xref: /openbmc/qemu/include/exec/memory.h (revision a9ded601)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 
29 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
30 
31 #define MAX_PHYS_ADDR_SPACE_BITS 62
32 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
33 
34 #define TYPE_MEMORY_REGION "qemu:memory-region"
35 #define MEMORY_REGION(obj) \
36         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
37 
38 typedef struct MemoryRegionOps MemoryRegionOps;
39 typedef struct MemoryRegionMmio MemoryRegionMmio;
40 
41 struct MemoryRegionMmio {
42     CPUReadMemoryFunc *read[3];
43     CPUWriteMemoryFunc *write[3];
44 };
45 
46 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
47 
48 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
49 typedef enum {
50     IOMMU_NONE = 0,
51     IOMMU_RO   = 1,
52     IOMMU_WO   = 2,
53     IOMMU_RW   = 3,
54 } IOMMUAccessFlags;
55 
56 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
57 
58 struct IOMMUTLBEntry {
59     AddressSpace    *target_as;
60     hwaddr           iova;
61     hwaddr           translated_addr;
62     hwaddr           addr_mask;  /* 0xfff = 4k translation */
63     IOMMUAccessFlags perm;
64 };
65 
66 /*
67  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
68  * register with one or multiple IOMMU Notifier capability bit(s).
69  */
70 typedef enum {
71     IOMMU_NOTIFIER_NONE = 0,
72     /* Notify cache invalidations */
73     IOMMU_NOTIFIER_UNMAP = 0x1,
74     /* Notify entry changes (newly created entries) */
75     IOMMU_NOTIFIER_MAP = 0x2,
76 } IOMMUNotifierFlag;
77 
78 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
79 
80 struct IOMMUNotifier;
81 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
82                             IOMMUTLBEntry *data);
83 
84 struct IOMMUNotifier {
85     IOMMUNotify notify;
86     IOMMUNotifierFlag notifier_flags;
87     /* Notify for address space range start <= addr <= end */
88     hwaddr start;
89     hwaddr end;
90     QLIST_ENTRY(IOMMUNotifier) node;
91 };
92 typedef struct IOMMUNotifier IOMMUNotifier;
93 
94 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
95                                        IOMMUNotifierFlag flags,
96                                        hwaddr start, hwaddr end)
97 {
98     n->notify = fn;
99     n->notifier_flags = flags;
100     n->start = start;
101     n->end = end;
102 }
103 
104 /* New-style MMIO accessors can indicate that the transaction failed.
105  * A zero (MEMTX_OK) response means success; anything else is a failure
106  * of some kind. The memory subsystem will bitwise-OR together results
107  * if it is synthesizing an operation from multiple smaller accesses.
108  */
109 #define MEMTX_OK 0
110 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
111 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
112 typedef uint32_t MemTxResult;
113 
114 /*
115  * Memory region callbacks
116  */
117 struct MemoryRegionOps {
118     /* Read from the memory region. @addr is relative to @mr; @size is
119      * in bytes. */
120     uint64_t (*read)(void *opaque,
121                      hwaddr addr,
122                      unsigned size);
123     /* Write to the memory region. @addr is relative to @mr; @size is
124      * in bytes. */
125     void (*write)(void *opaque,
126                   hwaddr addr,
127                   uint64_t data,
128                   unsigned size);
129 
130     MemTxResult (*read_with_attrs)(void *opaque,
131                                    hwaddr addr,
132                                    uint64_t *data,
133                                    unsigned size,
134                                    MemTxAttrs attrs);
135     MemTxResult (*write_with_attrs)(void *opaque,
136                                     hwaddr addr,
137                                     uint64_t data,
138                                     unsigned size,
139                                     MemTxAttrs attrs);
140 
141     enum device_endian endianness;
142     /* Guest-visible constraints: */
143     struct {
144         /* If nonzero, specify bounds on access sizes beyond which a machine
145          * check is thrown.
146          */
147         unsigned min_access_size;
148         unsigned max_access_size;
149         /* If true, unaligned accesses are supported.  Otherwise unaligned
150          * accesses throw machine checks.
151          */
152          bool unaligned;
153         /*
154          * If present, and returns #false, the transaction is not accepted
155          * by the device (and results in machine dependent behaviour such
156          * as a machine check exception).
157          */
158         bool (*accepts)(void *opaque, hwaddr addr,
159                         unsigned size, bool is_write);
160     } valid;
161     /* Internal implementation constraints: */
162     struct {
163         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
164          * will be rounded upwards and a partial result will be returned.
165          */
166         unsigned min_access_size;
167         /* If nonzero, specifies the maximum size implemented.  Larger sizes
168          * will be done as a series of accesses with smaller sizes.
169          */
170         unsigned max_access_size;
171         /* If true, unaligned accesses are supported.  Otherwise all accesses
172          * are converted to (possibly multiple) naturally aligned accesses.
173          */
174         bool unaligned;
175     } impl;
176 
177     /* If .read and .write are not present, old_mmio may be used for
178      * backwards compatibility with old mmio registration
179      */
180     const MemoryRegionMmio old_mmio;
181 };
182 
183 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
184 
185 struct MemoryRegionIOMMUOps {
186     /*
187      * Return a TLB entry that contains a given address. Flag should
188      * be the access permission of this translation operation. We can
189      * set flag to IOMMU_NONE to mean that we don't need any
190      * read/write permission checks, like, when for region replay.
191      */
192     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr,
193                                IOMMUAccessFlags flag);
194     /* Returns minimum supported page size */
195     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
196     /* Called when IOMMU Notifier flag changed */
197     void (*notify_flag_changed)(MemoryRegion *iommu,
198                                 IOMMUNotifierFlag old_flags,
199                                 IOMMUNotifierFlag new_flags);
200     /* Set this up to provide customized IOMMU replay function */
201     void (*replay)(MemoryRegion *iommu, IOMMUNotifier *notifier);
202 };
203 
204 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
205 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
206 
207 struct MemoryRegion {
208     Object parent_obj;
209 
210     /* All fields are private - violators will be prosecuted */
211 
212     /* The following fields should fit in a cache line */
213     bool romd_mode;
214     bool ram;
215     bool subpage;
216     bool readonly; /* For RAM regions */
217     bool rom_device;
218     bool flush_coalesced_mmio;
219     bool global_locking;
220     uint8_t dirty_log_mask;
221     RAMBlock *ram_block;
222     Object *owner;
223     const MemoryRegionIOMMUOps *iommu_ops;
224 
225     const MemoryRegionOps *ops;
226     void *opaque;
227     MemoryRegion *container;
228     Int128 size;
229     hwaddr addr;
230     void (*destructor)(MemoryRegion *mr);
231     uint64_t align;
232     bool terminates;
233     bool ram_device;
234     bool enabled;
235     bool warning_printed; /* For reservations */
236     uint8_t vga_logging_count;
237     MemoryRegion *alias;
238     hwaddr alias_offset;
239     int32_t priority;
240     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
241     QTAILQ_ENTRY(MemoryRegion) subregions_link;
242     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
243     const char *name;
244     unsigned ioeventfd_nb;
245     MemoryRegionIoeventfd *ioeventfds;
246     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
247     IOMMUNotifierFlag iommu_notify_flags;
248 };
249 
250 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
251     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
252 
253 /**
254  * MemoryListener: callbacks structure for updates to the physical memory map
255  *
256  * Allows a component to adjust to changes in the guest-visible memory map.
