1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/ramlist.h" 23 #include "qemu/queue.h" 24 #include "qemu/int128.h" 25 #include "qemu/notify.h" 26 #include "qom/object.h" 27 #include "qemu/rcu.h" 28 #include "hw/qdev-core.h" 29 30 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 31 32 #define MAX_PHYS_ADDR_SPACE_BITS 62 33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 34 35 #define TYPE_MEMORY_REGION "qemu:memory-region" 36 #define MEMORY_REGION(obj) \ 37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 38 39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 40 #define IOMMU_MEMORY_REGION(obj) \ 41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 42 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 44 TYPE_IOMMU_MEMORY_REGION) 45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 47 TYPE_IOMMU_MEMORY_REGION) 48 49 typedef struct MemoryRegionOps MemoryRegionOps; 50 typedef struct MemoryRegionMmio MemoryRegionMmio; 51 52 struct MemoryRegionMmio { 53 CPUReadMemoryFunc *read[3]; 54 CPUWriteMemoryFunc *write[3]; 55 }; 56 57 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 58 59 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 60 typedef enum { 61 IOMMU_NONE = 0, 62 IOMMU_RO = 1, 63 IOMMU_WO = 2, 64 IOMMU_RW = 3, 65 } IOMMUAccessFlags; 66 67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 68 69 struct IOMMUTLBEntry { 70 AddressSpace *target_as; 71 hwaddr iova; 72 hwaddr translated_addr; 73 hwaddr addr_mask; /* 0xfff = 4k translation */ 74 IOMMUAccessFlags perm; 75 }; 76 77 /* 78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 79 * register with one or multiple IOMMU Notifier capability bit(s). 80 */ 81 typedef enum { 82 IOMMU_NOTIFIER_NONE = 0, 83 /* Notify cache invalidations */ 84 IOMMU_NOTIFIER_UNMAP = 0x1, 85 /* Notify entry changes (newly created entries) */ 86 IOMMU_NOTIFIER_MAP = 0x2, 87 } IOMMUNotifierFlag; 88 89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 90 91 struct IOMMUNotifier; 92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 93 IOMMUTLBEntry *data); 94 95 struct IOMMUNotifier { 96 IOMMUNotify notify; 97 IOMMUNotifierFlag notifier_flags; 98 /* Notify for address space range start <= addr <= end */ 99 hwaddr start; 100 hwaddr end; 101 QLIST_ENTRY(IOMMUNotifier) node; 102 }; 103 typedef struct IOMMUNotifier IOMMUNotifier; 104 105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 106 IOMMUNotifierFlag flags, 107 hwaddr start, hwaddr end) 108 { 109 n->notify = fn; 110 n->notifier_flags = flags; 111 n->start = start; 112 n->end = end; 113 } 114 115 /* 116 * Memory region callbacks 117 */ 118 struct MemoryRegionOps { 119 /* Read from the memory region. @addr is relative to @mr; @size is 120 * in bytes. */ 121 uint64_t (*read)(void *opaque, 122 hwaddr addr, 123 unsigned size); 124 /* Write to the memory region. @addr is relative to @mr; @size is 125 * in bytes. */ 126 void (*write)(void *opaque, 127 hwaddr addr, 128 uint64_t data, 129 unsigned size); 130 131 MemTxResult (*read_with_attrs)(void *opaque, 132 hwaddr addr, 133 uint64_t *data, 134 unsigned size, 135 MemTxAttrs attrs); 136 MemTxResult (*write_with_attrs)(void *opaque, 137 hwaddr addr, 138 uint64_t data, 139 unsigned size, 140 MemTxAttrs attrs); 141 /* Instruction execution pre-callback: 142 * @addr is the address of the access relative to the @mr. 143 * @size is the size of the area returned by the callback. 144 * @offset is the location of the pointer inside @mr. 145 * 146 * Returns a pointer to a location which contains guest code. 147 */ 148 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size, 149 unsigned *offset); 150 151 enum device_endian endianness; 152 /* Guest-visible constraints: */ 153 struct { 154 /* If nonzero, specify bounds on access sizes beyond which a machine 155 * check is thrown. 156 */ 157 unsigned min_access_size; 158 unsigned max_access_size; 159 /* If true, unaligned accesses are supported. Otherwise unaligned 160 * accesses throw machine checks. 161 */ 162 bool unaligned; 163 /* 164 * If present, and returns #false, the transaction is not accepted 165 * by the device (and results in machine dependent behaviour such 166 * as a machine check exception). 167 */ 168 bool (*accepts)(void *opaque, hwaddr addr, 169 unsigned size, bool is_write); 170 } valid; 171 /* Internal implementation constraints: */ 172 struct { 173 /* If nonzero, specifies the minimum size implemented. Smaller sizes 174 * will be rounded upwards and a partial result will be returned. 175 */ 176 unsigned min_access_size; 177 /* If nonzero, specifies the maximum size implemented. Larger sizes 178 * will be done as a series of accesses with smaller sizes. 179 */ 180 unsigned max_access_size; 181 /* If true, unaligned accesses are supported. Otherwise all accesses 182 * are converted to (possibly multiple) naturally aligned accesses. 183 */ 184 bool unaligned; 185 } impl; 186 187 /* If .read and .write are not present, old_mmio may be used for 188 * backwards compatibility with old mmio registration 189 */ 190 const MemoryRegionMmio old_mmio; 191 }; 192 193 typedef struct IOMMUMemoryRegionClass { 194 /* private */ 195 struct DeviceClass parent_class; 196 197 /* 198 * Return a TLB entry that contains a given address. Flag should 199 * be the access permission of this translation operation. We can 200 * set flag to IOMMU_NONE to mean that we don't need any 201 * read/write permission checks, like, when for region replay. 