xref: /openbmc/qemu/include/exec/memory.h (revision b2580720)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31 
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39                          TYPE_MEMORY_REGION)
40 
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54                       size_t len,
55                       MemoryRegion *mr);
56 #else
57 static inline void fuzz_dma_read_cb(size_t addr,
58                                     size_t len,
59                                     MemoryRegion *mr)
60 {
61     /* Do Nothing */
62 }
63 #endif
64 
65 /* Possible bits for global_dirty_log_{start|stop} */
66 
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
69 
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
75 
76 #define GLOBAL_DIRTY_MASK  (0x7)
77 
78 extern unsigned int global_dirty_tracking;
79 
80 typedef struct MemoryRegionOps MemoryRegionOps;
81 
82 struct ReservedRegion {
83     Range range;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  * @unmergeable: this section should not get merged with adjacent sections
99  */
100 struct MemoryRegionSection {
101     Int128 size;
102     MemoryRegion *mr;
103     FlatView *fv;
104     hwaddr offset_within_region;
105     hwaddr offset_within_address_space;
106     bool readonly;
107     bool nonvolatile;
108     bool unmergeable;
109 };
110 
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112 
113 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
114 typedef enum {
115     IOMMU_NONE = 0,
116     IOMMU_RO   = 1,
117     IOMMU_WO   = 2,
118     IOMMU_RW   = 3,
119 } IOMMUAccessFlags;
120 
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122 
123 struct IOMMUTLBEntry {
124     AddressSpace    *target_as;
125     hwaddr           iova;
126     hwaddr           translated_addr;
127     hwaddr           addr_mask;  /* 0xfff = 4k translation */
128     IOMMUAccessFlags perm;
129 };
130 
131 /*
132  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133  * register with one or multiple IOMMU Notifier capability bit(s).
134  *
135  * Normally there're two use cases for the notifiers:
136  *
137  *   (1) When the device needs accurate synchronizations of the vIOMMU page
138  *       tables, it needs to register with both MAP|UNMAP notifies (which
139  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140  *
141  *       Regarding to accurate synchronization, it's when the notified
142  *       device maintains a shadow page table and must be notified on each
143  *       guest MAP (page table entry creation) and UNMAP (invalidation)
144  *       events (e.g. VFIO). Both notifications must be accurate so that
145  *       the shadow page table is fully in sync with the guest view.
146  *
147  *   (2) When the device doesn't need accurate synchronizations of the
148  *       vIOMMU page tables, it needs to register only with UNMAP or
149  *       DEVIOTLB_UNMAP notifies.
150  *
151  *       It's when the device maintains a cache of IOMMU translations
152  *       (IOTLB) and is able to fill that cache by requesting translations
153  *       from the vIOMMU through a protocol similar to ATS (Address
154  *       Translation Service).
155  *
156  *       Note that in this mode the vIOMMU will not maintain a shadowed
157  *       page table for the address space, and the UNMAP messages can cover
158  *       more than the pages that used to get mapped.  The IOMMU notifiee
159  *       should be able to take care of over-sized invalidations.
160  */
161 typedef enum {
162     IOMMU_NOTIFIER_NONE = 0,
163     /* Notify cache invalidations */
164     IOMMU_NOTIFIER_UNMAP = 0x1,
165     /* Notify entry changes (newly created entries) */
166     IOMMU_NOTIFIER_MAP = 0x2,
167     /* Notify changes on device IOTLB entries */
168     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170 
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175 
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178                             IOMMUTLBEntry *data);
179 
180 struct IOMMUNotifier {
181     IOMMUNotify notify;
182     IOMMUNotifierFlag notifier_flags;
183     /* Notify for address space range start <= addr <= end */
184     hwaddr start;
185     hwaddr end;
186     int iommu_idx;
187     QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190 
191 typedef struct IOMMUTLBEvent {
192     IOMMUNotifierFlag type;
193     IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195 
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC   (1 << 0)
198 
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED     (1 << 1)
201 
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203  * Resizing RAM while migrating can result in the migration being canceled.
204  */
205 #define RAM_RESIZEABLE (1 << 2)
206 
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208  * zero the page and wake waiting processes.
209  * (Set during postcopy)
210  */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212 
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215 
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218 
219 
220 /*
221  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222  * support 'write-tracking' migration type.
223  * Implies ram_state->ram_wt_enabled.
224  */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226 
227 /*
228  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229  * pages if applicable) is skipped: will bail out if not supported. When not
230  * set, the OS will do the reservation, if supported for the memory type.
231  */
232 #define RAM_NORESERVE (1 << 7)
233 
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236 
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239 
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242 
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245 
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD   (1 << 12)
248 
249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
250                                        IOMMUNotifierFlag flags,
251                                        hwaddr start, hwaddr end,
252                                        int iommu_idx)
253 {
254     n->notify = fn;
255     n->notifier_flags = flags;
256     n->start = start;
257     n->end = end;
258     n->iommu_idx = iommu_idx;
259 }
260 
261 /*
262  * Memory region callbacks
263  */
264 struct MemoryRegionOps {
265     /* Read from the memory region. @addr is relative to @mr; @size is
266      * in bytes. */
267     uint64_t (*read)(void *opaque,
268                      hwaddr addr,
269                      unsigned size);
270     /* Write to the memory region. @addr is relative to @mr; @size is
271      * in bytes. */
272     void (*write)(void *opaque,
273                   hwaddr addr,
274                   uint64_t data,
275                   unsigned size);
276 
277     MemTxResult (*read_with_attrs)(void *opaque,
278                                    hwaddr addr,
279                                    uint64_t *data,
280                                    unsigned size,
281                                    MemTxAttrs attrs);
282     MemTxResult (*write_with_attrs)(void *opaque,
283                                     hwaddr addr,
284                                     uint64_t data,
285                                     unsigned size,
286                                     MemTxAttrs attrs);
287 
288     enum device_endian endianness;
289     /* Guest-visible constraints: */
290     struct {
291         /* If nonzero, specify bounds on access sizes beyond which a machine
292          * check is thrown.
293          */
294         unsigned min_access_size;
295         unsigned max_access_size;
296         /* If true, unaligned accesses are supported.  Otherwise unaligned
297          * accesses throw machine checks.
298          */
299          bool unaligned;
300         /*
301          * If present, and returns #false, the transaction is not accepted
302          * by the device (and results in machine dependent behaviour such
303          * as a machine check exception).
304          */
305         bool (*accepts)(void *opaque, hwaddr addr,
306                         unsigned size, bool is_write,
307                         MemTxAttrs attrs);
308     } valid;
309     /* Internal implementation constraints: */
310     struct {
311         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
312          * will be rounded upwards and a partial result will be returned.
313          */
314         unsigned min_access_size;
315         /* If nonzero, specifies the maximum size implemented.  Larger sizes
316          * will be done as a series of accesses with smaller sizes.
317          */
318         unsigned max_access_size;
319         /* If true, unaligned accesses are supported.  Otherwise all accesses
320          * are converted to (possibly multiple) naturally aligned accesses.
321          */
322         bool unaligned;
323     } impl;
324 };
325 
326 typedef struct MemoryRegionClass {
327     /* private */
328     ObjectClass parent_class;
329 } MemoryRegionClass;
330 
331 
332 enum IOMMUMemoryRegionAttr {
333     IOMMU_ATTR_SPAPR_TCE_FD
334 };
335 
336 /*
337  * IOMMUMemoryRegionClass:
338  *
339  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
340  * and provide an implementation of at least the @translate method here
341  * to handle requests to the memory region. Other methods are optional.
342  *
343  * The IOMMU implementation must use the IOMMU notifier infrastructure
344  * to report whenever mappings are changed, by calling
345  * memory_region_notify_iommu() (or, if necessary, by calling
346  * memory_region_notify_iommu_one() for each registered notifier).
347  *
348  * Conceptually an IOMMU provides a mapping from input address
349  * to an output TLB entry. If the IOMMU is aware of memory transaction
350  * attributes and the output TLB entry depends on the transaction
351  * attributes, we represent this using IOMMU indexes. Each index
352  * selects a particular translation table that the IOMMU has:
353  *
354  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
355  *
356  *   @translate takes an input address and an IOMMU index
357  *
358  * and the mapping returned can only depend on the input address and the
359  * IOMMU index.
360  *
361  * Most IOMMUs don't care about the transaction attributes and support
362  * only a single IOMMU index. A more complex IOMMU might have one index
363  * for secure transactions and one for non-secure transactions.
364  */
365 struct IOMMUMemoryRegionClass {
366     /* private: */
367     MemoryRegionClass parent_class;
368 
369     /* public: */
370     /**
371      * @translate:
372      *
373      * Return a TLB entry that contains a given address.
374      *
375      * The IOMMUAccessFlags indicated via @flag are optional and may
376      * be specified as IOMMU_NONE to indicate that the caller needs
377      * the full translation information for both reads and writes. If
378      * the access flags are specified then the IOMMU implementation
379      * may use this as an optimization, to stop doing a page table
380      * walk as soon as it knows that the requested permissions are not
381      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
382      * full page table walk and report the permissions in the returned
383      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
384      * return different mappings for reads and writes.)
385      *
386      * The returned information remains valid while the caller is
387      * holding the big QEMU lock or is inside an RCU critical section;
388      * if the caller wishes to cache the mapping beyond that it must
389      * register an IOMMU notifier so it can invalidate its cached
390      * information when the IOMMU mapping changes.
391      *
392      * @iommu: the IOMMUMemoryRegion
393      *
394      * @hwaddr: address to be translated within the memory region
395      *
396      * @flag: requested access permission
397      *
398      * @iommu_idx: IOMMU index for the translation
399      */
400     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
401                                IOMMUAccessFlags flag, int iommu_idx);
402     /**
403      * @get_min_page_size:
404      *
405      * Returns minimum supported page size in bytes.
406      *
407      * If this method is not provided then the minimum is assumed to
408      * be TARGET_PAGE_SIZE.
409      *
410      * @iommu: the IOMMUMemoryRegion
411      */
412     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
413     /**
414      * @notify_flag_changed:
415      *
416      * Called when IOMMU Notifier flag changes (ie when the set of
417      * events which IOMMU users are requesting notification for changes).
418      * Optional method -- need not be provided if the IOMMU does not
419      * need to know exactly which events must be notified.
420      *
421      * @iommu: the IOMMUMemoryRegion
422      *
423      * @old_flags: events which previously needed to be notified
424      *
425      * @new_flags: events which now need to be notified
426      *
427      * Returns 0 on success, or a negative errno; in particular
428      * returns -EINVAL if the new flag bitmap is not supported by the
429      * IOMMU memory region. In case of failure, the error object
430      * must be created
431      */
432     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
433                                IOMMUNotifierFlag old_flags,
434                                IOMMUNotifierFlag new_flags,
435                                Error **errp);
436     /**
437      * @replay:
438      *
439      * Called to handle memory_region_iommu_replay().
440      *
441      * The default implementation of memory_region_iommu_replay() is to
442      * call the IOMMU translate method for every page in the address space
443      * with flag == IOMMU_NONE and then call the notifier if translate
444      * returns a valid mapping. If this method is implemented then it
445      * overrides the default behaviour, and must provide the full semantics
446      * of memory_region_iommu_replay(), by calling @notifier for every
447      * translation present in the IOMMU.
448      *
449      * Optional method -- an IOMMU only needs to provide this method
450      * if the default is inefficient or produces undesirable side effects.
451      *
452      * Note: this is not related to record-and-replay functionality.
453      */
454     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
455 
456     /**
457      * @get_attr:
458      *
459      * Get IOMMU misc attributes. This is an optional method that
460      * can be used to allow users of the IOMMU to get implementation-specific
461      * information. The IOMMU implements this method to handle calls
462      * by IOMMU users to memory_region_iommu_get_attr() by filling in
463      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
464      * the IOMMU supports. If the method is unimplemented then
465      * memory_region_iommu_get_attr() will always return -EINVAL.
466      *
467      * @iommu: the IOMMUMemoryRegion
468      *
469      * @attr: attribute being queried
470      *
471      * @data: memory to fill in with the attribute data
472      *
473      * Returns 0 on success, or a negative errno; in particular
474      * returns -EINVAL for unrecognized or unimplemented attribute types.
475      */
476     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
477                     void *data);
478 
479     /**
480      * @attrs_to_index:
481      *
482      * Return the IOMMU index to use for a given set of transaction attributes.
483      *
484      * Optional method: if an IOMMU only supports a single IOMMU index then
485      * the default implementation of memory_region_iommu_attrs_to_index()
486      * will return 0.
487      *
488      * The indexes supported by an IOMMU must be contiguous, starting at 0.
489      *
490      * @iommu: the IOMMUMemoryRegion
491      * @attrs: memory transaction attributes
492      */
493     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
494 
495     /**
496      * @num_indexes:
497      *
498      * Return the number of IOMMU indexes this IOMMU supports.
