xref: /openbmc/qemu/include/exec/memory.h (revision b7163687)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include <stdint.h>
20 #include <stdbool.h>
21 #include "qemu-common.h"
22 #include "exec/cpu-common.h"
23 #ifndef CONFIG_USER_ONLY
24 #include "exec/hwaddr.h"
25 #endif
26 #include "qemu/queue.h"
27 #include "qemu/int128.h"
28 #include "qemu/notify.h"
29 
30 #define MAX_PHYS_ADDR_SPACE_BITS 62
31 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
32 
33 typedef struct MemoryRegionOps MemoryRegionOps;
34 typedef struct MemoryRegionMmio MemoryRegionMmio;
35 
36 /* Must match *_DIRTY_FLAGS in cpu-all.h.  To be replaced with dynamic
37  * registration.
38  */
39 #define DIRTY_MEMORY_VGA       0
40 #define DIRTY_MEMORY_CODE      1
41 #define DIRTY_MEMORY_MIGRATION 3
42 
43 struct MemoryRegionMmio {
44     CPUReadMemoryFunc *read[3];
45     CPUWriteMemoryFunc *write[3];
46 };
47 
48 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
49 
50 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
51 typedef enum {
52     IOMMU_NONE = 0,
53     IOMMU_RO   = 1,
54     IOMMU_WO   = 2,
55     IOMMU_RW   = 3,
56 } IOMMUAccessFlags;
57 
58 struct IOMMUTLBEntry {
59     AddressSpace    *target_as;
60     hwaddr           iova;
61     hwaddr           translated_addr;
62     hwaddr           addr_mask;  /* 0xfff = 4k translation */
63     IOMMUAccessFlags perm;
64 };
65 
66 /*
67  * Memory region callbacks
68  */
69 struct MemoryRegionOps {
70     /* Read from the memory region. @addr is relative to @mr; @size is
71      * in bytes. */
72     uint64_t (*read)(void *opaque,
73                      hwaddr addr,
74                      unsigned size);
75     /* Write to the memory region. @addr is relative to @mr; @size is
76      * in bytes. */
77     void (*write)(void *opaque,
78                   hwaddr addr,
79                   uint64_t data,
80                   unsigned size);
81 
82     enum device_endian endianness;
83     /* Guest-visible constraints: */
84     struct {
85         /* If nonzero, specify bounds on access sizes beyond which a machine
86          * check is thrown.
87          */
88         unsigned min_access_size;
89         unsigned max_access_size;
90         /* If true, unaligned accesses are supported.  Otherwise unaligned
91          * accesses throw machine checks.
92          */
93          bool unaligned;
94         /*
95          * If present, and returns #false, the transaction is not accepted
96          * by the device (and results in machine dependent behaviour such
97          * as a machine check exception).
98          */
99         bool (*accepts)(void *opaque, hwaddr addr,
100                         unsigned size, bool is_write);
101     } valid;
102     /* Internal implementation constraints: */
103     struct {
104         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
105          * will be rounded upwards and a partial result will be returned.
106          */
107         unsigned min_access_size;
108         /* If nonzero, specifies the maximum size implemented.  Larger sizes
109          * will be done as a series of accesses with smaller sizes.
110          */
111         unsigned max_access_size;
112         /* If true, unaligned accesses are supported.  Otherwise all accesses
113          * are converted to (possibly multiple) naturally aligned accesses.