202 */ 203 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 204 IOMMUAccessFlags flag); 205 /* Returns minimum supported page size */ 206 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 207 /* Called when IOMMU Notifier flag changed */ 208 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 209 IOMMUNotifierFlag old_flags, 210 IOMMUNotifierFlag new_flags); 211 /* Set this up to provide customized IOMMU replay function */ 212 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 213 } IOMMUMemoryRegionClass; 214 215 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 216 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 217 218 struct MemoryRegion { 219 Object parent_obj; 220 221 /* All fields are private - violators will be prosecuted */ 222 223 /* The following fields should fit in a cache line */ 224 bool romd_mode; 225 bool ram; 226 bool subpage; 227 bool readonly; /* For RAM regions */ 228 bool rom_device; 229 bool flush_coalesced_mmio; 230 bool global_locking; 231 uint8_t dirty_log_mask; 232 bool is_iommu; 233 RAMBlock *ram_block; 234 Object *owner; 235 236 const MemoryRegionOps *ops; 237 void *opaque; 238 MemoryRegion *container; 239 Int128 size; 240 hwaddr addr; 241 void (*destructor)(MemoryRegion *mr); 242 uint64_t align; 243 bool terminates; 244 bool ram_device; 245 bool enabled; 246 bool warning_printed; /* For reservations */ 247 uint8_t vga_logging_count; 248 MemoryRegion *alias; 249 hwaddr alias_offset; 250 int32_t priority; 251 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 252 QTAILQ_ENTRY(MemoryRegion) subregions_link; 253 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 254 const char *name; 255 unsigned ioeventfd_nb; 256 MemoryRegionIoeventfd *ioeventfds; 257 }; 258 259 struct IOMMUMemoryRegion { 260 MemoryRegion parent_obj; 261 262 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 263 IOMMUNotifierFlag iommu_notify_flags; 264 }; 265 266 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 267 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 268 269 /** 270 * MemoryListener: callbacks structure for updates to the physical memory map 271 * 272 * Allows a component to adjust to changes in the guest-visible memory map. 273 * Use with memory_listener_register() and memory_listener_unregister(). 274 */ 275 struct MemoryListener { 276 void (*begin)(MemoryListener *listener); 277 void (*commit)(MemoryListener *listener); 278 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 279 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 280 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 281 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 282 int old, int new); 283 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 284 int old, int new); 285 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 286 void (*log_global_start)(MemoryListener *listener); 287 void (*log_global_stop)(MemoryListener *listener); 288 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 289 bool match_data, uint64_t data, EventNotifier *e); 290 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 291 bool match_data, uint64_t data, EventNotifier *e); 292 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 293 hwaddr addr, hwaddr len); 294 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 295 hwaddr addr, hwaddr len); 296 /* Lower = earlier (during add), later (during del) */ 297 unsigned priority; 298 AddressSpace *address_space; 299 QTAILQ_ENTRY(MemoryListener) link; 300 QTAILQ_ENTRY(MemoryListener) link_as; 301 }; 302 303 /** 304 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 305 */ 306 struct AddressSpace { 307 /* All fields are private. */ 308 struct rcu_head rcu; 309 char *name; 310 MemoryRegion *root; 311 312 /* Accessed via RCU. */ 313 struct FlatView *current_map; 314 315 int ioeventfd_nb; 316 struct MemoryRegionIoeventfd *ioeventfds; 317 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 318 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 319 }; 320 321 FlatView *address_space_to_flatview(AddressSpace *as); 322 323 /** 324 * MemoryRegionSection: describes a fragment of a #MemoryRegion 325 * 326 * @mr: the region, or %NULL if empty 327 * @address_space: the address space the region is mapped in 328 * @offset_within_region: the beginning of the section, relative to @mr's start 329 * @size: the size of the section; will not exceed @mr's boundaries 330 * @offset_within_address_space: the address of the first byte of the section 331 * relative to the region's address space 332 * @readonly: writes to this section are ignored 333 */ 334 struct MemoryRegionSection { 335 MemoryRegion *mr; 336 FlatView *fv; 337 hwaddr offset_within_region; 338 Int128 size; 339 hwaddr offset_within_address_space; 340 bool readonly; 341 }; 342 343 /** 344 * memory_region_init: Initialize a memory region 345 * 346 * The region typically acts as a container for other memory regions. Use 347 * memory_region_add_subregion() to add subregions. 348 * 349 * @mr: the #MemoryRegion to be initialized 350 * @owner: the object that tracks the region's reference count 351 * @name: used for debugging; not visible to the user or ABI 352 * @size: size of the region; any subregions beyond this size will be clipped 353 */ 354 void memory_region_init(MemoryRegion *mr, 355 struct Object *owner, 356 const char *name, 357 uint64_t size); 358 359 /** 360 * memory_region_ref: Add 1 to a memory region's reference count 361 * 362 * Whenever memory regions are accessed outside the BQL, they need to be 363 * preserved against hot-unplug. MemoryRegions actually do not have their 364 * own reference count; they piggyback on a QOM object, their "owner". 365 * This function adds a reference to the owner. 366 * 367 * All MemoryRegions must have an owner if they can disappear, even if the 368 * device they belong to operates exclusively under the BQL. This is because 369 * the region could be returned at any time by memory_region_find, and this 370 * is usually under guest control. 371 * 372 * @mr: the #MemoryRegion 373 */ 374 void memory_region_ref(MemoryRegion *mr); 375 376 /** 377 * memory_region_unref: Remove 1 to a memory region's reference count 378 * 379 * Whenever memory regions are accessed outside the BQL, they need to be 380 * preserved against hot-unplug. MemoryRegions actually do not have their 381 * own reference count; they piggyback on a QOM object, their "owner". 382 * This function removes a reference to the owner and possibly destroys it. 383 * 384 * @mr: the #MemoryRegion 385 */ 386 void memory_region_unref(MemoryRegion *mr); 387 388 /** 389 * memory_region_init_io: Initialize an I/O memory region. 390 * 391 * Accesses into the region will cause the callbacks in @ops to be called. 392 * if @size is nonzero, subregions will be clipped to @size. 393 * 394 * @mr: the #MemoryRegion to be initialized. 395 * @owner: the object that tracks the region's reference count 396 * @ops: a structure containing read and write callbacks to be used when 397 * I/O is performed on the region. 398 * @opaque: passed to the read and write callbacks of the @ops structure. 399 * @name: used for debugging; not visible to the user or ABI 400 * @size: size of the region. 