499      *
500      * Optional method: if this method is not provided, then
501      * memory_region_iommu_num_indexes() will return 1, indicating that
502      * only a single IOMMU index is supported.
503      *
504      * @iommu: the IOMMUMemoryRegion
505      */
506     int (*num_indexes)(IOMMUMemoryRegion *iommu);
507 
508     /**
509      * @iommu_set_page_size_mask:
510      *
511      * Restrict the page size mask that can be supported with a given IOMMU
512      * memory region. Used for example to propagate host physical IOMMU page
513      * size mask limitations to the virtual IOMMU.
514      *
515      * Optional method: if this method is not provided, then the default global
516      * page mask is used.
517      *
518      * @iommu: the IOMMUMemoryRegion
519      *
520      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
521      * representing the smallest page size, must be set. Additional set bits
522      * represent supported block sizes. For example a host physical IOMMU that
523      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
524      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
525      * block sizes is specified with mask 0xfffffffffffff000.
526      *
527      * Returns 0 on success, or a negative error. In case of failure, the error
528      * object must be created.
529      */
530      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
531                                      uint64_t page_size_mask,
532                                      Error **errp);
533     /**
534      * @iommu_set_iova_ranges:
535      *
536      * Propagate information about the usable IOVA ranges for a given IOMMU
537      * memory region. Used for example to propagate host physical device
538      * reserved memory region constraints to the virtual IOMMU.
539      *
540      * Optional method: if this method is not provided, then the default IOVA
541      * aperture is used.
542      *
543      * @iommu: the IOMMUMemoryRegion
544      *
545      * @iova_ranges: list of ordered IOVA ranges (at least one range)
546      *
547      * Returns 0 on success, or a negative error. In case of failure, the error
548      * object must be created.
549      */
550      int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu,
551                                   GList *iova_ranges,
552                                   Error **errp);
553 };
554 
555 typedef struct RamDiscardListener RamDiscardListener;
556 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
557                                  MemoryRegionSection *section);
558 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
559                                  MemoryRegionSection *section);
560 
561 struct RamDiscardListener {
562     /*
563      * @notify_populate:
564      *
565      * Notification that previously discarded memory is about to get populated.
566      * Listeners are able to object. If any listener objects, already
567      * successfully notified listeners are notified about a discard again.
568      *
569      * @rdl: the #RamDiscardListener getting notified
570      * @section: the #MemoryRegionSection to get populated. The section
571      *           is aligned within the memory region to the minimum granularity
572      *           unless it would exceed the registered section.
573      *
574      * Returns 0 on success. If the notification is rejected by the listener,
575      * an error is returned.
576      */
577     NotifyRamPopulate notify_populate;
578 
579     /*
580      * @notify_discard:
581      *
582      * Notification that previously populated memory was discarded successfully
583      * and listeners should drop all references to such memory and prevent
584      * new population (e.g., unmap).
585      *
586      * @rdl: the #RamDiscardListener getting notified
587      * @section: the #MemoryRegionSection to get populated. The section
588      *           is aligned within the memory region to the minimum granularity
589      *           unless it would exceed the registered section.
590      */
591     NotifyRamDiscard notify_discard;
592 
593     /*
594      * @double_discard_supported:
595      *
596      * The listener suppors getting @notify_discard notifications that span
597      * already discarded parts.
598      */
599     bool double_discard_supported;
600 
601     MemoryRegionSection *section;
602     QLIST_ENTRY(RamDiscardListener) next;
603 };
604 
605 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
606                                              NotifyRamPopulate populate_fn,
607                                              NotifyRamDiscard discard_fn,
608                                              bool double_discard_supported)
609 {
610     rdl->notify_populate = populate_fn;
611     rdl->notify_discard = discard_fn;
612     rdl->double_discard_supported = double_discard_supported;
613 }
614 
615 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
616 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
617 
618 /*
619  * RamDiscardManagerClass:
620  *
621  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
622  * regions are currently populated to be used/accessed by the VM, notifying
623  * after parts were discarded (freeing up memory) and before parts will be
624  * populated (consuming memory), to be used/accessed by the VM.
625  *
626  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
627  * #MemoryRegion isn't mapped into an address space yet (either directly
628  * or via an alias); it cannot change while the #MemoryRegion is
629  * mapped into an address space.
630  *
631  * The #RamDiscardManager is intended to be used by technologies that are
632  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
633  * memory inside a #MemoryRegion), and require proper coordination to only
634  * map the currently populated parts, to hinder parts that are expected to
635  * remain discarded from silently getting populated and consuming memory.
636  * Technologies that support discarding of RAM don't have to bother and can
637  * simply map the whole #MemoryRegion.
638  *
639  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
640  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
641  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
642  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
643  * properly coordinate with listeners before memory is plugged (populated),
644  * and after memory is unplugged (discarded).
645  *
646  * Listeners are called in multiples of the minimum granularity (unless it
647  * would exceed the registered range) and changes are aligned to the minimum
648  * granularity within the #MemoryRegion. Listeners have to prepare for memory
649  * becoming discarded in a different granularity than it was populated and the
650  * other way around.
651  */
652 struct RamDiscardManagerClass {
653     /* private */
654     InterfaceClass parent_class;
655 
656     /* public */
657 
658     /**
659      * @get_min_granularity:
660      *
661      * Get the minimum granularity in which listeners will get notified
662      * about changes within the #MemoryRegion via the #RamDiscardManager.
663      *
664      * @rdm: the #RamDiscardManager
665      * @mr: the #MemoryRegion
666      *
667      * Returns the minimum granularity.
668      */
669     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
670                                     const MemoryRegion *mr);
671 
672     /**
673      * @is_populated:
674      *
675      * Check whether the given #MemoryRegionSection is completely populated
676      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
677      * There are no alignment requirements.
678      *
679      * @rdm: the #RamDiscardManager
680      * @section: the #MemoryRegionSection
681      *
682      * Returns whether the given range is completely populated.
683      */
684     bool (*is_populated)(const RamDiscardManager *rdm,
685                          const MemoryRegionSection *section);
686 
687     /**
688      * @replay_populated:
689      *
690      * Call the #ReplayRamPopulate callback for all populated parts within the
691      * #MemoryRegionSection via the #RamDiscardManager.
692      *
693      * In case any call fails, no further calls are made.
694      *
695      * @rdm: the #RamDiscardManager
696      * @section: the #MemoryRegionSection
697      * @replay_fn: the #ReplayRamPopulate callback
698      * @opaque: pointer to forward to the callback
699      *
700      * Returns 0 on success, or a negative error if any notification failed.
701      */
702     int (*replay_populated)(const RamDiscardManager *rdm,
703                             MemoryRegionSection *section,
704                             ReplayRamPopulate replay_fn, void *opaque);
705 
706     /**
707      * @replay_discarded:
708      *
709      * Call the #ReplayRamDiscard callback for all discarded parts within the
710      * #MemoryRegionSection via the #RamDiscardManager.
711      *
712      * @rdm: the #RamDiscardManager
713      * @section: the #MemoryRegionSection
714      * @replay_fn: the #ReplayRamDiscard callback
715      * @opaque: pointer to forward to the callback
716      */
717     void (*replay_discarded)(const RamDiscardManager *rdm,
718                              MemoryRegionSection *section,
719                              ReplayRamDiscard replay_fn, void *opaque);
720 
721     /**
722      * @register_listener:
723      *
724      * Register a #RamDiscardListener for the given #MemoryRegionSection and
725      * immediately notify the #RamDiscardListener about all populated parts
726      * within the #MemoryRegionSection via the #RamDiscardManager.
727      *
728      * In case any notification fails, no further notifications are triggered
729      * and an error is logged.
730      *
731      * @rdm: the #RamDiscardManager
732      * @rdl: the #RamDiscardListener
733      * @section: the #MemoryRegionSection
734      */
735     void (*register_listener)(RamDiscardManager *rdm,
736                               RamDiscardListener *rdl,
737                               MemoryRegionSection *section);
738 
739     /**
740      * @unregister_listener:
741      *
742      * Unregister a previously registered #RamDiscardListener via the
743      * #RamDiscardManager after notifying the #RamDiscardListener about all
744      * populated parts becoming unpopulated within the registered
745      * #MemoryRegionSection.
746      *
747      * @rdm: the #RamDiscardManager
748      * @rdl: the #RamDiscardListener
749      */
750     void (*unregister_listener)(RamDiscardManager *rdm,
751                                 RamDiscardListener *rdl);
752 };
753 
754 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
755                                                  const MemoryRegion *mr);
756 
757 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
758                                       const MemoryRegionSection *section);
759 
760 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
761                                          MemoryRegionSection *section,
762                                          ReplayRamPopulate replay_fn,
763                                          void *opaque);
764 
765 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
766                                           MemoryRegionSection *section,
767                                           ReplayRamDiscard replay_fn,
768                                           void *opaque);
769 
770 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
771                                            RamDiscardListener *rdl,
772                                            MemoryRegionSection *section);
773 
774 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
775                                              RamDiscardListener *rdl);
776 
777 /**
778  * memory_get_xlat_addr: Extract addresses from a TLB entry
779  *
780  * @iotlb: pointer to an #IOMMUTLBEntry
781  * @vaddr: virtual address
782  * @ram_addr: RAM address
783  * @read_only: indicates if writes are allowed
784  * @mr_has_discard_manager: indicates memory is controlled by a
785  *                          RamDiscardManager
786  * @errp: pointer to Error*, to store an error if it happens.
787  *
788  * Return: true on success, else false setting @errp with error.
789  */
790 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
791                           ram_addr_t *ram_addr, bool *read_only,
792                           bool *mr_has_discard_manager, Error **errp);
793 
794 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
795 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
796 
797 /** MemoryRegion:
798  *
799  * A struct representing a memory region.
800  */
801 struct MemoryRegion {
802     Object parent_obj;
803 
804     /* private: */
805 
806     /* The following fields should fit in a cache line */
807     bool romd_mode;
808     bool ram;
809     bool subpage;
810     bool readonly; /* For RAM regions */
811     bool nonvolatile;
812     bool rom_device;
813     bool flush_coalesced_mmio;
814     bool unmergeable;
815     uint8_t dirty_log_mask;
816     bool is_iommu;
817     RAMBlock *ram_block;
818     Object *owner;
819     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
820     DeviceState *dev;
821 
822     const MemoryRegionOps *ops;
823     void *opaque;
824     MemoryRegion *container;
825     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
826     Int128 size;
827     hwaddr addr;
828     void (*destructor)(MemoryRegion *mr);
829     uint64_t align;
830     bool terminates;
831     bool ram_device;
832     bool enabled;
833     bool warning_printed; /* For reservations */
834     uint8_t vga_logging_count;
835     MemoryRegion *alias;
836     hwaddr alias_offset;
837     int32_t priority;
838     QTAILQ_HEAD(, MemoryRegion) subregions;
839     QTAILQ_ENTRY(MemoryRegion) subregions_link;
840     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
841     const char *name;
842     unsigned ioeventfd_nb;
843     MemoryRegionIoeventfd *ioeventfds;
844     RamDiscardManager *rdm; /* Only for RAM */
845 
846     /* For devices designed to perform re-entrant IO into their own IO MRs */
847     bool disable_reentrancy_guard;
848 };
849 
850 struct IOMMUMemoryRegion {
851     MemoryRegion parent_obj;
852 
853     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
854     IOMMUNotifierFlag iommu_notify_flags;
855 };
856 
857 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
858     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
859 
860 #define MEMORY_LISTENER_PRIORITY_MIN            0
861 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
862 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
863 
864 /**
865  * struct MemoryListener: callbacks structure for updates to the physical memory map
866  *
867  * Allows a component to adjust to changes in the guest-visible memory map.
868  * Use with memory_listener_register() and memory_listener_unregister().
869  */
870 struct MemoryListener {
871     /**
872      * @begin:
873      *
874      * Called at the beginning of an address space update transaction.
875      * Followed by calls to #MemoryListener.region_add(),
876      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
877      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
878      * increasing address order.
879      *
880      * @listener: The #MemoryListener.
881      */
882     void (*begin)(MemoryListener *listener);
883 
884     /**
885      * @commit:
886      *
887      * Called at the end of an address space update transaction,
888      * after the last call to #MemoryListener.region_add(),
889      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
890      * #MemoryListener.log_start() and #MemoryListener.log_stop().
891      *
892      * @listener: The #MemoryListener.
893      */
894     void (*commit)(MemoryListener *listener);
895 
896     /**
897      * @region_add:
898      *
899      * Called during an address space update transaction,
900      * for a section of the address space that is new in this address space
901      * space since the last transaction.
902      *
903      * @listener: The #MemoryListener.
904      * @section: The new #MemoryRegionSection.
905      */
906     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
907 
908     /**
909      * @region_del:
910      *
911      * Called during an address space update transaction,
912      * for a section of the address space that has disappeared in the address
913      * space since the last transaction.
