 388 * @path: the path in which to allocate the RAM. 389 * @errp: pointer to Error*, to store an error if it happens. 390 */ 391 void memory_region_init_ram_from_file(MemoryRegion *mr, 392 struct Object *owner, 393 const char *name, 394 uint64_t size, 395 bool share, 396 const char *path, 397 Error **errp); 398 #endif 399 400 /** 401 * memory_region_init_ram_ptr: Initialize RAM memory region from a 402 * user-provided pointer. Accesses into the 403 * region will modify memory directly. 404 * 405 * @mr: the #MemoryRegion to be initialized. 406 * @owner: the object that tracks the region's reference count 407 * @name: the name of the region. 408 * @size: size of the region. 409 * @ptr: memory to be mapped; must contain at least @size bytes. 410 */ 411 void memory_region_init_ram_ptr(MemoryRegion *mr, 412 struct Object *owner, 413 const char *name, 414 uint64_t size, 415 void *ptr); 416 417 /** 418 * memory_region_init_alias: Initialize a memory region that aliases all or a 419 * part of another memory region. 420 * 421 * @mr: the #MemoryRegion to be initialized. 422 * @owner: the object that tracks the region's reference count 423 * @name: used for debugging; not visible to the user or ABI 424 * @orig: the region to be referenced; @mr will be equivalent to 425 * @orig between @offset and @offset + @size - 1. 426 * @offset: start of the section in @orig to be referenced. 427 * @size: size of the region. 428 */ 429 void memory_region_init_alias(MemoryRegion *mr, 430 struct Object *owner, 431 const char *name, 432 MemoryRegion *orig, 433 hwaddr offset, 434 uint64_t size); 435 436 /** 437 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 438 * handled via callbacks. 439 * 440 * If NULL callbacks pointer is given, then I/O space is not supposed to be 441 * handled by QEMU itself. Any access via the memory API will cause an abort(). 442 * 443 * @mr: the #MemoryRegion to be initialized. 444 * @owner: the object that tracks the region's reference count 445 * @ops: callbacks for write access handling. 446 * @name: the name of the region. 447 * @size: size of the region. 448 * @errp: pointer to Error*, to store an error if it happens. 449 */ 450 void memory_region_init_rom_device(MemoryRegion *mr, 451 struct Object *owner, 452 const MemoryRegionOps *ops, 453 void *opaque, 454 const char *name, 455 uint64_t size, 456 Error **errp); 457 458 /** 459 * memory_region_init_reservation: Initialize a memory region that reserves 460 * I/O space. 461 * 462 * A reservation region primariy serves debugging purposes. It claims I/O 463 * space that is not supposed to be handled by QEMU itself. Any access via 464 * the memory API will cause an abort(). 465 * This function is deprecated. Use memory_region_init_io() with NULL 466 * callbacks instead. 467 * 468 * @mr: the #MemoryRegion to be initialized 469 * @owner: the object that tracks the region's reference count 470 * @name: used for debugging; not visible to the user or ABI 471 * @size: size of the region. 472 */ 473 static inline void memory_region_init_reservation(MemoryRegion *mr, 474 Object *owner, 475 const char *name, 476 uint64_t size) 477 { 478 memory_region_init_io(mr, owner, NULL, mr, name, size); 479 } 480 481 /** 482 * memory_region_init_iommu: Initialize a memory region that translates 483 * addresses 484 * 485 * An IOMMU region translates addresses and forwards accesses to a target 486 * memory region. 487 * 488 * @mr: the #MemoryRegion to be initialized 489 * @owner: the object that tracks the region's reference count 490 * @ops: a function that translates addresses into the @target region 491 * @name: used for debugging; not visible to the user or ABI 492 * @size: size of the region. 493 */ 494 void memory_region_init_iommu(MemoryRegion *mr, 495 struct Object *owner, 496 const MemoryRegionIOMMUOps *ops, 497 const char *name, 498 uint64_t size); 499 500 /** 501 * memory_region_owner: get a memory region's owner. 502 * 503 * @mr: the memory region being queried. 504 */ 505 struct Object *memory_region_owner(MemoryRegion *mr); 506 507 /** 508 * memory_region_size: get a memory region's size. 509 * 510 * @mr: the memory region being queried. 511 */ 512 uint64_t memory_region_size(MemoryRegion *mr); 513 514 /** 515 * memory_region_is_ram: check whether a memory region is random access 516 * 517 * Returns %true is a memory region is random access. 