401 */ 402 void memory_region_init_io(MemoryRegion *mr, 403 struct Object *owner, 404 const MemoryRegionOps *ops, 405 void *opaque, 406 const char *name, 407 uint64_t size); 408 409 /** 410 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 411 * into the region will modify memory 412 * directly. 413 * 414 * @mr: the #MemoryRegion to be initialized. 415 * @owner: the object that tracks the region's reference count 416 * @name: Region name, becomes part of RAMBlock name used in migration stream 417 * must be unique within any device 418 * @size: size of the region. 419 * @errp: pointer to Error*, to store an error if it happens. 420 * 421 * Note that this function does not do anything to cause the data in the 422 * RAM memory region to be migrated; that is the responsibility of the caller. 423 */ 424 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 425 struct Object *owner, 426 const char *name, 427 uint64_t size, 428 Error **errp); 429 430 /** 431 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 432 * RAM. Accesses into the region will 433 * modify memory directly. Only an initial 434 * portion of this RAM is actually used. 435 * The used size can change across reboots. 436 * 437 * @mr: the #MemoryRegion to be initialized. 438 * @owner: the object that tracks the region's reference count 439 * @name: Region name, becomes part of RAMBlock name used in migration stream 440 * must be unique within any device 441 * @size: used size of the region. 442 * @max_size: max size of the region. 443 * @resized: callback to notify owner about used size change. 444 * @errp: pointer to Error*, to store an error if it happens. 445 * 446 * Note that this function does not do anything to cause the data in the 447 * RAM memory region to be migrated; that is the responsibility of the caller. 448 */ 449 void memory_region_init_resizeable_ram(MemoryRegion *mr, 450 struct Object *owner, 451 const char *name, 452 uint64_t size, 453 uint64_t max_size, 454 void (*resized)(const char*, 455 uint64_t length, 456 void *host), 457 Error **errp); 458 #ifdef __linux__ 459 /** 460 * memory_region_init_ram_from_file: Initialize RAM memory region with a 461 * mmap-ed backend. 462 * 463 * @mr: the #MemoryRegion to be initialized. 464 * @owner: the object that tracks the region's reference count 465 * @name: Region name, becomes part of RAMBlock name used in migration stream 466 * must be unique within any device 467 * @size: size of the region. 468 * @align: alignment of the region base address; if 0, the default alignment 469 * (getpagesize()) will be used. 470 * @share: %true if memory must be mmaped with the MAP_SHARED flag 471 * @path: the path in which to allocate the RAM. 472 * @errp: pointer to Error*, to store an error if it happens. 473 * 474 * Note that this function does not do anything to cause the data in the 475 * RAM memory region to be migrated; that is the responsibility of the caller. 476 */ 477 void memory_region_init_ram_from_file(MemoryRegion *mr, 478 struct Object *owner, 479 const char *name, 480 uint64_t size, 481 uint64_t align, 482 bool share, 483 const char *path, 484 Error **errp); 485 486 /** 487 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 488 * mmap-ed backend. 489 * 490 * @mr: the #MemoryRegion to be initialized. 491 * @owner: the object that tracks the region's reference count 492 * @name: the name of the region. 493 * @size: size of the region. 494 * @share: %true if memory must be mmaped with the MAP_SHARED flag 495 * @fd: the fd to mmap. 496 * @errp: pointer to Error*, to store an error if it happens. 497 * 498 * Note that this function does not do anything to cause the data in the 499 * RAM memory region to be migrated; that is the responsibility of the caller. 500 */ 501 void memory_region_init_ram_from_fd(MemoryRegion *mr, 502 struct Object *owner, 503 const char *name, 504 uint64_t size, 505 bool share, 506 int fd, 507 Error **errp); 508 #endif 509 510 /** 511 * memory_region_init_ram_ptr: Initialize RAM memory region from a 512 * user-provided pointer. Accesses into the 513 * region will modify memory directly. 514 * 515 * @mr: the #MemoryRegion to be initialized. 516 * @owner: the object that tracks the region's reference count 517 * @name: Region name, becomes part of RAMBlock name used in migration stream 518 * must be unique within any device 519 * @size: size of the region. 520 * @ptr: memory to be mapped; must contain at least @size bytes. 521 * 522 * Note that this function does not do anything to cause the data in the 523 * RAM memory region to be migrated; that is the responsibility of the caller. 524 */ 525 void memory_region_init_ram_ptr(MemoryRegion *mr, 526 struct Object *owner, 527 const char *name, 528 uint64_t size, 529 void *ptr); 530 531 /** 532 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 533 * a user-provided pointer. 534 * 535 * A RAM device represents a mapping to a physical device, such as to a PCI 536 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 537 * into the VM address space and access to the region will modify memory 538 * directly. However, the memory region should not be included in a memory 539 * dump (device may not be enabled/mapped at the time of the dump), and 540 * operations incompatible with manipulating MMIO should be avoided. Replaces 541 * skip_dump flag. 542 * 543 * @mr: the #MemoryRegion to be initialized. 544 * @owner: the object that tracks the region's reference count 545 * @name: the name of the region. 546 * @size: size of the region. 547 * @ptr: memory to be mapped; must contain at least @size bytes. 548 * 549 * Note that this function does not do anything to cause the data in the 550 * RAM memory region to be migrated; that is the responsibility of the caller. 551 * (For RAM device memory regions, migrating the contents rarely makes sense.) 552 */ 553 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 554 struct Object *owner, 555 const char *name, 556 uint64_t size, 557 void *ptr); 558 559 /** 560 * memory_region_init_alias: Initialize a memory region that aliases all or a 561 * part of another memory region. 562 * 563 * @mr: the #MemoryRegion to be initialized. 