914      *
915      * @listener: The #MemoryListener.
916      * @section: The old #MemoryRegionSection.
917      */
918     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
919 
920     /**
921      * @region_nop:
922      *
923      * Called during an address space update transaction,
924      * for a section of the address space that is in the same place in the address
925      * space as in the last transaction.
926      *
927      * @listener: The #MemoryListener.
928      * @section: The #MemoryRegionSection.
929      */
930     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
931 
932     /**
933      * @log_start:
934      *
935      * Called during an address space update transaction, after
936      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
937      * #MemoryListener.region_nop(), if dirty memory logging clients have
938      * become active since the last transaction.
939      *
940      * @listener: The #MemoryListener.
941      * @section: The #MemoryRegionSection.
942      * @old: A bitmap of dirty memory logging clients that were active in
943      * the previous transaction.
944      * @new: A bitmap of dirty memory logging clients that are active in
945      * the current transaction.
946      */
947     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
948                       int old, int new);
949 
950     /**
951      * @log_stop:
952      *
953      * Called during an address space update transaction, after
954      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
955      * #MemoryListener.region_nop() and possibly after
956      * #MemoryListener.log_start(), if dirty memory logging clients have
957      * become inactive since the last transaction.
958      *
959      * @listener: The #MemoryListener.
960      * @section: The #MemoryRegionSection.
961      * @old: A bitmap of dirty memory logging clients that were active in
962      * the previous transaction.
963      * @new: A bitmap of dirty memory logging clients that are active in
964      * the current transaction.
965      */
966     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
967                      int old, int new);
968 
969     /**
970      * @log_sync:
971      *
972      * Called by memory_region_snapshot_and_clear_dirty() and
973      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
974      * copy of the dirty memory bitmap for a #MemoryRegionSection.
975      *
976      * @listener: The #MemoryListener.
977      * @section: The #MemoryRegionSection.
978      */
979     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
980 
981     /**
982      * @log_sync_global:
983      *
984      * This is the global version of @log_sync when the listener does
985      * not have a way to synchronize the log with finer granularity.
986      * When the listener registers with @log_sync_global defined, then
987      * its @log_sync must be NULL.  Vice versa.
988      *
989      * @listener: The #MemoryListener.
990      * @last_stage: The last stage to synchronize the log during migration.
991      * The caller should guarantee that the synchronization with true for
992      * @last_stage is triggered for once after all VCPUs have been stopped.
993      */
994     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
995 
996     /**
997      * @log_clear:
998      *
999      * Called before reading the dirty memory bitmap for a
1000      * #MemoryRegionSection.
1001      *
1002      * @listener: The #MemoryListener.
1003      * @section: The #MemoryRegionSection.
1004      */
1005     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
1006 
1007     /**
1008      * @log_global_start:
1009      *
1010      * Called by memory_global_dirty_log_start(), which
1011      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
1012      * the address space.  #MemoryListener.log_global_start() is also
1013      * called when a #MemoryListener is added, if global dirty logging is
1014      * active at that time.
1015      *
1016      * @listener: The #MemoryListener.
1017      * @errp: pointer to Error*, to store an error if it happens.
1018      *
1019      * Return: true on success, else false setting @errp with error.
1020      */
1021     bool (*log_global_start)(MemoryListener *listener, Error **errp);
1022 
1023     /**
1024      * @log_global_stop:
1025      *
1026      * Called by memory_global_dirty_log_stop(), which
1027      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1028      * the address space.
1029      *
1030      * @listener: The #MemoryListener.
1031      */
1032     void (*log_global_stop)(MemoryListener *listener);
1033 
1034     /**
1035      * @log_global_after_sync:
1036      *
1037      * Called after reading the dirty memory bitmap
1038      * for any #MemoryRegionSection.
1039      *
1040      * @listener: The #MemoryListener.
1041      */
1042     void (*log_global_after_sync)(MemoryListener *listener);
1043 
1044     /**
1045      * @eventfd_add:
1046      *
1047      * Called during an address space update transaction,
1048      * for a section of the address space that has had a new ioeventfd
1049      * registration since the last transaction.
1050      *
1051      * @listener: The #MemoryListener.
1052      * @section: The new #MemoryRegionSection.
1053      * @match_data: The @match_data parameter for the new ioeventfd.
1054      * @data: The @data parameter for the new ioeventfd.
1055      * @e: The #EventNotifier parameter for the new ioeventfd.
1056      */
1057     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1058                         bool match_data, uint64_t data, EventNotifier *e);
1059 
1060     /**
1061      * @eventfd_del:
1062      *
1063      * Called during an address space update transaction,
1064      * for a section of the address space that has dropped an ioeventfd
1065      * registration since the last transaction.
1066      *
1067      * @listener: The #MemoryListener.
1068      * @section: The new #MemoryRegionSection.
1069      * @match_data: The @match_data parameter for the dropped ioeventfd.
1070      * @data: The @data parameter for the dropped ioeventfd.
1071      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1072      */
1073     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1074                         bool match_data, uint64_t data, EventNotifier *e);
1075 
1076     /**
1077      * @coalesced_io_add:
1078      *
1079      * Called during an address space update transaction,
1080      * for a section of the address space that has had a new coalesced
1081      * MMIO range registration since the last transaction.
1082      *
1083      * @listener: The #MemoryListener.
1084      * @section: The new #MemoryRegionSection.
1085      * @addr: The starting address for the coalesced MMIO range.
1086      * @len: The length of the coalesced MMIO range.
1087      */
1088     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1089                                hwaddr addr, hwaddr len);
1090 
1091     /**
1092      * @coalesced_io_del:
1093      *
1094      * Called during an address space update transaction,
1095      * for a section of the address space that has dropped a coalesced
1096      * MMIO range since the last transaction.
1097      *
1098      * @listener: The #MemoryListener.
1099      * @section: The new #MemoryRegionSection.
1100      * @addr: The starting address for the coalesced MMIO range.
1101      * @len: The length of the coalesced MMIO range.
1102      */
1103     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1104                                hwaddr addr, hwaddr len);
1105     /**
1106      * @priority:
1107      *
1108      * Govern the order in which memory listeners are invoked. Lower priorities
1109      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1110      * or "stop" callbacks.
1111      */
1112     unsigned priority;
1113 
1114     /**
1115      * @name:
1116      *
1117      * Name of the listener.  It can be used in contexts where we'd like to
1118      * identify one memory listener with the rest.
1119      */
1120     const char *name;
1121 
1122     /* private: */
1123     AddressSpace *address_space;
1124     QTAILQ_ENTRY(MemoryListener) link;
1125     QTAILQ_ENTRY(MemoryListener) link_as;
1126 };
1127 
1128 typedef struct AddressSpaceMapClient {
1129     QEMUBH *bh;
1130     QLIST_ENTRY(AddressSpaceMapClient) link;
1131 } AddressSpaceMapClient;
1132 
1133 typedef struct {
1134     MemoryRegion *mr;
1135     void *buffer;
1136     hwaddr addr;
1137     hwaddr len;
1138     bool in_use;
1139 } BounceBuffer;
1140 
1141 /**
1142  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1143  */
1144 struct AddressSpace {
1145     /* private: */
1146     struct rcu_head rcu;
1147     char *name;
1148     MemoryRegion *root;
1149 
1150     /* Accessed via RCU.  */
1151     struct FlatView *current_map;
1152 
1153     int ioeventfd_nb;
1154     int ioeventfd_notifiers;
1155     struct MemoryRegionIoeventfd *ioeventfds;
1156     QTAILQ_HEAD(, MemoryListener) listeners;
1157     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1158 
1159     /* Bounce buffer to use for this address space. */
1160     BounceBuffer bounce;
1161     /* List of callbacks to invoke when buffers free up */
1162     QemuMutex map_client_list_lock;
1163     QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1164 };
1165 
1166 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1167 typedef struct FlatRange FlatRange;
1168 
1169 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1170  * order.
1171  */
1172 struct FlatView {
1173     struct rcu_head rcu;
1174     unsigned ref;
1175     FlatRange *ranges;
1176     unsigned nr;
1177     unsigned nr_allocated;
1178     struct AddressSpaceDispatch *dispatch;
1179     MemoryRegion *root;
1180 };
1181 
1182 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1183 {
1184     return qatomic_rcu_read(&as->current_map);
1185 }
1186 
1187 /**
1188  * typedef flatview_cb: callback for flatview_for_each_range()
1189  *
1190  * @start: start address of the range within the FlatView
1191  * @len: length of the range in bytes
1192  * @mr: MemoryRegion covering this range
1193  * @offset_in_region: offset of the first byte of the range within @mr
1194  * @opaque: data pointer passed to flatview_for_each_range()
1195  *
1196  * Returns: true to stop the iteration, false to keep going.
1197  */
1198 typedef bool (*flatview_cb)(Int128 start,
1199                             Int128 len,
1200                             const MemoryRegion *mr,
1201                             hwaddr offset_in_region,
1202                             void *opaque);
1203 
1204 /**
1205  * flatview_for_each_range: Iterate through a FlatView
1206  * @fv: the FlatView to iterate through
1207  * @cb: function to call for each range
1208  * @opaque: opaque data pointer to pass to @cb
1209  *
1210  * A FlatView is made up of a list of non-overlapping ranges, each of
1211  * which is a slice of a MemoryRegion. This function iterates through
1212  * each range in @fv, calling @cb. The callback function can terminate
1213  * iteration early by returning 'true'.
1214  */
1215 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1216 
1217 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1218                                           MemoryRegionSection *b)
1219 {
1220     return a->mr == b->mr &&
1221            a->fv == b->fv &&
1222            a->offset_within_region == b->offset_within_region &&
1223            a->offset_within_address_space == b->offset_within_address_space &&
1224            int128_eq(a->size, b->size) &&
1225            a->readonly == b->readonly &&
1226            a->nonvolatile == b->nonvolatile;
1227 }
1228 
1229 /**
1230  * memory_region_section_new_copy: Copy a memory region section
1231  *
1232  * Allocate memory for a new copy, copy the memory region section, and
1233  * properly take a reference on all relevant members.
1234  *
1235  * @s: the #MemoryRegionSection to copy
1236  */
1237 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1238 
1239 /**
1240  * memory_region_section_new_copy: Free a copied memory region section
1241  *
1242  * Free a copy of a memory section created via memory_region_section_new_copy().
1243  * properly dropping references on all relevant members.
1244  *
1245  * @s: the #MemoryRegionSection to copy
1246  */
1247 void memory_region_section_free_copy(MemoryRegionSection *s);
1248 
1249 /**
1250  * memory_region_init: Initialize a memory region
1251  *
1252  * The region typically acts as a container for other memory regions.  Use
1253  * memory_region_add_subregion() to add subregions.
1254  *
1255  * @mr: the #MemoryRegion to be initialized
1256  * @owner: the object that tracks the region's reference count
1257  * @name: used for debugging; not visible to the user or ABI
1258  * @size: size of the region; any subregions beyond this size will be clipped
1259  */
1260 void memory_region_init(MemoryRegion *mr,
1261                         Object *owner,
1262                         const char *name,
1263                         uint64_t size);
1264 
1265 /**
1266  * memory_region_ref: Add 1 to a memory region's reference count
1267  *
1268  * Whenever memory regions are accessed outside the BQL, they need to be
1269  * preserved against hot-unplug.  MemoryRegions actually do not have their
1270  * own reference count; they piggyback on a QOM object, their "owner".
1271  * This function adds a reference to the owner.
1272  *
1273  * All MemoryRegions must have an owner if they can disappear, even if the
1274  * device they belong to operates exclusively under the BQL.  This is because
1275  * the region could be returned at any time by memory_region_find, and this
1276  * is usually under guest control.
1277  *
1278  * @mr: the #MemoryRegion
1279  */
1280 void memory_region_ref(MemoryRegion *mr);
1281 
1282 /**
1283  * memory_region_unref: Remove 1 to a memory region's reference count
1284  *
1285  * Whenever memory regions are accessed outside the BQL, they need to be
1286  * preserved against hot-unplug.  MemoryRegions actually do not have their
1287  * own reference count; they piggyback on a QOM object, their "owner".
1288  * This function removes a reference to the owner and possibly destroys it.
1289  *
1290  * @mr: the #MemoryRegion
1291  */
1292 void memory_region_unref(MemoryRegion *mr);
1293 
1294 /**
1295  * memory_region_init_io: Initialize an I/O memory region.
1296  *
1297  * Accesses into the region will cause the callbacks in @ops to be called.
1298  * if @size is nonzero, subregions will be clipped to @size.
1299  *
1300  * @mr: the #MemoryRegion to be initialized.
1301  * @owner: the object that tracks the region's reference count
1302  * @ops: a structure containing read and write callbacks to be used when
1303  *       I/O is performed on the region.
1304  * @opaque: passed to the read and write callbacks of the @ops structure.
