xref: /openbmc/qemu/include/exec/memory.h (revision c11b0583)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "exec/cpu-common.h"
27 #ifndef CONFIG_USER_ONLY
28 #include "exec/hwaddr.h"
29 #endif
30 #include "exec/memattrs.h"
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36 #include "qemu/rcu.h"
37 
38 #define MAX_PHYS_ADDR_SPACE_BITS 62
39 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40 
41 #define TYPE_MEMORY_REGION "qemu:memory-region"
42 #define MEMORY_REGION(obj) \
43         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44 
45 typedef struct MemoryRegionOps MemoryRegionOps;
46 typedef struct MemoryRegionMmio MemoryRegionMmio;
47 
48 struct MemoryRegionMmio {
49     CPUReadMemoryFunc *read[3];
50     CPUWriteMemoryFunc *write[3];
51 };
52 
53 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54 
55 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
56 typedef enum {
57     IOMMU_NONE = 0,
58     IOMMU_RO   = 1,
59     IOMMU_WO   = 2,
60     IOMMU_RW   = 3,
61 } IOMMUAccessFlags;
62 
63 struct IOMMUTLBEntry {
64     AddressSpace    *target_as;
65     hwaddr           iova;
66     hwaddr           translated_addr;
67     hwaddr           addr_mask;  /* 0xfff = 4k translation */
68     IOMMUAccessFlags perm;
69 };
70 
71 /* New-style MMIO accessors can indicate that the transaction failed.
72  * A zero (MEMTX_OK) response means success; anything else is a failure
73  * of some kind. The memory subsystem will bitwise-OR together results
74  * if it is synthesizing an operation from multiple smaller accesses.
75  */
76 #define MEMTX_OK 0
77 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
78 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
79 typedef uint32_t MemTxResult;
80 
81 /*
82  * Memory region callbacks
83  */
84 struct MemoryRegionOps {
85     /* Read from the memory region. @addr is relative to @mr; @size is
86      * in bytes. */
87     uint64_t (*read)(void *opaque,
88                      hwaddr addr,
89                      unsigned size);
90     /* Write to the memory region. @addr is relative to @mr; @size is
91      * in bytes. */
92     void (*write)(void *opaque,
93                   hwaddr addr,
94                   uint64_t data,
95                   unsigned size);
96 
97     MemTxResult (*read_with_attrs)(void *opaque,
98                                    hwaddr addr,
99                                    uint64_t *data,
100                                    unsigned size,
101                                    MemTxAttrs attrs);
102     MemTxResult (*write_with_attrs)(void *opaque,
103                                     hwaddr addr,
104                                     uint64_t data,
105                                     unsigned size,
106                                     MemTxAttrs attrs);
107 
108     enum device_endian endianness;
109     /* Guest-visible constraints: */
110     struct {
111         /* If nonzero, specify bounds on access sizes beyond which a machine
112          * check is thrown.
113          */
114         unsigned min_access_size;
115         unsigned max_access_size;
116         /* If true, unaligned accesses are supported.  Otherwise unaligned
117          * accesses throw machine checks.
118          */
119          bool unaligned;
120         /*
121          * If present, and returns #false, the transaction is not accepted
122          * by the device (and results in machine dependent behaviour such
123          * as a machine check exception).
124          */
125         bool (*accepts)(void *opaque, hwaddr addr,
126                         unsigned size, bool is_write);
127     } valid;
128     /* Internal implementation constraints: */
129     struct {
130         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
131          * will be rounded upwards and a partial result will be returned.
132          */
133         unsigned min_access_size;
134         /* If nonzero, specifies the maximum size implemented.  Larger sizes
135          * will be done as a series of accesses with smaller sizes.
136          */
137         unsigned max_access_size;
138         /* If true, unaligned accesses are supported.  Otherwise all accesses
139          * are converted to (possibly multiple) naturally aligned accesses.
140          */
141         bool unaligned;
142     } impl;
143 
144     /* If .read and .write are not present, old_mmio may be used for
145      * backwards compatibility with old mmio registration
146      */
147     const MemoryRegionMmio old_mmio;
148 };
149 
150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
151 
152 struct MemoryRegionIOMMUOps {
153     /* Return a TLB entry that contains a given address. */
154     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
155 };
156 
157 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
159 
160 struct MemoryRegion {
161     Object parent_obj;
162     /* All fields are private - violators will be prosecuted */
163     const MemoryRegionOps *ops;
164     const MemoryRegionIOMMUOps *iommu_ops;
165     void *opaque;
166     MemoryRegion *container;
167     Int128 size;
168     hwaddr addr;
169     void (*destructor)(MemoryRegion *mr);
170     ram_addr_t ram_addr;
171     uint64_t align;
172     bool subpage;
173     bool terminates;
174     bool romd_mode;
175     bool ram;
176     bool skip_dump;
177     bool readonly; /* For RAM regions */
178     bool enabled;
179     bool rom_device;
180     bool warning_printed; /* For reservations */
181     bool flush_coalesced_mmio;
182     bool global_locking;
183     uint8_t vga_logging_count;
184     MemoryRegion *alias;
185     hwaddr alias_offset;
186     int32_t priority;
187     bool may_overlap;
188     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
189     QTAILQ_ENTRY(MemoryRegion) subregions_link;
190     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
191     const char *name;
192     uint8_t dirty_log_mask;
193     unsigned ioeventfd_nb;
194     MemoryRegionIoeventfd *ioeventfds;
195     NotifierList iommu_notify;
196 };
197 
198 /**
199  * MemoryListener: callbacks structure for updates to the physical memory map
200  *
201  * Allows a component to adjust to changes in the guest-visible memory map.