518 * 519 * @mr: the memory region being queried 520 */ 521 bool memory_region_is_ram(MemoryRegion *mr); 522 523 /** 524 * memory_region_is_skip_dump: check whether a memory region should not be 525 * dumped 526 * 527 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP). 528 * 529 * @mr: the memory region being queried 530 */ 531 bool memory_region_is_skip_dump(MemoryRegion *mr); 532 533 /** 534 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory 535 * region 536 * 537 * @mr: the memory region being queried 538 */ 539 void memory_region_set_skip_dump(MemoryRegion *mr); 540 541 /** 542 * memory_region_is_romd: check whether a memory region is in ROMD mode 543 * 544 * Returns %true if a memory region is a ROM device and currently set to allow 545 * direct reads. 546 * 547 * @mr: the memory region being queried 548 */ 549 static inline bool memory_region_is_romd(MemoryRegion *mr) 550 { 551 return mr->rom_device && mr->romd_mode; 552 } 553 554 /** 555 * memory_region_is_iommu: check whether a memory region is an iommu 556 * 557 * Returns %true is a memory region is an iommu. 558 * 559 * @mr: the memory region being queried 560 */ 561 bool memory_region_is_iommu(MemoryRegion *mr); 562 563 /** 564 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 565 * 566 * @mr: the memory region that was changed 567 * @entry: the new entry in the IOMMU translation table. The entry 568 * replaces all old entries for the same virtual I/O address range. 569 * Deleted entries have .@perm == 0. 570 */ 571 void memory_region_notify_iommu(MemoryRegion *mr, 572 IOMMUTLBEntry entry); 573 574 /** 575 * memory_region_register_iommu_notifier: register a notifier for changes to 576 * IOMMU translation entries. 577 * 578 * @mr: the memory region to observe 579 * @n: the notifier to be added; the notifier receives a pointer to an 580 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be 581 * valid on exit from the notifier. 582 */ 583 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n); 584 585 /** 586 * memory_region_unregister_iommu_notifier: unregister a notifier for 587 * changes to IOMMU translation entries. 588 * 589 * @n: the notifier to be removed. 590 */ 591 void memory_region_unregister_iommu_notifier(Notifier *n); 592 593 /** 594 * memory_region_name: get a memory region's name 595 * 596 * Returns the string that was used to initialize the memory region. 597 * 598 * @mr: the memory region being queried 599 */ 600 const char *memory_region_name(const MemoryRegion *mr); 601 602 /** 603 * memory_region_is_logging: return whether a memory region is logging writes 604 * 605 * Returns %true if the memory region is logging writes for the given client 606 * 607 * @mr: the memory region being queried 608 * @client: the client being queried 609 */ 610 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 611 612 /** 613 * memory_region_get_dirty_log_mask: return the clients for which a 614 * memory region is logging writes. 615 * 616 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 617 * are the bit indices. 618 * 619 * @mr: the memory region being queried 620 */ 621 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 622 623 /** 624 * memory_region_is_rom: check whether a memory region is ROM 625 * 626 * Returns %true is a memory region is read-only memory. 627 * 628 * @mr: the memory region being queried 629 */ 630 bool memory_region_is_rom(MemoryRegion *mr); 631 632 /** 633 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 634 * 635 * Returns a file descriptor backing a file-based RAM memory region, 636 * or -1 if the region is not a file-based RAM memory region. 637 * 638 * @mr: the RAM or alias memory region being queried. 639 */ 640 int memory_region_get_fd(MemoryRegion *mr); 641 642 /** 643 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 644 * 645 * Returns a host pointer to a RAM memory region (created with 646 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with 647 * care. 648 * 649 * @mr: the memory region being queried. 650 */ 651 void *memory_region_get_ram_ptr(MemoryRegion *mr); 652 653 /* memory_region_ram_resize: Resize a RAM region. 654 * 655 * Only legal before guest might have detected the memory size: e.g. on 656 * incoming migration, or right after reset. 