1305  * @name: used for debugging; not visible to the user or ABI
1306  * @size: size of the region.
1307  */
1308 void memory_region_init_io(MemoryRegion *mr,
1309                            Object *owner,
1310                            const MemoryRegionOps *ops,
1311                            void *opaque,
1312                            const char *name,
1313                            uint64_t size);
1314 
1315 /**
1316  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1317  *                                    into the region will modify memory
1318  *                                    directly.
1319  *
1320  * @mr: the #MemoryRegion to be initialized.
1321  * @owner: the object that tracks the region's reference count
1322  * @name: Region name, becomes part of RAMBlock name used in migration stream
1323  *        must be unique within any device
1324  * @size: size of the region.
1325  * @errp: pointer to Error*, to store an error if it happens.
1326  *
1327  * Note that this function does not do anything to cause the data in the
1328  * RAM memory region to be migrated; that is the responsibility of the caller.
1329  *
1330  * Return: true on success, else false setting @errp with error.
1331  */
1332 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1333                                       Object *owner,
1334                                       const char *name,
1335                                       uint64_t size,
1336                                       Error **errp);
1337 
1338 /**
1339  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1340  *                                          Accesses into the region will
1341  *                                          modify memory directly.
1342  *
1343  * @mr: the #MemoryRegion to be initialized.
1344  * @owner: the object that tracks the region's reference count
1345  * @name: Region name, becomes part of RAMBlock name used in migration stream
1346  *        must be unique within any device
1347  * @size: size of the region.
1348  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1349  *             RAM_GUEST_MEMFD.
1350  * @errp: pointer to Error*, to store an error if it happens.
1351  *
1352  * Note that this function does not do anything to cause the data in the
1353  * RAM memory region to be migrated; that is the responsibility of the caller.
1354  *
1355  * Return: true on success, else false setting @errp with error.
1356  */
1357 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1358                                             Object *owner,
1359                                             const char *name,
1360                                             uint64_t size,
1361                                             uint32_t ram_flags,
1362                                             Error **errp);
1363 
1364 /**
1365  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1366  *                                     RAM.  Accesses into the region will
1367  *                                     modify memory directly.  Only an initial
1368  *                                     portion of this RAM is actually used.
1369  *                                     Changing the size while migrating
1370  *                                     can result in the migration being
1371  *                                     canceled.
1372  *
1373  * @mr: the #MemoryRegion to be initialized.
1374  * @owner: the object that tracks the region's reference count
1375  * @name: Region name, becomes part of RAMBlock name used in migration stream
1376  *        must be unique within any device
1377  * @size: used size of the region.
1378  * @max_size: max size of the region.
1379  * @resized: callback to notify owner about used size change.
1380  * @errp: pointer to Error*, to store an error if it happens.
1381  *
1382  * Note that this function does not do anything to cause the data in the
1383  * RAM memory region to be migrated; that is the responsibility of the caller.
1384  *
1385  * Return: true on success, else false setting @errp with error.
1386  */
1387 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1388                                        Object *owner,
1389                                        const char *name,
1390                                        uint64_t size,
1391                                        uint64_t max_size,
1392                                        void (*resized)(const char*,
1393                                                        uint64_t length,
1394                                                        void *host),
1395                                        Error **errp);
1396 #ifdef CONFIG_POSIX
1397 
1398 /**
1399  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1400  *                                    mmap-ed backend.
1401  *
1402  * @mr: the #MemoryRegion to be initialized.
1403  * @owner: the object that tracks the region's reference count
1404  * @name: Region name, becomes part of RAMBlock name used in migration stream
1405  *        must be unique within any device
1406  * @size: size of the region.
1407  * @align: alignment of the region base address; if 0, the default alignment
1408  *         (getpagesize()) will be used.
1409  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1410  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1411  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1412  * @path: the path in which to allocate the RAM.
1413  * @offset: offset within the file referenced by path
1414  * @errp: pointer to Error*, to store an error if it happens.
1415  *
1416  * Note that this function does not do anything to cause the data in the
1417  * RAM memory region to be migrated; that is the responsibility of the caller.
1418  *
1419  * Return: true on success, else false setting @errp with error.
1420  */
1421 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1422                                       Object *owner,
1423                                       const char *name,
1424                                       uint64_t size,
1425                                       uint64_t align,
1426                                       uint32_t ram_flags,
1427                                       const char *path,
1428                                       ram_addr_t offset,
1429                                       Error **errp);
1430 
1431 /**
1432  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1433  *                                  mmap-ed backend.
1434  *
1435  * @mr: the #MemoryRegion to be initialized.
1436  * @owner: the object that tracks the region's reference count
1437  * @name: the name of the region.
1438  * @size: size of the region.
1439  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1440  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1441  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1442  * @fd: the fd to mmap.
1443  * @offset: offset within the file referenced by fd
1444  * @errp: pointer to Error*, to store an error if it happens.
1445  *
1446  * Note that this function does not do anything to cause the data in the
1447  * RAM memory region to be migrated; that is the responsibility of the caller.
1448  *
1449  * Return: true on success, else false setting @errp with error.
1450  */
1451 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1452                                     Object *owner,
1453                                     const char *name,
1454                                     uint64_t size,
1455                                     uint32_t ram_flags,
1456                                     int fd,
1457                                     ram_addr_t offset,
1458                                     Error **errp);
1459 #endif
1460 
1461 /**
1462  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1463  *                              user-provided pointer.  Accesses into the
1464  *                              region will modify memory directly.
1465  *
1466  * @mr: the #MemoryRegion to be initialized.
1467  * @owner: the object that tracks the region's reference count
1468  * @name: Region name, becomes part of RAMBlock name used in migration stream
1469  *        must be unique within any device
1470  * @size: size of the region.
1471  * @ptr: memory to be mapped; must contain at least @size bytes.
1472  *
1473  * Note that this function does not do anything to cause the data in the
1474  * RAM memory region to be migrated; that is the responsibility of the caller.
1475  */
1476 void memory_region_init_ram_ptr(MemoryRegion *mr,
1477                                 Object *owner,
1478                                 const char *name,
1479                                 uint64_t size,
1480                                 void *ptr);
1481 
1482 /**
1483  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1484  *                                     a user-provided pointer.
1485  *
1486  * A RAM device represents a mapping to a physical device, such as to a PCI
1487  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1488  * into the VM address space and access to the region will modify memory
1489  * directly.  However, the memory region should not be included in a memory
1490  * dump (device may not be enabled/mapped at the time of the dump), and
1491  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1492  * skip_dump flag.
1493  *
1494  * @mr: the #MemoryRegion to be initialized.
1495  * @owner: the object that tracks the region's reference count
1496  * @name: the name of the region.
1497  * @size: size of the region.
1498  * @ptr: memory to be mapped; must contain at least @size bytes.
1499  *
1500  * Note that this function does not do anything to cause the data in the
1501  * RAM memory region to be migrated; that is the responsibility of the caller.
1502  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1503  */
1504 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1505                                        Object *owner,
1506                                        const char *name,
1507                                        uint64_t size,
1508                                        void *ptr);
1509 
1510 /**
1511  * memory_region_init_alias: Initialize a memory region that aliases all or a
1512  *                           part of another memory region.
1513  *
1514  * @mr: the #MemoryRegion to be initialized.
1515  * @owner: the object that tracks the region's reference count
1516  * @name: used for debugging; not visible to the user or ABI
1517  * @orig: the region to be referenced; @mr will be equivalent to
1518  *        @orig between @offset and @offset + @size - 1.
1519  * @offset: start of the section in @orig to be referenced.
1520  * @size: size of the region.
1521  */
1522 void memory_region_init_alias(MemoryRegion *mr,
1523                               Object *owner,
1524                               const char *name,
1525                               MemoryRegion *orig,
1526                               hwaddr offset,
1527                               uint64_t size);
1528 
1529 /**
1530  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1531  *
1532  * This has the same effect as calling memory_region_init_ram_nomigrate()
1533  * and then marking the resulting region read-only with
1534  * memory_region_set_readonly().
1535  *
1536  * Note that this function does not do anything to cause the data in the
1537  * RAM side of the memory region to be migrated; that is the responsibility
1538  * of the caller.
1539  *
1540  * @mr: the #MemoryRegion to be initialized.
1541  * @owner: the object that tracks the region's reference count
1542  * @name: Region name, becomes part of RAMBlock name used in migration stream
1543  *        must be unique within any device
1544  * @size: size of the region.
1545  * @errp: pointer to Error*, to store an error if it happens.
1546  *
1547  * Return: true on success, else false setting @errp with error.
1548  */
1549 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1550                                       Object *owner,
1551                                       const char *name,
1552                                       uint64_t size,
1553                                       Error **errp);
1554 
1555 /**
1556  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1557  *                                 Writes are handled via callbacks.
1558  *
1559  * Note that this function does not do anything to cause the data in the
1560  * RAM side of the memory region to be migrated; that is the responsibility
1561  * of the caller.
1562  *
1563  * @mr: the #MemoryRegion to be initialized.
1564  * @owner: the object that tracks the region's reference count
1565  * @ops: callbacks for write access handling (must not be NULL).
1566  * @opaque: passed to the read and write callbacks of the @ops structure.
1567  * @name: Region name, becomes part of RAMBlock name used in migration stream
1568  *        must be unique within any device
1569  * @size: size of the region.
1570  * @errp: pointer to Error*, to store an error if it happens.
1571  *
1572  * Return: true on success, else false setting @errp with error.
1573  */
1574 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1575                                              Object *owner,
1576                                              const MemoryRegionOps *ops,
1577                                              void *opaque,
1578                                              const char *name,
1579                                              uint64_t size,
1580                                              Error **errp);
1581 
1582 /**
1583  * memory_region_init_iommu: Initialize a memory region of a custom type
1584  * that translates addresses
1585  *
1586  * An IOMMU region translates addresses and forwards accesses to a target
1587  * memory region.
1588  *
1589  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1590  * @_iommu_mr should be a pointer to enough memory for an instance of
1591  * that subclass, @instance_size is the size of that subclass, and
1592  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1593  * instance of the subclass, and its methods will then be called to handle
1594  * accesses to the memory region. See the documentation of
1595  * #IOMMUMemoryRegionClass for further details.
1596  *
1597  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1598  * @instance_size: the IOMMUMemoryRegion subclass instance size
1599  * @mrtypename: the type name of the #IOMMUMemoryRegion
1600  * @owner: the object that tracks the region's reference count
1601  * @name: used for debugging; not visible to the user or ABI
1602  * @size: size of the region.
1603  */
1604 void memory_region_init_iommu(void *_iommu_mr,
1605                               size_t instance_size,
1606                               const char *mrtypename,
1607                               Object *owner,
1608                               const char *name,
1609                               uint64_t size);
1610 
1611 /**
1612  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1613  *                          region will modify memory directly.
1614  *
1615  * @mr: the #MemoryRegion to be initialized
1616  * @owner: the object that tracks the region's reference count (must be
1617  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1618  * @name: name of the memory region
1619  * @size: size of the region in bytes
1620  * @errp: pointer to Error*, to store an error if it happens.
1621  *
1622  * This function allocates RAM for a board model or device, and
1623  * arranges for it to be migrated (by calling vmstate_register_ram()
1624  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1625  * @owner is NULL).
1626  *
1627  * TODO: Currently we restrict @owner to being either NULL (for
1628  * global RAM regions with no owner) or devices, so that we can
1629  * give the RAM block a unique name for migration purposes.
1630  * We should lift this restriction and allow arbitrary Objects.
1631  * If you pass a non-NULL non-device @owner then we will assert.
1632  *
1633  * Return: true on success, else false setting @errp with error.
1634  */
1635 bool memory_region_init_ram(MemoryRegion *mr,
1636                             Object *owner,
1637                             const char *name,
1638                             uint64_t size,
1639                             Error **errp);
1640 
1641 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
1642                                         Object *owner,
1643                                         const char *name,
1644                                         uint64_t size,
1645                                         Error **errp);
1646 
1647 /**
1648  * memory_region_init_rom: Initialize a ROM memory region.
1649  *
1650  * This has the same effect as calling memory_region_init_ram()
1651  * and then marking the resulting region read-only with
1652  * memory_region_set_readonly(). This includes arranging for the
1653  * contents to be migrated.
1654  *
1655  * TODO: Currently we restrict @owner to being either NULL (for
1656  * global RAM regions with no owner) or devices, so that we can
1657  * give the RAM block a unique name for migration purposes.
1658  * We should lift this restriction and allow arbitrary Objects.
1659  * If you pass a non-NULL non-device @owner then we will assert.
1660  *
1661  * @mr: the #MemoryRegion to be initialized.
1662  * @owner: the object that tracks the region's reference count
1663  * @name: Region name, becomes part of RAMBlock name used in migration stream
1664  *        must be unique within any device
1665  * @size: size of the region.
