xref: /openbmc/qemu/include/exec/memory.h (revision b43047a2)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 #define IOMMU_MEMORY_REGION(obj) \
42         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
43 #define IOMMU_MEMORY_REGION_CLASS(klass) \
44         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
45                          TYPE_IOMMU_MEMORY_REGION)
46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
47         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
48                          TYPE_IOMMU_MEMORY_REGION)
49 
50 extern bool global_dirty_log;
51 
52 typedef struct MemoryRegionOps MemoryRegionOps;
53 typedef struct MemoryRegionMmio MemoryRegionMmio;
54 
55 struct MemoryRegionMmio {
56     CPUReadMemoryFunc *read[3];
57     CPUWriteMemoryFunc *write[3];
58 };
59 
60 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
61 
62 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
63 typedef enum {
64     IOMMU_NONE = 0,
65     IOMMU_RO   = 1,
66     IOMMU_WO   = 2,
67     IOMMU_RW   = 3,
68 } IOMMUAccessFlags;
69 
70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
71 
72 struct IOMMUTLBEntry {
73     AddressSpace    *target_as;
74     hwaddr           iova;
75     hwaddr           translated_addr;
76     hwaddr           addr_mask;  /* 0xfff = 4k translation */
77     IOMMUAccessFlags perm;
78 };
79 
80 /*
81  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
82  * register with one or multiple IOMMU Notifier capability bit(s).
83  */
84 typedef enum {
85     IOMMU_NOTIFIER_NONE = 0,
86     /* Notify cache invalidations */
87     IOMMU_NOTIFIER_UNMAP = 0x1,
88     /* Notify entry changes (newly created entries) */
89     IOMMU_NOTIFIER_MAP = 0x2,
90 } IOMMUNotifierFlag;
91 
92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
93 
94 struct IOMMUNotifier;
95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
96                             IOMMUTLBEntry *data);
97 
98 struct IOMMUNotifier {
99     IOMMUNotify notify;
100     IOMMUNotifierFlag notifier_flags;
101     /* Notify for address space range start <= addr <= end */
102     hwaddr start;
103     hwaddr end;
104     int iommu_idx;
105     QLIST_ENTRY(IOMMUNotifier) node;
106 };
107 typedef struct IOMMUNotifier IOMMUNotifier;
108 
109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
110 #define RAM_PREALLOC   (1 << 0)
111 
112 /* RAM is mmap-ed with MAP_SHARED */
113 #define RAM_SHARED     (1 << 1)
114 
115 /* Only a portion of RAM (used_length) is actually used, and migrated.
116  * This used_length size can change across reboots.
117  */
118 #define RAM_RESIZEABLE (1 << 2)
119 
120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
121  * zero the page and wake waiting processes.
122  * (Set during postcopy)
123  */
124 #define RAM_UF_ZEROPAGE (1 << 3)
125 
126 /* RAM can be migrated */
127 #define RAM_MIGRATABLE (1 << 4)
128 
129 /* RAM is a persistent kind memory */
130 #define RAM_PMEM (1 << 5)
131 
132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
133                                        IOMMUNotifierFlag flags,
134                                        hwaddr start, hwaddr end,
135                                        int iommu_idx)
136 {
137     n->notify = fn;
138     n->notifier_flags = flags;
139     n->start = start;
140     n->end = end;
141     n->iommu_idx = iommu_idx;
142 }
143 
144 /*
145  * Memory region callbacks
146  */
147 struct MemoryRegionOps {
148     /* Read from the memory region. @addr is relative to @mr; @size is
149      * in bytes. */
150     uint64_t (*read)(void *opaque,
151                      hwaddr addr,
152                      unsigned size);
153     /* Write to the memory region. @addr is relative to @mr; @size is
154      * in bytes. */
155     void (*write)(void *opaque,
156                   hwaddr addr,
157                   uint64_t data,
158                   unsigned size);
159 
160     MemTxResult (*read_with_attrs)(void *opaque,
161                                    hwaddr addr,
162                                    uint64_t *data,
163                                    unsigned size,
164                                    MemTxAttrs attrs);
165     MemTxResult (*write_with_attrs)(void *opaque,
166                                     hwaddr addr,
167                                     uint64_t data,
168                                     unsigned size,
169                                     MemTxAttrs attrs);
170 
171     enum device_endian endianness;
172     /* Guest-visible constraints: */
173     struct {
174         /* If nonzero, specify bounds on access sizes beyond which a machine
175          * check is thrown.
176          */
177         unsigned min_access_size;
178         unsigned max_access_size;
179         /* If true, unaligned accesses are supported.  Otherwise unaligned
180          * accesses throw machine checks.
181          */
182          bool unaligned;
183         /*
184          * If present, and returns #false, the transaction is not accepted
185          * by the device (and results in machine dependent behaviour such
186          * as a machine check exception).
187          */
188         bool (*accepts)(void *opaque, hwaddr addr,
189                         unsigned size, bool is_write,
190                         MemTxAttrs attrs);
191     } valid;
192     /* Internal implementation constraints: */
193     struct {
194         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
195          * will be rounded upwards and a partial result will be returned.
196          */
197         unsigned min_access_size;
198         /* If nonzero, specifies the maximum size implemented.  Larger sizes
199          * will be done as a series of accesses with smaller sizes.
200          */
201         unsigned max_access_size;
202         /* If true, unaligned accesses are supported.  Otherwise all accesses
203          * are converted to (possibly multiple) naturally aligned accesses.
204          */
205         bool unaligned;
206     } impl;
207 };
208 
209 typedef struct MemoryRegionClass {
210     /* private */
211     ObjectClass parent_class;
212 } MemoryRegionClass;
213 
214 
215 enum IOMMUMemoryRegionAttr {
216     IOMMU_ATTR_SPAPR_TCE_FD
217 };
218 
219 /**
220  * IOMMUMemoryRegionClass:
221  *
222  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
223  * and provide an implementation of at least the @translate method here
224  * to handle requests to the memory region. Other methods are optional.
225  *
226  * The IOMMU implementation must use the IOMMU notifier infrastructure
227  * to report whenever mappings are changed, by calling
228  * memory_region_notify_iommu() (or, if necessary, by calling
229  * memory_region_notify_one() for each registered notifier).
230  *
231  * Conceptually an IOMMU provides a mapping from input address
232  * to an output TLB entry. If the IOMMU is aware of memory transaction
233  * attributes and the output TLB entry depends on the transaction
234  * attributes, we represent this using IOMMU indexes. Each index
235  * selects a particular translation table that the IOMMU has:
236  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
237  *   @translate takes an input address and an IOMMU index
238  * and the mapping returned can only depend on the input address and the
239  * IOMMU index.
240  *
241  * Most IOMMUs don't care about the transaction attributes and support
242  * only a single IOMMU index. A more complex IOMMU might have one index
243  * for secure transactions and one for non-secure transactions.
244  */
245 typedef struct IOMMUMemoryRegionClass {
246     /* private */
247     MemoryRegionClass parent_class;
248 
249     /*
250      * Return a TLB entry that contains a given address.
251      *
252      * The IOMMUAccessFlags indicated via @flag are optional and may
253      * be specified as IOMMU_NONE to indicate that the caller needs
254      * the full translation information for both reads and writes. If
255      * the access flags are specified then the IOMMU implementation
256      * may use this as an optimization, to stop doing a page table
257      * walk as soon as it knows that the requested permissions are not
258      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
259      * full page table walk and report the permissions in the returned
260      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
261      * return different mappings for reads and writes.)
262      *
263      * The returned information remains valid while the caller is
264      * holding the big QEMU lock or is inside an RCU critical section;
265      * if the caller wishes to cache the mapping beyond that it must
266      * register an IOMMU notifier so it can invalidate its cached
267      * information when the IOMMU mapping changes.
268      *
269      * @iommu: the IOMMUMemoryRegion
270      * @hwaddr: address to be translated within the memory region
271      * @flag: requested access permissions
272      * @iommu_idx: IOMMU index for the translation
273      */
274     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
275                                IOMMUAccessFlags flag, int iommu_idx);
276     /* Returns minimum supported page size in bytes.
277      * If this method is not provided then the minimum is assumed to
278      * be TARGET_PAGE_SIZE.
279      *
280      * @iommu: the IOMMUMemoryRegion
281      */
282     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
283     /* Called when IOMMU Notifier flag changes (ie when the set of
284      * events which IOMMU users are requesting notification for changes).
285      * Optional method -- need not be provided if the IOMMU does not
286      * need to know exactly which events must be notified.
287      *
288      * @iommu: the IOMMUMemoryRegion
289      * @old_flags: events which previously needed to be notified
290      * @new_flags: events which now need to be notified
291      */
292     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
293                                 IOMMUNotifierFlag old_flags,
294                                 IOMMUNotifierFlag new_flags);
295     /* Called to handle memory_region_iommu_replay().
296      *
297      * The default implementation of memory_region_iommu_replay() is to
298      * call the IOMMU translate method for every page in the address space
299      * with flag == IOMMU_NONE and then call the notifier if translate
300      * returns a valid mapping. If this method is implemented then it
301      * overrides the default behaviour, and must provide the full semantics
302      * of memory_region_iommu_replay(), by calling @notifier for every
303      * translation present in the IOMMU.