257  * Use with memory_listener_register() and memory_listener_unregister().
258  */
259 struct MemoryListener {
260     void (*begin)(MemoryListener *listener);
261     void (*commit)(MemoryListener *listener);
262     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
263     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
264     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
265     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
266                       int old, int new);
267     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
268                      int old, int new);
269     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
270     void (*log_global_start)(MemoryListener *listener);
271     void (*log_global_stop)(MemoryListener *listener);
272     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
273                         bool match_data, uint64_t data, EventNotifier *e);
274     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
275                         bool match_data, uint64_t data, EventNotifier *e);
276     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
277                                hwaddr addr, hwaddr len);
278     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
279                                hwaddr addr, hwaddr len);
280     /* Lower = earlier (during add), later (during del) */
281     unsigned priority;
282     AddressSpace *address_space;
283     QTAILQ_ENTRY(MemoryListener) link;
284     QTAILQ_ENTRY(MemoryListener) link_as;
285 };
286 
287 /**
288  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
289  */
290 struct AddressSpace {
291     /* All fields are private. */
292     struct rcu_head rcu;
293     char *name;
294     MemoryRegion *root;
295     int ref_count;
296     bool malloced;
297 
298     /* Accessed via RCU.  */
299     struct FlatView *current_map;
300 
301     int ioeventfd_nb;
302     struct MemoryRegionIoeventfd *ioeventfds;
303     struct AddressSpaceDispatch *dispatch;
304     struct AddressSpaceDispatch *next_dispatch;
305     MemoryListener dispatch_listener;
306     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
307     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
308 };
309 
310 /**
311  * MemoryRegionSection: describes a fragment of a #MemoryRegion
312  *
313  * @mr: the region, or %NULL if empty
314  * @address_space: the address space the region is mapped in
315  * @offset_within_region: the beginning of the section, relative to @mr's start
316  * @size: the size of the section; will not exceed @mr's boundaries
317  * @offset_within_address_space: the address of the first byte of the section
318  *     relative to the region's address space
319  * @readonly: writes to this section are ignored
320  */
321 struct MemoryRegionSection {
322     MemoryRegion *mr;
323     AddressSpace *address_space;
324     hwaddr offset_within_region;
325     Int128 size;
326     hwaddr offset_within_address_space;
327     bool readonly;
328 };
329 
330 /**
331  * memory_region_init: Initialize a memory region
332  *
333  * The region typically acts as a container for other memory regions.  Use
334  * memory_region_add_subregion() to add subregions.
335  *
336  * @mr: the #MemoryRegion to be initialized
337  * @owner: the object that tracks the region's reference count
338  * @name: used for debugging; not visible to the user or ABI
339  * @size: size of the region; any subregions beyond this size will be clipped
340  */
341 void memory_region_init(MemoryRegion *mr,
342                         struct Object *owner,
343                         const char *name,
344                         uint64_t size);
345 
346 /**
347  * memory_region_ref: Add 1 to a memory region's reference count
348  *
349  * Whenever memory regions are accessed outside the BQL, they need to be
350  * preserved against hot-unplug.  MemoryRegions actually do not have their
351  * own reference count; they piggyback on a QOM object, their "owner".
352  * This function adds a reference to the owner.
353  *
354  * All MemoryRegions must have an owner if they can disappear, even if the
355  * device they belong to operates exclusively under the BQL.  This is because
356  * the region could be returned at any time by memory_region_find, and this
357  * is usually under guest control.
358  *
359  * @mr: the #MemoryRegion
360  */
361 void memory_region_ref(MemoryRegion *mr);
362 
363 /**
364  * memory_region_unref: Remove 1 to a memory region's reference count
365  *
366  * Whenever memory regions are accessed outside the BQL, they need to be
367  * preserved against hot-unplug.  MemoryRegions actually do not have their
368  * own reference count; they piggyback on a QOM object, their "owner".
369  * This function removes a reference to the owner and possibly destroys it.
370  *
371  * @mr: the #MemoryRegion
372  */
373 void memory_region_unref(MemoryRegion *mr);
374 
375 /**
376  * memory_region_init_io: Initialize an I/O memory region.
377  *
378  * Accesses into the region will cause the callbacks in @ops to be called.
379  * if @size is nonzero, subregions will be clipped to @size.
380  *
381  * @mr: the #MemoryRegion to be initialized.
382  * @owner: the object that tracks the region's reference count
383  * @ops: a structure containing read and write callbacks to be used when
384  *       I/O is performed on the region.
385  * @opaque: passed to the read and write callbacks of the @ops structure.
386  * @name: used for debugging; not visible to the user or ABI
387  * @size: size of the region.
388  */
389 void memory_region_init_io(MemoryRegion *mr,
390                            struct Object *owner,
391                            const MemoryRegionOps *ops,
392                            void *opaque,
393                            const char *name,
394                            uint64_t size);
395 
396 /**
397  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
398  *                          region will modify memory directly.
399  *
400  * @mr: the #MemoryRegion to be initialized.
401  * @owner: the object that tracks the region's reference count
402  * @name: Region name, becomes part of RAMBlock name used in migration stream
403  *        must be unique within any device
404  * @size: size of the region.
405  * @errp: pointer to Error*, to store an error if it happens.
406  */
407 void memory_region_init_ram(MemoryRegion *mr,
408                             struct Object *owner,
409                             const char *name,
410                             uint64_t size,
411                             Error **errp);
412 
413 /**
414  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
415  *                                     RAM.  Accesses into the region will
416  *                                     modify memory directly.  Only an initial
417  *                                     portion of this RAM is actually used.
418  *                                     The used size can change across reboots.
419  *
420  * @mr: the #MemoryRegion to be initialized.
421  * @owner: the object that tracks the region's reference count
422  * @name: Region name, becomes part of RAMBlock name used in migration stream
423  *        must be unique within any device
424  * @size: used size of the region.
425  * @max_size: max size of the region.
426  * @resized: callback to notify owner about used size change.
427  * @errp: pointer to Error*, to store an error if it happens.
428  */
429 void memory_region_init_resizeable_ram(MemoryRegion *mr,
430                                        struct Object *owner,
431                                        const char *name,
432                                        uint64_t size,
433                                        uint64_t max_size,
434                                        void (*resized)(const char*,
435                                                        uint64_t length,
436                                                        void *host),
437                                        Error **errp);
438 #ifdef __linux__
439 /**
440  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
441  *                                    mmap-ed backend.
442  *
443  * @mr: the #MemoryRegion to be initialized.
444  * @owner: the object that tracks the region's reference count
445  * @name: Region name, becomes part of RAMBlock name used in migration stream
446  *        must be unique within any device
447  * @size: size of the region.
448  * @share: %true if memory must be mmaped with the MAP_SHARED flag
449  * @path: the path in which to allocate the RAM.
450  * @errp: pointer to Error*, to store an error if it happens.
451  */
452 void memory_region_init_ram_from_file(MemoryRegion *mr,
453                                       struct Object *owner,
454                                       const char *name,
455                                       uint64_t size,
456                                       bool share,
457                                       const char *path,
458                                       Error **errp);
459 
460 /**
461  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
462  *                                  mmap-ed backend.
463  *
464  * @mr: the #MemoryRegion to be initialized.
465  * @owner: the object that tracks the region's reference count
466  * @name: the name of the region.
467  * @size: size of the region.