1666  * @errp: pointer to Error*, to store an error if it happens.
1667  *
1668  * Return: true on success, else false setting @errp with error.
1669  */
1670 bool memory_region_init_rom(MemoryRegion *mr,
1671                             Object *owner,
1672                             const char *name,
1673                             uint64_t size,
1674                             Error **errp);
1675 
1676 /**
1677  * memory_region_init_rom_device:  Initialize a ROM memory region.
1678  *                                 Writes are handled via callbacks.
1679  *
1680  * This function initializes a memory region backed by RAM for reads
1681  * and callbacks for writes, and arranges for the RAM backing to
1682  * be migrated (by calling vmstate_register_ram()
1683  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1684  * @owner is NULL).
1685  *
1686  * TODO: Currently we restrict @owner to being either NULL (for
1687  * global RAM regions with no owner) or devices, so that we can
1688  * give the RAM block a unique name for migration purposes.
1689  * We should lift this restriction and allow arbitrary Objects.
1690  * If you pass a non-NULL non-device @owner then we will assert.
1691  *
1692  * @mr: the #MemoryRegion to be initialized.
1693  * @owner: the object that tracks the region's reference count
1694  * @ops: callbacks for write access handling (must not be NULL).
1695  * @opaque: passed to the read and write callbacks of the @ops structure.
1696  * @name: Region name, becomes part of RAMBlock name used in migration stream
1697  *        must be unique within any device
1698  * @size: size of the region.
1699  * @errp: pointer to Error*, to store an error if it happens.
1700  *
1701  * Return: true on success, else false setting @errp with error.
1702  */
1703 bool memory_region_init_rom_device(MemoryRegion *mr,
1704                                    Object *owner,
1705                                    const MemoryRegionOps *ops,
1706                                    void *opaque,
1707                                    const char *name,
1708                                    uint64_t size,
1709                                    Error **errp);
1710 
1711 
1712 /**
1713  * memory_region_owner: get a memory region's owner.
1714  *
1715  * @mr: the memory region being queried.
1716  */
1717 Object *memory_region_owner(MemoryRegion *mr);
1718 
1719 /**
1720  * memory_region_size: get a memory region's size.
1721  *
1722  * @mr: the memory region being queried.
1723  */
1724 uint64_t memory_region_size(MemoryRegion *mr);
1725 
1726 /**
1727  * memory_region_is_ram: check whether a memory region is random access
1728  *
1729  * Returns %true if a memory region is random access.
1730  *
1731  * @mr: the memory region being queried
1732  */
1733 static inline bool memory_region_is_ram(MemoryRegion *mr)
1734 {
1735     return mr->ram;
1736 }
1737 
1738 /**
1739  * memory_region_is_ram_device: check whether a memory region is a ram device
1740  *
1741  * Returns %true if a memory region is a device backed ram region
1742  *
1743  * @mr: the memory region being queried
1744  */
1745 bool memory_region_is_ram_device(MemoryRegion *mr);
1746 
1747 /**
1748  * memory_region_is_romd: check whether a memory region is in ROMD mode
1749  *
1750  * Returns %true if a memory region is a ROM device and currently set to allow
1751  * direct reads.
1752  *
1753  * @mr: the memory region being queried
1754  */
1755 static inline bool memory_region_is_romd(MemoryRegion *mr)
1756 {
1757     return mr->rom_device && mr->romd_mode;
1758 }
1759 
1760 /**
1761  * memory_region_is_protected: check whether a memory region is protected
1762  *
1763  * Returns %true if a memory region is protected RAM and cannot be accessed
1764  * via standard mechanisms, e.g. DMA.
1765  *
1766  * @mr: the memory region being queried
1767  */
1768 bool memory_region_is_protected(MemoryRegion *mr);
1769 
1770 /**
1771  * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1772  *     associated
1773  *
1774  * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1775  *
1776  * @mr: the memory region being queried
1777  */
1778 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1779 
1780 /**
1781  * memory_region_get_iommu: check whether a memory region is an iommu
1782  *
1783  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1784  * otherwise NULL.
1785  *
1786  * @mr: the memory region being queried
1787  */
1788 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1789 {
1790     if (mr->alias) {
1791         return memory_region_get_iommu(mr->alias);
1792     }
1793     if (mr->is_iommu) {
1794         return (IOMMUMemoryRegion *) mr;
1795     }
1796     return NULL;
1797 }
1798 
1799 /**
1800  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1801  *   if an iommu or NULL if not
1802  *
1803  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1804  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1805  *
1806  * @iommu_mr: the memory region being queried
1807  */
1808 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1809         IOMMUMemoryRegion *iommu_mr)
1810 {
1811     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1812 }
1813 
1814 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1815 
1816 /**
1817  * memory_region_iommu_get_min_page_size: get minimum supported page size
1818  * for an iommu
1819  *
1820  * Returns minimum supported page size for an iommu.
1821  *
1822  * @iommu_mr: the memory region being queried
1823  */
1824 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1825 
1826 /**
1827  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1828  *
1829  * Note: for any IOMMU implementation, an in-place mapping change
1830  * should be notified with an UNMAP followed by a MAP.
1831  *
1832  * @iommu_mr: the memory region that was changed
1833  * @iommu_idx: the IOMMU index for the translation table which has changed
1834  * @event: TLB event with the new entry in the IOMMU translation table.
1835  *         The entry replaces all old entries for the same virtual I/O address
1836  *         range.
1837  */
1838 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1839                                 int iommu_idx,
1840                                 IOMMUTLBEvent event);
1841 
1842 /**
1843  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1844  *                           entry to a single notifier
1845  *
1846  * This works just like memory_region_notify_iommu(), but it only
1847  * notifies a specific notifier, not all of them.
1848  *
1849  * @notifier: the notifier to be notified
1850  * @event: TLB event with the new entry in the IOMMU translation table.
1851  *         The entry replaces all old entries for the same virtual I/O address
1852  *         range.
1853  */
1854 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1855                                     IOMMUTLBEvent *event);
1856 
1857 /**
1858  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1859  *                                           translation that covers the
1860  *                                           range of a notifier
1861  *
1862  * @notifier: the notifier to be notified
1863  */
1864 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1865 
1866 
1867 /**
1868  * memory_region_register_iommu_notifier: register a notifier for changes to
1869  * IOMMU translation entries.
1870  *
1871  * Returns 0 on success, or a negative errno otherwise. In particular,
1872  * -EINVAL indicates that at least one of the attributes of the notifier
1873  * is not supported (flag/range) by the IOMMU memory region. In case of error
1874  * the error object must be created.
1875  *
1876  * @mr: the memory region to observe
1877  * @n: the IOMMUNotifier to be added; the notify callback receives a
1878  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1879  *     ceases to be valid on exit from the notifier.
1880  * @errp: pointer to Error*, to store an error if it happens.
1881  */
1882 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1883                                           IOMMUNotifier *n, Error **errp);
1884 
1885 /**
1886  * memory_region_iommu_replay: replay existing IOMMU translations to
1887  * a notifier with the minimum page granularity returned by
1888  * mr->iommu_ops->get_page_size().
1889  *
1890  * Note: this is not related to record-and-replay functionality.
1891  *
1892  * @iommu_mr: the memory region to observe
1893  * @n: the notifier to which to replay iommu mappings
1894  */
1895 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1896 
1897 /**
1898  * memory_region_unregister_iommu_notifier: unregister a notifier for
1899  * changes to IOMMU translation entries.
1900  *
1901  * @mr: the memory region which was observed and for which notity_stopped()
1902  *      needs to be called
1903  * @n: the notifier to be removed.
1904  */
1905 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1906                                              IOMMUNotifier *n);
1907 
1908 /**
1909  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1910  * defined on the IOMMU.
1911  *
1912  * Returns 0 on success, or a negative errno otherwise. In particular,
1913  * -EINVAL indicates that the IOMMU does not support the requested
1914  * attribute.
1915  *
1916  * @iommu_mr: the memory region
1917  * @attr: the requested attribute
1918  * @data: a pointer to the requested attribute data
1919  */
1920 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1921                                  enum IOMMUMemoryRegionAttr attr,
1922                                  void *data);
1923 
1924 /**
1925  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1926  * use for translations with the given memory transaction attributes.
1927  *
1928  * @iommu_mr: the memory region
1929  * @attrs: the memory transaction attributes
1930  */
1931 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1932                                        MemTxAttrs attrs);
1933 
1934 /**
1935  * memory_region_iommu_num_indexes: return the total number of IOMMU
1936  * indexes that this IOMMU supports.
1937  *
1938  * @iommu_mr: the memory region
1939  */
1940 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1941 
1942 /**
1943  * memory_region_iommu_set_page_size_mask: set the supported page
1944  * sizes for a given IOMMU memory region
1945  *
1946  * @iommu_mr: IOMMU memory region
1947  * @page_size_mask: supported page size mask
1948  * @errp: pointer to Error*, to store an error if it happens.
1949  */
1950 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1951                                            uint64_t page_size_mask,
1952                                            Error **errp);
1953 
1954 /**
1955  * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges
1956  * for a given IOMMU MR region
1957  *
1958  * @iommu: IOMMU memory region
1959  * @iova_ranges: list of ordered IOVA ranges (at least one range)
1960  * @errp: pointer to Error*, to store an error if it happens.
1961  */
1962 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu,
1963                                         GList *iova_ranges,
1964                                         Error **errp);
1965 
1966 /**
1967  * memory_region_name: get a memory region's name
1968  *
1969  * Returns the string that was used to initialize the memory region.
1970  *
1971  * @mr: the memory region being queried
1972  */
1973 const char *memory_region_name(const MemoryRegion *mr);
1974 
1975 /**
1976  * memory_region_is_logging: return whether a memory region is logging writes
1977  *
1978  * Returns %true if the memory region is logging writes for the given client
1979  *
1980  * @mr: the memory region being queried
1981  * @client: the client being queried
1982  */
1983 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1984 
1985 /**
1986  * memory_region_get_dirty_log_mask: return the clients for which a
1987  * memory region is logging writes.
1988  *
1989  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1990  * are the bit indices.
1991  *
1992  * @mr: the memory region being queried
1993  */
1994 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1995 
1996 /**
1997  * memory_region_is_rom: check whether a memory region is ROM
1998  *
1999  * Returns %true if a memory region is read-only memory.
2000  *
2001  * @mr: the memory region being queried
2002  */
2003 static inline bool memory_region_is_rom(MemoryRegion *mr)
2004 {
2005     return mr->ram && mr->readonly;
2006 }
2007 
2008 /**
2009  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
2010  *
2011  * Returns %true is a memory region is non-volatile memory.
2012  *
2013  * @mr: the memory region being queried
2014  */
2015 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
2016 {
2017     return mr->nonvolatile;
2018 }
2019 
2020 /**
2021  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
2022  *
2023  * Returns a file descriptor backing a file-based RAM memory region,
2024  * or -1 if the region is not a file-based RAM memory region.
2025  *
2026  * @mr: the RAM or alias memory region being queried.
2027  */
2028 int memory_region_get_fd(MemoryRegion *mr);
2029 
2030 /**
2031  * memory_region_from_host: Convert a pointer into a RAM memory region
2032  * and an offset within it.
2033  *
2034  * Given a host pointer inside a RAM memory region (created with
2035  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
2036  * the MemoryRegion and the offset within it.
2037  *
2038  * Use with care; by the time this function returns, the returned pointer is
2039  * not protected by RCU anymore.  If the caller is not within an RCU critical
2040  * section and does not hold the BQL, it must have other means of
2041  * protecting the pointer, such as a reference to the region that includes
2042  * the incoming ram_addr_t.
2043  *
2044  * @ptr: the host pointer to be converted
2045  * @offset: the offset within memory region
2046  */
2047 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
2048 
2049 /**
2050  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
2051  *
2052  * Returns a host pointer to a RAM memory region (created with
2053  * memory_region_init_ram() or memory_region_init_ram_ptr()).
2054  *
2055  * Use with care; by the time this function returns, the returned pointer is
2056  * not protected by RCU anymore.  If the caller is not within an RCU critical
2057  * section and does not hold the BQL, it must have other means of
2058  * protecting the pointer, such as a reference to the region that includes
2059  * the incoming ram_addr_t.
2060  *
2061  * @mr: the memory region being queried.
2062  */
2063 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2064 
2065 /* memory_region_ram_resize: Resize a RAM region.
2066  *
2067  * Resizing RAM while migrating can result in the migration being canceled.
2068  * Care has to be taken if the guest might have already detected the memory.
2069  *
2070  * @mr: a memory region created with @memory_region_init_resizeable_ram.
2071  * @newsize: the new size the region
2072  * @errp: pointer to Error*, to store an error if it happens.