202  * Use with memory_listener_register() and memory_listener_unregister().
203  */
204 struct MemoryListener {
205     void (*begin)(MemoryListener *listener);
206     void (*commit)(MemoryListener *listener);
207     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
208     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
209     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
210     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
211                       int old, int new);
212     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
213                      int old, int new);
214     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
215     void (*log_global_start)(MemoryListener *listener);
216     void (*log_global_stop)(MemoryListener *listener);
217     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
218                         bool match_data, uint64_t data, EventNotifier *e);
219     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
220                         bool match_data, uint64_t data, EventNotifier *e);
221     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
222                                hwaddr addr, hwaddr len);
223     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
224                                hwaddr addr, hwaddr len);
225     /* Lower = earlier (during add), later (during del) */
226     unsigned priority;
227     AddressSpace *address_space_filter;
228     QTAILQ_ENTRY(MemoryListener) link;
229 };
230 
231 /**
232  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
233  */
234 struct AddressSpace {
235     /* All fields are private. */
236     struct rcu_head rcu;
237     char *name;
238     MemoryRegion *root;
239 
240     /* Accessed via RCU.  */
241     struct FlatView *current_map;
242 
243     int ioeventfd_nb;
244     struct MemoryRegionIoeventfd *ioeventfds;
245     struct AddressSpaceDispatch *dispatch;
246     struct AddressSpaceDispatch *next_dispatch;
247     MemoryListener dispatch_listener;
248 
249     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
250 };
251 
252 /**
253  * MemoryRegionSection: describes a fragment of a #MemoryRegion
254  *
255  * @mr: the region, or %NULL if empty
256  * @address_space: the address space the region is mapped in
257  * @offset_within_region: the beginning of the section, relative to @mr's start
258  * @size: the size of the section; will not exceed @mr's boundaries
259  * @offset_within_address_space: the address of the first byte of the section
260  *     relative to the region's address space
261  * @readonly: writes to this section are ignored
262  */
263 struct MemoryRegionSection {
264     MemoryRegion *mr;
265     AddressSpace *address_space;
266     hwaddr offset_within_region;
267     Int128 size;
268     hwaddr offset_within_address_space;
269     bool readonly;
270 };
271 
272 /**
273  * memory_region_init: Initialize a memory region
274  *
275  * The region typically acts as a container for other memory regions.  Use
276  * memory_region_add_subregion() to add subregions.
277  *
278  * @mr: the #MemoryRegion to be initialized
279  * @owner: the object that tracks the region's reference count
280  * @name: used for debugging; not visible to the user or ABI
281  * @size: size of the region; any subregions beyond this size will be clipped
282  */
283 void memory_region_init(MemoryRegion *mr,
284                         struct Object *owner,
285                         const char *name,
286                         uint64_t size);
287 
288 /**
289  * memory_region_ref: Add 1 to a memory region's reference count
290  *
291  * Whenever memory regions are accessed outside the BQL, they need to be
292  * preserved against hot-unplug.  MemoryRegions actually do not have their
293  * own reference count; they piggyback on a QOM object, their "owner".
294  * This function adds a reference to the owner.
295  *
296  * All MemoryRegions must have an owner if they can disappear, even if the
297  * device they belong to operates exclusively under the BQL.  This is because
298  * the region could be returned at any time by memory_region_find, and this
299  * is usually under guest control.
300  *
301  * @mr: the #MemoryRegion
302  */
303 void memory_region_ref(MemoryRegion *mr);
304 
305 /**
306  * memory_region_unref: Remove 1 to a memory region's reference count
307  *
308  * Whenever memory regions are accessed outside the BQL, they need to be
309  * preserved against hot-unplug.  MemoryRegions actually do not have their
310  * own reference count; they piggyback on a QOM object, their "owner".
311  * This function removes a reference to the owner and possibly destroys it.
312  *
313  * @mr: the #MemoryRegion
314  */
315 void memory_region_unref(MemoryRegion *mr);
316 
317 /**
318  * memory_region_init_io: Initialize an I/O memory region.
319  *
320  * Accesses into the region will cause the callbacks in @ops to be called.
321  * if @size is nonzero, subregions will be clipped to @size.
322  *
323  * @mr: the #MemoryRegion to be initialized.
324  * @owner: the object that tracks the region's reference count
325  * @ops: a structure containing read and write callbacks to be used when
326  *       I/O is performed on the region.
327  * @opaque: passed to the read and write callbacks of the @ops structure.
328  * @name: used for debugging; not visible to the user or ABI
329  * @size: size of the region.
330  */
331 void memory_region_init_io(MemoryRegion *mr,
332                            struct Object *owner,
333                            const MemoryRegionOps *ops,
334                            void *opaque,
335                            const char *name,
336                            uint64_t size);
337 
338 /**
339  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
340  *                          region will modify memory directly.
341  *
342  * @mr: the #MemoryRegion to be initialized.
343  * @owner: the object that tracks the region's reference count
344  * @name: the name of the region.
345  * @size: size of the region.
346  * @errp: pointer to Error*, to store an error if it happens.
347  */
348 void memory_region_init_ram(MemoryRegion *mr,
349                             struct Object *owner,
350                             const char *name,
351                             uint64_t size,
352                             Error **errp);
353 
354 /**
355  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
356  *                                     RAM.  Accesses into the region will
357  *                                     modify memory directly.  Only an initial
358  *                                     portion of this RAM is actually used.