114          */
115          bool unaligned;
116     } impl;
117 
118     /* If .read and .write are not present, old_mmio may be used for
119      * backwards compatibility with old mmio registration
120      */
121     const MemoryRegionMmio old_mmio;
122 };
123 
124 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
125 
126 struct MemoryRegionIOMMUOps {
127     /* Return a TLB entry that contains a given address. */
128     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr);
129 };
130 
131 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
132 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
133 
134 struct MemoryRegion {
135     /* All fields are private - violators will be prosecuted */
136     const MemoryRegionOps *ops;
137     const MemoryRegionIOMMUOps *iommu_ops;
138     void *opaque;
139     struct Object *owner;
140     MemoryRegion *parent;
141     Int128 size;
142     hwaddr addr;
143     void (*destructor)(MemoryRegion *mr);
144     ram_addr_t ram_addr;
145     bool subpage;
146     bool terminates;
147     bool romd_mode;
148     bool ram;
149     bool readonly; /* For RAM regions */
150     bool enabled;
151     bool rom_device;
152     bool warning_printed; /* For reservations */
153     bool flush_coalesced_mmio;
154     MemoryRegion *alias;
155     hwaddr alias_offset;
156     unsigned priority;
157     bool may_overlap;
158     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
159     QTAILQ_ENTRY(MemoryRegion) subregions_link;
160     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
161     const char *name;
162     uint8_t dirty_log_mask;
163     unsigned ioeventfd_nb;
164     MemoryRegionIoeventfd *ioeventfds;
165     NotifierList iommu_notify;
166 };
167 
168 /**
169  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
170  */
171 struct AddressSpace {
172     /* All fields are private. */
173     char *name;
174     MemoryRegion *root;
175     struct FlatView *current_map;
176     int ioeventfd_nb;
177     struct MemoryRegionIoeventfd *ioeventfds;
178     struct AddressSpaceDispatch *dispatch;
179     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
180 };
181 
182 /**
183  * MemoryRegionSection: describes a fragment of a #MemoryRegion
184  *
185  * @mr: the region, or %NULL if empty
186  * @address_space: the address space the region is mapped in
187  * @offset_within_region: the beginning of the section, relative to @mr's start
188  * @size: the size of the section; will not exceed @mr's boundaries
189  * @offset_within_address_space: the address of the first byte of the section
190  *     relative to the region's address space
191  * @readonly: writes to this section are ignored
192  */
193 struct MemoryRegionSection {
194     MemoryRegion *mr;
195     AddressSpace *address_space;
196     hwaddr offset_within_region;
197     Int128 size;
198     hwaddr offset_within_address_space;
199     bool readonly;
200 };
201 
202 typedef struct MemoryListener MemoryListener;
203 
204 /**
205  * MemoryListener: callbacks structure for updates to the physical memory map
206  *
207  * Allows a component to adjust to changes in the guest-visible memory map.
208  * Use with memory_listener_register() and memory_listener_unregister().
209  */
210 struct MemoryListener {
211     void (*begin)(MemoryListener *listener);
212     void (*commit)(MemoryListener *listener);
213     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
214     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
215     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
216     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
217     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
218     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
219     void (*log_global_start)(MemoryListener *listener);
220     void (*log_global_stop)(MemoryListener *listener);
221     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
222                         bool match_data, uint64_t data, EventNotifier *e);
223     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
224                         bool match_data, uint64_t data, EventNotifier *e);
225     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
226                                hwaddr addr, hwaddr len);
227     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
228                                hwaddr addr, hwaddr len);
229     /* Lower = earlier (during add), later (during del) */
230     unsigned priority;
231     AddressSpace *address_space_filter;
232     QTAILQ_ENTRY(MemoryListener) link;
233 };
234 
235 /**
236  * memory_region_init: Initialize a memory region
237  *
238  * The region typically acts as a container for other memory regions.  Use
239  * memory_region_add_subregion() to add subregions.
240  *
241  * @mr: the #MemoryRegion to be initialized
242  * @owner: the object that tracks the region's reference count
243  * @name: used for debugging; not visible to the user or ABI
244  * @size: size of the region; any subregions beyond this size will be clipped
245  */
246 void memory_region_init(MemoryRegion *mr,
247                         struct Object *owner,
248                         const char *name,
249                         uint64_t size);
250 
251 /**
252  * memory_region_ref: Add 1 to a memory region's reference count
253  *
254  * Whenever memory regions are accessed outside the BQL, they need to be
255  * preserved against hot-unplug.  MemoryRegions actually do not have their
256  * own reference count; they piggyback on a QOM object, their "owner".
257  * This function adds a reference to the owner.
258  *
259  * All MemoryRegions must have an owner if they can disappear, even if the
260  * device they belong to operates exclusively under the BQL.  This is because
261  * the region could be returned at any time by memory_region_find, and this
262  * is usually under guest control.
263  *
264  * @mr: the #MemoryRegion
265  */
266 void memory_region_ref(MemoryRegion *mr);
267 
268 /**
269  * memory_region_unref: Remove 1 to a memory region's reference count
270  *
271  * Whenever memory regions are accessed outside the BQL, they need to be
272  * preserved against hot-unplug.  MemoryRegions actually do not have their
273  * own reference count; they piggyback on a QOM object, their "owner".