2073  */
2074 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2075                               Error **errp);
2076 
2077 /**
2078  * memory_region_msync: Synchronize selected address range of
2079  * a memory mapped region
2080  *
2081  * @mr: the memory region to be msync
2082  * @addr: the initial address of the range to be sync
2083  * @size: the size of the range to be sync
2084  */
2085 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2086 
2087 /**
2088  * memory_region_writeback: Trigger cache writeback for
2089  * selected address range
2090  *
2091  * @mr: the memory region to be updated
2092  * @addr: the initial address of the range to be written back
2093  * @size: the size of the range to be written back
2094  */
2095 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2096 
2097 /**
2098  * memory_region_set_log: Turn dirty logging on or off for a region.
2099  *
2100  * Turns dirty logging on or off for a specified client (display, migration).
2101  * Only meaningful for RAM regions.
2102  *
2103  * @mr: the memory region being updated.
2104  * @log: whether dirty logging is to be enabled or disabled.
2105  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2106  */
2107 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2108 
2109 /**
2110  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2111  *
2112  * Marks a range of bytes as dirty, after it has been dirtied outside
2113  * guest code.
2114  *
2115  * @mr: the memory region being dirtied.
2116  * @addr: the address (relative to the start of the region) being dirtied.
2117  * @size: size of the range being dirtied.
2118  */
2119 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2120                              hwaddr size);
2121 
2122 /**
2123  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2124  *
2125  * This function is called when the caller wants to clear the remote
2126  * dirty bitmap of a memory range within the memory region.  This can
2127  * be used by e.g. KVM to manually clear dirty log when
2128  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2129  * kernel.
2130  *
2131  * @mr:     the memory region to clear the dirty log upon
2132  * @start:  start address offset within the memory region
2133  * @len:    length of the memory region to clear dirty bitmap
2134  */
2135 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2136                                       hwaddr len);
2137 
2138 /**
2139  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2140  *                                         bitmap and clear it.
2141  *
2142  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2143  * returns the snapshot.  The snapshot can then be used to query dirty
2144  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2145  * querying the same page multiple times, which is especially useful for
2146  * display updates where the scanlines often are not page aligned.
2147  *
2148  * The dirty bitmap region which gets copied into the snapshot (and
2149  * cleared afterwards) can be larger than requested.  The boundaries
2150  * are rounded up/down so complete bitmap longs (covering 64 pages on
2151  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2152  * isn't a problem for display updates as the extra pages are outside
2153  * the visible area, and in case the visible area changes a full
2154  * display redraw is due anyway.  Should other use cases for this
2155  * function emerge we might have to revisit this implementation
2156  * detail.
2157  *
2158  * Use g_free to release DirtyBitmapSnapshot.
2159  *
2160  * @mr: the memory region being queried.
2161  * @addr: the address (relative to the start of the region) being queried.
2162  * @size: the size of the range being queried.
2163  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2164  */
2165 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2166                                                             hwaddr addr,
2167                                                             hwaddr size,
2168                                                             unsigned client);
2169 
2170 /**
2171  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2172  *                                   in the specified dirty bitmap snapshot.
2173  *
2174  * @mr: the memory region being queried.
2175  * @snap: the dirty bitmap snapshot
2176  * @addr: the address (relative to the start of the region) being queried.
2177  * @size: the size of the range being queried.
2178  */
2179 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2180                                       DirtyBitmapSnapshot *snap,
2181                                       hwaddr addr, hwaddr size);
2182 
2183 /**
2184  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2185  *                            client.
2186  *
2187  * Marks a range of pages as no longer dirty.
2188  *
2189  * @mr: the region being updated.
2190  * @addr: the start of the subrange being cleaned.
2191  * @size: the size of the subrange being cleaned.
2192  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2193  *          %DIRTY_MEMORY_VGA.
2194  */
2195 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2196                                hwaddr size, unsigned client);
2197 
2198 /**
2199  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2200  *                                 TBs (for self-modifying code).
2201  *
2202  * The MemoryRegionOps->write() callback of a ROM device must use this function
2203  * to mark byte ranges that have been modified internally, such as by directly
2204  * accessing the memory returned by memory_region_get_ram_ptr().
2205  *
2206  * This function marks the range dirty and invalidates TBs so that TCG can
2207  * detect self-modifying code.
2208  *
2209  * @mr: the region being flushed.
2210  * @addr: the start, relative to the start of the region, of the range being
2211  *        flushed.
2212  * @size: the size, in bytes, of the range being flushed.
2213  */
2214 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2215 
2216 /**
2217  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2218  *
2219  * Allows a memory region to be marked as read-only (turning it into a ROM).
2220  * only useful on RAM regions.
2221  *
2222  * @mr: the region being updated.
2223  * @readonly: whether rhe region is to be ROM or RAM.
2224  */
2225 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2226 
2227 /**
2228  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2229  *
2230  * Allows a memory region to be marked as non-volatile.
2231  * only useful on RAM regions.
2232  *
2233  * @mr: the region being updated.
2234  * @nonvolatile: whether rhe region is to be non-volatile.
2235  */
2236 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2237 
2238 /**
2239  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2240  *
2241  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2242  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2243  * device is mapped to guest memory and satisfies read access directly.
2244  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2245  * Writes are always handled by the #MemoryRegion.write function.
2246  *
2247  * @mr: the memory region to be updated
2248  * @romd_mode: %true to put the region into ROMD mode
2249  */
2250 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2251 
2252 /**
2253  * memory_region_set_coalescing: Enable memory coalescing for the region.
2254  *
2255  * Enabled writes to a region to be queued for later processing. MMIO ->write
2256  * callbacks may be delayed until a non-coalesced MMIO is issued.
2257  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2258  *
2259  * @mr: the memory region to be write coalesced
2260  */
2261 void memory_region_set_coalescing(MemoryRegion *mr);
2262 
2263 /**
2264  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2265  *                               a region.
2266  *
2267  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2268  * Multiple calls can be issued coalesced disjoint ranges.
2269  *
2270  * @mr: the memory region to be updated.
2271  * @offset: the start of the range within the region to be coalesced.
2272  * @size: the size of the subrange to be coalesced.
2273  */
2274 void memory_region_add_coalescing(MemoryRegion *mr,
2275                                   hwaddr offset,
2276                                   uint64_t size);
2277 
2278 /**
2279  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2280  *
2281  * Disables any coalescing caused by memory_region_set_coalescing() or
2282  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2283  * hardware.
2284  *
2285  * @mr: the memory region to be updated.
2286  */
2287 void memory_region_clear_coalescing(MemoryRegion *mr);
2288 
2289 /**
2290  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2291  *                                    accesses.
2292  *
2293  * Ensure that pending coalesced MMIO request are flushed before the memory
2294  * region is accessed. This property is automatically enabled for all regions
2295  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2296  *
2297  * @mr: the memory region to be updated.
2298  */
2299 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2300 
2301 /**
2302  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2303  *                                      accesses.
2304  *
2305  * Clear the automatic coalesced MMIO flushing enabled via
2306  * memory_region_set_flush_coalesced. Note that this service has no effect on
2307  * memory regions that have MMIO coalescing enabled for themselves. For them,
2308  * automatic flushing will stop once coalescing is disabled.
2309  *
2310  * @mr: the memory region to be updated.
2311  */
2312 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2313 
2314 /**
2315  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2316  *                            is written to a location.
2317  *
2318  * Marks a word in an IO region (initialized with memory_region_init_io())
2319  * as a trigger for an eventfd event.  The I/O callback will not be called.
2320  * The caller must be prepared to handle failure (that is, take the required
2321  * action if the callback _is_ called).
2322  *
2323  * @mr: the memory region being updated.
2324  * @addr: the address within @mr that is to be monitored
2325  * @size: the size of the access to trigger the eventfd
2326  * @match_data: whether to match against @data, instead of just @addr
2327  * @data: the data to match against the guest write
2328  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2329  **/
2330 void memory_region_add_eventfd(MemoryRegion *mr,
2331                                hwaddr addr,
2332                                unsigned size,
2333                                bool match_data,
2334                                uint64_t data,
2335                                EventNotifier *e);
2336 
2337 /**
2338  * memory_region_del_eventfd: Cancel an eventfd.
2339  *
2340  * Cancels an eventfd trigger requested by a previous
2341  * memory_region_add_eventfd() call.
2342  *
2343  * @mr: the memory region being updated.
2344  * @addr: the address within @mr that is to be monitored
2345  * @size: the size of the access to trigger the eventfd
2346  * @match_data: whether to match against @data, instead of just @addr
2347  * @data: the data to match against the guest write
2348  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2349  */
2350 void memory_region_del_eventfd(MemoryRegion *mr,
2351                                hwaddr addr,
2352                                unsigned size,
2353                                bool match_data,
2354                                uint64_t data,
2355                                EventNotifier *e);
2356 
2357 /**
2358  * memory_region_add_subregion: Add a subregion to a container.
2359  *
2360  * Adds a subregion at @offset.  The subregion may not overlap with other
2361  * subregions (except for those explicitly marked as overlapping).  A region
2362  * may only be added once as a subregion (unless removed with
2363  * memory_region_del_subregion()); use memory_region_init_alias() if you
2364  * want a region to be a subregion in multiple locations.
2365  *
2366  * @mr: the region to contain the new subregion; must be a container
2367  *      initialized with memory_region_init().
2368  * @offset: the offset relative to @mr where @subregion is added.
2369  * @subregion: the subregion to be added.
2370  */
2371 void memory_region_add_subregion(MemoryRegion *mr,
2372                                  hwaddr offset,
2373                                  MemoryRegion *subregion);
2374 /**
2375  * memory_region_add_subregion_overlap: Add a subregion to a container
2376  *                                      with overlap.
2377  *
2378  * Adds a subregion at @offset.  The subregion may overlap with other
2379  * subregions.  Conflicts are resolved by having a higher @priority hide a
2380  * lower @priority. Subregions without priority are taken as @priority 0.
2381  * A region may only be added once as a subregion (unless removed with
2382  * memory_region_del_subregion()); use memory_region_init_alias() if you
2383  * want a region to be a subregion in multiple locations.
2384  *
2385  * @mr: the region to contain the new subregion; must be a container
2386  *      initialized with memory_region_init().
2387  * @offset: the offset relative to @mr where @subregion is added.
2388  * @subregion: the subregion to be added.
2389  * @priority: used for resolving overlaps; highest priority wins.
2390  */
2391 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2392                                          hwaddr offset,
2393                                          MemoryRegion *subregion,
2394                                          int priority);
2395 
2396 /**
2397  * memory_region_get_ram_addr: Get the ram address associated with a memory
2398  *                             region
2399  *
2400  * @mr: the region to be queried
2401  */
2402 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2403 
2404 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2405 /**
2406  * memory_region_del_subregion: Remove a subregion.
2407  *
2408  * Removes a subregion from its container.
2409  *
2410  * @mr: the container to be updated.
2411  * @subregion: the region being removed; must be a current subregion of @mr.
2412  */
2413 void memory_region_del_subregion(MemoryRegion *mr,
2414                                  MemoryRegion *subregion);
2415 
2416 /*
2417  * memory_region_set_enabled: dynamically enable or disable a region
2418  *
2419  * Enables or disables a memory region.  A disabled memory region
2420  * ignores all accesses to itself and its subregions.  It does not
2421  * obscure sibling subregions with lower priority - it simply behaves as
2422  * if it was removed from the hierarchy.
2423  *
2424  * Regions default to being enabled.
2425  *
2426  * @mr: the region to be updated
2427  * @enabled: whether to enable or disable the region
2428  */
2429 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2430 
2431 /*
2432  * memory_region_set_address: dynamically update the address of a region
2433  *
2434  * Dynamically updates the address of a region, relative to its container.
2435  * May be used on regions are currently part of a memory hierarchy.
2436  *
2437  * @mr: the region to be updated
2438  * @addr: new address, relative to container region
2439  */
2440 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2441 
2442 /*
2443  * memory_region_set_size: dynamically update the size of a region.
2444  *
2445  * Dynamically updates the size of a region.
2446  *
2447  * @mr: the region to be updated
2448  * @size: used size of the region.
2449  */
2450 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2451 
2452 /*
2453  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2454  *
2455  * Dynamically updates the offset into the target region that an alias points
2456  * to, as if the fourth argument to memory_region_init_alias() has changed.
2457  *
2458  * @mr: the #MemoryRegion to be updated; should be an alias.
2459  * @offset: the new offset into the target memory region
2460  */
2461 void memory_region_set_alias_offset(MemoryRegion *mr,
2462                                     hwaddr offset);
2463 
2464 /*
2465  * memory_region_set_unmergeable: Set a memory region unmergeable
2466  *
2467  * Mark a memory region unmergeable, resulting in the memory region (or
2468  * everything contained in a memory region container) not getting merged when
2469  * simplifying the address space and notifying memory listeners. Consequently,
2470  * memory listeners will never get notified about ranges that are larger than
2471  * the original memory regions.