359  *                                     The used size can change across reboots.
360  *
361  * @mr: the #MemoryRegion to be initialized.
362  * @owner: the object that tracks the region's reference count
363  * @name: the name of the region.
364  * @size: used size of the region.
365  * @max_size: max size of the region.
366  * @resized: callback to notify owner about used size change.
367  * @errp: pointer to Error*, to store an error if it happens.
368  */
369 void memory_region_init_resizeable_ram(MemoryRegion *mr,
370                                        struct Object *owner,
371                                        const char *name,
372                                        uint64_t size,
373                                        uint64_t max_size,
374                                        void (*resized)(const char*,
375                                                        uint64_t length,
376                                                        void *host),
377                                        Error **errp);
378 #ifdef __linux__
379 /**
380  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
381  *                                    mmap-ed backend.
382  *
383  * @mr: the #MemoryRegion to be initialized.
384  * @owner: the object that tracks the region's reference count
385  * @name: the name of the region.
386  * @size: size of the region.
387  * @share: %true if memory must be mmaped with the MAP_SHARED flag
388  * @path: the path in which to allocate the RAM.
389  * @errp: pointer to Error*, to store an error if it happens.
390  */
391 void memory_region_init_ram_from_file(MemoryRegion *mr,
392                                       struct Object *owner,
393                                       const char *name,
394                                       uint64_t size,
395                                       bool share,
396                                       const char *path,
397                                       Error **errp);
398 #endif
399 
400 /**
401  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
402  *                              user-provided pointer.  Accesses into the
403  *                              region will modify memory directly.
404  *
405  * @mr: the #MemoryRegion to be initialized.
406  * @owner: the object that tracks the region's reference count
407  * @name: the name of the region.
408  * @size: size of the region.
409  * @ptr: memory to be mapped; must contain at least @size bytes.
410  */
411 void memory_region_init_ram_ptr(MemoryRegion *mr,
412                                 struct Object *owner,
413                                 const char *name,
414                                 uint64_t size,
415                                 void *ptr);
416 
417 /**
418  * memory_region_init_alias: Initialize a memory region that aliases all or a
419  *                           part of another memory region.
420  *
421  * @mr: the #MemoryRegion to be initialized.
422  * @owner: the object that tracks the region's reference count
423  * @name: used for debugging; not visible to the user or ABI
424  * @orig: the region to be referenced; @mr will be equivalent to
425  *        @orig between @offset and @offset + @size - 1.
426  * @offset: start of the section in @orig to be referenced.
427  * @size: size of the region.
428  */
429 void memory_region_init_alias(MemoryRegion *mr,
430                               struct Object *owner,
431                               const char *name,
432                               MemoryRegion *orig,
433                               hwaddr offset,
434                               uint64_t size);
435 
436 /**
437  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
438  *                                 handled via callbacks.
439  *
440  * If NULL callbacks pointer is given, then I/O space is not supposed to be
441  * handled by QEMU itself. Any access via the memory API will cause an abort().
442  *
443  * @mr: the #MemoryRegion to be initialized.
444  * @owner: the object that tracks the region's reference count
445  * @ops: callbacks for write access handling.
446  * @name: the name of the region.
447  * @size: size of the region.
448  * @errp: pointer to Error*, to store an error if it happens.
449  */
450 void memory_region_init_rom_device(MemoryRegion *mr,
451                                    struct Object *owner,
452                                    const MemoryRegionOps *ops,
453                                    void *opaque,
454                                    const char *name,
455                                    uint64_t size,
456                                    Error **errp);
457 
458 /**
459  * memory_region_init_reservation: Initialize a memory region that reserves
460  *                                 I/O space.
461  *
462  * A reservation region primariy serves debugging purposes.  It claims I/O
463  * space that is not supposed to be handled by QEMU itself.  Any access via
464  * the memory API will cause an abort().
465  * This function is deprecated. Use memory_region_init_io() with NULL
466  * callbacks instead.
467  *
468  * @mr: the #MemoryRegion to be initialized
469  * @owner: the object that tracks the region's reference count
470  * @name: used for debugging; not visible to the user or ABI
471  * @size: size of the region.
472  */
473 static inline void memory_region_init_reservation(MemoryRegion *mr,
474                                     Object *owner,
475                                     const char *name,
476                                     uint64_t size)
477 {
478     memory_region_init_io(mr, owner, NULL, mr, name, size);
479 }
480 
481 /**
482  * memory_region_init_iommu: Initialize a memory region that translates
483  * addresses
484  *
485  * An IOMMU region translates addresses and forwards accesses to a target
486  * memory region.
487  *
488  * @mr: the #MemoryRegion to be initialized
489  * @owner: the object that tracks the region's reference count
490  * @ops: a function that translates addresses into the @target region
491  * @name: used for debugging; not visible to the user or ABI
492  * @size: size of the region.
493  */
494 void memory_region_init_iommu(MemoryRegion *mr,
495                               struct Object *owner,
496                               const MemoryRegionIOMMUOps *ops,
497                               const char *name,
498                               uint64_t size);
499 
500 /**
501  * memory_region_owner: get a memory region's owner.
502  *
503  * @mr: the memory region being queried.
504  */
505 struct Object *memory_region_owner(MemoryRegion *mr);
506 
507 /**
508  * memory_region_size: get a memory region's size.