657 * 658 * @mr: a memory region created with @memory_region_init_resizeable_ram. 659 * @newsize: the new size the region 660 * @errp: pointer to Error*, to store an error if it happens. 661 */ 662 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 663 Error **errp); 664 665 /** 666 * memory_region_set_log: Turn dirty logging on or off for a region. 667 * 668 * Turns dirty logging on or off for a specified client (display, migration). 669 * Only meaningful for RAM regions. 670 * 671 * @mr: the memory region being updated. 672 * @log: whether dirty logging is to be enabled or disabled. 673 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 674 */ 675 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 676 677 /** 678 * memory_region_get_dirty: Check whether a range of bytes is dirty 679 * for a specified client. 680 * 681 * Checks whether a range of bytes has been written to since the last 682 * call to memory_region_reset_dirty() with the same @client. Dirty logging 683 * must be enabled. 684 * 685 * @mr: the memory region being queried. 686 * @addr: the address (relative to the start of the region) being queried. 687 * @size: the size of the range being queried. 688 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 689 * %DIRTY_MEMORY_VGA. 690 */ 691 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 692 hwaddr size, unsigned client); 693 694 /** 695 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 696 * 697 * Marks a range of bytes as dirty, after it has been dirtied outside 698 * guest code. 699 * 700 * @mr: the memory region being dirtied. 701 * @addr: the address (relative to the start of the region) being dirtied. 702 * @size: size of the range being dirtied. 703 */ 704 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 705 hwaddr size); 706 707 /** 708 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 709 * for a specified client. It clears them. 710 * 711 * Checks whether a range of bytes has been written to since the last 712 * call to memory_region_reset_dirty() with the same @client. Dirty logging 713 * must be enabled. 714 * 715 * @mr: the memory region being queried. 716 * @addr: the address (relative to the start of the region) being queried. 717 * @size: the size of the range being queried. 718 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 719 * %DIRTY_MEMORY_VGA. 720 */ 721 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 722 hwaddr size, unsigned client); 723 /** 724 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 725 * any external TLBs (e.g. kvm) 726 * 727 * Flushes dirty information from accelerators such as kvm and vhost-net 728 * and makes it available to users of the memory API. 729 * 730 * @mr: the region being flushed. 731 */ 732 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 733 734 /** 735 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 736 * client. 737 * 738 * Marks a range of pages as no longer dirty. 739 * 740 * @mr: the region being updated. 741 * @addr: the start of the subrange being cleaned. 742 * @size: the size of the subrange being cleaned. 743 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 744 * %DIRTY_MEMORY_VGA. 745 */ 746 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 747 hwaddr size, unsigned client); 748 749 /** 750 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 751 * 752 * Allows a memory region to be marked as read-only (turning it into a ROM). 753 * only useful on RAM regions. 754 * 755 * @mr: the region being updated. 756 * @readonly: whether rhe region is to be ROM or RAM. 757 */ 758 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 759 760 /** 761 * memory_region_rom_device_set_romd: enable/disable ROMD mode 762 * 763 * Allows a ROM device (initialized with memory_region_init_rom_device() to 764 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 765 * device is mapped to guest memory and satisfies read access directly. 766 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 767 * Writes are always handled by the #MemoryRegion.write function. 768 * 769 * @mr: the memory region to be updated 770 * @romd_mode: %true to put the region into ROMD mode 771 */ 772 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 773 774 /** 775 * memory_region_set_coalescing: Enable memory coalescing for the region. 776 * 777 * Enabled writes to a region to be queued for later processing. MMIO ->write 778 * callbacks may be delayed until a non-coalesced MMIO is issued. 