304      *
305      * Optional method -- an IOMMU only needs to provide this method
306      * if the default is inefficient or produces undesirable side effects.
307      *
308      * Note: this is not related to record-and-replay functionality.
309      */
310     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
311 
312     /* Get IOMMU misc attributes. This is an optional method that
313      * can be used to allow users of the IOMMU to get implementation-specific
314      * information. The IOMMU implements this method to handle calls
315      * by IOMMU users to memory_region_iommu_get_attr() by filling in
316      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
317      * the IOMMU supports. If the method is unimplemented then
318      * memory_region_iommu_get_attr() will always return -EINVAL.
319      *
320      * @iommu: the IOMMUMemoryRegion
321      * @attr: attribute being queried
322      * @data: memory to fill in with the attribute data
323      *
324      * Returns 0 on success, or a negative errno; in particular
325      * returns -EINVAL for unrecognized or unimplemented attribute types.
326      */
327     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
328                     void *data);
329 
330     /* Return the IOMMU index to use for a given set of transaction attributes.
331      *
332      * Optional method: if an IOMMU only supports a single IOMMU index then
333      * the default implementation of memory_region_iommu_attrs_to_index()
334      * will return 0.
335      *
336      * The indexes supported by an IOMMU must be contiguous, starting at 0.
337      *
338      * @iommu: the IOMMUMemoryRegion
339      * @attrs: memory transaction attributes
340      */
341     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
342 
343     /* Return the number of IOMMU indexes this IOMMU supports.
344      *
345      * Optional method: if this method is not provided, then
346      * memory_region_iommu_num_indexes() will return 1, indicating that
347      * only a single IOMMU index is supported.
348      *
349      * @iommu: the IOMMUMemoryRegion
350      */
351     int (*num_indexes)(IOMMUMemoryRegion *iommu);
352 } IOMMUMemoryRegionClass;
353 
354 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
355 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
356 
357 struct MemoryRegion {
358     Object parent_obj;
359 
360     /* All fields are private - violators will be prosecuted */
361 
362     /* The following fields should fit in a cache line */
363     bool romd_mode;
364     bool ram;
365     bool subpage;
366     bool readonly; /* For RAM regions */
367     bool nonvolatile;
368     bool rom_device;
369     bool flush_coalesced_mmio;
370     bool global_locking;
371     uint8_t dirty_log_mask;
372     bool is_iommu;
373     RAMBlock *ram_block;
374     Object *owner;
375 
376     const MemoryRegionOps *ops;
377     void *opaque;
378     MemoryRegion *container;
379     Int128 size;
380     hwaddr addr;
381     void (*destructor)(MemoryRegion *mr);
382     uint64_t align;
383     bool terminates;
384     bool ram_device;
385     bool enabled;
386     bool warning_printed; /* For reservations */
387     uint8_t vga_logging_count;
388     MemoryRegion *alias;
389     hwaddr alias_offset;
390     int32_t priority;
391     QTAILQ_HEAD(, MemoryRegion) subregions;
392     QTAILQ_ENTRY(MemoryRegion) subregions_link;
393     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
394     const char *name;
395     unsigned ioeventfd_nb;
396     MemoryRegionIoeventfd *ioeventfds;
397 };
398 
399 struct IOMMUMemoryRegion {
400     MemoryRegion parent_obj;
401 
402     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
403     IOMMUNotifierFlag iommu_notify_flags;
404 };
405 
406 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
407     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
408 
409 /**
410  * MemoryListener: callbacks structure for updates to the physical memory map
411  *
412  * Allows a component to adjust to changes in the guest-visible memory map.
413  * Use with memory_listener_register() and memory_listener_unregister().
414  */
415 struct MemoryListener {
416     void (*begin)(MemoryListener *listener);
417     void (*commit)(MemoryListener *listener);
418     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
419     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
420     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
421     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
422                       int old, int new);
423     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
424                      int old, int new);
425     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
426     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
427     void (*log_global_start)(MemoryListener *listener);
428     void (*log_global_stop)(MemoryListener *listener);
429     void (*log_global_after_sync)(MemoryListener *listener);
430     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
431                         bool match_data, uint64_t data, EventNotifier *e);
432     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
433                         bool match_data, uint64_t data, EventNotifier *e);
434     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
435                                hwaddr addr, hwaddr len);
436     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
437                                hwaddr addr, hwaddr len);
438     /* Lower = earlier (during add), later (during del) */
439     unsigned priority;
440     AddressSpace *address_space;
441     QTAILQ_ENTRY(MemoryListener) link;
442     QTAILQ_ENTRY(MemoryListener) link_as;
443 };
444 
445 /**
446  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
447  */
448 struct AddressSpace {
449     /* All fields are private. */
450     struct rcu_head rcu;
451     char *name;
452     MemoryRegion *root;
453 
454     /* Accessed via RCU.  */
455     struct FlatView *current_map;
456 
457     int ioeventfd_nb;
458     struct MemoryRegionIoeventfd *ioeventfds;
459     QTAILQ_HEAD(, MemoryListener) listeners;
460     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
461 };
462 
463 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
464 typedef struct FlatRange FlatRange;
465 
466 /* Flattened global view of current active memory hierarchy.  Kept in sorted
467  * order.
468  */
469 struct FlatView {
470     struct rcu_head rcu;
471     unsigned ref;
472     FlatRange *ranges;
473     unsigned nr;
474     unsigned nr_allocated;
475     struct AddressSpaceDispatch *dispatch;
476     MemoryRegion *root;
477 };
478 
479 static inline FlatView *address_space_to_flatview(AddressSpace *as)
480 {
481     return atomic_rcu_read(&as->current_map);
482 }
483 
484 
485 /**
486  * MemoryRegionSection: describes a fragment of a #MemoryRegion
487  *
488  * @mr: the region, or %NULL if empty
489  * @fv: the flat view of the address space the region is mapped in
490  * @offset_within_region: the beginning of the section, relative to @mr's start
491  * @size: the size of the section; will not exceed @mr's boundaries
492  * @offset_within_address_space: the address of the first byte of the section
493  *     relative to the region's address space
494  * @readonly: writes to this section are ignored
495  * @nonvolatile: this section is non-volatile
496  */
497 struct MemoryRegionSection {
498     MemoryRegion *mr;
499     FlatView *fv;
500     hwaddr offset_within_region;
501     Int128 size;
502     hwaddr offset_within_address_space;
503     bool readonly;
504     bool nonvolatile;
505 };
506 
507 /**
508  * memory_region_init: Initialize a memory region
509  *
510  * The region typically acts as a container for other memory regions.  Use
511  * memory_region_add_subregion() to add subregions.
512  *
513  * @mr: the #MemoryRegion to be initialized
514  * @owner: the object that tracks the region's reference count
515  * @name: used for debugging; not visible to the user or ABI
516  * @size: size of the region; any subregions beyond this size will be clipped
517  */
518 void memory_region_init(MemoryRegion *mr,
519                         struct Object *owner,
520                         const char *name,
521                         uint64_t size);
522 
523 /**
524  * memory_region_ref: Add 1 to a memory region's reference count
525  *
526  * Whenever memory regions are accessed outside the BQL, they need to be
527  * preserved against hot-unplug.  MemoryRegions actually do not have their
528  * own reference count; they piggyback on a QOM object, their "owner".
529  * This function adds a reference to the owner.
530  *
531  * All MemoryRegions must have an owner if they can disappear, even if the
532  * device they belong to operates exclusively under the BQL.  This is because
533  * the region could be returned at any time by memory_region_find, and this
534  * is usually under guest control.
535  *
536  * @mr: the #MemoryRegion
537  */
538 void memory_region_ref(MemoryRegion *mr);
539 
540 /**
541  * memory_region_unref: Remove 1 to a memory region's reference count
542  *
543  * Whenever memory regions are accessed outside the BQL, they need to be
544  * preserved against hot-unplug.  MemoryRegions actually do not have their
545  * own reference count; they piggyback on a QOM object, their "owner".
546  * This function removes a reference to the owner and possibly destroys it.
547  *
548  * @mr: the #MemoryRegion
549  */
550 void memory_region_unref(MemoryRegion *mr);
551 
552 /**
553  * memory_region_init_io: Initialize an I/O memory region.
554  *
555  * Accesses into the region will cause the callbacks in @ops to be called.
556  * if @size is nonzero, subregions will be clipped to @size.
557  *
558  * @mr: the #MemoryRegion to be initialized.
559  * @owner: the object that tracks the region's reference count
560  * @ops: a structure containing read and write callbacks to be used when
561  *       I/O is performed on the region.
562  * @opaque: passed to the read and write callbacks of the @ops structure.
563  * @name: used for debugging; not visible to the user or ABI
564  * @size: size of the region.
565  */
566 void memory_region_init_io(MemoryRegion *mr,
567                            struct Object *owner,
568                            const MemoryRegionOps *ops,
569                            void *opaque,
570                            const char *name,
571                            uint64_t size);
572 
573 /**
574  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
575  *                                    into the region will modify memory
576  *                                    directly.
577  *
578  * @mr: the #MemoryRegion to be initialized.