468  * @share: %true if memory must be mmaped with the MAP_SHARED flag
469  * @fd: the fd to mmap.
470  * @errp: pointer to Error*, to store an error if it happens.
471  */
472 void memory_region_init_ram_from_fd(MemoryRegion *mr,
473                                     struct Object *owner,
474                                     const char *name,
475                                     uint64_t size,
476                                     bool share,
477                                     int fd,
478                                     Error **errp);
479 #endif
480 
481 /**
482  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
483  *                              user-provided pointer.  Accesses into the
484  *                              region will modify memory directly.
485  *
486  * @mr: the #MemoryRegion to be initialized.
487  * @owner: the object that tracks the region's reference count
488  * @name: Region name, becomes part of RAMBlock name used in migration stream
489  *        must be unique within any device
490  * @size: size of the region.
491  * @ptr: memory to be mapped; must contain at least @size bytes.
492  */
493 void memory_region_init_ram_ptr(MemoryRegion *mr,
494                                 struct Object *owner,
495                                 const char *name,
496                                 uint64_t size,
497                                 void *ptr);
498 
499 /**
500  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
501  *                                     a user-provided pointer.
502  *
503  * A RAM device represents a mapping to a physical device, such as to a PCI
504  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
505  * into the VM address space and access to the region will modify memory
506  * directly.  However, the memory region should not be included in a memory
507  * dump (device may not be enabled/mapped at the time of the dump), and
508  * operations incompatible with manipulating MMIO should be avoided.  Replaces
509  * skip_dump flag.
510  *
511  * @mr: the #MemoryRegion to be initialized.
512  * @owner: the object that tracks the region's reference count
513  * @name: the name of the region.
514  * @size: size of the region.
515  * @ptr: memory to be mapped; must contain at least @size bytes.
516  */
517 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
518                                        struct Object *owner,
519                                        const char *name,
520                                        uint64_t size,
521                                        void *ptr);
522 
523 /**
524  * memory_region_init_alias: Initialize a memory region that aliases all or a
525  *                           part of another memory region.
526  *
527  * @mr: the #MemoryRegion to be initialized.
528  * @owner: the object that tracks the region's reference count
529  * @name: used for debugging; not visible to the user or ABI
530  * @orig: the region to be referenced; @mr will be equivalent to
531  *        @orig between @offset and @offset + @size - 1.
532  * @offset: start of the section in @orig to be referenced.
533  * @size: size of the region.
534  */
535 void memory_region_init_alias(MemoryRegion *mr,
536                               struct Object *owner,
537                               const char *name,
538                               MemoryRegion *orig,
539                               hwaddr offset,
540                               uint64_t size);
541 
542 /**
543  * memory_region_init_rom: Initialize a ROM memory region.
544  *
545  * This has the same effect as calling memory_region_init_ram()
546  * and then marking the resulting region read-only with
547  * memory_region_set_readonly().
548  *
549  * @mr: the #MemoryRegion to be initialized.
550  * @owner: the object that tracks the region's reference count
551  * @name: Region name, becomes part of RAMBlock name used in migration stream
552  *        must be unique within any device
553  * @size: size of the region.
554  * @errp: pointer to Error*, to store an error if it happens.
555  */
556 void memory_region_init_rom(MemoryRegion *mr,
557                             struct Object *owner,
558                             const char *name,
559                             uint64_t size,
560                             Error **errp);
561 
562 /**
563  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
564  *                                 handled via callbacks.
565  *
566  * @mr: the #MemoryRegion to be initialized.
567  * @owner: the object that tracks the region's reference count
568  * @ops: callbacks for write access handling (must not be NULL).
569  * @name: Region name, becomes part of RAMBlock name used in migration stream
570  *        must be unique within any device
571  * @size: size of the region.
572  * @errp: pointer to Error*, to store an error if it happens.
573  */
574 void memory_region_init_rom_device(MemoryRegion *mr,
575                                    struct Object *owner,
576                                    const MemoryRegionOps *ops,
577                                    void *opaque,
578                                    const char *name,
579                                    uint64_t size,
580                                    Error **errp);
581 
582 /**
583  * memory_region_init_reservation: Initialize a memory region that reserves
584  *                                 I/O space.
585  *
586  * A reservation region primariy serves debugging purposes.  It claims I/O
587  * space that is not supposed to be handled by QEMU itself.  Any access via
588  * the memory API will cause an abort().
589  * This function is deprecated. Use memory_region_init_io() with NULL
590  * callbacks instead.
591  *
592  * @mr: the #MemoryRegion to be initialized
593  * @owner: the object that tracks the region's reference count
594  * @name: used for debugging; not visible to the user or ABI
595  * @size: size of the region.
596  */
597 static inline void memory_region_init_reservation(MemoryRegion *mr,
598                                     Object *owner,
599                                     const char *name,
600                                     uint64_t size)
601 {
602     memory_region_init_io(mr, owner, NULL, mr, name, size);
603 }
604 
605 /**
606  * memory_region_init_iommu: Initialize a memory region that translates
607  * addresses
608  *
609  * An IOMMU region translates addresses and forwards accesses to a target
610  * memory region.
611  *
612  * @mr: the #MemoryRegion to be initialized
613  * @owner: the object that tracks the region's reference count
614  * @ops: a function that translates addresses into the @target region
615  * @name: used for debugging; not visible to the user or ABI
616  * @size: size of the region.
617  */
618 void memory_region_init_iommu(MemoryRegion *mr,
619                               struct Object *owner,
620                               const MemoryRegionIOMMUOps *ops,
621                               const char *name,
622                               uint64_t size);
623 
624 /**
625  * memory_region_owner: get a memory region's owner.
626  *
627  * @mr: the memory region being queried.
628  */
629 struct Object *memory_region_owner(MemoryRegion *mr);
630 
631 /**
632  * memory_region_size: get a memory region's size.
633  *
634  * @mr: the memory region being queried.
635  */
636 uint64_t memory_region_size(MemoryRegion *mr);
637 
638 /**
639  * memory_region_is_ram: check whether a memory region is random access
640  *
641  * Returns %true is a memory region is random access.
642  *
643  * @mr: the memory region being queried
644  */
645 static inline bool memory_region_is_ram(MemoryRegion *mr)
646 {
647     return mr->ram;
648 }
649 
650 /**
651  * memory_region_is_ram_device: check whether a memory region is a ram device
652  *
653  * Returns %true is a memory region is a device backed ram region
654  *
655  * @mr: the memory region being queried
656  */
657 bool memory_region_is_ram_device(MemoryRegion *mr);
658 
659 /**
660  * memory_region_is_romd: check whether a memory region is in ROMD mode
661  *
662  * Returns %true if a memory region is a ROM device and currently set to allow
663  * direct reads.
664  *
665  * @mr: the memory region being queried
666  */
667 static inline bool memory_region_is_romd(MemoryRegion *mr)
668 {
669     return mr->rom_device && mr->romd_mode;
670 }
671 
672 /**
673  * memory_region_is_iommu: check whether a memory region is an iommu
674  *
675  * Returns %true is a memory region is an iommu.
676  *
677  * @mr: the memory region being queried
678  */
679 static inline bool memory_region_is_iommu(MemoryRegion *mr)
680 {
681     if (mr->alias) {
682         return memory_region_is_iommu(mr->alias);
683     }
684     return mr->iommu_ops;
685 }
686 
687 
688 /**
689  * memory_region_iommu_get_min_page_size: get minimum supported page size
690  * for an iommu
691  *
692  * Returns minimum supported page size for an iommu.