779 * Only useful for IO regions. Roughly similar to write-combining hardware. 780 * 781 * @mr: the memory region to be write coalesced 782 */ 783 void memory_region_set_coalescing(MemoryRegion *mr); 784 785 /** 786 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 787 * a region. 788 * 789 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 790 * Multiple calls can be issued coalesced disjoint ranges. 791 * 792 * @mr: the memory region to be updated. 793 * @offset: the start of the range within the region to be coalesced. 794 * @size: the size of the subrange to be coalesced. 795 */ 796 void memory_region_add_coalescing(MemoryRegion *mr, 797 hwaddr offset, 798 uint64_t size); 799 800 /** 801 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 802 * 803 * Disables any coalescing caused by memory_region_set_coalescing() or 804 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 805 * hardware. 806 * 807 * @mr: the memory region to be updated. 808 */ 809 void memory_region_clear_coalescing(MemoryRegion *mr); 810 811 /** 812 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 813 * accesses. 814 * 815 * Ensure that pending coalesced MMIO request are flushed before the memory 816 * region is accessed. This property is automatically enabled for all regions 817 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 818 * 819 * @mr: the memory region to be updated. 820 */ 821 void memory_region_set_flush_coalesced(MemoryRegion *mr); 822 823 /** 824 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 825 * accesses. 826 * 827 * Clear the automatic coalesced MMIO flushing enabled via 828 * memory_region_set_flush_coalesced. Note that this service has no effect on 829 * memory regions that have MMIO coalescing enabled for themselves. For them, 830 * automatic flushing will stop once coalescing is disabled. 831 * 832 * @mr: the memory region to be updated. 833 */ 834 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 835 836 /** 837 * memory_region_set_global_locking: Declares the access processing requires 838 * QEMU's global lock. 839 * 840 * When this is invoked, accesses to the memory region will be processed while 841 * holding the global lock of QEMU. This is the default behavior of memory 842 * regions. 843 * 844 * @mr: the memory region to be updated. 845 */ 846 void memory_region_set_global_locking(MemoryRegion *mr); 847 848 /** 849 * memory_region_clear_global_locking: Declares that access processing does 850 * not depend on the QEMU global lock. 851 * 852 * By clearing this property, accesses to the memory region will be processed 853 * outside of QEMU's global lock (unless the lock is held on when issuing the 854 * access request). In this case, the device model implementing the access 855 * handlers is responsible for synchronization of concurrency. 856 * 857 * @mr: the memory region to be updated. 858 */ 859 void memory_region_clear_global_locking(MemoryRegion *mr); 860 861 /** 862 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 863 * is written to a location. 864 * 865 * Marks a word in an IO region (initialized with memory_region_init_io()) 866 * as a trigger for an eventfd event. The I/O callback will not be called. 867 * The caller must be prepared to handle failure (that is, take the required 868 * action if the callback _is_ called). 869 * 870 * @mr: the memory region being updated. 871 * @addr: the address within @mr that is to be monitored 872 * @size: the size of the access to trigger the eventfd 873 * @match_data: whether to match against @data, instead of just @addr 874 * @data: the data to match against the guest write 875 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 876 **/ 877 void memory_region_add_eventfd(MemoryRegion *mr, 878 hwaddr addr, 879 unsigned size, 880 bool match_data, 881 uint64_t data, 882 EventNotifier *e); 883 884 /** 885 * memory_region_del_eventfd: Cancel an eventfd. 886 * 887 * Cancels an eventfd trigger requested by a previous 888 * memory_region_add_eventfd() call. 889 * 890 * @mr: the memory region being updated. 