579  * @owner: the object that tracks the region's reference count
580  * @name: Region name, becomes part of RAMBlock name used in migration stream
581  *        must be unique within any device
582  * @size: size of the region.
583  * @errp: pointer to Error*, to store an error if it happens.
584  *
585  * Note that this function does not do anything to cause the data in the
586  * RAM memory region to be migrated; that is the responsibility of the caller.
587  */
588 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
589                                       struct Object *owner,
590                                       const char *name,
591                                       uint64_t size,
592                                       Error **errp);
593 
594 /**
595  * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
596  *                                           Accesses into the region will
597  *                                           modify memory directly.
598  *
599  * @mr: the #MemoryRegion to be initialized.
600  * @owner: the object that tracks the region's reference count
601  * @name: Region name, becomes part of RAMBlock name used in migration stream
602  *        must be unique within any device
603  * @size: size of the region.
604  * @share: allow remapping RAM to different addresses
605  * @errp: pointer to Error*, to store an error if it happens.
606  *
607  * Note that this function is similar to memory_region_init_ram_nomigrate.
608  * The only difference is part of the RAM region can be remapped.
609  */
610 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
611                                              struct Object *owner,
612                                              const char *name,
613                                              uint64_t size,
614                                              bool share,
615                                              Error **errp);
616 
617 /**
618  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
619  *                                     RAM.  Accesses into the region will
620  *                                     modify memory directly.  Only an initial
621  *                                     portion of this RAM is actually used.
622  *                                     The used size can change across reboots.
623  *
624  * @mr: the #MemoryRegion to be initialized.
625  * @owner: the object that tracks the region's reference count
626  * @name: Region name, becomes part of RAMBlock name used in migration stream
627  *        must be unique within any device
628  * @size: used size of the region.
629  * @max_size: max size of the region.
630  * @resized: callback to notify owner about used size change.
631  * @errp: pointer to Error*, to store an error if it happens.
632  *
633  * Note that this function does not do anything to cause the data in the
634  * RAM memory region to be migrated; that is the responsibility of the caller.
635  */
636 void memory_region_init_resizeable_ram(MemoryRegion *mr,
637                                        struct Object *owner,
638                                        const char *name,
639                                        uint64_t size,
640                                        uint64_t max_size,
641                                        void (*resized)(const char*,
642                                                        uint64_t length,
643                                                        void *host),
644                                        Error **errp);
645 #ifdef CONFIG_POSIX
646 
647 /**
648  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
649  *                                    mmap-ed backend.
650  *
651  * @mr: the #MemoryRegion to be initialized.
652  * @owner: the object that tracks the region's reference count
653  * @name: Region name, becomes part of RAMBlock name used in migration stream
654  *        must be unique within any device
655  * @size: size of the region.
656  * @align: alignment of the region base address; if 0, the default alignment
657  *         (getpagesize()) will be used.
658  * @ram_flags: Memory region features:
659  *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
660  *             - RAM_PMEM: the memory is persistent memory
661  *             Other bits are ignored now.
662  * @path: the path in which to allocate the RAM.
663  * @errp: pointer to Error*, to store an error if it happens.
664  *
665  * Note that this function does not do anything to cause the data in the
666  * RAM memory region to be migrated; that is the responsibility of the caller.
667  */
668 void memory_region_init_ram_from_file(MemoryRegion *mr,
669                                       struct Object *owner,
670                                       const char *name,
671                                       uint64_t size,
672                                       uint64_t align,
673                                       uint32_t ram_flags,
674                                       const char *path,
675                                       Error **errp);
676 
677 /**
678  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
679  *                                  mmap-ed backend.
680  *
681  * @mr: the #MemoryRegion to be initialized.
682  * @owner: the object that tracks the region's reference count
683  * @name: the name of the region.
684  * @size: size of the region.
685  * @share: %true if memory must be mmaped with the MAP_SHARED flag
686  * @fd: the fd to mmap.
687  * @errp: pointer to Error*, to store an error if it happens.
688  *
689  * Note that this function does not do anything to cause the data in the
690  * RAM memory region to be migrated; that is the responsibility of the caller.
691  */
692 void memory_region_init_ram_from_fd(MemoryRegion *mr,
693                                     struct Object *owner,
694                                     const char *name,
695                                     uint64_t size,
696                                     bool share,
697                                     int fd,
698                                     Error **errp);
699 #endif
700 
701 /**
702  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
703  *                              user-provided pointer.  Accesses into the
704  *                              region will modify memory directly.
705  *
706  * @mr: the #MemoryRegion to be initialized.
707  * @owner: the object that tracks the region's reference count
708  * @name: Region name, becomes part of RAMBlock name used in migration stream
709  *        must be unique within any device
710  * @size: size of the region.
711  * @ptr: memory to be mapped; must contain at least @size bytes.
712  *
713  * Note that this function does not do anything to cause the data in the
714  * RAM memory region to be migrated; that is the responsibility of the caller.
715  */
716 void memory_region_init_ram_ptr(MemoryRegion *mr,
717                                 struct Object *owner,
718                                 const char *name,
719                                 uint64_t size,
720                                 void *ptr);
721 
722 /**
723  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
724  *                                     a user-provided pointer.
725  *
726  * A RAM device represents a mapping to a physical device, such as to a PCI
727  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
728  * into the VM address space and access to the region will modify memory
729  * directly.  However, the memory region should not be included in a memory
730  * dump (device may not be enabled/mapped at the time of the dump), and
731  * operations incompatible with manipulating MMIO should be avoided.  Replaces
732  * skip_dump flag.
733  *
734  * @mr: the #MemoryRegion to be initialized.
735  * @owner: the object that tracks the region's reference count
736  * @name: the name of the region.
737  * @size: size of the region.
738  * @ptr: memory to be mapped; must contain at least @size bytes.
739  *
740  * Note that this function does not do anything to cause the data in the
741  * RAM memory region to be migrated; that is the responsibility of the caller.
742  * (For RAM device memory regions, migrating the contents rarely makes sense.)
743  */
744 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
745                                        struct Object *owner,
746                                        const char *name,
747                                        uint64_t size,
748                                        void *ptr);
749 
750 /**
751  * memory_region_init_alias: Initialize a memory region that aliases all or a
752  *                           part of another memory region.
753  *
754  * @mr: the #MemoryRegion to be initialized.
755  * @owner: the object that tracks the region's reference count
756  * @name: used for debugging; not visible to the user or ABI
757  * @orig: the region to be referenced; @mr will be equivalent to
758  *        @orig between @offset and @offset + @size - 1.
759  * @offset: start of the section in @orig to be referenced.
760  * @size: size of the region.
761  */
762 void memory_region_init_alias(MemoryRegion *mr,
763                               struct Object *owner,
764                               const char *name,
765                               MemoryRegion *orig,
766                               hwaddr offset,
767                               uint64_t size);
768 
769 /**
770  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
771  *
772  * This has the same effect as calling memory_region_init_ram_nomigrate()
773  * and then marking the resulting region read-only with
774  * memory_region_set_readonly().
775  *
776  * Note that this function does not do anything to cause the data in the
777  * RAM side of the memory region to be migrated; that is the responsibility
778  * of the caller.
779  *
780  * @mr: the #MemoryRegion to be initialized.
781  * @owner: the object that tracks the region's reference count
782  * @name: Region name, becomes part of RAMBlock name used in migration stream
783  *        must be unique within any device
784  * @size: size of the region.
785  * @errp: pointer to Error*, to store an error if it happens.
786  */
787 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
788                                       struct Object *owner,
789                                       const char *name,
790                                       uint64_t size,
791                                       Error **errp);
792 
793 /**
794  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
795  *                                 Writes are handled via callbacks.
796  *
797  * Note that this function does not do anything to cause the data in the
798  * RAM side of the memory region to be migrated; that is the responsibility
799  * of the caller.
800  *
801  * @mr: the #MemoryRegion to be initialized.
802  * @owner: the object that tracks the region's reference count
803  * @ops: callbacks for write access handling (must not be NULL).
804  * @opaque: passed to the read and write callbacks of the @ops structure.
805  * @name: Region name, becomes part of RAMBlock name used in migration stream
806  *        must be unique within any device
807  * @size: size of the region.
808  * @errp: pointer to Error*, to store an error if it happens.
809  */
810 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
811                                              struct Object *owner,
812                                              const MemoryRegionOps *ops,
813                                              void *opaque,
814                                              const char *name,
815                                              uint64_t size,
816                                              Error **errp);
817 
818 /**
819  * memory_region_init_iommu: Initialize a memory region of a custom type
820  * that translates addresses
821  *
822  * An IOMMU region translates addresses and forwards accesses to a target
823  * memory region.
824  *
825  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
826  * @_iommu_mr should be a pointer to enough memory for an instance of
827  * that subclass, @instance_size is the size of that subclass, and
828  * @mrtypename is its name. This function will initialize @_iommu_mr as an
829  * instance of the subclass, and its methods will then be called to handle
830  * accesses to the memory region. See the documentation of
831  * #IOMMUMemoryRegionClass for further details.