693  *
694  * @mr: the memory region being queried
695  */
696 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
697 
698 /**
699  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
700  *
701  * The notification type will be decided by entry.perm bits:
702  *
703  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
704  * - For MAP (newly added entry) notifies: set entry.perm to the
705  *   permission of the page (which is definitely !IOMMU_NONE).
706  *
707  * Note: for any IOMMU implementation, an in-place mapping change
708  * should be notified with an UNMAP followed by a MAP.
709  *
710  * @mr: the memory region that was changed
711  * @entry: the new entry in the IOMMU translation table.  The entry
712  *         replaces all old entries for the same virtual I/O address range.
713  *         Deleted entries have .@perm == 0.
714  */
715 void memory_region_notify_iommu(MemoryRegion *mr,
716                                 IOMMUTLBEntry entry);
717 
718 /**
719  * memory_region_notify_one: notify a change in an IOMMU translation
720  *                           entry to a single notifier
721  *
722  * This works just like memory_region_notify_iommu(), but it only
723  * notifies a specific notifier, not all of them.
724  *
725  * @notifier: the notifier to be notified
726  * @entry: the new entry in the IOMMU translation table.  The entry
727  *         replaces all old entries for the same virtual I/O address range.
728  *         Deleted entries have .@perm == 0.
729  */
730 void memory_region_notify_one(IOMMUNotifier *notifier,
731                               IOMMUTLBEntry *entry);
732 
733 /**
734  * memory_region_register_iommu_notifier: register a notifier for changes to
735  * IOMMU translation entries.
736  *
737  * @mr: the memory region to observe
738  * @n: the IOMMUNotifier to be added; the notify callback receives a
739  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
740  *     ceases to be valid on exit from the notifier.
741  */
742 void memory_region_register_iommu_notifier(MemoryRegion *mr,
743                                            IOMMUNotifier *n);
744 
745 /**
746  * memory_region_iommu_replay: replay existing IOMMU translations to
747  * a notifier with the minimum page granularity returned by
748  * mr->iommu_ops->get_page_size().
749  *
750  * @mr: the memory region to observe
751  * @n: the notifier to which to replay iommu mappings
752  */
753 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n);
754 
755 /**
756  * memory_region_iommu_replay_all: replay existing IOMMU translations
757  * to all the notifiers registered.
758  *
759  * @mr: the memory region to observe
760  */
761 void memory_region_iommu_replay_all(MemoryRegion *mr);
762 
763 /**
764  * memory_region_unregister_iommu_notifier: unregister a notifier for
765  * changes to IOMMU translation entries.
766  *
767  * @mr: the memory region which was observed and for which notity_stopped()
768  *      needs to be called
769  * @n: the notifier to be removed.
770  */
771 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
772                                              IOMMUNotifier *n);
773 
774 /**
775  * memory_region_name: get a memory region's name
776  *
777  * Returns the string that was used to initialize the memory region.
778  *
779  * @mr: the memory region being queried
780  */
781 const char *memory_region_name(const MemoryRegion *mr);
782 
783 /**
784  * memory_region_is_logging: return whether a memory region is logging writes
785  *
786  * Returns %true if the memory region is logging writes for the given client
787  *
788  * @mr: the memory region being queried
789  * @client: the client being queried
790  */
791 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
792 
793 /**
794  * memory_region_get_dirty_log_mask: return the clients for which a
795  * memory region is logging writes.
796  *
797  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
798  * are the bit indices.
799  *
800  * @mr: the memory region being queried
801  */
802 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
803 
804 /**
805  * memory_region_is_rom: check whether a memory region is ROM
806  *
807  * Returns %true is a memory region is read-only memory.
808  *
809  * @mr: the memory region being queried
810  */
811 static inline bool memory_region_is_rom(MemoryRegion *mr)
812 {
813     return mr->ram && mr->readonly;
814 }
815 
816 
817 /**
818  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
819  *
820  * Returns a file descriptor backing a file-based RAM memory region,
821  * or -1 if the region is not a file-based RAM memory region.
822  *
823  * @mr: the RAM or alias memory region being queried.
824  */
825 int memory_region_get_fd(MemoryRegion *mr);
826 
827 /**
828  * memory_region_from_host: Convert a pointer into a RAM memory region
829  * and an offset within it.
830  *
831  * Given a host pointer inside a RAM memory region (created with
832  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
833  * the MemoryRegion and the offset within it.
834  *
835  * Use with care; by the time this function returns, the returned pointer is
836  * not protected by RCU anymore.  If the caller is not within an RCU critical
837  * section and does not hold the iothread lock, it must have other means of
838  * protecting the pointer, such as a reference to the region that includes
839  * the incoming ram_addr_t.
840  *
841  * @mr: the memory region being queried.
842  */
843 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
844 
845 /**
846  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
847  *
848  * Returns a host pointer to a RAM memory region (created with
849  * memory_region_init_ram() or memory_region_init_ram_ptr()).
850  *
851  * Use with care; by the time this function returns, the returned pointer is
852  * not protected by RCU anymore.  If the caller is not within an RCU critical
853  * section and does not hold the iothread lock, it must have other means of
854  * protecting the pointer, such as a reference to the region that includes
855  * the incoming ram_addr_t.
856  *
857  * @mr: the memory region being queried.
858  */
859 void *memory_region_get_ram_ptr(MemoryRegion *mr);
860 
861 /* memory_region_ram_resize: Resize a RAM region.
862  *
863  * Only legal before guest might have detected the memory size: e.g. on
864  * incoming migration, or right after reset.
865  *
866  * @mr: a memory region created with @memory_region_init_resizeable_ram.
867  * @newsize: the new size the region
868  * @errp: pointer to Error*, to store an error if it happens.
869  */
870 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
871                               Error **errp);
872 
873 /**
874  * memory_region_set_log: Turn dirty logging on or off for a region.
875  *
876  * Turns dirty logging on or off for a specified client (display, migration).
877  * Only meaningful for RAM regions.
878  *
879  * @mr: the memory region being updated.
880  * @log: whether dirty logging is to be enabled or disabled.
881  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
882  */
883 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
884 
885 /**
886  * memory_region_get_dirty: Check whether a range of bytes is dirty
887  *                          for a specified client.
888  *
889  * Checks whether a range of bytes has been written to since the last
890  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
891  * must be enabled.
892  *
893  * @mr: the memory region being queried.
894  * @addr: the address (relative to the start of the region) being queried.
895  * @size: the size of the range being queried.
896  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
897  *          %DIRTY_MEMORY_VGA.
898  */
899 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
900                              hwaddr size, unsigned client);
901 
902 /**
903  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
904  *
905  * Marks a range of bytes as dirty, after it has been dirtied outside
906  * guest code.
907  *
908  * @mr: the memory region being dirtied.
909  * @addr: the address (relative to the start of the region) being dirtied.
910  * @size: size of the range being dirtied.
911  */
912 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
913                              hwaddr size);
914 
915 /**
916  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
917  *                                     for a specified client. It clears them.
918  *
919  * Checks whether a range of bytes has been written to since the last
920  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
921  * must be enabled.
922  *
923  * @mr: the memory region being queried.
924  * @addr: the address (relative to the start of the region) being queried.
925  * @size: the size of the range being queried.