891 * @addr: the address within @mr that is to be monitored 892 * @size: the size of the access to trigger the eventfd 893 * @match_data: whether to match against @data, instead of just @addr 894 * @data: the data to match against the guest write 895 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 896 */ 897 void memory_region_del_eventfd(MemoryRegion *mr, 898 hwaddr addr, 899 unsigned size, 900 bool match_data, 901 uint64_t data, 902 EventNotifier *e); 903 904 /** 905 * memory_region_add_subregion: Add a subregion to a container. 906 * 907 * Adds a subregion at @offset. The subregion may not overlap with other 908 * subregions (except for those explicitly marked as overlapping). A region 909 * may only be added once as a subregion (unless removed with 910 * memory_region_del_subregion()); use memory_region_init_alias() if you 911 * want a region to be a subregion in multiple locations. 912 * 913 * @mr: the region to contain the new subregion; must be a container 914 * initialized with memory_region_init(). 915 * @offset: the offset relative to @mr where @subregion is added. 916 * @subregion: the subregion to be added. 917 */ 918 void memory_region_add_subregion(MemoryRegion *mr, 919 hwaddr offset, 920 MemoryRegion *subregion); 921 /** 922 * memory_region_add_subregion_overlap: Add a subregion to a container 923 * with overlap. 924 * 925 * Adds a subregion at @offset. The subregion may overlap with other 926 * subregions. Conflicts are resolved by having a higher @priority hide a 927 * lower @priority. Subregions without priority are taken as @priority 0. 928 * A region may only be added once as a subregion (unless removed with 929 * memory_region_del_subregion()); use memory_region_init_alias() if you 930 * want a region to be a subregion in multiple locations. 931 * 932 * @mr: the region to contain the new subregion; must be a container 933 * initialized with memory_region_init(). 934 * @offset: the offset relative to @mr where @subregion is added. 935 * @subregion: the subregion to be added. 936 * @priority: used for resolving overlaps; highest priority wins. 937 */ 938 void memory_region_add_subregion_overlap(MemoryRegion *mr, 939 hwaddr offset, 940 MemoryRegion *subregion, 941 int priority); 942 943 /** 944 * memory_region_get_ram_addr: Get the ram address associated with a memory 945 * region 946 * 947 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 948 * code is being reworked. 949 */ 950 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 951 952 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 953 /** 954 * memory_region_del_subregion: Remove a subregion. 955 * 956 * Removes a subregion from its container. 957 * 958 * @mr: the container to be updated. 959 * @subregion: the region being removed; must be a current subregion of @mr. 960 */ 961 void memory_region_del_subregion(MemoryRegion *mr, 962 MemoryRegion *subregion); 963 964 /* 965 * memory_region_set_enabled: dynamically enable or disable a region 966 * 967 * Enables or disables a memory region. A disabled memory region 968 * ignores all accesses to itself and its subregions. It does not 969 * obscure sibling subregions with lower priority - it simply behaves as 970 * if it was removed from the hierarchy. 971 * 972 * Regions default to being enabled. 973 * 974 * @mr: the region to be updated 975 * @enabled: whether to enable or disable the region 976 */ 977 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 978 979 /* 980 * memory_region_set_address: dynamically update the address of a region 981 * 982 * Dynamically updates the address of a region, relative to its container. 983 * May be used on regions are currently part of a memory hierarchy. 984 * 985 * @mr: the region to be updated 986 * @addr: new address, relative to container region 987 */ 988 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 989 990 /* 991 * memory_region_set_size: dynamically update the size of a region. 992 * 993 * Dynamically updates the size of a region. 994 * 995 * @mr: the region to be updated 996 * @size: used size of the region. 997 */ 998 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 999 1000 /* 1001 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1002 * 1003 * Dynamically updates the offset into the target region that an alias points 1004 * to, as if the fourth argument to memory_region_init_alias() has changed. 1005 * 1006 * @mr: the #MemoryRegion to be updated; should be an alias. 