564 * @owner: the object that tracks the region's reference count 565 * @name: used for debugging; not visible to the user or ABI 566 * @orig: the region to be referenced; @mr will be equivalent to 567 * @orig between @offset and @offset + @size - 1. 568 * @offset: start of the section in @orig to be referenced. 569 * @size: size of the region. 570 */ 571 void memory_region_init_alias(MemoryRegion *mr, 572 struct Object *owner, 573 const char *name, 574 MemoryRegion *orig, 575 hwaddr offset, 576 uint64_t size); 577 578 /** 579 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 580 * 581 * This has the same effect as calling memory_region_init_ram_nomigrate() 582 * and then marking the resulting region read-only with 583 * memory_region_set_readonly(). 584 * 585 * Note that this function does not do anything to cause the data in the 586 * RAM side of the memory region to be migrated; that is the responsibility 587 * of the caller. 588 * 589 * @mr: the #MemoryRegion to be initialized. 590 * @owner: the object that tracks the region's reference count 591 * @name: Region name, becomes part of RAMBlock name used in migration stream 592 * must be unique within any device 593 * @size: size of the region. 594 * @errp: pointer to Error*, to store an error if it happens. 595 */ 596 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 597 struct Object *owner, 598 const char *name, 599 uint64_t size, 600 Error **errp); 601 602 /** 603 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 604 * Writes are handled via callbacks. 605 * 606 * Note that this function does not do anything to cause the data in the 607 * RAM side of the memory region to be migrated; that is the responsibility 608 * of the caller. 609 * 610 * @mr: the #MemoryRegion to be initialized. 611 * @owner: the object that tracks the region's reference count 612 * @ops: callbacks for write access handling (must not be NULL). 613 * @name: Region name, becomes part of RAMBlock name used in migration stream 614 * must be unique within any device 615 * @size: size of the region. 616 * @errp: pointer to Error*, to store an error if it happens. 617 */ 618 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 619 struct Object *owner, 620 const MemoryRegionOps *ops, 621 void *opaque, 622 const char *name, 623 uint64_t size, 624 Error **errp); 625 626 /** 627 * memory_region_init_reservation: Initialize a memory region that reserves 628 * I/O space. 629 * 630 * A reservation region primariy serves debugging purposes. It claims I/O 631 * space that is not supposed to be handled by QEMU itself. Any access via 632 * the memory API will cause an abort(). 633 * This function is deprecated. Use memory_region_init_io() with NULL 634 * callbacks instead. 635 * 636 * @mr: the #MemoryRegion to be initialized 637 * @owner: the object that tracks the region's reference count 638 * @name: used for debugging; not visible to the user or ABI 639 * @size: size of the region. 640 */ 641 static inline void memory_region_init_reservation(MemoryRegion *mr, 642 Object *owner, 643 const char *name, 644 uint64_t size) 645 { 646 memory_region_init_io(mr, owner, NULL, mr, name, size); 647 } 648 649 /** 650 * memory_region_init_iommu: Initialize a memory region of a custom type 651 * that translates addresses 652 * 653 * An IOMMU region translates addresses and forwards accesses to a target 654 * memory region. 655 * 656 * @typename: QOM class name 657 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 658 * @instance_size: the IOMMUMemoryRegion subclass instance size 659 * @owner: the object that tracks the region's reference count 660 * @ops: a function that translates addresses into the @target region 661 * @name: used for debugging; not visible to the user or ABI 662 * @size: size of the region. 663 */ 664 void memory_region_init_iommu(void *_iommu_mr, 665 size_t instance_size, 666 const char *mrtypename, 667 Object *owner, 668 const char *name, 669 uint64_t size); 670 671 /** 672 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 673 * region will modify memory directly. 674 * 675 * @mr: the #MemoryRegion to be initialized 676 * @owner: the object that tracks the region's reference count (must be 677 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 678 * @name: name of the memory region 679 * @size: size of the region in bytes 680 * @errp: pointer to Error*, to store an error if it happens. 681 * 682 * This function allocates RAM for a board model or device, and 683 * arranges for it to be migrated (by calling vmstate_register_ram() 684 * if @owner is a DeviceState, or vmstate_register_ram_global() if 685 * @owner is NULL). 686 * 687 * TODO: Currently we restrict @owner to being either NULL (for 688 * global RAM regions with no owner) or devices, so that we can 689 * give the RAM block a unique name for migration purposes. 690 * We should lift this restriction and allow arbitrary Objects. 691 * If you pass a non-NULL non-device @owner then we will assert. 692 */ 693 void memory_region_init_ram(MemoryRegion *mr, 694 struct Object *owner, 695 const char *name, 696 uint64_t size, 697 Error **errp); 698 699 /** 700 * memory_region_init_rom: Initialize a ROM memory region. 701 * 702 * This has the same effect as calling memory_region_init_ram() 703 * and then marking the resulting region read-only with 704 * memory_region_set_readonly(). This includes arranging for the 705 * contents to be migrated. 706 * 707 * TODO: Currently we restrict @owner to being either NULL (for 708 * global RAM regions with no owner) or devices, so that we can 709 * give the RAM block a unique name for migration purposes. 710 * We should lift this restriction and allow arbitrary Objects. 711 * If you pass a non-NULL non-device @owner then we will assert. 712 * 713 * @mr: the #MemoryRegion to be initialized. 714 * @owner: the object that tracks the region's reference count 715 * @name: Region name, becomes part of RAMBlock name used in migration stream 716 * must be unique within any device 717 * @size: size of the region. 718 * @errp: pointer to Error*, to store an error if it happens. 719 */ 720 void memory_region_init_rom(MemoryRegion *mr, 721 struct Object *owner, 722 const char *name, 723 uint64_t size, 724 Error **errp); 725 726 /** 727 * memory_region_init_rom_device: Initialize a ROM memory region. 728 * Writes are handled via callbacks. 