926  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
927  *          %DIRTY_MEMORY_VGA.
928  */
929 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
930                                         hwaddr size, unsigned client);
931 
932 /**
933  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
934  *                                         bitmap and clear it.
935  *
936  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
937  * returns the snapshot.  The snapshot can then be used to query dirty
938  * status, using memory_region_snapshot_get_dirty.  Unlike
939  * memory_region_test_and_clear_dirty this allows to query the same
940  * page multiple times, which is especially useful for display updates
941  * where the scanlines often are not page aligned.
942  *
943  * The dirty bitmap region which gets copyed into the snapshot (and
944  * cleared afterwards) can be larger than requested.  The boundaries
945  * are rounded up/down so complete bitmap longs (covering 64 pages on
946  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
947  * isn't a problem for display updates as the extra pages are outside
948  * the visible area, and in case the visible area changes a full
949  * display redraw is due anyway.  Should other use cases for this
950  * function emerge we might have to revisit this implementation
951  * detail.
952  *
953  * Use g_free to release DirtyBitmapSnapshot.
954  *
955  * @mr: the memory region being queried.
956  * @addr: the address (relative to the start of the region) being queried.
957  * @size: the size of the range being queried.
958  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
959  */
960 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
961                                                             hwaddr addr,
962                                                             hwaddr size,
963                                                             unsigned client);
964 
965 /**
966  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
967  *                                   in the specified dirty bitmap snapshot.
968  *
969  * @mr: the memory region being queried.
970  * @snap: the dirty bitmap snapshot
971  * @addr: the address (relative to the start of the region) being queried.
972  * @size: the size of the range being queried.
973  */
974 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
975                                       DirtyBitmapSnapshot *snap,
976                                       hwaddr addr, hwaddr size);
977 
978 /**
979  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
980  *                                  any external TLBs (e.g. kvm)
981  *
982  * Flushes dirty information from accelerators such as kvm and vhost-net
983  * and makes it available to users of the memory API.
984  *
985  * @mr: the region being flushed.
986  */
987 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
988 
989 /**
990  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
991  *                            client.
992  *
993  * Marks a range of pages as no longer dirty.
994  *
995  * @mr: the region being updated.
996  * @addr: the start of the subrange being cleaned.
997  * @size: the size of the subrange being cleaned.
998  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
999  *          %DIRTY_MEMORY_VGA.
1000  */
1001 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1002                                hwaddr size, unsigned client);
1003 
1004 /**
1005  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1006  *
1007  * Allows a memory region to be marked as read-only (turning it into a ROM).
1008  * only useful on RAM regions.
1009  *
1010  * @mr: the region being updated.
1011  * @readonly: whether rhe region is to be ROM or RAM.
1012  */
1013 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1014 
1015 /**
1016  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1017  *
1018  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1019  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1020  * device is mapped to guest memory and satisfies read access directly.
1021  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1022  * Writes are always handled by the #MemoryRegion.write function.
1023  *
1024  * @mr: the memory region to be updated
1025  * @romd_mode: %true to put the region into ROMD mode
1026  */
1027 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1028 
1029 /**
1030  * memory_region_set_coalescing: Enable memory coalescing for the region.
1031  *
1032  * Enabled writes to a region to be queued for later processing. MMIO ->write
1033  * callbacks may be delayed until a non-coalesced MMIO is issued.
1034  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1035  *
1036  * @mr: the memory region to be write coalesced
1037  */
1038 void memory_region_set_coalescing(MemoryRegion *mr);
1039 
1040 /**
1041  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1042  *                               a region.
1043  *
1044  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1045  * Multiple calls can be issued coalesced disjoint ranges.
1046  *
1047  * @mr: the memory region to be updated.
1048  * @offset: the start of the range within the region to be coalesced.
1049  * @size: the size of the subrange to be coalesced.
1050  */
1051 void memory_region_add_coalescing(MemoryRegion *mr,
1052                                   hwaddr offset,
1053                                   uint64_t size);
1054 
1055 /**
1056  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1057  *
1058  * Disables any coalescing caused by memory_region_set_coalescing() or
1059  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1060  * hardware.
1061  *
1062  * @mr: the memory region to be updated.
1063  */
1064 void memory_region_clear_coalescing(MemoryRegion *mr);
1065 
1066 /**
1067  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1068  *                                    accesses.
1069  *
1070  * Ensure that pending coalesced MMIO request are flushed before the memory
1071  * region is accessed. This property is automatically enabled for all regions
1072  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1073  *
1074  * @mr: the memory region to be updated.
1075  */
1076 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1077 
1078 /**
1079  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1080  *                                      accesses.
1081  *
1082  * Clear the automatic coalesced MMIO flushing enabled via
1083  * memory_region_set_flush_coalesced. Note that this service has no effect on
1084  * memory regions that have MMIO coalescing enabled for themselves. For them,
1085  * automatic flushing will stop once coalescing is disabled.
1086  *
1087  * @mr: the memory region to be updated.
1088  */
1089 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1090 
1091 /**
1092  * memory_region_set_global_locking: Declares the access processing requires
1093  *                                   QEMU's global lock.
1094  *
1095  * When this is invoked, accesses to the memory region will be processed while
1096  * holding the global lock of QEMU. This is the default behavior of memory
1097  * regions.
1098  *
1099  * @mr: the memory region to be updated.
1100  */
1101 void memory_region_set_global_locking(MemoryRegion *mr);
1102 
1103 /**
1104  * memory_region_clear_global_locking: Declares that access processing does
1105  *                                     not depend on the QEMU global lock.
1106  *
1107  * By clearing this property, accesses to the memory region will be processed
1108  * outside of QEMU's global lock (unless the lock is held on when issuing the
1109  * access request). In this case, the device model implementing the access
1110  * handlers is responsible for synchronization of concurrency.
1111  *
1112  * @mr: the memory region to be updated.
1113  */
1114 void memory_region_clear_global_locking(MemoryRegion *mr);
1115 
1116 /**
1117  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1118  *                            is written to a location.
1119  *
1120  * Marks a word in an IO region (initialized with memory_region_init_io())
1121  * as a trigger for an eventfd event.  The I/O callback will not be called.
1122  * The caller must be prepared to handle failure (that is, take the required
1123  * action if the callback _is_ called).
1124  *
1125  * @mr: the memory region being updated.
1126  * @addr: the address within @mr that is to be monitored
1127  * @size: the size of the access to trigger the eventfd
1128  * @match_data: whether to match against @data, instead of just @addr
1129  * @data: the data to match against the guest write
1130  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1131  **/
1132 void memory_region_add_eventfd(MemoryRegion *mr,
1133                                hwaddr addr,
1134                                unsigned size,
1135                                bool match_data,
1136                                uint64_t data,
1137                                EventNotifier *e);
1138 
1139 /**
1140  * memory_region_del_eventfd: Cancel an eventfd.
1141  *
1142  * Cancels an eventfd trigger requested by a previous
1143  * memory_region_add_eventfd() call.
1144  *
1145  * @mr: the memory region being updated.
1146  * @addr: the address within @mr that is to be monitored
1147  * @size: the size of the access to trigger the eventfd
1148  * @match_data: whether to match against @data, instead of just @addr
1149  * @data: the data to match against the guest write
1150  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1151  */
1152 void memory_region_del_eventfd(MemoryRegion *mr,
1153                                hwaddr addr,
1154                                unsigned size,
1155                                bool match_data,
1156                                uint64_t data,
1157                                EventNotifier *e);
1158 
1159 /**
1160  * memory_region_add_subregion: Add a subregion to a container.