509  *
510  * @mr: the memory region being queried.
511  */
512 uint64_t memory_region_size(MemoryRegion *mr);
513 
514 /**
515  * memory_region_is_ram: check whether a memory region is random access
516  *
517  * Returns %true is a memory region is random access.
518  *
519  * @mr: the memory region being queried
520  */
521 bool memory_region_is_ram(MemoryRegion *mr);
522 
523 /**
524  * memory_region_is_skip_dump: check whether a memory region should not be
525  *                             dumped
526  *
527  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
528  *
529  * @mr: the memory region being queried
530  */
531 bool memory_region_is_skip_dump(MemoryRegion *mr);
532 
533 /**
534  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
535  *                              region
536  *
537  * @mr: the memory region being queried
538  */
539 void memory_region_set_skip_dump(MemoryRegion *mr);
540 
541 /**
542  * memory_region_is_romd: check whether a memory region is in ROMD mode
543  *
544  * Returns %true if a memory region is a ROM device and currently set to allow
545  * direct reads.
546  *
547  * @mr: the memory region being queried
548  */
549 static inline bool memory_region_is_romd(MemoryRegion *mr)
550 {
551     return mr->rom_device && mr->romd_mode;
552 }
553 
554 /**
555  * memory_region_is_iommu: check whether a memory region is an iommu
556  *
557  * Returns %true is a memory region is an iommu.
558  *
559  * @mr: the memory region being queried
560  */
561 bool memory_region_is_iommu(MemoryRegion *mr);
562 
563 /**
564  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
565  *
566  * @mr: the memory region that was changed
567  * @entry: the new entry in the IOMMU translation table.  The entry
568  *         replaces all old entries for the same virtual I/O address range.
569  *         Deleted entries have .@perm == 0.
570  */
571 void memory_region_notify_iommu(MemoryRegion *mr,
572                                 IOMMUTLBEntry entry);
573 
574 /**
575  * memory_region_register_iommu_notifier: register a notifier for changes to
576  * IOMMU translation entries.
577  *
578  * @mr: the memory region to observe
579  * @n: the notifier to be added; the notifier receives a pointer to an
580  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
581  *     valid on exit from the notifier.
582  */
583 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
584 
585 /**
586  * memory_region_unregister_iommu_notifier: unregister a notifier for
587  * changes to IOMMU translation entries.
588  *
589  * @n: the notifier to be removed.
590  */
591 void memory_region_unregister_iommu_notifier(Notifier *n);
592 
593 /**
594  * memory_region_name: get a memory region's name
595  *
596  * Returns the string that was used to initialize the memory region.
597  *
598  * @mr: the memory region being queried
599  */
600 const char *memory_region_name(const MemoryRegion *mr);
601 
602 /**
603  * memory_region_is_logging: return whether a memory region is logging writes
604  *
605  * Returns %true if the memory region is logging writes for the given client
606  *
607  * @mr: the memory region being queried
608  * @client: the client being queried
609  */
610 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
611 
612 /**
613  * memory_region_get_dirty_log_mask: return the clients for which a
614  * memory region is logging writes.
615  *
616  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
617  * are the bit indices.
618  *
619  * @mr: the memory region being queried
620  */
621 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
622 
623 /**
624  * memory_region_is_rom: check whether a memory region is ROM
625  *
626  * Returns %true is a memory region is read-only memory.
627  *
628  * @mr: the memory region being queried
629  */
630 bool memory_region_is_rom(MemoryRegion *mr);
631 
632 /**
633  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
634  *
635  * Returns a file descriptor backing a file-based RAM memory region,
636  * or -1 if the region is not a file-based RAM memory region.
637  *
638  * @mr: the RAM or alias memory region being queried.
639  */
640 int memory_region_get_fd(MemoryRegion *mr);
641 
642 /**
643  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
644  *
645  * Returns a host pointer to a RAM memory region (created with
646  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
647  * care.
648  *
649  * @mr: the memory region being queried.
650  */
651 void *memory_region_get_ram_ptr(MemoryRegion *mr);
652 
653 /* memory_region_ram_resize: Resize a RAM region.
654  *
655  * Only legal before guest might have detected the memory size: e.g. on
656  * incoming migration, or right after reset.
657  *
658  * @mr: a memory region created with @memory_region_init_resizeable_ram.
659  * @newsize: the new size the region
660  * @errp: pointer to Error*, to store an error if it happens.
661  */
662 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
663                               Error **errp);
664 
665 /**
666  * memory_region_set_log: Turn dirty logging on or off for a region.
667  *
668  * Turns dirty logging on or off for a specified client (display, migration).
669  * Only meaningful for RAM regions.
670  *
671  * @mr: the memory region being updated.
672  * @log: whether dirty logging is to be enabled or disabled.
673  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
674  */
675 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
676 
677 /**
678  * memory_region_get_dirty: Check whether a range of bytes is dirty
679  *                          for a specified client.
680  *
681  * Checks whether a range of bytes has been written to since the last
682  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
683  * must be enabled.
684  *
685  * @mr: the memory region being queried.
686  * @addr: the address (relative to the start of the region) being queried.
687  * @size: the size of the range being queried.
688  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
689  *          %DIRTY_MEMORY_VGA.
690  */
691 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
692                              hwaddr size, unsigned client);
693 
694 /**
695  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
696  *
697  * Marks a range of bytes as dirty, after it has been dirtied outside
698  * guest code.