729 * 730 * This function initializes a memory region backed by RAM for reads 731 * and callbacks for writes, and arranges for the RAM backing to 732 * be migrated (by calling vmstate_register_ram() 733 * if @owner is a DeviceState, or vmstate_register_ram_global() if 734 * @owner is NULL). 735 * 736 * TODO: Currently we restrict @owner to being either NULL (for 737 * global RAM regions with no owner) or devices, so that we can 738 * give the RAM block a unique name for migration purposes. 739 * We should lift this restriction and allow arbitrary Objects. 740 * If you pass a non-NULL non-device @owner then we will assert. 741 * 742 * @mr: the #MemoryRegion to be initialized. 743 * @owner: the object that tracks the region's reference count 744 * @ops: callbacks for write access handling (must not be NULL). 745 * @name: Region name, becomes part of RAMBlock name used in migration stream 746 * must be unique within any device 747 * @size: size of the region. 748 * @errp: pointer to Error*, to store an error if it happens. 749 */ 750 void memory_region_init_rom_device(MemoryRegion *mr, 751 struct Object *owner, 752 const MemoryRegionOps *ops, 753 void *opaque, 754 const char *name, 755 uint64_t size, 756 Error **errp); 757 758 759 /** 760 * memory_region_owner: get a memory region's owner. 761 * 762 * @mr: the memory region being queried. 763 */ 764 struct Object *memory_region_owner(MemoryRegion *mr); 765 766 /** 767 * memory_region_size: get a memory region's size. 768 * 769 * @mr: the memory region being queried. 770 */ 771 uint64_t memory_region_size(MemoryRegion *mr); 772 773 /** 774 * memory_region_is_ram: check whether a memory region is random access 775 * 776 * Returns %true is a memory region is random access. 777 * 778 * @mr: the memory region being queried 779 */ 780 static inline bool memory_region_is_ram(MemoryRegion *mr) 781 { 782 return mr->ram; 783 } 784 785 /** 786 * memory_region_is_ram_device: check whether a memory region is a ram device 787 * 788 * Returns %true is a memory region is a device backed ram region 789 * 790 * @mr: the memory region being queried 791 */ 792 bool memory_region_is_ram_device(MemoryRegion *mr); 793 794 /** 795 * memory_region_is_romd: check whether a memory region is in ROMD mode 796 * 797 * Returns %true if a memory region is a ROM device and currently set to allow 798 * direct reads. 799 * 800 * @mr: the memory region being queried 801 */ 802 static inline bool memory_region_is_romd(MemoryRegion *mr) 803 { 804 return mr->rom_device && mr->romd_mode; 805 } 806 807 /** 808 * memory_region_get_iommu: check whether a memory region is an iommu 809 * 810 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 811 * otherwise NULL. 812 * 813 * @mr: the memory region being queried 814 */ 815 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 816 { 817 if (mr->alias) { 818 return memory_region_get_iommu(mr->alias); 819 } 820 if (mr->is_iommu) { 821 return (IOMMUMemoryRegion *) mr; 822 } 823 return NULL; 824 } 825 826 /** 827 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 828 * if an iommu or NULL if not 829 * 830 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu, 831 * otherwise NULL. This is fast path avoinding QOM checking, use with caution. 832 * 833 * @mr: the memory region being queried 834 */ 835 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 836 IOMMUMemoryRegion *iommu_mr) 837 { 838 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 839 } 840 841 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 842 843 /** 844 * memory_region_iommu_get_min_page_size: get minimum supported page size 845 * for an iommu 846 * 847 * Returns minimum supported page size for an iommu. 848 * 849 * @iommu_mr: the memory region being queried 850 */ 851 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 852 853 /** 854 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 855 * 856 * The notification type will be decided by entry.perm bits: 857 * 858 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 859 * - For MAP (newly added entry) notifies: set entry.perm to the 860 * permission of the page (which is definitely !IOMMU_NONE). 861 * 862 * Note: for any IOMMU implementation, an in-place mapping change 863 * should be notified with an UNMAP followed by a MAP. 864 * 865 * @iommu_mr: the memory region that was changed 866 * @entry: the new entry in the IOMMU translation table. The entry 867 * replaces all old entries for the same virtual I/O address range. 868 * Deleted entries have .@perm == 0. 869 */ 870 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 871 IOMMUTLBEntry entry); 872 873 /** 874 * memory_region_notify_one: notify a change in an IOMMU translation 875 * entry to a single notifier 876 * 877 * This works just like memory_region_notify_iommu(), but it only 878 * notifies a specific notifier, not all of them. 879 * 880 * @notifier: the notifier to be notified 881 * @entry: the new entry in the IOMMU translation table. The entry 882 * replaces all old entries for the same virtual I/O address range. 883 * Deleted entries have .@perm == 0. 884 */ 885 void memory_region_notify_one(IOMMUNotifier *notifier, 886 IOMMUTLBEntry *entry); 887 888 /** 889 * memory_region_register_iommu_notifier: register a notifier for changes to 890 * IOMMU translation entries. 891 * 892 * @mr: the memory region to observe 893 * @n: the IOMMUNotifier to be added; the notify callback receives a 894 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 895 * ceases to be valid on exit from the notifier. 896 */ 897 void memory_region_register_iommu_notifier(MemoryRegion *mr, 898 IOMMUNotifier *n); 899 900 /** 901 * memory_region_iommu_replay: replay existing IOMMU translations to 902 * a notifier with the minimum page granularity returned by 903 * mr->iommu_ops->get_page_size(). 904 * 905 * @iommu_mr: the memory region to observe 906 * @n: the notifier to which to replay iommu mappings 907 */ 908 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 909 910 /** 911 * memory_region_iommu_replay_all: replay existing IOMMU translations 912 * to all the notifiers registered. 913 * 914 * @iommu_mr: the memory region to observe 915 */ 916 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 917 918 /** 919 * memory_region_unregister_iommu_notifier: unregister a notifier for 920 * changes to IOMMU translation entries. 