832  *
833  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
834  * @instance_size: the IOMMUMemoryRegion subclass instance size
835  * @mrtypename: the type name of the #IOMMUMemoryRegion
836  * @owner: the object that tracks the region's reference count
837  * @name: used for debugging; not visible to the user or ABI
838  * @size: size of the region.
839  */
840 void memory_region_init_iommu(void *_iommu_mr,
841                               size_t instance_size,
842                               const char *mrtypename,
843                               Object *owner,
844                               const char *name,
845                               uint64_t size);
846 
847 /**
848  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
849  *                          region will modify memory directly.
850  *
851  * @mr: the #MemoryRegion to be initialized
852  * @owner: the object that tracks the region's reference count (must be
853  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
854  * @name: name of the memory region
855  * @size: size of the region in bytes
856  * @errp: pointer to Error*, to store an error if it happens.
857  *
858  * This function allocates RAM for a board model or device, and
859  * arranges for it to be migrated (by calling vmstate_register_ram()
860  * if @owner is a DeviceState, or vmstate_register_ram_global() if
861  * @owner is NULL).
862  *
863  * TODO: Currently we restrict @owner to being either NULL (for
864  * global RAM regions with no owner) or devices, so that we can
865  * give the RAM block a unique name for migration purposes.
866  * We should lift this restriction and allow arbitrary Objects.
867  * If you pass a non-NULL non-device @owner then we will assert.
868  */
869 void memory_region_init_ram(MemoryRegion *mr,
870                             struct Object *owner,
871                             const char *name,
872                             uint64_t size,
873                             Error **errp);
874 
875 /**
876  * memory_region_init_rom: Initialize a ROM memory region.
877  *
878  * This has the same effect as calling memory_region_init_ram()
879  * and then marking the resulting region read-only with
880  * memory_region_set_readonly(). This includes arranging for the
881  * contents to be migrated.
882  *
883  * TODO: Currently we restrict @owner to being either NULL (for
884  * global RAM regions with no owner) or devices, so that we can
885  * give the RAM block a unique name for migration purposes.
886  * We should lift this restriction and allow arbitrary Objects.
887  * If you pass a non-NULL non-device @owner then we will assert.
888  *
889  * @mr: the #MemoryRegion to be initialized.
890  * @owner: the object that tracks the region's reference count
891  * @name: Region name, becomes part of RAMBlock name used in migration stream
892  *        must be unique within any device
893  * @size: size of the region.
894  * @errp: pointer to Error*, to store an error if it happens.
895  */
896 void memory_region_init_rom(MemoryRegion *mr,
897                             struct Object *owner,
898                             const char *name,
899                             uint64_t size,
900                             Error **errp);
901 
902 /**
903  * memory_region_init_rom_device:  Initialize a ROM memory region.
904  *                                 Writes are handled via callbacks.
905  *
906  * This function initializes a memory region backed by RAM for reads
907  * and callbacks for writes, and arranges for the RAM backing to
908  * be migrated (by calling vmstate_register_ram()
909  * if @owner is a DeviceState, or vmstate_register_ram_global() if
910  * @owner is NULL).
911  *
912  * TODO: Currently we restrict @owner to being either NULL (for
913  * global RAM regions with no owner) or devices, so that we can
914  * give the RAM block a unique name for migration purposes.
915  * We should lift this restriction and allow arbitrary Objects.
916  * If you pass a non-NULL non-device @owner then we will assert.
917  *
918  * @mr: the #MemoryRegion to be initialized.
919  * @owner: the object that tracks the region's reference count
920  * @ops: callbacks for write access handling (must not be NULL).
921  * @name: Region name, becomes part of RAMBlock name used in migration stream
922  *        must be unique within any device
923  * @size: size of the region.
924  * @errp: pointer to Error*, to store an error if it happens.
925  */
926 void memory_region_init_rom_device(MemoryRegion *mr,
927                                    struct Object *owner,
928                                    const MemoryRegionOps *ops,
929                                    void *opaque,
930                                    const char *name,
931                                    uint64_t size,
932                                    Error **errp);
933 
934 
935 /**
936  * memory_region_owner: get a memory region's owner.
937  *
938  * @mr: the memory region being queried.
939  */
940 struct Object *memory_region_owner(MemoryRegion *mr);
941 
942 /**
943  * memory_region_size: get a memory region's size.
944  *
945  * @mr: the memory region being queried.
946  */
947 uint64_t memory_region_size(MemoryRegion *mr);
948 
949 /**
950  * memory_region_is_ram: check whether a memory region is random access
951  *
952  * Returns %true if a memory region is random access.
953  *
954  * @mr: the memory region being queried
955  */
956 static inline bool memory_region_is_ram(MemoryRegion *mr)
957 {
958     return mr->ram;
959 }
960 
961 /**
962  * memory_region_is_ram_device: check whether a memory region is a ram device
963  *
964  * Returns %true if a memory region is a device backed ram region
965  *
966  * @mr: the memory region being queried
967  */
968 bool memory_region_is_ram_device(MemoryRegion *mr);
969 
970 /**
971  * memory_region_is_romd: check whether a memory region is in ROMD mode
972  *
973  * Returns %true if a memory region is a ROM device and currently set to allow
974  * direct reads.
975  *
976  * @mr: the memory region being queried
977  */
978 static inline bool memory_region_is_romd(MemoryRegion *mr)
979 {
980     return mr->rom_device && mr->romd_mode;
981 }
982 
983 /**
984  * memory_region_get_iommu: check whether a memory region is an iommu
985  *
986  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
987  * otherwise NULL.
988  *
989  * @mr: the memory region being queried
990  */
991 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
992 {
993     if (mr->alias) {
994         return memory_region_get_iommu(mr->alias);
995     }
996     if (mr->is_iommu) {
997         return (IOMMUMemoryRegion *) mr;
998     }
999     return NULL;
1000 }
1001 
1002 /**
1003  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1004  *   if an iommu or NULL if not
1005  *
1006  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1007  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1008  *
1009  * @mr: the memory region being queried
1010  */
1011 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1012         IOMMUMemoryRegion *iommu_mr)
1013 {
1014     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1015 }
1016 
1017 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1018 
1019 /**
1020  * memory_region_iommu_get_min_page_size: get minimum supported page size
1021  * for an iommu
1022  *
1023  * Returns minimum supported page size for an iommu.
1024  *
1025  * @iommu_mr: the memory region being queried
1026  */
1027 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1028 
1029 /**
1030  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1031  *
1032  * The notification type will be decided by entry.perm bits:
1033  *
1034  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1035  * - For MAP (newly added entry) notifies: set entry.perm to the
1036  *   permission of the page (which is definitely !IOMMU_NONE).
1037  *
1038  * Note: for any IOMMU implementation, an in-place mapping change
1039  * should be notified with an UNMAP followed by a MAP.
1040  *
1041  * @iommu_mr: the memory region that was changed
1042  * @iommu_idx: the IOMMU index for the translation table which has changed
1043  * @entry: the new entry in the IOMMU translation table.  The entry
1044  *         replaces all old entries for the same virtual I/O address range.
1045  *         Deleted entries have .@perm == 0.
1046  */
1047 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1048                                 int iommu_idx,
1049                                 IOMMUTLBEntry entry);
1050 
1051 /**
1052  * memory_region_notify_one: notify a change in an IOMMU translation
1053  *                           entry to a single notifier
1054  *
1055  * This works just like memory_region_notify_iommu(), but it only
1056  * notifies a specific notifier, not all of them.
1057  *
1058  * @notifier: the notifier to be notified
1059  * @entry: the new entry in the IOMMU translation table.  The entry
1060  *         replaces all old entries for the same virtual I/O address range.
1061  *         Deleted entries have .@perm == 0.
1062  */
1063 void memory_region_notify_one(IOMMUNotifier *notifier,
1064                               IOMMUTLBEntry *entry);
1065 
1066 /**
1067  * memory_region_register_iommu_notifier: register a notifier for changes to
1068  * IOMMU translation entries.
1069  *
1070  * @mr: the memory region to observe
1071  * @n: the IOMMUNotifier to be added; the notify callback receives a
1072  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1073  *     ceases to be valid on exit from the notifier.
1074  */
1075 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1076                                            IOMMUNotifier *n);
1077 
1078 /**
1079  * memory_region_iommu_replay: replay existing IOMMU translations to
1080  * a notifier with the minimum page granularity returned by
1081  * mr->iommu_ops->get_page_size().
1082  *
1083  * Note: this is not related to record-and-replay functionality.
1084  *
1085  * @iommu_mr: the memory region to observe
1086  * @n: the notifier to which to replay iommu mappings
1087  */
1088 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1089 
1090 /**
1091  * memory_region_unregister_iommu_notifier: unregister a notifier for
1092  * changes to IOMMU translation entries.
1093  *
1094  * @mr: the memory region which was observed and for which notity_stopped()
1095  *      needs to be called
1096  * @n: the notifier to be removed.
1097  */
1098 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1099                                              IOMMUNotifier *n);
1100 
1101 /**
1102  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1103  * defined on the IOMMU.
1104  *
1105  * Returns 0 on success, or a negative errno otherwise. In particular,
1106  * -EINVAL indicates that the IOMMU does not support the requested
1107  * attribute.