274  * This function removes a reference to the owner and possibly destroys it.
275  *
276  * @mr: the #MemoryRegion
277  */
278 void memory_region_unref(MemoryRegion *mr);
279 
280 /**
281  * memory_region_init_io: Initialize an I/O memory region.
282  *
283  * Accesses into the region will cause the callbacks in @ops to be called.
284  * if @size is nonzero, subregions will be clipped to @size.
285  *
286  * @mr: the #MemoryRegion to be initialized.
287  * @owner: the object that tracks the region's reference count
288  * @ops: a structure containing read and write callbacks to be used when
289  *       I/O is performed on the region.
290  * @opaque: passed to to the read and write callbacks of the @ops structure.
291  * @name: used for debugging; not visible to the user or ABI
292  * @size: size of the region.
293  */
294 void memory_region_init_io(MemoryRegion *mr,
295                            struct Object *owner,
296                            const MemoryRegionOps *ops,
297                            void *opaque,
298                            const char *name,
299                            uint64_t size);
300 
301 /**
302  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
303  *                          region will modify memory directly.
304  *
305  * @mr: the #MemoryRegion to be initialized.
306  * @owner: the object that tracks the region's reference count
307  * @name: the name of the region.
308  * @size: size of the region.
309  */
310 void memory_region_init_ram(MemoryRegion *mr,
311                             struct Object *owner,
312                             const char *name,
313                             uint64_t size);
314 
315 /**
316  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
317  *                              user-provided pointer.  Accesses into the
318  *                              region will modify memory directly.
319  *
320  * @mr: the #MemoryRegion to be initialized.
321  * @owner: the object that tracks the region's reference count
322  * @name: the name of the region.
323  * @size: size of the region.
324  * @ptr: memory to be mapped; must contain at least @size bytes.
325  */
326 void memory_region_init_ram_ptr(MemoryRegion *mr,
327                                 struct Object *owner,
328                                 const char *name,
329                                 uint64_t size,
330                                 void *ptr);
331 
332 /**
333  * memory_region_init_alias: Initialize a memory region that aliases all or a
334  *                           part of another memory region.
335  *
336  * @mr: the #MemoryRegion to be initialized.
337  * @owner: the object that tracks the region's reference count
338  * @name: used for debugging; not visible to the user or ABI
339  * @orig: the region to be referenced; @mr will be equivalent to
340  *        @orig between @offset and @offset + @size - 1.
341  * @offset: start of the section in @orig to be referenced.
342  * @size: size of the region.
343  */
344 void memory_region_init_alias(MemoryRegion *mr,
345                               struct Object *owner,
346                               const char *name,
347                               MemoryRegion *orig,
348                               hwaddr offset,
349                               uint64_t size);
350 
351 /**
352  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
353  *                                 handled via callbacks.
354  *
355  * @mr: the #MemoryRegion to be initialized.
356  * @owner: the object that tracks the region's reference count
357  * @ops: callbacks for write access handling.
358  * @name: the name of the region.
359  * @size: size of the region.
360  */
361 void memory_region_init_rom_device(MemoryRegion *mr,
362                                    struct Object *owner,
363                                    const MemoryRegionOps *ops,
364                                    void *opaque,
365                                    const char *name,
366                                    uint64_t size);
367 
368 /**
369  * memory_region_init_reservation: Initialize a memory region that reserves
370  *                                 I/O space.
371  *
372  * A reservation region primariy serves debugging purposes.  It claims I/O
373  * space that is not supposed to be handled by QEMU itself.  Any access via
374  * the memory API will cause an abort().
375  *
376  * @mr: the #MemoryRegion to be initialized
377  * @owner: the object that tracks the region's reference count
378  * @name: used for debugging; not visible to the user or ABI
379  * @size: size of the region.
380  */
381 void memory_region_init_reservation(MemoryRegion *mr,
382                                     struct Object *owner,
383                                     const char *name,
384                                     uint64_t size);
385 
386 /**
387  * memory_region_init_iommu: Initialize a memory region that translates
388  * addresses
389  *
390  * An IOMMU region translates addresses and forwards accesses to a target
391  * memory region.