699  *
700  * @mr: the memory region being dirtied.
701  * @addr: the address (relative to the start of the region) being dirtied.
702  * @size: size of the range being dirtied.
703  */
704 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
705                              hwaddr size);
706 
707 /**
708  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
709  *                                     for a specified client. It clears them.
710  *
711  * Checks whether a range of bytes has been written to since the last
712  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
713  * must be enabled.
714  *
715  * @mr: the memory region being queried.
716  * @addr: the address (relative to the start of the region) being queried.
717  * @size: the size of the range being queried.
718  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
719  *          %DIRTY_MEMORY_VGA.
720  */
721 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
722                                         hwaddr size, unsigned client);
723 /**
724  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
725  *                                  any external TLBs (e.g. kvm)
726  *
727  * Flushes dirty information from accelerators such as kvm and vhost-net
728  * and makes it available to users of the memory API.
729  *
730  * @mr: the region being flushed.
731  */
732 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
733 
734 /**
735  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
736  *                            client.
737  *
738  * Marks a range of pages as no longer dirty.
739  *
740  * @mr: the region being updated.
741  * @addr: the start of the subrange being cleaned.
742  * @size: the size of the subrange being cleaned.
743  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
744  *          %DIRTY_MEMORY_VGA.
745  */
746 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
747                                hwaddr size, unsigned client);
748 
749 /**
750  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
751  *
752  * Allows a memory region to be marked as read-only (turning it into a ROM).
753  * only useful on RAM regions.
754  *
755  * @mr: the region being updated.
756  * @readonly: whether rhe region is to be ROM or RAM.
757  */
758 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
759 
760 /**
761  * memory_region_rom_device_set_romd: enable/disable ROMD mode
762  *
763  * Allows a ROM device (initialized with memory_region_init_rom_device() to
764  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
765  * device is mapped to guest memory and satisfies read access directly.
766  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
767  * Writes are always handled by the #MemoryRegion.write function.
768  *
769  * @mr: the memory region to be updated
770  * @romd_mode: %true to put the region into ROMD mode
771  */
772 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
773 
774 /**
775  * memory_region_set_coalescing: Enable memory coalescing for the region.
776  *
777  * Enabled writes to a region to be queued for later processing. MMIO ->write
778  * callbacks may be delayed until a non-coalesced MMIO is issued.
779  * Only useful for IO regions.  Roughly similar to write-combining hardware.
780  *
781  * @mr: the memory region to be write coalesced
782  */
783 void memory_region_set_coalescing(MemoryRegion *mr);
784 
785 /**
786  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
787  *                               a region.
788  *
789  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
790  * Multiple calls can be issued coalesced disjoint ranges.
791  *
792  * @mr: the memory region to be updated.
793  * @offset: the start of the range within the region to be coalesced.
794  * @size: the size of the subrange to be coalesced.
795  */
796 void memory_region_add_coalescing(MemoryRegion *mr,
797                                   hwaddr offset,
798                                   uint64_t size);
799 
800 /**
801  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
802  *
803  * Disables any coalescing caused by memory_region_set_coalescing() or
804  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
805  * hardware.
806  *
807  * @mr: the memory region to be updated.
808  */
809 void memory_region_clear_coalescing(MemoryRegion *mr);
810 
811 /**
812  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
813  *                                    accesses.
814  *
815  * Ensure that pending coalesced MMIO request are flushed before the memory
816  * region is accessed. This property is automatically enabled for all regions
817  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
818  *
819  * @mr: the memory region to be updated.
820  */
821 void memory_region_set_flush_coalesced(MemoryRegion *mr);
822 
823 /**
824  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
825  *                                      accesses.
826  *
827  * Clear the automatic coalesced MMIO flushing enabled via
828  * memory_region_set_flush_coalesced. Note that this service has no effect on
829  * memory regions that have MMIO coalescing enabled for themselves. For them,
830  * automatic flushing will stop once coalescing is disabled.
831  *
832  * @mr: the memory region to be updated.
833  */
834 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
835 
836 /**
837  * memory_region_set_global_locking: Declares the access processing requires
838  *                                   QEMU's global lock.
839  *
840  * When this is invoked, accesses to the memory region will be processed while
841  * holding the global lock of QEMU. This is the default behavior of memory
842  * regions.
843  *
844  * @mr: the memory region to be updated.
845  */
846 void memory_region_set_global_locking(MemoryRegion *mr);
847 
848 /**
849  * memory_region_clear_global_locking: Declares that access processing does
850  *                                     not depend on the QEMU global lock.
851  *
852  * By clearing this property, accesses to the memory region will be processed
853  * outside of QEMU's global lock (unless the lock is held on when issuing the
854  * access request). In this case, the device model implementing the access
855  * handlers is responsible for synchronization of concurrency.
856  *
857  * @mr: the memory region to be updated.
858  */
859 void memory_region_clear_global_locking(MemoryRegion *mr);
860 
861 /**
862  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
863  *                            is written to a location.
864  *
865  * Marks a word in an IO region (initialized with memory_region_init_io())
866  * as a trigger for an eventfd event.  The I/O callback will not be called.
867  * The caller must be prepared to handle failure (that is, take the required
868  * action if the callback _is_ called).
869  *
870  * @mr: the memory region being updated.