1108  *
1109  * @iommu_mr: the memory region
1110  * @attr: the requested attribute
1111  * @data: a pointer to the requested attribute data
1112  */
1113 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1114                                  enum IOMMUMemoryRegionAttr attr,
1115                                  void *data);
1116 
1117 /**
1118  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1119  * use for translations with the given memory transaction attributes.
1120  *
1121  * @iommu_mr: the memory region
1122  * @attrs: the memory transaction attributes
1123  */
1124 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1125                                        MemTxAttrs attrs);
1126 
1127 /**
1128  * memory_region_iommu_num_indexes: return the total number of IOMMU
1129  * indexes that this IOMMU supports.
1130  *
1131  * @iommu_mr: the memory region
1132  */
1133 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1134 
1135 /**
1136  * memory_region_name: get a memory region's name
1137  *
1138  * Returns the string that was used to initialize the memory region.
1139  *
1140  * @mr: the memory region being queried
1141  */
1142 const char *memory_region_name(const MemoryRegion *mr);
1143 
1144 /**
1145  * memory_region_is_logging: return whether a memory region is logging writes
1146  *
1147  * Returns %true if the memory region is logging writes for the given client
1148  *
1149  * @mr: the memory region being queried
1150  * @client: the client being queried
1151  */
1152 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1153 
1154 /**
1155  * memory_region_get_dirty_log_mask: return the clients for which a
1156  * memory region is logging writes.
1157  *
1158  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1159  * are the bit indices.
1160  *
1161  * @mr: the memory region being queried
1162  */
1163 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1164 
1165 /**
1166  * memory_region_is_rom: check whether a memory region is ROM
1167  *
1168  * Returns %true if a memory region is read-only memory.
1169  *
1170  * @mr: the memory region being queried
1171  */
1172 static inline bool memory_region_is_rom(MemoryRegion *mr)
1173 {
1174     return mr->ram && mr->readonly;
1175 }
1176 
1177 /**
1178  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1179  *
1180  * Returns %true is a memory region is non-volatile memory.
1181  *
1182  * @mr: the memory region being queried
1183  */
1184 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1185 {
1186     return mr->nonvolatile;
1187 }
1188 
1189 /**
1190  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1191  *
1192  * Returns a file descriptor backing a file-based RAM memory region,
1193  * or -1 if the region is not a file-based RAM memory region.
1194  *
1195  * @mr: the RAM or alias memory region being queried.
1196  */
1197 int memory_region_get_fd(MemoryRegion *mr);
1198 
1199 /**
1200  * memory_region_from_host: Convert a pointer into a RAM memory region
1201  * and an offset within it.
1202  *
1203  * Given a host pointer inside a RAM memory region (created with
1204  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1205  * the MemoryRegion and the offset within it.
1206  *
1207  * Use with care; by the time this function returns, the returned pointer is
1208  * not protected by RCU anymore.  If the caller is not within an RCU critical
1209  * section and does not hold the iothread lock, it must have other means of
1210  * protecting the pointer, such as a reference to the region that includes
1211  * the incoming ram_addr_t.
1212  *
1213  * @ptr: the host pointer to be converted
1214  * @offset: the offset within memory region
1215  */
1216 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1217 
1218 /**
1219  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1220  *
1221  * Returns a host pointer to a RAM memory region (created with
1222  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1223  *
1224  * Use with care; by the time this function returns, the returned pointer is
1225  * not protected by RCU anymore.  If the caller is not within an RCU critical
1226  * section and does not hold the iothread lock, it must have other means of
1227  * protecting the pointer, such as a reference to the region that includes
1228  * the incoming ram_addr_t.
1229  *
1230  * @mr: the memory region being queried.
1231  */
1232 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1233 
1234 /* memory_region_ram_resize: Resize a RAM region.
1235  *
1236  * Only legal before guest might have detected the memory size: e.g. on
1237  * incoming migration, or right after reset.
1238  *
1239  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1240  * @newsize: the new size the region
1241  * @errp: pointer to Error*, to store an error if it happens.
1242  */
1243 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1244                               Error **errp);
1245 
1246 /**
1247  * memory_region_set_log: Turn dirty logging on or off for a region.
1248  *
1249  * Turns dirty logging on or off for a specified client (display, migration).
1250  * Only meaningful for RAM regions.
1251  *
1252  * @mr: the memory region being updated.
1253  * @log: whether dirty logging is to be enabled or disabled.
1254  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1255  */
1256 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1257 
1258 /**
1259  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1260  *
1261  * Marks a range of bytes as dirty, after it has been dirtied outside
1262  * guest code.
1263  *
1264  * @mr: the memory region being dirtied.
1265  * @addr: the address (relative to the start of the region) being dirtied.
1266  * @size: size of the range being dirtied.
1267  */
1268 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1269                              hwaddr size);
1270 
1271 /**
1272  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1273  *
1274  * This function is called when the caller wants to clear the remote
1275  * dirty bitmap of a memory range within the memory region.  This can
1276  * be used by e.g. KVM to manually clear dirty log when
1277  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1278  * kernel.
1279  *
1280  * @mr:     the memory region to clear the dirty log upon
1281  * @start:  start address offset within the memory region
1282  * @len:    length of the memory region to clear dirty bitmap
1283  */
1284 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1285                                       hwaddr len);
1286 
1287 /**
1288  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1289  *                                         bitmap and clear it.
1290  *
1291  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1292  * returns the snapshot.  The snapshot can then be used to query dirty
1293  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1294  * querying the same page multiple times, which is especially useful for
1295  * display updates where the scanlines often are not page aligned.
1296  *
1297  * The dirty bitmap region which gets copyed into the snapshot (and
1298  * cleared afterwards) can be larger than requested.  The boundaries
1299  * are rounded up/down so complete bitmap longs (covering 64 pages on
1300  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1301  * isn't a problem for display updates as the extra pages are outside
1302  * the visible area, and in case the visible area changes a full
1303  * display redraw is due anyway.  Should other use cases for this
1304  * function emerge we might have to revisit this implementation
1305  * detail.
1306  *
1307  * Use g_free to release DirtyBitmapSnapshot.
1308  *
1309  * @mr: the memory region being queried.
1310  * @addr: the address (relative to the start of the region) being queried.
1311  * @size: the size of the range being queried.
1312  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1313  */
1314 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1315                                                             hwaddr addr,
1316                                                             hwaddr size,
1317                                                             unsigned client);
1318 
1319 /**
1320  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1321  *                                   in the specified dirty bitmap snapshot.
1322  *
1323  * @mr: the memory region being queried.
1324  * @snap: the dirty bitmap snapshot
1325  * @addr: the address (relative to the start of the region) being queried.
1326  * @size: the size of the range being queried.
1327  */
1328 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1329                                       DirtyBitmapSnapshot *snap,
1330                                       hwaddr addr, hwaddr size);
1331 
1332 /**
1333  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1334  *                            client.
1335  *
1336  * Marks a range of pages as no longer dirty.
1337  *
1338  * @mr: the region being updated.
1339  * @addr: the start of the subrange being cleaned.
1340  * @size: the size of the subrange being cleaned.
1341  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1342  *          %DIRTY_MEMORY_VGA.
1343  */
1344 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1345                                hwaddr size, unsigned client);
1346 
1347 /**
1348  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1349  *                                 TBs (for self-modifying code).
1350  *
1351  * The MemoryRegionOps->write() callback of a ROM device must use this function
1352  * to mark byte ranges that have been modified internally, such as by directly
1353  * accessing the memory returned by memory_region_get_ram_ptr().
1354  *
1355  * This function marks the range dirty and invalidates TBs so that TCG can
1356  * detect self-modifying code.
1357  *
1358  * @mr: the region being flushed.
1359  * @addr: the start, relative to the start of the region, of the range being
1360  *        flushed.
1361  * @size: the size, in bytes, of the range being flushed.
1362  */
1363 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1364 
1365 /**
1366  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1367  *
1368  * Allows a memory region to be marked as read-only (turning it into a ROM).
1369  * only useful on RAM regions.
1370  *
1371  * @mr: the region being updated.
1372  * @readonly: whether rhe region is to be ROM or RAM.
1373  */
1374 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1375 
1376 /**
1377  * memory_region_set_nonvolatile: Turn a memory region non-volatile
1378  *
1379  * Allows a memory region to be marked as non-volatile.
1380  * only useful on RAM regions.
1381  *
1382  * @mr: the region being updated.
1383  * @nonvolatile: whether rhe region is to be non-volatile.
1384  */
1385 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1386 
1387 /**
1388  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1389  *
1390  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1391  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1392  * device is mapped to guest memory and satisfies read access directly.
1393  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1394  * Writes are always handled by the #MemoryRegion.write function.
1395  *
1396  * @mr: the memory region to be updated
1397  * @romd_mode: %true to put the region into ROMD mode
1398  */
1399 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1400 
1401 /**
1402  * memory_region_set_coalescing: Enable memory coalescing for the region.
1403  *
1404  * Enabled writes to a region to be queued for later processing. MMIO ->write
1405  * callbacks may be delayed until a non-coalesced MMIO is issued.
1406  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1407  *
1408  * @mr: the memory region to be write coalesced
1409  */
1410 void memory_region_set_coalescing(MemoryRegion *mr);
1411 
1412 /**
1413  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1414  *                               a region.