1007 * @offset: the new offset into the target memory region 1008 */ 1009 void memory_region_set_alias_offset(MemoryRegion *mr, 1010 hwaddr offset); 1011 1012 /** 1013 * memory_region_present: checks if an address relative to a @container 1014 * translates into #MemoryRegion within @container 1015 * 1016 * Answer whether a #MemoryRegion within @container covers the address 1017 * @addr. 1018 * 1019 * @container: a #MemoryRegion within which @addr is a relative address 1020 * @addr: the area within @container to be searched 1021 */ 1022 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1023 1024 /** 1025 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1026 * into any address space. 1027 * 1028 * @mr: a #MemoryRegion which should be checked if it's mapped 1029 */ 1030 bool memory_region_is_mapped(MemoryRegion *mr); 1031 1032 /** 1033 * memory_region_find: translate an address/size relative to a 1034 * MemoryRegion into a #MemoryRegionSection. 1035 * 1036 * Locates the first #MemoryRegion within @mr that overlaps the range 1037 * given by @addr and @size. 1038 * 1039 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1040 * It will have the following characteristics: 1041 * .@size = 0 iff no overlap was found 1042 * .@mr is non-%NULL iff an overlap was found 1043 * 1044 * Remember that in the return value the @offset_within_region is 1045 * relative to the returned region (in the .@mr field), not to the 1046 * @mr argument. 1047 * 1048 * Similarly, the .@offset_within_address_space is relative to the 1049 * address space that contains both regions, the passed and the 1050 * returned one. However, in the special case where the @mr argument 1051 * has no container (and thus is the root of the address space), the 1052 * following will hold: 1053 * .@offset_within_address_space >= @addr 1054 * .@offset_within_address_space + .@size <= @addr + @size 1055 * 1056 * @mr: a MemoryRegion within which @addr is a relative address 1057 * @addr: start of the area within @as to be searched 1058 * @size: size of the area to be searched 1059 */ 1060 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1061 hwaddr addr, uint64_t size); 1062 1063 /** 1064 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory 1065 * 1066 * Synchronizes the dirty page log for an entire address space. 1067 * @as: the address space that contains the memory being synchronized 1068 */ 1069 void address_space_sync_dirty_bitmap(AddressSpace *as); 1070 1071 /** 1072 * memory_region_transaction_begin: Start a transaction. 1073 * 1074 * During a transaction, changes will be accumulated and made visible 1075 * only when the transaction ends (is committed). 1076 */ 1077 void memory_region_transaction_begin(void); 1078 1079 /** 1080 * memory_region_transaction_commit: Commit a transaction and make changes 1081 * visible to the guest. 1082 */ 1083 void memory_region_transaction_commit(void); 1084 1085 /** 1086 * memory_listener_register: register callbacks to be called when memory 1087 * sections are mapped or unmapped into an address 1088 * space 1089 * 1090 * @listener: an object containing the callbacks to be called 1091 * @filter: if non-%NULL, only regions in this address space will be observed 1092 */ 1093 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1094 1095 /** 1096 * memory_listener_unregister: undo the effect of memory_listener_register() 1097 * 1098 * @listener: an object containing the callbacks to be removed 1099 */ 1100 void memory_listener_unregister(MemoryListener *listener); 1101 1102 /** 1103 * memory_global_dirty_log_start: begin dirty logging for all regions 1104 */ 1105 void memory_global_dirty_log_start(void); 1106 1107 /** 1108 * memory_global_dirty_log_stop: end dirty logging for all regions 1109 */ 1110 void memory_global_dirty_log_stop(void); 1111 1112 void mtree_info(fprintf_function mon_printf, void *f); 1113 1114 /** 1115 * memory_region_dispatch_read: perform a read directly to the specified 1116 * MemoryRegion. 1117 * 1118 * @mr: #MemoryRegion to access 1119 * @addr: address within that region 1120 * @pval: pointer to uint64_t which the data is written to 1121 * @size: size of the access in bytes 1122 * @attrs: memory transaction attributes to use for the access 1123 */ 1124 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1125 hwaddr addr, 1126 uint64_t *pval, 1127 unsigned size, 1128 MemTxAttrs attrs); 1129 /** 1130 * memory_region_dispatch_write: perform a write directly to the specified 1131 * MemoryRegion. 