921 * 922 * @mr: the memory region which was observed and for which notity_stopped() 923 * needs to be called 924 * @n: the notifier to be removed. 925 */ 926 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 927 IOMMUNotifier *n); 928 929 /** 930 * memory_region_name: get a memory region's name 931 * 932 * Returns the string that was used to initialize the memory region. 933 * 934 * @mr: the memory region being queried 935 */ 936 const char *memory_region_name(const MemoryRegion *mr); 937 938 /** 939 * memory_region_is_logging: return whether a memory region is logging writes 940 * 941 * Returns %true if the memory region is logging writes for the given client 942 * 943 * @mr: the memory region being queried 944 * @client: the client being queried 945 */ 946 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 947 948 /** 949 * memory_region_get_dirty_log_mask: return the clients for which a 950 * memory region is logging writes. 951 * 952 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 953 * are the bit indices. 954 * 955 * @mr: the memory region being queried 956 */ 957 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 958 959 /** 960 * memory_region_is_rom: check whether a memory region is ROM 961 * 962 * Returns %true is a memory region is read-only memory. 963 * 964 * @mr: the memory region being queried 965 */ 966 static inline bool memory_region_is_rom(MemoryRegion *mr) 967 { 968 return mr->ram && mr->readonly; 969 } 970 971 972 /** 973 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 974 * 975 * Returns a file descriptor backing a file-based RAM memory region, 976 * or -1 if the region is not a file-based RAM memory region. 977 * 978 * @mr: the RAM or alias memory region being queried. 979 */ 980 int memory_region_get_fd(MemoryRegion *mr); 981 982 /** 983 * memory_region_from_host: Convert a pointer into a RAM memory region 984 * and an offset within it. 985 * 986 * Given a host pointer inside a RAM memory region (created with 987 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 988 * the MemoryRegion and the offset within it. 989 * 990 * Use with care; by the time this function returns, the returned pointer is 991 * not protected by RCU anymore. If the caller is not within an RCU critical 992 * section and does not hold the iothread lock, it must have other means of 993 * protecting the pointer, such as a reference to the region that includes 994 * the incoming ram_addr_t. 995 * 996 * @mr: the memory region being queried. 997 */ 998 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 999 1000 /** 1001 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1002 * 1003 * Returns a host pointer to a RAM memory region (created with 1004 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1005 * 1006 * Use with care; by the time this function returns, the returned pointer is 1007 * not protected by RCU anymore. If the caller is not within an RCU critical 1008 * section and does not hold the iothread lock, it must have other means of 1009 * protecting the pointer, such as a reference to the region that includes 1010 * the incoming ram_addr_t. 1011 * 1012 * @mr: the memory region being queried. 1013 */ 1014 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1015 1016 /* memory_region_ram_resize: Resize a RAM region. 1017 * 1018 * Only legal before guest might have detected the memory size: e.g. on 1019 * incoming migration, or right after reset. 1020 * 1021 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1022 * @newsize: the new size the region 1023 * @errp: pointer to Error*, to store an error if it happens. 1024 */ 1025 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1026 Error **errp); 1027 1028 /** 1029 * memory_region_set_log: Turn dirty logging on or off for a region. 1030 * 1031 * Turns dirty logging on or off for a specified client (display, migration). 1032 * Only meaningful for RAM regions. 1033 * 1034 * @mr: the memory region being updated. 1035 * @log: whether dirty logging is to be enabled or disabled. 1036 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1037 */ 1038 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1039 1040 /** 1041 * memory_region_get_dirty: Check whether a range of bytes is dirty 1042 * for a specified client. 1043 * 1044 * Checks whether a range of bytes has been written to since the last 1045 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1046 * must be enabled. 1047 * 1048 * @mr: the memory region being queried. 1049 * @addr: the address (relative to the start of the region) being queried. 1050 * @size: the size of the range being queried. 1051 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1052 * %DIRTY_MEMORY_VGA. 1053 */ 1054 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 1055 hwaddr size, unsigned client); 1056 1057 /** 1058 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1059 * 1060 * Marks a range of bytes as dirty, after it has been dirtied outside 1061 * guest code. 1062 * 1063 * @mr: the memory region being dirtied. 1064 * @addr: the address (relative to the start of the region) being dirtied. 1065 * @size: size of the range being dirtied. 1066 */ 1067 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1068 hwaddr size); 1069 1070 /** 1071 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 1072 * for a specified client. It clears them. 1073 * 1074 * Checks whether a range of bytes has been written to since the last 1075 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1076 * must be enabled. 1077 * 1078 * @mr: the memory region being queried. 1079 * @addr: the address (relative to the start of the region) being queried. 1080 * @size: the size of the range being queried. 1081 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1082 * %DIRTY_MEMORY_VGA. 1083 */ 1084 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 1085 hwaddr size, unsigned client); 1086 1087 /** 1088 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1089 * bitmap and clear it. 1090 * 1091 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1092 * returns the snapshot. The snapshot can then be used to query dirty 1093 * status, using memory_region_snapshot_get_dirty. Unlike 1094 * memory_region_test_and_clear_dirty this allows to query the same 1095 * page multiple times, which is especially useful for display updates 1096 * where the scanlines often are not page aligned. 