871  * @addr: the address within @mr that is to be monitored
872  * @size: the size of the access to trigger the eventfd
873  * @match_data: whether to match against @data, instead of just @addr
874  * @data: the data to match against the guest write
875  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
876  **/
877 void memory_region_add_eventfd(MemoryRegion *mr,
878                                hwaddr addr,
879                                unsigned size,
880                                bool match_data,
881                                uint64_t data,
882                                EventNotifier *e);
883 
884 /**
885  * memory_region_del_eventfd: Cancel an eventfd.
886  *
887  * Cancels an eventfd trigger requested by a previous
888  * memory_region_add_eventfd() call.
889  *
890  * @mr: the memory region being updated.
891  * @addr: the address within @mr that is to be monitored
892  * @size: the size of the access to trigger the eventfd
893  * @match_data: whether to match against @data, instead of just @addr
894  * @data: the data to match against the guest write
895  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
896  */
897 void memory_region_del_eventfd(MemoryRegion *mr,
898                                hwaddr addr,
899                                unsigned size,
900                                bool match_data,
901                                uint64_t data,
902                                EventNotifier *e);
903 
904 /**
905  * memory_region_add_subregion: Add a subregion to a container.
906  *
907  * Adds a subregion at @offset.  The subregion may not overlap with other
908  * subregions (except for those explicitly marked as overlapping).  A region
909  * may only be added once as a subregion (unless removed with
910  * memory_region_del_subregion()); use memory_region_init_alias() if you
911  * want a region to be a subregion in multiple locations.
912  *
913  * @mr: the region to contain the new subregion; must be a container
914  *      initialized with memory_region_init().
915  * @offset: the offset relative to @mr where @subregion is added.
916  * @subregion: the subregion to be added.
917  */
918 void memory_region_add_subregion(MemoryRegion *mr,
919                                  hwaddr offset,
920                                  MemoryRegion *subregion);
921 /**
922  * memory_region_add_subregion_overlap: Add a subregion to a container
923  *                                      with overlap.
924  *
925  * Adds a subregion at @offset.  The subregion may overlap with other
926  * subregions.  Conflicts are resolved by having a higher @priority hide a
927  * lower @priority. Subregions without priority are taken as @priority 0.
928  * A region may only be added once as a subregion (unless removed with
929  * memory_region_del_subregion()); use memory_region_init_alias() if you
930  * want a region to be a subregion in multiple locations.
931  *
932  * @mr: the region to contain the new subregion; must be a container
933  *      initialized with memory_region_init().
934  * @offset: the offset relative to @mr where @subregion is added.
935  * @subregion: the subregion to be added.
936  * @priority: used for resolving overlaps; highest priority wins.
937  */
938 void memory_region_add_subregion_overlap(MemoryRegion *mr,
939                                          hwaddr offset,
940                                          MemoryRegion *subregion,
941                                          int priority);
942 
943 /**
944  * memory_region_get_ram_addr: Get the ram address associated with a memory
945  *                             region
946  *
947  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
948  * code is being reworked.
949  */
950 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
951 
952 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
953 /**
954  * memory_region_del_subregion: Remove a subregion.
955  *
956  * Removes a subregion from its container.
957  *
958  * @mr: the container to be updated.
959  * @subregion: the region being removed; must be a current subregion of @mr.
960  */
961 void memory_region_del_subregion(MemoryRegion *mr,
962                                  MemoryRegion *subregion);
963 
964 /*
965  * memory_region_set_enabled: dynamically enable or disable a region
966  *
967  * Enables or disables a memory region.  A disabled memory region
968  * ignores all accesses to itself and its subregions.  It does not
969  * obscure sibling subregions with lower priority - it simply behaves as
970  * if it was removed from the hierarchy.
971  *
972  * Regions default to being enabled.
973  *
974  * @mr: the region to be updated
975  * @enabled: whether to enable or disable the region
976  */
977 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
978 
979 /*
980  * memory_region_set_address: dynamically update the address of a region
981  *
982  * Dynamically updates the address of a region, relative to its container.
983  * May be used on regions are currently part of a memory hierarchy.
984  *
985  * @mr: the region to be updated
986  * @addr: new address, relative to container region
987  */
988 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
989 
990 /*
991  * memory_region_set_size: dynamically update the size of a region.
992  *
993  * Dynamically updates the size of a region.
994  *
995  * @mr: the region to be updated
996  * @size: used size of the region.
997  */
998 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
999 
1000 /*
1001  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1002  *
1003  * Dynamically updates the offset into the target region that an alias points
1004  * to, as if the fourth argument to memory_region_init_alias() has changed.
1005  *
1006  * @mr: the #MemoryRegion to be updated; should be an alias.
1007  * @offset: the new offset into the target memory region
1008  */
1009 void memory_region_set_alias_offset(MemoryRegion *mr,
1010                                     hwaddr offset);
1011 
1012 /**
1013  * memory_region_present: checks if an address relative to a @container
1014  * translates into #MemoryRegion within @container
1015  *
1016  * Answer whether a #MemoryRegion within @container covers the address
1017  * @addr.
1018  *
1019  * @container: a #MemoryRegion within which @addr is a relative address
1020  * @addr: the area within @container to be searched
1021  */
1022 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1023 
1024 /**
1025  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1026  * into any address space.
1027  *
1028  * @mr: a #MemoryRegion which should be checked if it's mapped
1029  */
1030 bool memory_region_is_mapped(MemoryRegion *mr);
1031 
1032 /**
1033  * memory_region_find: translate an address/size relative to a
1034  * MemoryRegion into a #MemoryRegionSection.
1035  *
1036  * Locates the first #MemoryRegion within @mr that overlaps the range
1037  * given by @addr and @size.