2472  *
2473  * This is primarily useful when multiple aliases to a RAM memory region are
2474  * mapped into a memory region container, and updates (e.g., enable/disable or
2475  * map/unmap) of individual memory region aliases are not supposed to affect
2476  * other memory regions in the same container.
2477  *
2478  * @mr: the #MemoryRegion to be updated
2479  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2480  */
2481 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2482 
2483 /**
2484  * memory_region_present: checks if an address relative to a @container
2485  * translates into #MemoryRegion within @container
2486  *
2487  * Answer whether a #MemoryRegion within @container covers the address
2488  * @addr.
2489  *
2490  * @container: a #MemoryRegion within which @addr is a relative address
2491  * @addr: the area within @container to be searched
2492  */
2493 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2494 
2495 /**
2496  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2497  * into another memory region, which does not necessarily imply that it is
2498  * mapped into an address space.
2499  *
2500  * @mr: a #MemoryRegion which should be checked if it's mapped
2501  */
2502 bool memory_region_is_mapped(MemoryRegion *mr);
2503 
2504 /**
2505  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2506  * #MemoryRegion
2507  *
2508  * The #RamDiscardManager cannot change while a memory region is mapped.
2509  *
2510  * @mr: the #MemoryRegion
2511  */
2512 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2513 
2514 /**
2515  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2516  * #RamDiscardManager assigned
2517  *
2518  * @mr: the #MemoryRegion
2519  */
2520 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2521 {
2522     return !!memory_region_get_ram_discard_manager(mr);
2523 }
2524 
2525 /**
2526  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2527  * #MemoryRegion
2528  *
2529  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2530  * that does not cover RAM, or a #MemoryRegion that already has a
2531  * #RamDiscardManager assigned.
2532  *
2533  * @mr: the #MemoryRegion
2534  * @rdm: #RamDiscardManager to set
2535  */
2536 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2537                                            RamDiscardManager *rdm);
2538 
2539 /**
2540  * memory_region_find: translate an address/size relative to a
2541  * MemoryRegion into a #MemoryRegionSection.
2542  *
2543  * Locates the first #MemoryRegion within @mr that overlaps the range
2544  * given by @addr and @size.
2545  *
2546  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2547  * It will have the following characteristics:
2548  * - @size = 0 iff no overlap was found
2549  * - @mr is non-%NULL iff an overlap was found
2550  *
2551  * Remember that in the return value the @offset_within_region is
2552  * relative to the returned region (in the .@mr field), not to the
2553  * @mr argument.
2554  *
2555  * Similarly, the .@offset_within_address_space is relative to the
2556  * address space that contains both regions, the passed and the
2557  * returned one.  However, in the special case where the @mr argument
2558  * has no container (and thus is the root of the address space), the
2559  * following will hold:
2560  * - @offset_within_address_space >= @addr
2561  * - @offset_within_address_space + .@size <= @addr + @size
2562  *
2563  * @mr: a MemoryRegion within which @addr is a relative address
2564  * @addr: start of the area within @as to be searched
2565  * @size: size of the area to be searched
2566  */
2567 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2568                                        hwaddr addr, uint64_t size);
2569 
2570 /**
2571  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2572  *
2573  * Synchronizes the dirty page log for all address spaces.
2574  *
2575  * @last_stage: whether this is the last stage of live migration
2576  */
2577 void memory_global_dirty_log_sync(bool last_stage);
2578 
2579 /**
2580  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2581  *
2582  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2583  * This function must be called after the dirty log bitmap is cleared, and
2584  * before dirty guest memory pages are read.  If you are using
2585  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2586  * care of doing this.
2587  */
2588 void memory_global_after_dirty_log_sync(void);
2589 
2590 /**
2591  * memory_region_transaction_begin: Start a transaction.
2592  *
2593  * During a transaction, changes will be accumulated and made visible
2594  * only when the transaction ends (is committed).
2595  */
2596 void memory_region_transaction_begin(void);
2597 
2598 /**
2599  * memory_region_transaction_commit: Commit a transaction and make changes
2600  *                                   visible to the guest.
2601  */
2602 void memory_region_transaction_commit(void);
2603 
2604 /**
2605  * memory_listener_register: register callbacks to be called when memory
2606  *                           sections are mapped or unmapped into an address
2607  *                           space
2608  *
2609  * @listener: an object containing the callbacks to be called
2610  * @filter: if non-%NULL, only regions in this address space will be observed
2611  */
2612 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2613 
2614 /**
2615  * memory_listener_unregister: undo the effect of memory_listener_register()
2616  *
2617  * @listener: an object containing the callbacks to be removed
2618  */
2619 void memory_listener_unregister(MemoryListener *listener);
2620 
2621 /**
2622  * memory_global_dirty_log_start: begin dirty logging for all regions
2623  *
2624  * @flags: purpose of starting dirty log, migration or dirty rate
2625  * @errp: pointer to Error*, to store an error if it happens.
2626  *
2627  * Return: true on success, else false setting @errp with error.
2628  */
2629 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2630 
2631 /**
2632  * memory_global_dirty_log_stop: end dirty logging for all regions
2633  *
2634  * @flags: purpose of stopping dirty log, migration or dirty rate
2635  */
2636 void memory_global_dirty_log_stop(unsigned int flags);
2637 
2638 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2639 
2640 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2641                                 unsigned size, bool is_write,
2642                                 MemTxAttrs attrs);
2643 
2644 /**
2645  * memory_region_dispatch_read: perform a read directly to the specified
2646  * MemoryRegion.
2647  *
2648  * @mr: #MemoryRegion to access
2649  * @addr: address within that region
2650  * @pval: pointer to uint64_t which the data is written to
2651  * @op: size, sign, and endianness of the memory operation
2652  * @attrs: memory transaction attributes to use for the access
2653  */
2654 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2655                                         hwaddr addr,
2656                                         uint64_t *pval,
2657                                         MemOp op,
2658                                         MemTxAttrs attrs);
2659 /**
2660  * memory_region_dispatch_write: perform a write directly to the specified
2661  * MemoryRegion.
2662  *
2663  * @mr: #MemoryRegion to access
2664  * @addr: address within that region
2665  * @data: data to write
2666  * @op: size, sign, and endianness of the memory operation
2667  * @attrs: memory transaction attributes to use for the access
2668  */
2669 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2670                                          hwaddr addr,
2671                                          uint64_t data,
2672                                          MemOp op,
2673                                          MemTxAttrs attrs);
2674 
2675 /**
2676  * address_space_init: initializes an address space
2677  *
2678  * @as: an uninitialized #AddressSpace
2679  * @root: a #MemoryRegion that routes addresses for the address space
2680  * @name: an address space name.  The name is only used for debugging
2681  *        output.
2682  */
2683 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2684 
2685 /**
2686  * address_space_destroy: destroy an address space
2687  *
2688  * Releases all resources associated with an address space.  After an address space
2689  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2690  * as well.
2691  *
2692  * @as: address space to be destroyed
2693  */
2694 void address_space_destroy(AddressSpace *as);
2695 
2696 /**
2697  * address_space_remove_listeners: unregister all listeners of an address space
2698  *
2699  * Removes all callbacks previously registered with memory_listener_register()
2700  * for @as.
2701  *
2702  * @as: an initialized #AddressSpace
2703  */
2704 void address_space_remove_listeners(AddressSpace *as);
2705 
2706 /**
2707  * address_space_rw: read from or write to an address space.
2708  *
2709  * Return a MemTxResult indicating whether the operation succeeded
2710  * or failed (eg unassigned memory, device rejected the transaction,
2711  * IOMMU fault).
2712  *
2713  * @as: #AddressSpace to be accessed
2714  * @addr: address within that address space
2715  * @attrs: memory transaction attributes
2716  * @buf: buffer with the data transferred
2717  * @len: the number of bytes to read or write
2718  * @is_write: indicates the transfer direction
2719  */
2720 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2721                              MemTxAttrs attrs, void *buf,
2722                              hwaddr len, bool is_write);
2723 
2724 /**
2725  * address_space_write: write to address space.
2726  *
2727  * Return a MemTxResult indicating whether the operation succeeded
2728  * or failed (eg unassigned memory, device rejected the transaction,
2729  * IOMMU fault).
2730  *
2731  * @as: #AddressSpace to be accessed
2732  * @addr: address within that address space
2733  * @attrs: memory transaction attributes
2734  * @buf: buffer with the data transferred
2735  * @len: the number of bytes to write
2736  */
2737 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2738                                 MemTxAttrs attrs,
2739                                 const void *buf, hwaddr len);
2740 
2741 /**
2742  * address_space_write_rom: write to address space, including ROM.
2743  *
2744  * This function writes to the specified address space, but will
2745  * write data to both ROM and RAM. This is used for non-guest
2746  * writes like writes from the gdb debug stub or initial loading
2747  * of ROM contents.
2748  *
2749  * Note that portions of the write which attempt to write data to
2750  * a device will be silently ignored -- only real RAM and ROM will
2751  * be written to.
2752  *
2753  * Return a MemTxResult indicating whether the operation succeeded
2754  * or failed (eg unassigned memory, device rejected the transaction,
2755  * IOMMU fault).
2756  *
2757  * @as: #AddressSpace to be accessed
2758  * @addr: address within that address space
2759  * @attrs: memory transaction attributes
2760  * @buf: buffer with the data transferred
2761  * @len: the number of bytes to write
2762  */
2763 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2764                                     MemTxAttrs attrs,
2765                                     const void *buf, hwaddr len);
2766 
2767 /* address_space_ld*: load from an address space
2768  * address_space_st*: store to an address space
2769  *
2770  * These functions perform a load or store of the byte, word,
2771  * longword or quad to the specified address within the AddressSpace.
2772  * The _le suffixed functions treat the data as little endian;
2773  * _be indicates big endian; no suffix indicates "same endianness
2774  * as guest CPU".
2775  *
2776  * The "guest CPU endianness" accessors are deprecated for use outside
2777  * target-* code; devices should be CPU-agnostic and use either the LE
2778  * or the BE accessors.
2779  *
2780  * @as #AddressSpace to be accessed
2781  * @addr: address within that address space
2782  * @val: data value, for stores
2783  * @attrs: memory transaction attributes
2784  * @result: location to write the success/failure of the transaction;
2785  *   if NULL, this information is discarded
2786  */
2787 
2788 #define SUFFIX
2789 #define ARG1         as
2790 #define ARG1_DECL    AddressSpace *as
2791 #include "exec/memory_ldst.h.inc"
2792 
2793 #define SUFFIX
2794 #define ARG1         as
2795 #define ARG1_DECL    AddressSpace *as
2796 #include "exec/memory_ldst_phys.h.inc"
2797 
2798 struct MemoryRegionCache {
2799     void *ptr;
2800     hwaddr xlat;
2801     hwaddr len;
2802     FlatView *fv;
2803     MemoryRegionSection mrs;
2804     bool is_write;
2805 };
2806 
2807 /* address_space_ld*_cached: load from a cached #MemoryRegion
2808  * address_space_st*_cached: store into a cached #MemoryRegion
2809  *
2810  * These functions perform a load or store of the byte, word,
2811  * longword or quad to the specified address.  The address is
2812  * a physical address in the AddressSpace, but it must lie within
2813  * a #MemoryRegion that was mapped with address_space_cache_init.
2814  *
2815  * The _le suffixed functions treat the data as little endian;
2816  * _be indicates big endian; no suffix indicates "same endianness
2817  * as guest CPU".
2818  *
2819  * The "guest CPU endianness" accessors are deprecated for use outside
2820  * target-* code; devices should be CPU-agnostic and use either the LE
2821  * or the BE accessors.
2822  *
2823  * @cache: previously initialized #MemoryRegionCache to be accessed
2824  * @addr: address within the address space
2825  * @val: data value, for stores
2826  * @attrs: memory transaction attributes
2827  * @result: location to write the success/failure of the transaction;
2828  *   if NULL, this information is discarded
2829  */
2830 
2831 #define SUFFIX       _cached_slow
2832 #define ARG1         cache
2833 #define ARG1_DECL    MemoryRegionCache *cache
2834 #include "exec/memory_ldst.h.inc"
2835 
2836 /* Inline fast path for direct RAM access.  */
2837 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2838     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2839 {
2840     assert(addr < cache->len);
2841     if (likely(cache->ptr)) {
2842         return ldub_p(cache->ptr + addr);
2843     } else {
2844         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2845     }
2846 }
2847 
2848 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2849     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2850 {
2851     assert(addr < cache->len);
2852     if (likely(cache->ptr)) {
2853         stb_p(cache->ptr + addr, val);
2854     } else {
2855         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2856     }
2857 }
2858 
2859 #define ENDIANNESS   _le
2860 #include "exec/memory_ldst_cached.h.inc"
2861 
2862 #define ENDIANNESS   _be
2863 #include "exec/memory_ldst_cached.h.inc"
2864 
2865 #define SUFFIX       _cached
2866 #define ARG1         cache
2867 #define ARG1_DECL    MemoryRegionCache *cache
2868 #include "exec/memory_ldst_phys.h.inc"
2869 
2870 /* address_space_cache_init: prepare for repeated access to a physical
2871  * memory region
2872  *
2873  * @cache: #MemoryRegionCache to be filled
2874  * @as: #AddressSpace to be accessed
2875  * @addr: address within that address space
2876  * @len: length of buffer
2877  * @is_write: indicates the transfer direction
2878  *
2879  * Will only work with RAM, and may map a subset of the requested range by
2880  * returning a value that is less than @len.  On failure, return a negative
2881  * errno value.