1097 * 1098 * The dirty bitmap region which gets copyed into the snapshot (and 1099 * cleared afterwards) can be larger than requested. The boundaries 1100 * are rounded up/down so complete bitmap longs (covering 64 pages on 1101 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1102 * isn't a problem for display updates as the extra pages are outside 1103 * the visible area, and in case the visible area changes a full 1104 * display redraw is due anyway. Should other use cases for this 1105 * function emerge we might have to revisit this implementation 1106 * detail. 1107 * 1108 * Use g_free to release DirtyBitmapSnapshot. 1109 * 1110 * @mr: the memory region being queried. 1111 * @addr: the address (relative to the start of the region) being queried. 1112 * @size: the size of the range being queried. 1113 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1114 */ 1115 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1116 hwaddr addr, 1117 hwaddr size, 1118 unsigned client); 1119 1120 /** 1121 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1122 * in the specified dirty bitmap snapshot. 1123 * 1124 * @mr: the memory region being queried. 1125 * @snap: the dirty bitmap snapshot 1126 * @addr: the address (relative to the start of the region) being queried. 1127 * @size: the size of the range being queried. 1128 */ 1129 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1130 DirtyBitmapSnapshot *snap, 1131 hwaddr addr, hwaddr size); 1132 1133 /** 1134 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 1135 * any external TLBs (e.g. kvm) 1136 * 1137 * Flushes dirty information from accelerators such as kvm and vhost-net 1138 * and makes it available to users of the memory API. 1139 * 1140 * @mr: the region being flushed. 1141 */ 1142 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 1143 1144 /** 1145 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1146 * client. 1147 * 1148 * Marks a range of pages as no longer dirty. 1149 * 1150 * @mr: the region being updated. 1151 * @addr: the start of the subrange being cleaned. 1152 * @size: the size of the subrange being cleaned. 1153 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1154 * %DIRTY_MEMORY_VGA. 1155 */ 1156 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1157 hwaddr size, unsigned client); 1158 1159 /** 1160 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1161 * 1162 * Allows a memory region to be marked as read-only (turning it into a ROM). 1163 * only useful on RAM regions. 1164 * 1165 * @mr: the region being updated. 1166 * @readonly: whether rhe region is to be ROM or RAM. 1167 */ 1168 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1169 1170 /** 1171 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1172 * 1173 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1174 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1175 * device is mapped to guest memory and satisfies read access directly. 1176 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1177 * Writes are always handled by the #MemoryRegion.write function. 1178 * 1179 * @mr: the memory region to be updated 1180 * @romd_mode: %true to put the region into ROMD mode 1181 */ 1182 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1183 1184 /** 1185 * memory_region_set_coalescing: Enable memory coalescing for the region. 1186 * 1187 * Enabled writes to a region to be queued for later processing. MMIO ->write 1188 * callbacks may be delayed until a non-coalesced MMIO is issued. 1189 * Only useful for IO regions. Roughly similar to write-combining hardware. 1190 * 1191 * @mr: the memory region to be write coalesced 1192 */ 1193 void memory_region_set_coalescing(MemoryRegion *mr); 1194 1195 /** 1196 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1197 * a region. 1198 * 1199 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1200 * Multiple calls can be issued coalesced disjoint ranges. 1201 * 1202 * @mr: the memory region to be updated. 1203 * @offset: the start of the range within the region to be coalesced. 1204 * @size: the size of the subrange to be coalesced. 1205 */ 1206 void memory_region_add_coalescing(MemoryRegion *mr, 1207 hwaddr offset, 1208 uint64_t size); 1209 1210 /** 1211 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1212 * 1213 * Disables any coalescing caused by memory_region_set_coalescing() or 1214 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1215 * hardware. 1216 * 1217 * @mr: the memory region to be updated. 1218 */ 1219 void memory_region_clear_coalescing(MemoryRegion *mr); 1220 1221 /** 1222 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1223 * accesses. 1224 * 1225 * Ensure that pending coalesced MMIO request are flushed before the memory 1226 * region is accessed. This property is automatically enabled for all regions 1227 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1228 * 1229 * @mr: the memory region to be updated. 1230 */ 1231 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1232 1233 /** 1234 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1235 * accesses. 1236 * 1237 * Clear the automatic coalesced MMIO flushing enabled via 1238 * memory_region_set_flush_coalesced. Note that this service has no effect on 1239 * memory regions that have MMIO coalescing enabled for themselves. For them, 1240 * automatic flushing will stop once coalescing is disabled. 1241 * 1242 * @mr: the memory region to be updated. 1243 */ 1244 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1245 1246 /** 1247 * memory_region_clear_global_locking: Declares that access processing does 1248 * not depend on the QEMU global lock. 1249 * 1250 * By clearing this property, accesses to the memory region will be processed 1251 * outside of QEMU's global lock (unless the lock is held on when issuing the 1252 * access request). In this case, the device model implementing the access 1253 * handlers is responsible for synchronization of concurrency. 1254 * 1255 * @mr: the memory region to be updated. 1256 */ 1257 void memory_region_clear_global_locking(MemoryRegion *mr); 1258 1259 /** 1260 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1261 * is written to a location. 