1038  *
1039  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1040  * It will have the following characteristics:
1041  *    .@size = 0 iff no overlap was found
1042  *    .@mr is non-%NULL iff an overlap was found
1043  *
1044  * Remember that in the return value the @offset_within_region is
1045  * relative to the returned region (in the .@mr field), not to the
1046  * @mr argument.
1047  *
1048  * Similarly, the .@offset_within_address_space is relative to the
1049  * address space that contains both regions, the passed and the
1050  * returned one.  However, in the special case where the @mr argument
1051  * has no container (and thus is the root of the address space), the
1052  * following will hold:
1053  *    .@offset_within_address_space >= @addr
1054  *    .@offset_within_address_space + .@size <= @addr + @size
1055  *
1056  * @mr: a MemoryRegion within which @addr is a relative address
1057  * @addr: start of the area within @as to be searched
1058  * @size: size of the area to be searched
1059  */
1060 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1061                                        hwaddr addr, uint64_t size);
1062 
1063 /**
1064  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1065  *
1066  * Synchronizes the dirty page log for an entire address space.
1067  * @as: the address space that contains the memory being synchronized
1068  */
1069 void address_space_sync_dirty_bitmap(AddressSpace *as);
1070 
1071 /**
1072  * memory_region_transaction_begin: Start a transaction.
1073  *
1074  * During a transaction, changes will be accumulated and made visible
1075  * only when the transaction ends (is committed).
1076  */
1077 void memory_region_transaction_begin(void);
1078 
1079 /**
1080  * memory_region_transaction_commit: Commit a transaction and make changes
1081  *                                   visible to the guest.
1082  */
1083 void memory_region_transaction_commit(void);
1084 
1085 /**
1086  * memory_listener_register: register callbacks to be called when memory
1087  *                           sections are mapped or unmapped into an address
1088  *                           space
1089  *
1090  * @listener: an object containing the callbacks to be called
1091  * @filter: if non-%NULL, only regions in this address space will be observed
1092  */
1093 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1094 
1095 /**
1096  * memory_listener_unregister: undo the effect of memory_listener_register()
1097  *
1098  * @listener: an object containing the callbacks to be removed
1099  */
1100 void memory_listener_unregister(MemoryListener *listener);
1101 
1102 /**
1103  * memory_global_dirty_log_start: begin dirty logging for all regions
1104  */
1105 void memory_global_dirty_log_start(void);
1106 
1107 /**
1108  * memory_global_dirty_log_stop: end dirty logging for all regions
1109  */
1110 void memory_global_dirty_log_stop(void);
1111 
1112 void mtree_info(fprintf_function mon_printf, void *f);
1113 
1114 /**
1115  * memory_region_dispatch_read: perform a read directly to the specified
1116  * MemoryRegion.
1117  *
1118  * @mr: #MemoryRegion to access
1119  * @addr: address within that region
1120  * @pval: pointer to uint64_t which the data is written to
1121  * @size: size of the access in bytes
1122  * @attrs: memory transaction attributes to use for the access
1123  */
1124 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1125                                         hwaddr addr,
1126                                         uint64_t *pval,
1127                                         unsigned size,
1128                                         MemTxAttrs attrs);
1129 /**
1130  * memory_region_dispatch_write: perform a write directly to the specified
1131  * MemoryRegion.
1132  *
1133  * @mr: #MemoryRegion to access
1134  * @addr: address within that region
1135  * @data: data to write
1136  * @size: size of the access in bytes
1137  * @attrs: memory transaction attributes to use for the access
1138  */
1139 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1140                                          hwaddr addr,
1141                                          uint64_t data,
1142                                          unsigned size,
1143                                          MemTxAttrs attrs);
1144 
1145 /**
1146  * address_space_init: initializes an address space
1147  *
1148  * @as: an uninitialized #AddressSpace
1149  * @root: a #MemoryRegion that routes addresses for the address space
1150  * @name: an address space name.  The name is only used for debugging
1151  *        output.
1152  */
1153 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1154 
1155 
1156 /**
1157  * address_space_destroy: destroy an address space
1158  *
1159  * Releases all resources associated with an address space.  After an address space
1160  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1161  * as well.
1162  *
1163  * @as: address space to be destroyed
1164  */
1165 void address_space_destroy(AddressSpace *as);
1166 
1167 /**
1168  * address_space_rw: read from or write to an address space.
1169  *
1170  * Return a MemTxResult indicating whether the operation succeeded
1171  * or failed (eg unassigned memory, device rejected the transaction,
1172  * IOMMU fault).
1173  *
1174  * @as: #AddressSpace to be accessed
1175  * @addr: address within that address space
1176  * @attrs: memory transaction attributes
1177  * @buf: buffer with the data transferred
1178  * @is_write: indicates the transfer direction
1179  */
1180 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1181                              MemTxAttrs attrs, uint8_t *buf,
1182                              int len, bool is_write);
1183 
1184 /**
1185  * address_space_write: write to address space.
1186  *
1187  * Return a MemTxResult indicating whether the operation succeeded
1188  * or failed (eg unassigned memory, device rejected the transaction,
1189  * IOMMU fault).
1190  *
1191  * @as: #AddressSpace to be accessed
1192  * @addr: address within that address space
1193  * @attrs: memory transaction attributes
1194  * @buf: buffer with the data transferred
1195  */
1196 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1197                                 MemTxAttrs attrs,
1198                                 const uint8_t *buf, int len);
1199 
1200 /**
1201  * address_space_read: read from an address space.