1415  *
1416  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1417  * Multiple calls can be issued coalesced disjoint ranges.
1418  *
1419  * @mr: the memory region to be updated.
1420  * @offset: the start of the range within the region to be coalesced.
1421  * @size: the size of the subrange to be coalesced.
1422  */
1423 void memory_region_add_coalescing(MemoryRegion *mr,
1424                                   hwaddr offset,
1425                                   uint64_t size);
1426 
1427 /**
1428  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1429  *
1430  * Disables any coalescing caused by memory_region_set_coalescing() or
1431  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1432  * hardware.
1433  *
1434  * @mr: the memory region to be updated.
1435  */
1436 void memory_region_clear_coalescing(MemoryRegion *mr);
1437 
1438 /**
1439  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1440  *                                    accesses.
1441  *
1442  * Ensure that pending coalesced MMIO request are flushed before the memory
1443  * region is accessed. This property is automatically enabled for all regions
1444  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1445  *
1446  * @mr: the memory region to be updated.
1447  */
1448 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1449 
1450 /**
1451  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1452  *                                      accesses.
1453  *
1454  * Clear the automatic coalesced MMIO flushing enabled via
1455  * memory_region_set_flush_coalesced. Note that this service has no effect on
1456  * memory regions that have MMIO coalescing enabled for themselves. For them,
1457  * automatic flushing will stop once coalescing is disabled.
1458  *
1459  * @mr: the memory region to be updated.
1460  */
1461 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1462 
1463 /**
1464  * memory_region_clear_global_locking: Declares that access processing does
1465  *                                     not depend on the QEMU global lock.
1466  *
1467  * By clearing this property, accesses to the memory region will be processed
1468  * outside of QEMU's global lock (unless the lock is held on when issuing the
1469  * access request). In this case, the device model implementing the access
1470  * handlers is responsible for synchronization of concurrency.
1471  *
1472  * @mr: the memory region to be updated.
1473  */
1474 void memory_region_clear_global_locking(MemoryRegion *mr);
1475 
1476 /**
1477  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1478  *                            is written to a location.
1479  *
1480  * Marks a word in an IO region (initialized with memory_region_init_io())
1481  * as a trigger for an eventfd event.  The I/O callback will not be called.
1482  * The caller must be prepared to handle failure (that is, take the required
1483  * action if the callback _is_ called).
1484  *
1485  * @mr: the memory region being updated.
1486  * @addr: the address within @mr that is to be monitored
1487  * @size: the size of the access to trigger the eventfd
1488  * @match_data: whether to match against @data, instead of just @addr
1489  * @data: the data to match against the guest write
1490  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1491  **/
1492 void memory_region_add_eventfd(MemoryRegion *mr,
1493                                hwaddr addr,
1494                                unsigned size,
1495                                bool match_data,
1496                                uint64_t data,
1497                                EventNotifier *e);
1498 
1499 /**
1500  * memory_region_del_eventfd: Cancel an eventfd.
1501  *
1502  * Cancels an eventfd trigger requested by a previous
1503  * memory_region_add_eventfd() call.
1504  *
1505  * @mr: the memory region being updated.
1506  * @addr: the address within @mr that is to be monitored
1507  * @size: the size of the access to trigger the eventfd
1508  * @match_data: whether to match against @data, instead of just @addr
1509  * @data: the data to match against the guest write
1510  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1511  */
1512 void memory_region_del_eventfd(MemoryRegion *mr,
1513                                hwaddr addr,
1514                                unsigned size,
1515                                bool match_data,
1516                                uint64_t data,
1517                                EventNotifier *e);
1518 
1519 /**
1520  * memory_region_add_subregion: Add a subregion to a container.
1521  *
1522  * Adds a subregion at @offset.  The subregion may not overlap with other
1523  * subregions (except for those explicitly marked as overlapping).  A region
1524  * may only be added once as a subregion (unless removed with
1525  * memory_region_del_subregion()); use memory_region_init_alias() if you
1526  * want a region to be a subregion in multiple locations.
1527  *
1528  * @mr: the region to contain the new subregion; must be a container
1529  *      initialized with memory_region_init().
1530  * @offset: the offset relative to @mr where @subregion is added.
1531  * @subregion: the subregion to be added.
1532  */
1533 void memory_region_add_subregion(MemoryRegion *mr,
1534                                  hwaddr offset,
1535                                  MemoryRegion *subregion);
1536 /**
1537  * memory_region_add_subregion_overlap: Add a subregion to a container
1538  *                                      with overlap.
1539  *
1540  * Adds a subregion at @offset.  The subregion may overlap with other
1541  * subregions.  Conflicts are resolved by having a higher @priority hide a
1542  * lower @priority. Subregions without priority are taken as @priority 0.
1543  * A region may only be added once as a subregion (unless removed with
1544  * memory_region_del_subregion()); use memory_region_init_alias() if you
1545  * want a region to be a subregion in multiple locations.
1546  *
1547  * @mr: the region to contain the new subregion; must be a container
1548  *      initialized with memory_region_init().
1549  * @offset: the offset relative to @mr where @subregion is added.
1550  * @subregion: the subregion to be added.
1551  * @priority: used for resolving overlaps; highest priority wins.
1552  */
1553 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1554                                          hwaddr offset,
1555                                          MemoryRegion *subregion,
1556                                          int priority);
1557 
1558 /**
1559  * memory_region_get_ram_addr: Get the ram address associated with a memory
1560  *                             region
1561  */
1562 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1563 
1564 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1565 /**
1566  * memory_region_del_subregion: Remove a subregion.
1567  *
1568  * Removes a subregion from its container.
1569  *
1570  * @mr: the container to be updated.
1571  * @subregion: the region being removed; must be a current subregion of @mr.
1572  */
1573 void memory_region_del_subregion(MemoryRegion *mr,
1574                                  MemoryRegion *subregion);
1575 
1576 /*
1577  * memory_region_set_enabled: dynamically enable or disable a region
1578  *
1579  * Enables or disables a memory region.  A disabled memory region
1580  * ignores all accesses to itself and its subregions.  It does not
1581  * obscure sibling subregions with lower priority - it simply behaves as
1582  * if it was removed from the hierarchy.
1583  *
1584  * Regions default to being enabled.
1585  *
1586  * @mr: the region to be updated
1587  * @enabled: whether to enable or disable the region
1588  */
1589 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1590 
1591 /*
1592  * memory_region_set_address: dynamically update the address of a region
1593  *
1594  * Dynamically updates the address of a region, relative to its container.
1595  * May be used on regions are currently part of a memory hierarchy.
1596  *
1597  * @mr: the region to be updated
1598  * @addr: new address, relative to container region
1599  */
1600 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1601 
1602 /*
1603  * memory_region_set_size: dynamically update the size of a region.
1604  *
1605  * Dynamically updates the size of a region.
1606  *
1607  * @mr: the region to be updated
1608  * @size: used size of the region.
1609  */
1610 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1611 
1612 /*
1613  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1614  *
1615  * Dynamically updates the offset into the target region that an alias points
1616  * to, as if the fourth argument to memory_region_init_alias() has changed.
1617  *
1618  * @mr: the #MemoryRegion to be updated; should be an alias.
1619  * @offset: the new offset into the target memory region
1620  */
1621 void memory_region_set_alias_offset(MemoryRegion *mr,
1622                                     hwaddr offset);
1623 
1624 /**
1625  * memory_region_present: checks if an address relative to a @container
1626  * translates into #MemoryRegion within @container
1627  *
1628  * Answer whether a #MemoryRegion within @container covers the address
1629  * @addr.
1630  *
1631  * @container: a #MemoryRegion within which @addr is a relative address
1632  * @addr: the area within @container to be searched
1633  */
1634 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1635 
1636 /**
1637  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1638  * into any address space.
1639  *
1640  * @mr: a #MemoryRegion which should be checked if it's mapped
1641  */
1642 bool memory_region_is_mapped(MemoryRegion *mr);
1643 
1644 /**
1645  * memory_region_find: translate an address/size relative to a
1646  * MemoryRegion into a #MemoryRegionSection.
1647  *
1648  * Locates the first #MemoryRegion within @mr that overlaps the range
1649  * given by @addr and @size.
1650  *
1651  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1652  * It will have the following characteristics:
1653  *    .@size = 0 iff no overlap was found
1654  *    .@mr is non-%NULL iff an overlap was found
1655  *
1656  * Remember that in the return value the @offset_within_region is
1657  * relative to the returned region (in the .@mr field), not to the
1658  * @mr argument.
1659  *
1660  * Similarly, the .@offset_within_address_space is relative to the
1661  * address space that contains both regions, the passed and the
1662  * returned one.  However, in the special case where the @mr argument
1663  * has no container (and thus is the root of the address space), the
1664  * following will hold:
1665  *    .@offset_within_address_space >= @addr
1666  *    .@offset_within_address_space + .@size <= @addr + @size
1667  *
1668  * @mr: a MemoryRegion within which @addr is a relative address
1669  * @addr: start of the area within @as to be searched
1670  * @size: size of the area to be searched
1671  */
1672 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1673                                        hwaddr addr, uint64_t size);
1674 
1675 /**
1676  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1677  *
1678  * Synchronizes the dirty page log for all address spaces.