392  *
393  * @mr: the #MemoryRegion to be initialized
394  * @owner: the object that tracks the region's reference count
395  * @ops: a function that translates addresses into the @target region
396  * @name: used for debugging; not visible to the user or ABI
397  * @size: size of the region.
398  */
399 void memory_region_init_iommu(MemoryRegion *mr,
400                               struct Object *owner,
401                               const MemoryRegionIOMMUOps *ops,
402                               const char *name,
403                               uint64_t size);
404 
405 /**
406  * memory_region_destroy: Destroy a memory region and reclaim all resources.
407  *
408  * @mr: the region to be destroyed.  May not currently be a subregion
409  *      (see memory_region_add_subregion()) or referenced in an alias
410  *      (see memory_region_init_alias()).
411  */
412 void memory_region_destroy(MemoryRegion *mr);
413 
414 /**
415  * memory_region_owner: get a memory region's owner.
416  *
417  * @mr: the memory region being queried.
418  */
419 struct Object *memory_region_owner(MemoryRegion *mr);
420 
421 /**
422  * memory_region_size: get a memory region's size.
423  *
424  * @mr: the memory region being queried.
425  */
426 uint64_t memory_region_size(MemoryRegion *mr);
427 
428 /**
429  * memory_region_is_ram: check whether a memory region is random access
430  *
431  * Returns %true is a memory region is random access.
432  *
433  * @mr: the memory region being queried
434  */
435 bool memory_region_is_ram(MemoryRegion *mr);
436 
437 /**
438  * memory_region_is_romd: check whether a memory region is in ROMD mode
439  *
440  * Returns %true if a memory region is a ROM device and currently set to allow
441  * direct reads.
442  *
443  * @mr: the memory region being queried
444  */
445 static inline bool memory_region_is_romd(MemoryRegion *mr)
446 {
447     return mr->rom_device && mr->romd_mode;
448 }
449 
450 /**
451  * memory_region_is_iommu: check whether a memory region is an iommu
452  *
453  * Returns %true is a memory region is an iommu.
454  *
455  * @mr: the memory region being queried
456  */
457 bool memory_region_is_iommu(MemoryRegion *mr);
458 
459 /**
460  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
461  *
462  * @mr: the memory region that was changed
463  * @entry: the new entry in the IOMMU translation table.  The entry
464  *         replaces all old entries for the same virtual I/O address range.
465  *         Deleted entries have .@perm == 0.
466  */
467 void memory_region_notify_iommu(MemoryRegion *mr,
468                                 IOMMUTLBEntry entry);
469 
470 /**
471  * memory_region_register_iommu_notifier: register a notifier for changes to
472  * IOMMU translation entries.
473  *
474  * @mr: the memory region to observe
475  * @n: the notifier to be added; the notifier receives a pointer to an
476  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
477  *     valid on exit from the notifier.
478  */
479 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
480 
481 /**
482  * memory_region_unregister_iommu_notifier: unregister a notifier for
483  * changes to IOMMU translation entries.
484  *
485  * @n: the notifier to be removed.
486  */
487 void memory_region_unregister_iommu_notifier(Notifier *n);
488 
489 /**
490  * memory_region_name: get a memory region's name
491  *
492  * Returns the string that was used to initialize the memory region.
493  *
494  * @mr: the memory region being queried
495  */
496 const char *memory_region_name(MemoryRegion *mr);
497 
498 /**
499  * memory_region_is_logging: return whether a memory region is logging writes
500  *
501  * Returns %true if the memory region is logging writes
502  *
503  * @mr: the memory region being queried
504  */
505 bool memory_region_is_logging(MemoryRegion *mr);
506 
507 /**
508  * memory_region_is_rom: check whether a memory region is ROM
509  *
510  * Returns %true is a memory region is read-only memory.
511  *
512  * @mr: the memory region being queried
513  */
514 bool memory_region_is_rom(MemoryRegion *mr);
515 
516 /**
517  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
518  *
519  * Returns a host pointer to a RAM memory region (created with
520  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
521  * care.
522  *
523  * @mr: the memory region being queried.
524  */
525 void *memory_region_get_ram_ptr(MemoryRegion *mr);
526 
527 /**
528  * memory_region_set_log: Turn dirty logging on or off for a region.
529  *
530  * Turns dirty logging on or off for a specified client (display, migration).