1202  *
1203  * Return a MemTxResult indicating whether the operation succeeded
1204  * or failed (eg unassigned memory, device rejected the transaction,
1205  * IOMMU fault).
1206  *
1207  * @as: #AddressSpace to be accessed
1208  * @addr: address within that address space
1209  * @attrs: memory transaction attributes
1210  * @buf: buffer with the data transferred
1211  */
1212 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1213                                uint8_t *buf, int len);
1214 
1215 /**
1216  * address_space_ld*: load from an address space
1217  * address_space_st*: store to an address space
1218  *
1219  * These functions perform a load or store of the byte, word,
1220  * longword or quad to the specified address within the AddressSpace.
1221  * The _le suffixed functions treat the data as little endian;
1222  * _be indicates big endian; no suffix indicates "same endianness
1223  * as guest CPU".
1224  *
1225  * The "guest CPU endianness" accessors are deprecated for use outside
1226  * target-* code; devices should be CPU-agnostic and use either the LE
1227  * or the BE accessors.
1228  *
1229  * @as #AddressSpace to be accessed
1230  * @addr: address within that address space
1231  * @val: data value, for stores
1232  * @attrs: memory transaction attributes
1233  * @result: location to write the success/failure of the transaction;
1234  *   if NULL, this information is discarded
1235  */
1236 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1237                             MemTxAttrs attrs, MemTxResult *result);
1238 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1239                             MemTxAttrs attrs, MemTxResult *result);
1240 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1241                             MemTxAttrs attrs, MemTxResult *result);
1242 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1243                             MemTxAttrs attrs, MemTxResult *result);
1244 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1245                             MemTxAttrs attrs, MemTxResult *result);
1246 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1247                             MemTxAttrs attrs, MemTxResult *result);
1248 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1249                             MemTxAttrs attrs, MemTxResult *result);
1250 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1251                             MemTxAttrs attrs, MemTxResult *result);
1252 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1253                             MemTxAttrs attrs, MemTxResult *result);
1254 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1255                             MemTxAttrs attrs, MemTxResult *result);
1256 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1257                             MemTxAttrs attrs, MemTxResult *result);
1258 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1259                             MemTxAttrs attrs, MemTxResult *result);
1260 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1261                             MemTxAttrs attrs, MemTxResult *result);
1262 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1263                             MemTxAttrs attrs, MemTxResult *result);
1264 
1265 #ifdef NEED_CPU_H
1266 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1267                             MemTxAttrs attrs, MemTxResult *result);
1268 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1269                             MemTxAttrs attrs, MemTxResult *result);
1270 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1271                             MemTxAttrs attrs, MemTxResult *result);
1272 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1273                             MemTxAttrs attrs, MemTxResult *result);
1274 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1275                             MemTxAttrs attrs, MemTxResult *result);
1276 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1277                             MemTxAttrs attrs, MemTxResult *result);
1278 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1279                             MemTxAttrs attrs, MemTxResult *result);
1280 #endif
1281 
1282 /* address_space_translate: translate an address range into an address space
1283  * into a MemoryRegion and an address range into that section.  Should be
1284  * called from an RCU critical section, to avoid that the last reference
1285  * to the returned region disappears after address_space_translate returns.
1286  *
1287  * @as: #AddressSpace to be accessed
1288  * @addr: address within that address space
1289  * @xlat: pointer to address within the returned memory region section's
1290  * #MemoryRegion.
1291  * @len: pointer to length
1292  * @is_write: indicates the transfer direction
1293  */
1294 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1295                                       hwaddr *xlat, hwaddr *len,
1296                                       bool is_write);
1297 
1298 /* address_space_access_valid: check for validity of accessing an address
1299  * space range
1300  *
1301  * Check whether memory is assigned to the given address space range, and
1302  * access is permitted by any IOMMU regions that are active for the address
1303  * space.
1304  *
1305  * For now, addr and len should be aligned to a page size.  This limitation
1306  * will be lifted in the future.
1307  *
1308  * @as: #AddressSpace to be accessed
1309  * @addr: address within that address space
1310  * @len: length of the area to be checked
1311  * @is_write: indicates the transfer direction
1312  */
1313 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1314 
1315 /* address_space_map: map a physical memory region into a host virtual address
1316  *
1317  * May map a subset of the requested range, given by and returned in @plen.
1318  * May return %NULL if resources needed to perform the mapping are exhausted.
1319  * Use only for reads OR writes - not for read-modify-write operations.
1320  * Use cpu_register_map_client() to know when retrying the map operation is
1321  * likely to succeed.
1322  *
1323  * @as: #AddressSpace to be accessed
1324  * @addr: address within that address space
1325  * @plen: pointer to length of buffer; updated on return
1326  * @is_write: indicates the transfer direction
1327  */
1328 void *address_space_map(AddressSpace *as, hwaddr addr,
1329                         hwaddr *plen, bool is_write);
1330 
1331 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1332  *
1333  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1334  * the amount of memory that was actually read or written by the caller.
1335  *
1336  * @as: #AddressSpace used
1337  * @addr: address within that address space
1338  * @len: buffer length as returned by address_space_map()
1339  * @access_len: amount of data actually transferred
1340  * @is_write: indicates the transfer direction
1341  */
1342 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1343                          int is_write, hwaddr access_len);
1344 
1345 
1346 #endif
1347 
1348 #endif
1349