1132 * 1133 * @mr: #MemoryRegion to access 1134 * @addr: address within that region 1135 * @data: data to write 1136 * @size: size of the access in bytes 1137 * @attrs: memory transaction attributes to use for the access 1138 */ 1139 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1140 hwaddr addr, 1141 uint64_t data, 1142 unsigned size, 1143 MemTxAttrs attrs); 1144 1145 /** 1146 * address_space_init: initializes an address space 1147 * 1148 * @as: an uninitialized #AddressSpace 1149 * @root: a #MemoryRegion that routes addresses for the address space 1150 * @name: an address space name. The name is only used for debugging 1151 * output. 1152 */ 1153 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1154 1155 1156 /** 1157 * address_space_destroy: destroy an address space 1158 * 1159 * Releases all resources associated with an address space. After an address space 1160 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1161 * as well. 1162 * 1163 * @as: address space to be destroyed 1164 */ 1165 void address_space_destroy(AddressSpace *as); 1166 1167 /** 1168 * address_space_rw: read from or write to an address space. 1169 * 1170 * Return a MemTxResult indicating whether the operation succeeded 1171 * or failed (eg unassigned memory, device rejected the transaction, 1172 * IOMMU fault). 1173 * 1174 * @as: #AddressSpace to be accessed 1175 * @addr: address within that address space 1176 * @attrs: memory transaction attributes 1177 * @buf: buffer with the data transferred 1178 * @is_write: indicates the transfer direction 1179 */ 1180 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1181 MemTxAttrs attrs, uint8_t *buf, 1182 int len, bool is_write); 1183 1184 /** 1185 * address_space_write: write to address space. 1186 * 1187 * Return a MemTxResult indicating whether the operation succeeded 1188 * or failed (eg unassigned memory, device rejected the transaction, 1189 * IOMMU fault). 1190 * 1191 * @as: #AddressSpace to be accessed 1192 * @addr: address within that address space 1193 * @attrs: memory transaction attributes 1194 * @buf: buffer with the data transferred 1195 */ 1196 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1197 MemTxAttrs attrs, 1198 const uint8_t *buf, int len); 1199 1200 /** 1201 * address_space_read: read from an address space. 1202 * 1203 * Return a MemTxResult indicating whether the operation succeeded 1204 * or failed (eg unassigned memory, device rejected the transaction, 1205 * IOMMU fault). 1206 * 1207 * @as: #AddressSpace to be accessed 1208 * @addr: address within that address space 1209 * @attrs: memory transaction attributes 1210 * @buf: buffer with the data transferred 1211 */ 1212 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 1213 uint8_t *buf, int len); 1214 1215 /** 1216 * address_space_ld*: load from an address space 1217 * address_space_st*: store to an address space 1218 * 1219 * These functions perform a load or store of the byte, word, 1220 * longword or quad to the specified address within the AddressSpace. 1221 * The _le suffixed functions treat the data as little endian; 1222 * _be indicates big endian; no suffix indicates "same endianness 1223 * as guest CPU". 1224 * 1225 * The "guest CPU endianness" accessors are deprecated for use outside 1226 * target-* code; devices should be CPU-agnostic and use either the LE 1227 * or the BE accessors. 1228 * 1229 * @as #AddressSpace to be accessed 1230 * @addr: address within that address space 1231 * @val: data value, for stores 1232 * @attrs: memory transaction attributes 1233 * @result: location to write the success/failure of the transaction; 1234 * if NULL, this information is discarded 1235 */ 1236 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1237 MemTxAttrs attrs, MemTxResult *result); 1238 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1239 MemTxAttrs attrs, MemTxResult *result); 1240 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1241 MemTxAttrs attrs, MemTxResult *result); 1242 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1243 MemTxAttrs attrs, MemTxResult *result); 1244 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1245 MemTxAttrs attrs, MemTxResult *result); 1246 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1247 MemTxAttrs attrs, MemTxResult *result); 