531  * Only meaningful for RAM regions.
532  *
533  * @mr: the memory region being updated.
534  * @log: whether dirty logging is to be enabled or disabled.
535  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
536  *          %DIRTY_MEMORY_VGA.
537  */
538 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
539 
540 /**
541  * memory_region_get_dirty: Check whether a range of bytes is dirty
542  *                          for a specified client.
543  *
544  * Checks whether a range of bytes has been written to since the last
545  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
546  * must be enabled.
547  *
548  * @mr: the memory region being queried.
549  * @addr: the address (relative to the start of the region) being queried.
550  * @size: the size of the range being queried.
551  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
552  *          %DIRTY_MEMORY_VGA.
553  */
554 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
555                              hwaddr size, unsigned client);
556 
557 /**
558  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
559  *
560  * Marks a range of bytes as dirty, after it has been dirtied outside
561  * guest code.
562  *
563  * @mr: the memory region being dirtied.
564  * @addr: the address (relative to the start of the region) being dirtied.
565  * @size: size of the range being dirtied.
566  */
567 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
568                              hwaddr size);
569 
570 /**
571  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
572  *                                     for a specified client. It clears them.
573  *
574  * Checks whether a range of bytes has been written to since the last
575  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
576  * must be enabled.
577  *
578  * @mr: the memory region being queried.
579  * @addr: the address (relative to the start of the region) being queried.
580  * @size: the size of the range being queried.
581  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
582  *          %DIRTY_MEMORY_VGA.
583  */
584 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
585                                         hwaddr size, unsigned client);
586 /**
587  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
588  *                                  any external TLBs (e.g. kvm)
589  *
590  * Flushes dirty information from accelerators such as kvm and vhost-net
591  * and makes it available to users of the memory API.
592  *
593  * @mr: the region being flushed.
594  */
595 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
596 
597 /**
598  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
599  *                            client.
600  *
601  * Marks a range of pages as no longer dirty.
602  *
603  * @mr: the region being updated.
604  * @addr: the start of the subrange being cleaned.
605  * @size: the size of the subrange being cleaned.
606  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
607  *          %DIRTY_MEMORY_VGA.
608  */
609 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
610                                hwaddr size, unsigned client);
611 
612 /**
613  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
614  *
615  * Allows a memory region to be marked as read-only (turning it into a ROM).
616  * only useful on RAM regions.
617  *
618  * @mr: the region being updated.
619  * @readonly: whether rhe region is to be ROM or RAM.
620  */
621 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
622 
623 /**
624  * memory_region_rom_device_set_romd: enable/disable ROMD mode
625  *
626  * Allows a ROM device (initialized with memory_region_init_rom_device() to
627  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
628  * device is mapped to guest memory and satisfies read access directly.
629  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
630  * Writes are always handled by the #MemoryRegion.write function.
631  *
632  * @mr: the memory region to be updated
633  * @romd_mode: %true to put the region into ROMD mode
634  */
635 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
636 
637 /**
638  * memory_region_set_coalescing: Enable memory coalescing for the region.
639  *
640  * Enabled writes to a region to be queued for later processing. MMIO ->write
641  * callbacks may be delayed until a non-coalesced MMIO is issued.
642  * Only useful for IO regions.  Roughly similar to write-combining hardware.
643  *
644  * @mr: the memory region to be write coalesced
645  */
646 void memory_region_set_coalescing(MemoryRegion *mr);
647 
648 /**
649  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
650  *                               a region.
651  *
652  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
653  * Multiple calls can be issued coalesced disjoint ranges.
654  *
655  * @mr: the memory region to be updated.
656  * @offset: the start of the range within the region to be coalesced.
657  * @size: the size of the subrange to be coalesced.
658  */
659 void memory_region_add_coalescing(MemoryRegion *mr,
660                                   hwaddr offset,
661                                   uint64_t size);
662 
663 /**
664  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
665  *
666  * Disables any coalescing caused by memory_region_set_coalescing() or
667  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
668  * hardware.
669  *
670  * @mr: the memory region to be updated.
671  */
672 void memory_region_clear_coalescing(MemoryRegion *mr);
673 
674 /**
675  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
676  *                                    accesses.
677  *
678  * Ensure that pending coalesced MMIO request are flushed before the memory
679  * region is accessed. This property is automatically enabled for all regions
680  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
681  *
682  * @mr: the memory region to be updated.