2882  *
2883  * Because it only works with RAM, this function can be used for
2884  * read-modify-write operations.  In this case, is_write should be %true.
2885  *
2886  * Note that addresses passed to the address_space_*_cached functions
2887  * are relative to @addr.
2888  */
2889 int64_t address_space_cache_init(MemoryRegionCache *cache,
2890                                  AddressSpace *as,
2891                                  hwaddr addr,
2892                                  hwaddr len,
2893                                  bool is_write);
2894 
2895 /**
2896  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2897  *
2898  * @cache: The #MemoryRegionCache to operate on.
2899  *
2900  * Initializes #MemoryRegionCache structure without memory region attached.
2901  * Cache initialized this way can only be safely destroyed, but not used.
2902  */
2903 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2904 {
2905     cache->mrs.mr = NULL;
2906     /* There is no real need to initialize fv, but it makes Coverity happy. */
2907     cache->fv = NULL;
2908 }
2909 
2910 /**
2911  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2912  *
2913  * @cache: The #MemoryRegionCache to operate on.
2914  * @addr: The first physical address that was written, relative to the
2915  * address that was passed to @address_space_cache_init.
2916  * @access_len: The number of bytes that were written starting at @addr.
2917  */
2918 void address_space_cache_invalidate(MemoryRegionCache *cache,
2919                                     hwaddr addr,
2920                                     hwaddr access_len);
2921 
2922 /**
2923  * address_space_cache_destroy: free a #MemoryRegionCache
2924  *
2925  * @cache: The #MemoryRegionCache whose memory should be released.
2926  */
2927 void address_space_cache_destroy(MemoryRegionCache *cache);
2928 
2929 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2930  * entry. Should be called from an RCU critical section.
2931  */
2932 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2933                                             bool is_write, MemTxAttrs attrs);
2934 
2935 /* address_space_translate: translate an address range into an address space
2936  * into a MemoryRegion and an address range into that section.  Should be
2937  * called from an RCU critical section, to avoid that the last reference
2938  * to the returned region disappears after address_space_translate returns.
2939  *
2940  * @fv: #FlatView to be accessed
2941  * @addr: address within that address space
2942  * @xlat: pointer to address within the returned memory region section's
2943  * #MemoryRegion.
2944  * @len: pointer to length
2945  * @is_write: indicates the transfer direction
2946  * @attrs: memory attributes
2947  */
2948 MemoryRegion *flatview_translate(FlatView *fv,
2949                                  hwaddr addr, hwaddr *xlat,
2950                                  hwaddr *len, bool is_write,
2951                                  MemTxAttrs attrs);
2952 
2953 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2954                                                     hwaddr addr, hwaddr *xlat,
2955                                                     hwaddr *len, bool is_write,
2956                                                     MemTxAttrs attrs)
2957 {
2958     return flatview_translate(address_space_to_flatview(as),
2959                               addr, xlat, len, is_write, attrs);
2960 }
2961 
2962 /* address_space_access_valid: check for validity of accessing an address
2963  * space range
2964  *
2965  * Check whether memory is assigned to the given address space range, and
2966  * access is permitted by any IOMMU regions that are active for the address
2967  * space.
2968  *
2969  * For now, addr and len should be aligned to a page size.  This limitation
2970  * will be lifted in the future.
2971  *
2972  * @as: #AddressSpace to be accessed
2973  * @addr: address within that address space
2974  * @len: length of the area to be checked
2975  * @is_write: indicates the transfer direction
2976  * @attrs: memory attributes
2977  */
2978 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2979                                 bool is_write, MemTxAttrs attrs);
2980 
2981 /* address_space_map: map a physical memory region into a host virtual address
2982  *
2983  * May map a subset of the requested range, given by and returned in @plen.
2984  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2985  * the mapping are exhausted.
2986  * Use only for reads OR writes - not for read-modify-write operations.
2987  * Use address_space_register_map_client() to know when retrying the map
2988  * operation is likely to succeed.
2989  *
2990  * @as: #AddressSpace to be accessed
2991  * @addr: address within that address space
2992  * @plen: pointer to length of buffer; updated on return
2993  * @is_write: indicates the transfer direction
2994  * @attrs: memory attributes
2995  */
2996 void *address_space_map(AddressSpace *as, hwaddr addr,
2997                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2998 
2999 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
3000  *
3001  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
3002  * the amount of memory that was actually read or written by the caller.
3003  *
3004  * @as: #AddressSpace used
3005  * @buffer: host pointer as returned by address_space_map()
3006  * @len: buffer length as returned by address_space_map()
3007  * @access_len: amount of data actually transferred
3008  * @is_write: indicates the transfer direction
3009  */
3010 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3011                          bool is_write, hwaddr access_len);
3012 
3013 /*
3014  * address_space_register_map_client: Register a callback to invoke when
3015  * resources for address_space_map() are available again.
3016  *
3017  * address_space_map may fail when there are not enough resources available,
3018  * such as when bounce buffer memory would exceed the limit. The callback can
3019  * be used to retry the address_space_map operation. Note that the callback
3020  * gets automatically removed after firing.
3021  *
3022  * @as: #AddressSpace to be accessed
3023  * @bh: callback to invoke when address_space_map() retry is appropriate
3024  */
3025 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
3026 
3027 /*
3028  * address_space_unregister_map_client: Unregister a callback that has
3029  * previously been registered and not fired yet.
3030  *
3031  * @as: #AddressSpace to be accessed
3032  * @bh: callback to unregister
3033  */
3034 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
3035 
3036 /* Internal functions, part of the implementation of address_space_read.  */
3037 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3038                                     MemTxAttrs attrs, void *buf, hwaddr len);
3039 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3040                                    MemTxAttrs attrs, void *buf,
3041                                    hwaddr len, hwaddr addr1, hwaddr l,
3042                                    MemoryRegion *mr);
3043 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
3044 
3045 /* Internal functions, part of the implementation of address_space_read_cached
3046  * and address_space_write_cached.  */
3047 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
3048                                            hwaddr addr, void *buf, hwaddr len);
3049 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
3050                                             hwaddr addr, const void *buf,
3051                                             hwaddr len);
3052 
3053 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
3054 bool prepare_mmio_access(MemoryRegion *mr);
3055 
3056 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
3057 {
3058     if (is_write) {
3059         return memory_region_is_ram(mr) && !mr->readonly &&
3060                !mr->rom_device && !memory_region_is_ram_device(mr);
3061     } else {
3062         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
3063                memory_region_is_romd(mr);
3064     }
3065 }
3066 
3067 /**
3068  * address_space_read: read from an address space.
3069  *
3070  * Return a MemTxResult indicating whether the operation succeeded
3071  * or failed (eg unassigned memory, device rejected the transaction,
3072  * IOMMU fault).  Called within RCU critical section.
3073  *
3074  * @as: #AddressSpace to be accessed
3075  * @addr: address within that address space
3076  * @attrs: memory transaction attributes
3077  * @buf: buffer with the data transferred
3078  * @len: length of the data transferred
3079  */
3080 static inline __attribute__((__always_inline__))
3081 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3082                                MemTxAttrs attrs, void *buf,
3083                                hwaddr len)
3084 {
3085     MemTxResult result = MEMTX_OK;
3086     hwaddr l, addr1;
3087     void *ptr;
3088     MemoryRegion *mr;
3089     FlatView *fv;
3090 
3091     if (__builtin_constant_p(len)) {
3092         if (len) {
3093             RCU_READ_LOCK_GUARD();
3094             fv = address_space_to_flatview(as);
3095             l = len;
3096             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3097             if (len == l && memory_access_is_direct(mr, false)) {
3098                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3099                 memcpy(buf, ptr, len);
3100             } else {
3101                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3102                                                 addr1, l, mr);
3103             }
3104         }
3105     } else {
3106         result = address_space_read_full(as, addr, attrs, buf, len);
3107     }
3108     return result;
3109 }
3110 
3111 /**
3112  * address_space_read_cached: read from a cached RAM region
3113  *
3114  * @cache: Cached region to be addressed
3115  * @addr: address relative to the base of the RAM region
3116  * @buf: buffer with the data transferred
3117  * @len: length of the data transferred
3118  */
3119 static inline MemTxResult
3120 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3121                           void *buf, hwaddr len)
3122 {
3123     assert(addr < cache->len && len <= cache->len - addr);
3124     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3125     if (likely(cache->ptr)) {
3126         memcpy(buf, cache->ptr + addr, len);
3127         return MEMTX_OK;
3128     } else {
3129         return address_space_read_cached_slow(cache, addr, buf, len);
3130     }
3131 }
3132 
3133 /**
3134  * address_space_write_cached: write to a cached RAM region
3135  *
3136  * @cache: Cached region to be addressed
3137  * @addr: address relative to the base of the RAM region
3138  * @buf: buffer with the data transferred
3139  * @len: length of the data transferred
3140  */
3141 static inline MemTxResult
3142 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3143                            const void *buf, hwaddr len)
3144 {
3145     assert(addr < cache->len && len <= cache->len - addr);
3146     if (likely(cache->ptr)) {
3147         memcpy(cache->ptr + addr, buf, len);
3148         return MEMTX_OK;
3149     } else {
3150         return address_space_write_cached_slow(cache, addr, buf, len);
3151     }
3152 }
3153 
3154 /**
3155  * address_space_set: Fill address space with a constant byte.
3156  *
3157  * Return a MemTxResult indicating whether the operation succeeded
3158  * or failed (eg unassigned memory, device rejected the transaction,
3159  * IOMMU fault).
3160  *
3161  * @as: #AddressSpace to be accessed
3162  * @addr: address within that address space
3163  * @c: constant byte to fill the memory
3164  * @len: the number of bytes to fill with the constant byte
3165  * @attrs: memory transaction attributes
3166  */
3167 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3168                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3169 
3170 #ifdef COMPILING_PER_TARGET
3171 /* enum device_endian to MemOp.  */
3172 static inline MemOp devend_memop(enum device_endian end)
3173 {
3174     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3175                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3176 
3177 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3178     /* Swap if non-host endianness or native (target) endianness */
3179     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3180 #else
3181     const int non_host_endianness =
3182         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3183 
3184     /* In this case, native (target) endianness needs no swap.  */
3185     return (end == non_host_endianness) ? MO_BSWAP : 0;
3186 #endif
3187 }
3188 #endif /* COMPILING_PER_TARGET */
3189 
3190 /*
3191  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3192  * to manage the actual amount of memory consumed by the VM (then, the memory
3193  * provided by RAM blocks might be bigger than the desired memory consumption).
3194  * This *must* be set if:
3195  * - Discarding parts of a RAM blocks does not result in the change being
3196  *   reflected in the VM and the pages getting freed.
3197  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3198  *   discards blindly.
3199  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3200  *   encrypted VMs).
3201  * Technologies that only temporarily pin the current working set of a
3202  * driver are fine, because we don't expect such pages to be discarded
3203  * (esp. based on guest action like balloon inflation).
3204  *
3205  * This is *not* to be used to protect from concurrent discards (esp.,
3206  * postcopy).
3207  *
3208  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3209  * discards to work reliably is active.
3210  */
3211 int ram_block_discard_disable(bool state);
3212 
3213 /*
3214  * See ram_block_discard_disable(): only disable uncoordinated discards,
3215  * keeping coordinated discards (via the RamDiscardManager) enabled.
3216  */
3217 int ram_block_uncoordinated_discard_disable(bool state);
3218 
3219 /*
3220  * Inhibit technologies that disable discarding of pages in RAM blocks.
3221  *
3222  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3223  * broken.
3224  */
3225 int ram_block_discard_require(bool state);
3226 
3227 /*
3228  * See ram_block_discard_require(): only inhibit technologies that disable
3229  * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3230  * technologies that only inhibit uncoordinated discards (via the
3231  * RamDiscardManager).
3232  */
3233 int ram_block_coordinated_discard_require(bool state);
3234 
3235 /*
3236  * Test if any discarding of memory in ram blocks is disabled.
3237  */
3238 bool ram_block_discard_is_disabled(void);
3239 
3240 /*
3241  * Test if any discarding of memory in ram blocks is required to work reliably.
3242  */
3243 bool ram_block_discard_is_required(void);
3244 
3245 #endif
3246 
3247 #endif
3248