1161  *
1162  * Adds a subregion at @offset.  The subregion may not overlap with other
1163  * subregions (except for those explicitly marked as overlapping).  A region
1164  * may only be added once as a subregion (unless removed with
1165  * memory_region_del_subregion()); use memory_region_init_alias() if you
1166  * want a region to be a subregion in multiple locations.
1167  *
1168  * @mr: the region to contain the new subregion; must be a container
1169  *      initialized with memory_region_init().
1170  * @offset: the offset relative to @mr where @subregion is added.
1171  * @subregion: the subregion to be added.
1172  */
1173 void memory_region_add_subregion(MemoryRegion *mr,
1174                                  hwaddr offset,
1175                                  MemoryRegion *subregion);
1176 /**
1177  * memory_region_add_subregion_overlap: Add a subregion to a container
1178  *                                      with overlap.
1179  *
1180  * Adds a subregion at @offset.  The subregion may overlap with other
1181  * subregions.  Conflicts are resolved by having a higher @priority hide a
1182  * lower @priority. Subregions without priority are taken as @priority 0.
1183  * A region may only be added once as a subregion (unless removed with
1184  * memory_region_del_subregion()); use memory_region_init_alias() if you
1185  * want a region to be a subregion in multiple locations.
1186  *
1187  * @mr: the region to contain the new subregion; must be a container
1188  *      initialized with memory_region_init().
1189  * @offset: the offset relative to @mr where @subregion is added.
1190  * @subregion: the subregion to be added.
1191  * @priority: used for resolving overlaps; highest priority wins.
1192  */
1193 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1194                                          hwaddr offset,
1195                                          MemoryRegion *subregion,
1196                                          int priority);
1197 
1198 /**
1199  * memory_region_get_ram_addr: Get the ram address associated with a memory
1200  *                             region
1201  */
1202 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1203 
1204 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1205 /**
1206  * memory_region_del_subregion: Remove a subregion.
1207  *
1208  * Removes a subregion from its container.
1209  *
1210  * @mr: the container to be updated.
1211  * @subregion: the region being removed; must be a current subregion of @mr.
1212  */
1213 void memory_region_del_subregion(MemoryRegion *mr,
1214                                  MemoryRegion *subregion);
1215 
1216 /*
1217  * memory_region_set_enabled: dynamically enable or disable a region
1218  *
1219  * Enables or disables a memory region.  A disabled memory region
1220  * ignores all accesses to itself and its subregions.  It does not
1221  * obscure sibling subregions with lower priority - it simply behaves as
1222  * if it was removed from the hierarchy.
1223  *
1224  * Regions default to being enabled.
1225  *
1226  * @mr: the region to be updated
1227  * @enabled: whether to enable or disable the region
1228  */
1229 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1230 
1231 /*
1232  * memory_region_set_address: dynamically update the address of a region
1233  *
1234  * Dynamically updates the address of a region, relative to its container.
1235  * May be used on regions are currently part of a memory hierarchy.
1236  *
1237  * @mr: the region to be updated
1238  * @addr: new address, relative to container region
1239  */
1240 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1241 
1242 /*
1243  * memory_region_set_size: dynamically update the size of a region.
1244  *
1245  * Dynamically updates the size of a region.
1246  *
1247  * @mr: the region to be updated
1248  * @size: used size of the region.
1249  */
1250 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1251 
1252 /*
1253  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1254  *
1255  * Dynamically updates the offset into the target region that an alias points
1256  * to, as if the fourth argument to memory_region_init_alias() has changed.
1257  *
1258  * @mr: the #MemoryRegion to be updated; should be an alias.
1259  * @offset: the new offset into the target memory region
1260  */
1261 void memory_region_set_alias_offset(MemoryRegion *mr,
1262                                     hwaddr offset);
1263 
1264 /**
1265  * memory_region_present: checks if an address relative to a @container
1266  * translates into #MemoryRegion within @container
1267  *
1268  * Answer whether a #MemoryRegion within @container covers the address
1269  * @addr.
1270  *
1271  * @container: a #MemoryRegion within which @addr is a relative address
1272  * @addr: the area within @container to be searched
1273  */
1274 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1275 
1276 /**
1277  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1278  * into any address space.
1279  *
1280  * @mr: a #MemoryRegion which should be checked if it's mapped
1281  */
1282 bool memory_region_is_mapped(MemoryRegion *mr);
1283 
1284 /**
1285  * memory_region_find: translate an address/size relative to a
1286  * MemoryRegion into a #MemoryRegionSection.
1287  *
1288  * Locates the first #MemoryRegion within @mr that overlaps the range
1289  * given by @addr and @size.
1290  *
1291  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1292  * It will have the following characteristics:
1293  *    .@size = 0 iff no overlap was found
1294  *    .@mr is non-%NULL iff an overlap was found
1295  *
1296  * Remember that in the return value the @offset_within_region is
1297  * relative to the returned region (in the .@mr field), not to the
1298  * @mr argument.
1299  *
1300  * Similarly, the .@offset_within_address_space is relative to the
1301  * address space that contains both regions, the passed and the
1302  * returned one.  However, in the special case where the @mr argument
1303  * has no container (and thus is the root of the address space), the
1304  * following will hold:
1305  *    .@offset_within_address_space >= @addr
1306  *    .@offset_within_address_space + .@size <= @addr + @size
1307  *
1308  * @mr: a MemoryRegion within which @addr is a relative address
1309  * @addr: start of the area within @as to be searched
1310  * @size: size of the area to be searched
1311  */
1312 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1313                                        hwaddr addr, uint64_t size);
1314 
1315 /**
1316  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1317  *
1318  * Synchronizes the dirty page log for all address spaces.
1319  */
1320 void memory_global_dirty_log_sync(void);
1321 
1322 /**
1323  * memory_region_transaction_begin: Start a transaction.
1324  *
1325  * During a transaction, changes will be accumulated and made visible
1326  * only when the transaction ends (is committed).
1327  */
1328 void memory_region_transaction_begin(void);
1329 
1330 /**
1331  * memory_region_transaction_commit: Commit a transaction and make changes
1332  *                                   visible to the guest.
1333  */
1334 void memory_region_transaction_commit(void);
1335 
1336 /**
1337  * memory_listener_register: register callbacks to be called when memory
1338  *                           sections are mapped or unmapped into an address
1339  *                           space
1340  *
1341  * @listener: an object containing the callbacks to be called
1342  * @filter: if non-%NULL, only regions in this address space will be observed
1343  */
1344 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1345 
1346 /**
1347  * memory_listener_unregister: undo the effect of memory_listener_register()
1348  *
1349  * @listener: an object containing the callbacks to be removed
1350  */
1351 void memory_listener_unregister(MemoryListener *listener);
1352 
1353 /**
1354  * memory_global_dirty_log_start: begin dirty logging for all regions
1355  */
1356 void memory_global_dirty_log_start(void);
1357 
1358 /**
1359  * memory_global_dirty_log_stop: end dirty logging for all regions
1360  */
1361 void memory_global_dirty_log_stop(void);
1362 
1363 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1364 
1365 /**
1366  * memory_region_dispatch_read: perform a read directly to the specified
1367  * MemoryRegion.