1248 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1249 MemTxAttrs attrs, MemTxResult *result); 1250 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1251 MemTxAttrs attrs, MemTxResult *result); 1252 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1253 MemTxAttrs attrs, MemTxResult *result); 1254 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1255 MemTxAttrs attrs, MemTxResult *result); 1256 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1257 MemTxAttrs attrs, MemTxResult *result); 1258 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1259 MemTxAttrs attrs, MemTxResult *result); 1260 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1261 MemTxAttrs attrs, MemTxResult *result); 1262 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1263 MemTxAttrs attrs, MemTxResult *result); 1264 1265 #ifdef NEED_CPU_H 1266 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, 1267 MemTxAttrs attrs, MemTxResult *result); 1268 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, 1269 MemTxAttrs attrs, MemTxResult *result); 1270 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, 1271 MemTxAttrs attrs, MemTxResult *result); 1272 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, 1273 MemTxAttrs attrs, MemTxResult *result); 1274 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, 1275 MemTxAttrs attrs, MemTxResult *result); 1276 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, 1277 MemTxAttrs attrs, MemTxResult *result); 1278 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, 1279 MemTxAttrs attrs, MemTxResult *result); 1280 #endif 1281 1282 /* address_space_translate: translate an address range into an address space 1283 * into a MemoryRegion and an address range into that section. Should be 1284 * called from an RCU critical section, to avoid that the last reference 1285 * to the returned region disappears after address_space_translate returns. 1286 * 1287 * @as: #AddressSpace to be accessed 1288 * @addr: address within that address space 1289 * @xlat: pointer to address within the returned memory region section's 1290 * #MemoryRegion. 1291 * @len: pointer to length 1292 * @is_write: indicates the transfer direction 1293 */ 1294 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1295 hwaddr *xlat, hwaddr *len, 1296 bool is_write); 1297 1298 /* address_space_access_valid: check for validity of accessing an address 1299 * space range 1300 * 1301 * Check whether memory is assigned to the given address space range, and 1302 * access is permitted by any IOMMU regions that are active for the address 1303 * space. 1304 * 1305 * For now, addr and len should be aligned to a page size. This limitation 1306 * will be lifted in the future. 1307 * 1308 * @as: #AddressSpace to be accessed 1309 * @addr: address within that address space 1310 * @len: length of the area to be checked 1311 * @is_write: indicates the transfer direction 1312 */ 1313 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1314 1315 /* address_space_map: map a physical memory region into a host virtual address 1316 * 1317 * May map a subset of the requested range, given by and returned in @plen. 1318 * May return %NULL if resources needed to perform the mapping are exhausted. 1319 * Use only for reads OR writes - not for read-modify-write operations. 1320 * Use cpu_register_map_client() to know when retrying the map operation is 1321 * likely to succeed. 1322 * 1323 * @as: #AddressSpace to be accessed 1324 * @addr: address within that address space 1325 * @plen: pointer to length of buffer; updated on return 1326 * @is_write: indicates the transfer direction 1327 */ 1328 void *address_space_map(AddressSpace *as, hwaddr addr, 1329 hwaddr *plen, bool is_write); 1330 1331 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1332 * 1333 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1334 * the amount of memory that was actually read or written by the caller. 1335 * 1336 * @as: #AddressSpace used 1337 * @addr: address within that address space 1338 * @len: buffer length as returned by address_space_map() 1339 * @access_len: amount of data actually transferred 1340 * @is_write: indicates the transfer direction 1341 */ 1342 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1343 int is_write, hwaddr access_len); 1344 1345 1346 #endif 1347 1348 #endif 1349