683  */
684 void memory_region_set_flush_coalesced(MemoryRegion *mr);
685 
686 /**
687  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
688  *                                      accesses.
689  *
690  * Clear the automatic coalesced MMIO flushing enabled via
691  * memory_region_set_flush_coalesced. Note that this service has no effect on
692  * memory regions that have MMIO coalescing enabled for themselves. For them,
693  * automatic flushing will stop once coalescing is disabled.
694  *
695  * @mr: the memory region to be updated.
696  */
697 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
698 
699 /**
700  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
701  *                            is written to a location.
702  *
703  * Marks a word in an IO region (initialized with memory_region_init_io())
704  * as a trigger for an eventfd event.  The I/O callback will not be called.
705  * The caller must be prepared to handle failure (that is, take the required
706  * action if the callback _is_ called).
707  *
708  * @mr: the memory region being updated.
709  * @addr: the address within @mr that is to be monitored
710  * @size: the size of the access to trigger the eventfd
711  * @match_data: whether to match against @data, instead of just @addr
712  * @data: the data to match against the guest write
713  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
714  **/
715 void memory_region_add_eventfd(MemoryRegion *mr,
716                                hwaddr addr,
717                                unsigned size,
718                                bool match_data,
719                                uint64_t data,
720                                EventNotifier *e);
721 
722 /**
723  * memory_region_del_eventfd: Cancel an eventfd.
724  *
725  * Cancels an eventfd trigger requested by a previous
726  * memory_region_add_eventfd() call.
727  *
728  * @mr: the memory region being updated.
729  * @addr: the address within @mr that is to be monitored
730  * @size: the size of the access to trigger the eventfd
731  * @match_data: whether to match against @data, instead of just @addr
732  * @data: the data to match against the guest write
733  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
734  */
735 void memory_region_del_eventfd(MemoryRegion *mr,
736                                hwaddr addr,
737                                unsigned size,
738                                bool match_data,
739                                uint64_t data,
740                                EventNotifier *e);
741 
742 /**
743  * memory_region_add_subregion: Add a subregion to a container.
744  *
745  * Adds a subregion at @offset.  The subregion may not overlap with other
746  * subregions (except for those explicitly marked as overlapping).  A region
747  * may only be added once as a subregion (unless removed with
748  * memory_region_del_subregion()); use memory_region_init_alias() if you
749  * want a region to be a subregion in multiple locations.
750  *
751  * @mr: the region to contain the new subregion; must be a container
752  *      initialized with memory_region_init().
753  * @offset: the offset relative to @mr where @subregion is added.
754  * @subregion: the subregion to be added.
755  */
756 void memory_region_add_subregion(MemoryRegion *mr,
757                                  hwaddr offset,
758                                  MemoryRegion *subregion);
759 /**
760  * memory_region_add_subregion_overlap: Add a subregion to a container
761  *                                      with overlap.
762  *
763  * Adds a subregion at @offset.  The subregion may overlap with other
764  * subregions.  Conflicts are resolved by having a higher @priority hide a
765  * lower @priority. Subregions without priority are taken as @priority 0.
766  * A region may only be added once as a subregion (unless removed with
767  * memory_region_del_subregion()); use memory_region_init_alias() if you
768  * want a region to be a subregion in multiple locations.
769  *
770  * @mr: the region to contain the new subregion; must be a container
771  *      initialized with memory_region_init().
772  * @offset: the offset relative to @mr where @subregion is added.
773  * @subregion: the subregion to be added.
774  * @priority: used for resolving overlaps; highest priority wins.
775  */
776 void memory_region_add_subregion_overlap(MemoryRegion *mr,
777                                          hwaddr offset,
778                                          MemoryRegion *subregion,
779                                          unsigned priority);
780 
781 /**
782  * memory_region_get_ram_addr: Get the ram address associated with a memory
783  *                             region
784  *
785  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
786  * code is being reworked.
787  */
788 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
789 
790 /**
791  * memory_region_del_subregion: Remove a subregion.
792  *
793  * Removes a subregion from its container.
794  *
795  * @mr: the container to be updated.
796  * @subregion: the region being removed; must be a current subregion of @mr.