1368  *
1369  * @mr: #MemoryRegion to access
1370  * @addr: address within that region
1371  * @pval: pointer to uint64_t which the data is written to
1372  * @size: size of the access in bytes
1373  * @attrs: memory transaction attributes to use for the access
1374  */
1375 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1376                                         hwaddr addr,
1377                                         uint64_t *pval,
1378                                         unsigned size,
1379                                         MemTxAttrs attrs);
1380 /**
1381  * memory_region_dispatch_write: perform a write directly to the specified
1382  * MemoryRegion.
1383  *
1384  * @mr: #MemoryRegion to access
1385  * @addr: address within that region
1386  * @data: data to write
1387  * @size: size of the access in bytes
1388  * @attrs: memory transaction attributes to use for the access
1389  */
1390 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1391                                          hwaddr addr,
1392                                          uint64_t data,
1393                                          unsigned size,
1394                                          MemTxAttrs attrs);
1395 
1396 /**
1397  * address_space_init: initializes an address space
1398  *
1399  * @as: an uninitialized #AddressSpace
1400  * @root: a #MemoryRegion that routes addresses for the address space
1401  * @name: an address space name.  The name is only used for debugging
1402  *        output.
1403  */
1404 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1405 
1406 /**
1407  * address_space_init_shareable: return an address space for a memory region,
1408  *                               creating it if it does not already exist
1409  *
1410  * @root: a #MemoryRegion that routes addresses for the address space
1411  * @name: an address space name.  The name is only used for debugging
1412  *        output.
1413  *
1414  * This function will return a pointer to an existing AddressSpace
1415  * which was initialized with the specified MemoryRegion, or it will
1416  * create and initialize one if it does not already exist. The ASes
1417  * are reference-counted, so the memory will be freed automatically
1418  * when the AddressSpace is destroyed via address_space_destroy.
1419  */
1420 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1421                                            const char *name);
1422 
1423 /**
1424  * address_space_destroy: destroy an address space
1425  *
1426  * Releases all resources associated with an address space.  After an address space
1427  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1428  * as well.
1429  *
1430  * @as: address space to be destroyed
1431  */
1432 void address_space_destroy(AddressSpace *as);
1433 
1434 /**
1435  * address_space_rw: read from or write to an address space.
1436  *
1437  * Return a MemTxResult indicating whether the operation succeeded
1438  * or failed (eg unassigned memory, device rejected the transaction,
1439  * IOMMU fault).
1440  *
1441  * @as: #AddressSpace to be accessed
1442  * @addr: address within that address space
1443  * @attrs: memory transaction attributes
1444  * @buf: buffer with the data transferred
1445  * @is_write: indicates the transfer direction
1446  */
1447 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1448                              MemTxAttrs attrs, uint8_t *buf,
1449                              int len, bool is_write);
1450 
1451 /**
1452  * address_space_write: write to address space.
1453  *
1454  * Return a MemTxResult indicating whether the operation succeeded
1455  * or failed (eg unassigned memory, device rejected the transaction,
1456  * IOMMU fault).
1457  *
1458  * @as: #AddressSpace to be accessed
1459  * @addr: address within that address space
1460  * @attrs: memory transaction attributes
1461  * @buf: buffer with the data transferred
1462  */
1463 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1464                                 MemTxAttrs attrs,
1465                                 const uint8_t *buf, int len);
1466 
1467 /* address_space_ld*: load from an address space
1468  * address_space_st*: store to an address space
1469  *
1470  * These functions perform a load or store of the byte, word,
1471  * longword or quad to the specified address within the AddressSpace.
1472  * The _le suffixed functions treat the data as little endian;
1473  * _be indicates big endian; no suffix indicates "same endianness
1474  * as guest CPU".
1475  *
1476  * The "guest CPU endianness" accessors are deprecated for use outside
1477  * target-* code; devices should be CPU-agnostic and use either the LE
1478  * or the BE accessors.
1479  *
1480  * @as #AddressSpace to be accessed
1481  * @addr: address within that address space
1482  * @val: data value, for stores
1483  * @attrs: memory transaction attributes
1484  * @result: location to write the success/failure of the transaction;
1485  *   if NULL, this information is discarded
1486  */
1487 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1488                             MemTxAttrs attrs, MemTxResult *result);
1489 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1490                             MemTxAttrs attrs, MemTxResult *result);
1491 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1492                             MemTxAttrs attrs, MemTxResult *result);
1493 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1494                             MemTxAttrs attrs, MemTxResult *result);
1495 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1496                             MemTxAttrs attrs, MemTxResult *result);
1497 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1498                             MemTxAttrs attrs, MemTxResult *result);
1499 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1500                             MemTxAttrs attrs, MemTxResult *result);
1501 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1502                             MemTxAttrs attrs, MemTxResult *result);
1503 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1504                             MemTxAttrs attrs, MemTxResult *result);
1505 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1506                             MemTxAttrs attrs, MemTxResult *result);
1507 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1508                             MemTxAttrs attrs, MemTxResult *result);
1509 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1510                             MemTxAttrs attrs, MemTxResult *result);
1511 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1512                             MemTxAttrs attrs, MemTxResult *result);
1513 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1514                             MemTxAttrs attrs, MemTxResult *result);
1515 
1516 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1517 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1518 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1519 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1520 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1521 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1522 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1523 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1524 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1525 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1526 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1527 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1528 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1529 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1530 
1531 struct MemoryRegionCache {
1532     hwaddr xlat;
1533     hwaddr len;
1534     AddressSpace *as;
1535 };
1536 
1537 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1538 
1539 /* address_space_cache_init: prepare for repeated access to a physical
1540  * memory region
1541  *
1542  * @cache: #MemoryRegionCache to be filled
1543  * @as: #AddressSpace to be accessed
1544  * @addr: address within that address space
1545  * @len: length of buffer
1546  * @is_write: indicates the transfer direction
1547  *
1548  * Will only work with RAM, and may map a subset of the requested range by
1549  * returning a value that is less than @len.  On failure, return a negative
1550  * errno value.
1551  *
1552  * Because it only works with RAM, this function can be used for
1553  * read-modify-write operations.  In this case, is_write should be %true.
1554  *
1555  * Note that addresses passed to the address_space_*_cached functions
1556  * are relative to @addr.
1557  */
1558 int64_t address_space_cache_init(MemoryRegionCache *cache,
1559                                  AddressSpace *as,
1560                                  hwaddr addr,
1561                                  hwaddr len,
1562                                  bool is_write);
1563 
1564 /**
1565  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1566  *
1567  * @cache: The #MemoryRegionCache to operate on.
1568  * @addr: The first physical address that was written, relative to the
1569  * address that was passed to @address_space_cache_init.
1570  * @access_len: The number of bytes that were written starting at @addr.
1571  */
1572 void address_space_cache_invalidate(MemoryRegionCache *cache,
1573                                     hwaddr addr,
1574                                     hwaddr access_len);
1575 
1576 /**
1577  * address_space_cache_destroy: free a #MemoryRegionCache
1578  *
1579  * @cache: The #MemoryRegionCache whose memory should be released.
1580  */
1581 void address_space_cache_destroy(MemoryRegionCache *cache);
1582 
1583 /* address_space_ld*_cached: load from a cached #MemoryRegion
1584  * address_space_st*_cached: store into a cached #MemoryRegion
1585  *
1586  * These functions perform a load or store of the byte, word,
1587  * longword or quad to the specified address.  The address is
1588  * a physical address in the AddressSpace, but it must lie within
1589  * a #MemoryRegion that was mapped with address_space_cache_init.