1679  */
1680 void memory_global_dirty_log_sync(void);
1681 
1682 /**
1683  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1684  *
1685  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1686  * This function must be called after the dirty log bitmap is cleared, and
1687  * before dirty guest memory pages are read.  If you are using
1688  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1689  * care of doing this.
1690  */
1691 void memory_global_after_dirty_log_sync(void);
1692 
1693 /**
1694  * memory_region_transaction_begin: Start a transaction.
1695  *
1696  * During a transaction, changes will be accumulated and made visible
1697  * only when the transaction ends (is committed).
1698  */
1699 void memory_region_transaction_begin(void);
1700 
1701 /**
1702  * memory_region_transaction_commit: Commit a transaction and make changes
1703  *                                   visible to the guest.
1704  */
1705 void memory_region_transaction_commit(void);
1706 
1707 /**
1708  * memory_listener_register: register callbacks to be called when memory
1709  *                           sections are mapped or unmapped into an address
1710  *                           space
1711  *
1712  * @listener: an object containing the callbacks to be called
1713  * @filter: if non-%NULL, only regions in this address space will be observed
1714  */
1715 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1716 
1717 /**
1718  * memory_listener_unregister: undo the effect of memory_listener_register()
1719  *
1720  * @listener: an object containing the callbacks to be removed
1721  */
1722 void memory_listener_unregister(MemoryListener *listener);
1723 
1724 /**
1725  * memory_global_dirty_log_start: begin dirty logging for all regions
1726  */
1727 void memory_global_dirty_log_start(void);
1728 
1729 /**
1730  * memory_global_dirty_log_stop: end dirty logging for all regions
1731  */
1732 void memory_global_dirty_log_stop(void);
1733 
1734 void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1735 
1736 /**
1737  * memory_region_dispatch_read: perform a read directly to the specified
1738  * MemoryRegion.
1739  *
1740  * @mr: #MemoryRegion to access
1741  * @addr: address within that region
1742  * @pval: pointer to uint64_t which the data is written to
1743  * @op: size, sign, and endianness of the memory operation
1744  * @attrs: memory transaction attributes to use for the access
1745  */
1746 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1747                                         hwaddr addr,
1748                                         uint64_t *pval,
1749                                         MemOp op,
1750                                         MemTxAttrs attrs);
1751 /**
1752  * memory_region_dispatch_write: perform a write directly to the specified
1753  * MemoryRegion.
1754  *
1755  * @mr: #MemoryRegion to access
1756  * @addr: address within that region
1757  * @data: data to write
1758  * @op: size, sign, and endianness of the memory operation
1759  * @attrs: memory transaction attributes to use for the access
1760  */
1761 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1762                                          hwaddr addr,
1763                                          uint64_t data,
1764                                          MemOp op,
1765                                          MemTxAttrs attrs);
1766 
1767 /**
1768  * address_space_init: initializes an address space
1769  *
1770  * @as: an uninitialized #AddressSpace
1771  * @root: a #MemoryRegion that routes addresses for the address space
1772  * @name: an address space name.  The name is only used for debugging
1773  *        output.
1774  */
1775 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1776 
1777 /**
1778  * address_space_destroy: destroy an address space
1779  *
1780  * Releases all resources associated with an address space.  After an address space
1781  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1782  * as well.
1783  *
1784  * @as: address space to be destroyed
1785  */
1786 void address_space_destroy(AddressSpace *as);
1787 
1788 /**
1789  * address_space_remove_listeners: unregister all listeners of an address space
1790  *
1791  * Removes all callbacks previously registered with memory_listener_register()
1792  * for @as.
1793  *
1794  * @as: an initialized #AddressSpace
1795  */
1796 void address_space_remove_listeners(AddressSpace *as);
1797 
1798 /**
1799  * address_space_rw: read from or write to an address space.
1800  *
1801  * Return a MemTxResult indicating whether the operation succeeded
1802  * or failed (eg unassigned memory, device rejected the transaction,
1803  * IOMMU fault).
1804  *
1805  * @as: #AddressSpace to be accessed
1806  * @addr: address within that address space
1807  * @attrs: memory transaction attributes
1808  * @buf: buffer with the data transferred
1809  * @len: the number of bytes to read or write
1810  * @is_write: indicates the transfer direction
1811  */
1812 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1813                              MemTxAttrs attrs, uint8_t *buf,
1814                              hwaddr len, bool is_write);
1815 
1816 /**
1817  * address_space_write: write to address space.
1818  *
1819  * Return a MemTxResult indicating whether the operation succeeded
1820  * or failed (eg unassigned memory, device rejected the transaction,
1821  * IOMMU fault).
1822  *
1823  * @as: #AddressSpace to be accessed
1824  * @addr: address within that address space
1825  * @attrs: memory transaction attributes
1826  * @buf: buffer with the data transferred
1827  * @len: the number of bytes to write
1828  */
1829 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1830                                 MemTxAttrs attrs,
1831                                 const uint8_t *buf, hwaddr len);
1832 
1833 /**
1834  * address_space_write_rom: write to address space, including ROM.
1835  *
1836  * This function writes to the specified address space, but will
1837  * write data to both ROM and RAM. This is used for non-guest
1838  * writes like writes from the gdb debug stub or initial loading
1839  * of ROM contents.
1840  *
1841  * Note that portions of the write which attempt to write data to
1842  * a device will be silently ignored -- only real RAM and ROM will
1843  * be written to.
1844  *
1845  * Return a MemTxResult indicating whether the operation succeeded
1846  * or failed (eg unassigned memory, device rejected the transaction,
1847  * IOMMU fault).
1848  *
1849  * @as: #AddressSpace to be accessed
1850  * @addr: address within that address space
1851  * @attrs: memory transaction attributes
1852  * @buf: buffer with the data transferred
1853  * @len: the number of bytes to write
1854  */
1855 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
1856                                     MemTxAttrs attrs,
1857                                     const uint8_t *buf, hwaddr len);
1858 
1859 /* address_space_ld*: load from an address space
1860  * address_space_st*: store to an address space
1861  *
1862  * These functions perform a load or store of the byte, word,
1863  * longword or quad to the specified address within the AddressSpace.
1864  * The _le suffixed functions treat the data as little endian;
1865  * _be indicates big endian; no suffix indicates "same endianness
1866  * as guest CPU".
1867  *
1868  * The "guest CPU endianness" accessors are deprecated for use outside
1869  * target-* code; devices should be CPU-agnostic and use either the LE
1870  * or the BE accessors.
1871  *
1872  * @as #AddressSpace to be accessed
1873  * @addr: address within that address space
1874  * @val: data value, for stores
1875  * @attrs: memory transaction attributes
1876  * @result: location to write the success/failure of the transaction;
1877  *   if NULL, this information is discarded
1878  */
1879 
1880 #define SUFFIX
1881 #define ARG1         as
1882 #define ARG1_DECL    AddressSpace *as
1883 #include "exec/memory_ldst.inc.h"
1884 
1885 #define SUFFIX
1886 #define ARG1         as
1887 #define ARG1_DECL    AddressSpace *as
1888 #include "exec/memory_ldst_phys.inc.h"
1889 
1890 struct MemoryRegionCache {
1891     void *ptr;
1892     hwaddr xlat;
1893     hwaddr len;
1894     FlatView *fv;
1895     MemoryRegionSection mrs;
1896     bool is_write;
1897 };
1898 
1899 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1900 
1901 
1902 /* address_space_ld*_cached: load from a cached #MemoryRegion
1903  * address_space_st*_cached: store into a cached #MemoryRegion
1904  *
1905  * These functions perform a load or store of the byte, word,
1906  * longword or quad to the specified address.  The address is
1907  * a physical address in the AddressSpace, but it must lie within
1908  * a #MemoryRegion that was mapped with address_space_cache_init.
1909  *
1910  * The _le suffixed functions treat the data as little endian;
1911  * _be indicates big endian; no suffix indicates "same endianness
1912  * as guest CPU".
1913  *
1914  * The "guest CPU endianness" accessors are deprecated for use outside
1915  * target-* code; devices should be CPU-agnostic and use either the LE
1916  * or the BE accessors.