797  */
798 void memory_region_del_subregion(MemoryRegion *mr,
799                                  MemoryRegion *subregion);
800 
801 /*
802  * memory_region_set_enabled: dynamically enable or disable a region
803  *
804  * Enables or disables a memory region.  A disabled memory region
805  * ignores all accesses to itself and its subregions.  It does not
806  * obscure sibling subregions with lower priority - it simply behaves as
807  * if it was removed from the hierarchy.
808  *
809  * Regions default to being enabled.
810  *
811  * @mr: the region to be updated
812  * @enabled: whether to enable or disable the region
813  */
814 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
815 
816 /*
817  * memory_region_set_address: dynamically update the address of a region
818  *
819  * Dynamically updates the address of a region, relative to its parent.
820  * May be used on regions are currently part of a memory hierarchy.
821  *
822  * @mr: the region to be updated
823  * @addr: new address, relative to parent region
824  */
825 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
826 
827 /*
828  * memory_region_set_alias_offset: dynamically update a memory alias's offset
829  *
830  * Dynamically updates the offset into the target region that an alias points
831  * to, as if the fourth argument to memory_region_init_alias() has changed.
832  *
833  * @mr: the #MemoryRegion to be updated; should be an alias.
834  * @offset: the new offset into the target memory region
835  */
836 void memory_region_set_alias_offset(MemoryRegion *mr,
837                                     hwaddr offset);
838 
839 /**
840  * memory_region_present: translate an address/size relative to a
841  * MemoryRegion into a #MemoryRegionSection.
842  *
843  * Answer whether a #MemoryRegion within @parent covers the address
844  * @addr.
845  *
846  * @parent: a MemoryRegion within which @addr is a relative address
847  * @addr: the area within @parent to be searched
848  */
849 bool memory_region_present(MemoryRegion *parent, hwaddr addr);
850 
851 /**
852  * memory_region_find: translate an address/size relative to a
853  * MemoryRegion into a #MemoryRegionSection.
854  *
855  * Locates the first #MemoryRegion within @mr that overlaps the range
856  * given by @addr and @size.
857  *
858  * Returns a #MemoryRegionSection that describes a contiguous overlap.
859  * It will have the following characteristics:
860  *    .@size = 0 iff no overlap was found
861  *    .@mr is non-%NULL iff an overlap was found
862  *
863  * Remember that in the return value the @offset_within_region is
864  * relative to the returned region (in the .@mr field), not to the
865  * @mr argument.
866  *
867  * Similarly, the .@offset_within_address_space is relative to the
868  * address space that contains both regions, the passed and the
869  * returned one.  However, in the special case where the @mr argument
870  * has no parent (and thus is the root of the address space), the
871  * following will hold:
872  *    .@offset_within_address_space >= @addr
873  *    .@offset_within_address_space + .@size <= @addr + @size
874  *
875  * @mr: a MemoryRegion within which @addr is a relative address
876  * @addr: start of the area within @as to be searched
877  * @size: size of the area to be searched
878  */
879 MemoryRegionSection memory_region_find(MemoryRegion *mr,
880                                        hwaddr addr, uint64_t size);
881 
882 /**
883  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
884  *
885  * Synchronizes the dirty page log for an entire address space.
886  * @as: the address space that contains the memory being synchronized
887  */
888 void address_space_sync_dirty_bitmap(AddressSpace *as);
889 
890 /**
891  * memory_region_transaction_begin: Start a transaction.
892  *
893  * During a transaction, changes will be accumulated and made visible
894  * only when the transaction ends (is committed).
895  */
896 void memory_region_transaction_begin(void);
897 
898 /**
899  * memory_region_transaction_commit: Commit a transaction and make changes
900  *                                   visible to the guest.
901  */
902 void memory_region_transaction_commit(void);
903 
904 /**
905  * memory_listener_register: register callbacks to be called when memory
906  *                           sections are mapped or unmapped into an address
907  *                           space
908  *
909  * @listener: an object containing the callbacks to be called
910  * @filter: if non-%NULL, only regions in this address space will be observed
911  */
912 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
913 
914 /**
915  * memory_listener_unregister: undo the effect of memory_listener_register()
916  *
917  * @listener: an object containing the callbacks to be removed
918  */
919 void memory_listener_unregister(MemoryListener *listener);
920 
921 /**
922  * memory_global_dirty_log_start: begin dirty logging for all regions
923  */
924 void memory_global_dirty_log_start(void);
925 
926 /**
927  * memory_global_dirty_log_stop: end dirty logging for all regions
928  */
929 void memory_global_dirty_log_stop(void);
930 
931 void mtree_info(fprintf_function mon_printf, void *f);
932 
933 /**
934  * address_space_init: initializes an address space
935  *
936  * @as: an uninitialized #AddressSpace
937  * @root: a #MemoryRegion that routes addesses for the address space
938  * @name: an address space name.  The name is only used for debugging
939  *        output.