1590  *
1591  * The _le suffixed functions treat the data as little endian;
1592  * _be indicates big endian; no suffix indicates "same endianness
1593  * as guest CPU".
1594  *
1595  * The "guest CPU endianness" accessors are deprecated for use outside
1596  * target-* code; devices should be CPU-agnostic and use either the LE
1597  * or the BE accessors.
1598  *
1599  * @cache: previously initialized #MemoryRegionCache to be accessed
1600  * @addr: address within the address space
1601  * @val: data value, for stores
1602  * @attrs: memory transaction attributes
1603  * @result: location to write the success/failure of the transaction;
1604  *   if NULL, this information is discarded
1605  */
1606 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1607                             MemTxAttrs attrs, MemTxResult *result);
1608 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1609                             MemTxAttrs attrs, MemTxResult *result);
1610 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1611                             MemTxAttrs attrs, MemTxResult *result);
1612 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1613                             MemTxAttrs attrs, MemTxResult *result);
1614 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1615                             MemTxAttrs attrs, MemTxResult *result);
1616 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1617                             MemTxAttrs attrs, MemTxResult *result);
1618 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1619                             MemTxAttrs attrs, MemTxResult *result);
1620 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1621                             MemTxAttrs attrs, MemTxResult *result);
1622 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1623                             MemTxAttrs attrs, MemTxResult *result);
1624 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1625                             MemTxAttrs attrs, MemTxResult *result);
1626 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1627                             MemTxAttrs attrs, MemTxResult *result);
1628 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1629                             MemTxAttrs attrs, MemTxResult *result);
1630 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1631                             MemTxAttrs attrs, MemTxResult *result);
1632 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1633                             MemTxAttrs attrs, MemTxResult *result);
1634 
1635 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1636 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1637 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1638 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1639 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1640 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1641 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1642 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1643 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1644 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1645 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1646 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1647 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1648 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1649 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1650  * entry. Should be called from an RCU critical section.
1651  */
1652 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1653                                             bool is_write);
1654 
1655 /* address_space_translate: translate an address range into an address space
1656  * into a MemoryRegion and an address range into that section.  Should be
1657  * called from an RCU critical section, to avoid that the last reference
1658  * to the returned region disappears after address_space_translate returns.
1659  *
1660  * @as: #AddressSpace to be accessed
1661  * @addr: address within that address space
1662  * @xlat: pointer to address within the returned memory region section's
1663  * #MemoryRegion.
1664  * @len: pointer to length
1665  * @is_write: indicates the transfer direction
1666  */
1667 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1668                                       hwaddr *xlat, hwaddr *len,
1669                                       bool is_write);
1670 
1671 /* address_space_access_valid: check for validity of accessing an address
1672  * space range
1673  *
1674  * Check whether memory is assigned to the given address space range, and
1675  * access is permitted by any IOMMU regions that are active for the address
1676  * space.
1677  *
1678  * For now, addr and len should be aligned to a page size.  This limitation
1679  * will be lifted in the future.
1680  *
1681  * @as: #AddressSpace to be accessed
1682  * @addr: address within that address space
1683  * @len: length of the area to be checked
1684  * @is_write: indicates the transfer direction
1685  */
1686 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1687 
1688 /* address_space_map: map a physical memory region into a host virtual address
1689  *
1690  * May map a subset of the requested range, given by and returned in @plen.
1691  * May return %NULL if resources needed to perform the mapping are exhausted.
1692  * Use only for reads OR writes - not for read-modify-write operations.
1693  * Use cpu_register_map_client() to know when retrying the map operation is
1694  * likely to succeed.
1695  *
1696  * @as: #AddressSpace to be accessed
1697  * @addr: address within that address space
1698  * @plen: pointer to length of buffer; updated on return
1699  * @is_write: indicates the transfer direction
1700  */
1701 void *address_space_map(AddressSpace *as, hwaddr addr,
1702                         hwaddr *plen, bool is_write);
1703 
1704 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1705  *
1706  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1707  * the amount of memory that was actually read or written by the caller.
1708  *
1709  * @as: #AddressSpace used
1710  * @addr: address within that address space
1711  * @len: buffer length as returned by address_space_map()
1712  * @access_len: amount of data actually transferred
1713  * @is_write: indicates the transfer direction
1714  */
1715 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1716                          int is_write, hwaddr access_len);
1717 
1718 
1719 /* Internal functions, part of the implementation of address_space_read.  */
1720 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1721                                         MemTxAttrs attrs, uint8_t *buf,
1722                                         int len, hwaddr addr1, hwaddr l,
1723 					MemoryRegion *mr);
1724 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1725                                     MemTxAttrs attrs, uint8_t *buf, int len);
1726 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1727 
1728 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1729 {
1730     if (is_write) {
1731         return memory_region_is_ram(mr) &&
1732                !mr->readonly && !memory_region_is_ram_device(mr);
1733     } else {
1734         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1735                memory_region_is_romd(mr);
1736     }
1737 }
1738 
1739 /**
1740  * address_space_read: read from an address space.
1741  *
1742  * Return a MemTxResult indicating whether the operation succeeded
1743  * or failed (eg unassigned memory, device rejected the transaction,
1744  * IOMMU fault).
1745  *
1746  * @as: #AddressSpace to be accessed
1747  * @addr: address within that address space
1748  * @attrs: memory transaction attributes
1749  * @buf: buffer with the data transferred
1750  */
1751 static inline __attribute__((__always_inline__))
1752 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1753                                uint8_t *buf, int len)
1754 {
1755     MemTxResult result = MEMTX_OK;
1756     hwaddr l, addr1;
1757     void *ptr;
1758     MemoryRegion *mr;
1759 
1760     if (__builtin_constant_p(len)) {
1761         if (len) {
1762             rcu_read_lock();
1763             l = len;
1764             mr = address_space_translate(as, addr, &addr1, &l, false);
1765             if (len == l && memory_access_is_direct(mr, false)) {
1766                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1767                 memcpy(buf, ptr, len);
1768             } else {
1769                 result = address_space_read_continue(as, addr, attrs, buf, len,
1770                                                      addr1, l, mr);
1771             }
1772             rcu_read_unlock();
1773         }
1774     } else {
1775         result = address_space_read_full(as, addr, attrs, buf, len);
1776     }
1777     return result;
1778 }
1779 
1780 /**
1781  * address_space_read_cached: read from a cached RAM region
1782  *
1783  * @cache: Cached region to be addressed
1784  * @addr: address relative to the base of the RAM region
1785  * @buf: buffer with the data transferred
1786  * @len: length of the data transferred
1787  */
1788 static inline void
1789 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1790                           void *buf, int len)
1791 {
1792     assert(addr < cache->len && len <= cache->len - addr);
1793     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1794 }
1795 
1796 /**
1797  * address_space_write_cached: write to a cached RAM region
1798  *
1799  * @cache: Cached region to be addressed
1800  * @addr: address relative to the base of the RAM region
1801  * @buf: buffer with the data transferred
1802  * @len: length of the data transferred
1803  */
1804 static inline void
1805 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1806                            void *buf, int len)
1807 {
1808     assert(addr < cache->len && len <= cache->len - addr);
1809     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1810 }
1811 
1812 #endif
1813 
1814 #endif
1815