1917  *
1918  * @cache: previously initialized #MemoryRegionCache to be accessed
1919  * @addr: address within the address space
1920  * @val: data value, for stores
1921  * @attrs: memory transaction attributes
1922  * @result: location to write the success/failure of the transaction;
1923  *   if NULL, this information is discarded
1924  */
1925 
1926 #define SUFFIX       _cached_slow
1927 #define ARG1         cache
1928 #define ARG1_DECL    MemoryRegionCache *cache
1929 #include "exec/memory_ldst.inc.h"
1930 
1931 /* Inline fast path for direct RAM access.  */
1932 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1933     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1934 {
1935     assert(addr < cache->len);
1936     if (likely(cache->ptr)) {
1937         return ldub_p(cache->ptr + addr);
1938     } else {
1939         return address_space_ldub_cached_slow(cache, addr, attrs, result);
1940     }
1941 }
1942 
1943 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1944     hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1945 {
1946     assert(addr < cache->len);
1947     if (likely(cache->ptr)) {
1948         stb_p(cache->ptr + addr, val);
1949     } else {
1950         address_space_stb_cached_slow(cache, addr, val, attrs, result);
1951     }
1952 }
1953 
1954 #define ENDIANNESS   _le
1955 #include "exec/memory_ldst_cached.inc.h"
1956 
1957 #define ENDIANNESS   _be
1958 #include "exec/memory_ldst_cached.inc.h"
1959 
1960 #define SUFFIX       _cached
1961 #define ARG1         cache
1962 #define ARG1_DECL    MemoryRegionCache *cache
1963 #include "exec/memory_ldst_phys.inc.h"
1964 
1965 /* address_space_cache_init: prepare for repeated access to a physical
1966  * memory region
1967  *
1968  * @cache: #MemoryRegionCache to be filled
1969  * @as: #AddressSpace to be accessed
1970  * @addr: address within that address space
1971  * @len: length of buffer
1972  * @is_write: indicates the transfer direction
1973  *
1974  * Will only work with RAM, and may map a subset of the requested range by
1975  * returning a value that is less than @len.  On failure, return a negative
1976  * errno value.
1977  *
1978  * Because it only works with RAM, this function can be used for
1979  * read-modify-write operations.  In this case, is_write should be %true.
1980  *
1981  * Note that addresses passed to the address_space_*_cached functions
1982  * are relative to @addr.
1983  */
1984 int64_t address_space_cache_init(MemoryRegionCache *cache,
1985                                  AddressSpace *as,
1986                                  hwaddr addr,
1987                                  hwaddr len,
1988                                  bool is_write);
1989 
1990 /**
1991  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1992  *
1993  * @cache: The #MemoryRegionCache to operate on.
1994  * @addr: The first physical address that was written, relative to the
1995  * address that was passed to @address_space_cache_init.
1996  * @access_len: The number of bytes that were written starting at @addr.
1997  */
1998 void address_space_cache_invalidate(MemoryRegionCache *cache,
1999                                     hwaddr addr,
2000                                     hwaddr access_len);
2001 
2002 /**
2003  * address_space_cache_destroy: free a #MemoryRegionCache
2004  *
2005  * @cache: The #MemoryRegionCache whose memory should be released.
2006  */
2007 void address_space_cache_destroy(MemoryRegionCache *cache);
2008 
2009 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2010  * entry. Should be called from an RCU critical section.
2011  */
2012 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2013                                             bool is_write, MemTxAttrs attrs);
2014 
2015 /* address_space_translate: translate an address range into an address space
2016  * into a MemoryRegion and an address range into that section.  Should be
2017  * called from an RCU critical section, to avoid that the last reference
2018  * to the returned region disappears after address_space_translate returns.
2019  *
2020  * @fv: #FlatView to be accessed
2021  * @addr: address within that address space
2022  * @xlat: pointer to address within the returned memory region section's
2023  * #MemoryRegion.
2024  * @len: pointer to length
2025  * @is_write: indicates the transfer direction
2026  * @attrs: memory attributes
2027  */
2028 MemoryRegion *flatview_translate(FlatView *fv,
2029                                  hwaddr addr, hwaddr *xlat,
2030                                  hwaddr *len, bool is_write,
2031                                  MemTxAttrs attrs);
2032 
2033 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2034                                                     hwaddr addr, hwaddr *xlat,
2035                                                     hwaddr *len, bool is_write,
2036                                                     MemTxAttrs attrs)
2037 {
2038     return flatview_translate(address_space_to_flatview(as),
2039                               addr, xlat, len, is_write, attrs);
2040 }
2041 
2042 /* address_space_access_valid: check for validity of accessing an address
2043  * space range
2044  *
2045  * Check whether memory is assigned to the given address space range, and
2046  * access is permitted by any IOMMU regions that are active for the address
2047  * space.
2048  *
2049  * For now, addr and len should be aligned to a page size.  This limitation
2050  * will be lifted in the future.
2051  *
2052  * @as: #AddressSpace to be accessed
2053  * @addr: address within that address space
2054  * @len: length of the area to be checked
2055  * @is_write: indicates the transfer direction
2056  * @attrs: memory attributes
2057  */
2058 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2059                                 bool is_write, MemTxAttrs attrs);
2060 
2061 /* address_space_map: map a physical memory region into a host virtual address
2062  *
2063  * May map a subset of the requested range, given by and returned in @plen.
2064  * May return %NULL if resources needed to perform the mapping are exhausted.
2065  * Use only for reads OR writes - not for read-modify-write operations.
2066  * Use cpu_register_map_client() to know when retrying the map operation is
2067  * likely to succeed.
2068  *
2069  * @as: #AddressSpace to be accessed
2070  * @addr: address within that address space
2071  * @plen: pointer to length of buffer; updated on return
2072  * @is_write: indicates the transfer direction
2073  * @attrs: memory attributes
2074  */
2075 void *address_space_map(AddressSpace *as, hwaddr addr,
2076                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2077 
2078 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2079  *
2080  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2081  * the amount of memory that was actually read or written by the caller.
2082  *
2083  * @as: #AddressSpace used
2084  * @buffer: host pointer as returned by address_space_map()
2085  * @len: buffer length as returned by address_space_map()
2086  * @access_len: amount of data actually transferred
2087  * @is_write: indicates the transfer direction
2088  */
2089 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2090                          int is_write, hwaddr access_len);
2091 
2092 
2093 /* Internal functions, part of the implementation of address_space_read.  */
2094 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2095                                     MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2096 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2097                                    MemTxAttrs attrs, uint8_t *buf,
2098                                    hwaddr len, hwaddr addr1, hwaddr l,
2099                                    MemoryRegion *mr);
2100 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2101 
2102 /* Internal functions, part of the implementation of address_space_read_cached
2103  * and address_space_write_cached.  */
2104 void address_space_read_cached_slow(MemoryRegionCache *cache,
2105                                     hwaddr addr, void *buf, hwaddr len);
2106 void address_space_write_cached_slow(MemoryRegionCache *cache,
2107                                      hwaddr addr, const void *buf, hwaddr len);
2108 
2109 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2110 {
2111     if (is_write) {
2112         return memory_region_is_ram(mr) &&
2113                !mr->readonly && !memory_region_is_ram_device(mr);
2114     } else {
2115         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2116                memory_region_is_romd(mr);
2117     }
2118 }
2119 
2120 /**
2121  * address_space_read: read from an address space.
2122  *
2123  * Return a MemTxResult indicating whether the operation succeeded
2124  * or failed (eg unassigned memory, device rejected the transaction,
2125  * IOMMU fault).  Called within RCU critical section.
2126  *
2127  * @as: #AddressSpace to be accessed
2128  * @addr: address within that address space
2129  * @attrs: memory transaction attributes
2130  * @buf: buffer with the data transferred
2131  */
2132 static inline __attribute__((__always_inline__))
2133 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2134                                MemTxAttrs attrs, uint8_t *buf,
2135                                hwaddr len)
2136 {
2137     MemTxResult result = MEMTX_OK;
2138     hwaddr l, addr1;
2139     void *ptr;
2140     MemoryRegion *mr;
2141     FlatView *fv;
2142 
2143     if (__builtin_constant_p(len)) {
2144         if (len) {
2145             rcu_read_lock();
2146             fv = address_space_to_flatview(as);
2147             l = len;
2148             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2149             if (len == l && memory_access_is_direct(mr, false)) {
2150                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2151                 memcpy(buf, ptr, len);
2152             } else {
2153                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2154                                                 addr1, l, mr);
2155             }
2156             rcu_read_unlock();
2157         }
2158     } else {
2159         result = address_space_read_full(as, addr, attrs, buf, len);
2160     }
2161     return result;
2162 }
2163 
2164 /**
2165  * address_space_read_cached: read from a cached RAM region
2166  *
2167  * @cache: Cached region to be addressed
2168  * @addr: address relative to the base of the RAM region
2169  * @buf: buffer with the data transferred
2170  * @len: length of the data transferred
2171  */
2172 static inline void
2173 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2174                           void *buf, hwaddr len)
2175 {
2176     assert(addr < cache->len && len <= cache->len - addr);
2177     if (likely(cache->ptr)) {
2178         memcpy(buf, cache->ptr + addr, len);
2179     } else {
2180         address_space_read_cached_slow(cache, addr, buf, len);
2181     }
2182 }
2183 
2184 /**
2185  * address_space_write_cached: write to a cached RAM region
2186  *
2187  * @cache: Cached region to be addressed
2188  * @addr: address relative to the base of the RAM region
2189  * @buf: buffer with the data transferred
2190  * @len: length of the data transferred
2191  */
2192 static inline void
2193 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2194                            void *buf, hwaddr len)
2195 {
2196     assert(addr < cache->len && len <= cache->len - addr);
2197     if (likely(cache->ptr)) {
2198         memcpy(cache->ptr + addr, buf, len);
2199     } else {
2200         address_space_write_cached_slow(cache, addr, buf, len);
2201     }
2202 }
2203 
2204 /* enum device_endian to MemOp.  */
2205 MemOp devend_memop(enum device_endian end);
2206 
2207 #endif
2208 
2209 #endif
2210