940  */
941 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
942 
943 
944 /**
945  * address_space_destroy: destroy an address space
946  *
947  * Releases all resources associated with an address space.  After an address space
948  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
949  * as well.
950  *
951  * @as: address space to be destroyed
952  */
953 void address_space_destroy(AddressSpace *as);
954 
955 /**
956  * address_space_rw: read from or write to an address space.
957  *
958  * Return true if the operation hit any unassigned memory or encountered an
959  * IOMMU fault.
960  *
961  * @as: #AddressSpace to be accessed
962  * @addr: address within that address space
963  * @buf: buffer with the data transferred
964  * @is_write: indicates the transfer direction
965  */
966 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
967                       int len, bool is_write);
968 
969 /**
970  * address_space_write: write to address space.
971  *
972  * Return true if the operation hit any unassigned memory or encountered an
973  * IOMMU fault.
974  *
975  * @as: #AddressSpace to be accessed
976  * @addr: address within that address space
977  * @buf: buffer with the data transferred
978  */
979 bool address_space_write(AddressSpace *as, hwaddr addr,
980                          const uint8_t *buf, int len);
981 
982 /**
983  * address_space_read: read from an address space.
984  *
985  * Return true if the operation hit any unassigned memory or encountered an
986  * IOMMU fault.
987  *
988  * @as: #AddressSpace to be accessed
989  * @addr: address within that address space
990  * @buf: buffer with the data transferred
991  */
992 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
993 
994 /* address_space_translate: translate an address range into an address space
995  * into a MemoryRegion and an address range into that section
996  *
997  * @as: #AddressSpace to be accessed
998  * @addr: address within that address space
999  * @xlat: pointer to address within the returned memory region section's
1000  * #MemoryRegion.
1001  * @len: pointer to length
1002  * @is_write: indicates the transfer direction
1003  */
1004 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1005                                       hwaddr *xlat, hwaddr *len,
1006                                       bool is_write);
1007 
1008 /* address_space_access_valid: check for validity of accessing an address
1009  * space range
1010  *
1011  * Check whether memory is assigned to the given address space range, and
1012  * access is permitted by any IOMMU regions that are active for the address
1013  * space.
1014  *
1015  * For now, addr and len should be aligned to a page size.  This limitation
1016  * will be lifted in the future.
1017  *
1018  * @as: #AddressSpace to be accessed
1019  * @addr: address within that address space
1020  * @len: length of the area to be checked
1021  * @is_write: indicates the transfer direction
1022  */
1023 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1024 
1025 /* address_space_map: map a physical memory region into a host virtual address
1026  *
1027  * May map a subset of the requested range, given by and returned in @plen.
1028  * May return %NULL if resources needed to perform the mapping are exhausted.
1029  * Use only for reads OR writes - not for read-modify-write operations.
1030  * Use cpu_register_map_client() to know when retrying the map operation is
1031  * likely to succeed.
1032  *
1033  * @as: #AddressSpace to be accessed
1034  * @addr: address within that address space
1035  * @plen: pointer to length of buffer; updated on return
1036  * @is_write: indicates the transfer direction
1037  */
1038 void *address_space_map(AddressSpace *as, hwaddr addr,
1039                         hwaddr *plen, bool is_write);
1040 
1041 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1042  *
1043  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1044  * the amount of memory that was actually read or written by the caller.
1045  *
1046  * @as: #AddressSpace used
1047  * @addr: address within that address space
1048  * @len: buffer length as returned by address_space_map()
1049  * @access_len: amount of data actually transferred
1050  * @is_write: indicates the transfer direction
1051  */
1052 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1053                          int is_write, hwaddr access_len);
1054 
1055 
1056 #endif
1057 
1058 #endif
1059