1262 * 1263 * Marks a word in an IO region (initialized with memory_region_init_io()) 1264 * as a trigger for an eventfd event. The I/O callback will not be called. 1265 * The caller must be prepared to handle failure (that is, take the required 1266 * action if the callback _is_ called). 1267 * 1268 * @mr: the memory region being updated. 1269 * @addr: the address within @mr that is to be monitored 1270 * @size: the size of the access to trigger the eventfd 1271 * @match_data: whether to match against @data, instead of just @addr 1272 * @data: the data to match against the guest write 1273 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1274 **/ 1275 void memory_region_add_eventfd(MemoryRegion *mr, 1276 hwaddr addr, 1277 unsigned size, 1278 bool match_data, 1279 uint64_t data, 1280 EventNotifier *e); 1281 1282 /** 1283 * memory_region_del_eventfd: Cancel an eventfd. 1284 * 1285 * Cancels an eventfd trigger requested by a previous 1286 * memory_region_add_eventfd() call. 1287 * 1288 * @mr: the memory region being updated. 1289 * @addr: the address within @mr that is to be monitored 1290 * @size: the size of the access to trigger the eventfd 1291 * @match_data: whether to match against @data, instead of just @addr 1292 * @data: the data to match against the guest write 1293 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1294 */ 1295 void memory_region_del_eventfd(MemoryRegion *mr, 1296 hwaddr addr, 1297 unsigned size, 1298 bool match_data, 1299 uint64_t data, 1300 EventNotifier *e); 1301 1302 /** 1303 * memory_region_add_subregion: Add a subregion to a container. 1304 * 1305 * Adds a subregion at @offset. The subregion may not overlap with other 1306 * subregions (except for those explicitly marked as overlapping). A region 1307 * may only be added once as a subregion (unless removed with 1308 * memory_region_del_subregion()); use memory_region_init_alias() if you 1309 * want a region to be a subregion in multiple locations. 1310 * 1311 * @mr: the region to contain the new subregion; must be a container 1312 * initialized with memory_region_init(). 1313 * @offset: the offset relative to @mr where @subregion is added. 1314 * @subregion: the subregion to be added. 1315 */ 1316 void memory_region_add_subregion(MemoryRegion *mr, 1317 hwaddr offset, 1318 MemoryRegion *subregion); 1319 /** 1320 * memory_region_add_subregion_overlap: Add a subregion to a container 1321 * with overlap. 1322 * 1323 * Adds a subregion at @offset. The subregion may overlap with other 1324 * subregions. Conflicts are resolved by having a higher @priority hide a 1325 * lower @priority. Subregions without priority are taken as @priority 0. 1326 * A region may only be added once as a subregion (unless removed with 1327 * memory_region_del_subregion()); use memory_region_init_alias() if you 1328 * want a region to be a subregion in multiple locations. 1329 * 1330 * @mr: the region to contain the new subregion; must be a container 1331 * initialized with memory_region_init(). 1332 * @offset: the offset relative to @mr where @subregion is added. 1333 * @subregion: the subregion to be added. 1334 * @priority: used for resolving overlaps; highest priority wins. 1335 */ 1336 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1337 hwaddr offset, 1338 MemoryRegion *subregion, 1339 int priority); 1340 1341 /** 1342 * memory_region_get_ram_addr: Get the ram address associated with a memory 1343 * region 1344 */ 1345 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1346 1347 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1348 /** 1349 * memory_region_del_subregion: Remove a subregion. 1350 * 1351 * Removes a subregion from its container. 1352 * 1353 * @mr: the container to be updated. 1354 * @subregion: the region being removed; must be a current subregion of @mr. 1355 */ 1356 void memory_region_del_subregion(MemoryRegion *mr, 1357 MemoryRegion *subregion); 1358 1359 /* 1360 * memory_region_set_enabled: dynamically enable or disable a region 1361 * 1362 * Enables or disables a memory region. A disabled memory region 1363 * ignores all accesses to itself and its subregions. It does not 1364 * obscure sibling subregions with lower priority - it simply behaves as 1365 * if it was removed from the hierarchy. 1366 * 1367 * Regions default to being enabled. 1368 * 1369 * @mr: the region to be updated 1370 * @enabled: whether to enable or disable the region 1371 */ 1372 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1373 1374 /* 1375 * memory_region_set_address: dynamically update the address of a region 1376 * 1377 * Dynamically updates the address of a region, relative to its container. 1378 * May be used on regions are currently part of a memory hierarchy. 1379 * 1380 * @mr: the region to be updated 1381 * @addr: new address, relative to container region 1382 */ 1383 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1384 1385 /* 1386 * memory_region_set_size: dynamically update the size of a region. 1387 * 1388 * Dynamically updates the size of a region. 1389 * 1390 * @mr: the region to be updated 1391 * @size: used size of the region. 1392 */ 1393 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1394 1395 /* 1396 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1397 * 1398 * Dynamically updates the offset into the target region that an alias points 1399 * to, as if the fourth argument to memory_region_init_alias() has changed. 1400 * 1401 * @mr: the #MemoryRegion to be updated; should be an alias. 1402 * @offset: the new offset into the target memory region 1403 */ 1404 void memory_region_set_alias_offset(MemoryRegion *mr, 1405 hwaddr offset); 1406 1407 /** 1408 * memory_region_present: checks if an address relative to a @container 1409 * translates into #MemoryRegion within @container 1410 * 1411 * Answer whether a #MemoryRegion within @container covers the address 1412 * @addr. 1413 * 1414 * @container: a #MemoryRegion within which @addr is a relative address 1415 * @addr: the area within @container to be searched 1416 */ 1417 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1418 1419 /** 1420 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1421 * into any address space. 1422 * 1423 * @mr: a #MemoryRegion which should be checked if it's mapped 1424 */ 1425 bool memory_region_is_mapped(MemoryRegion *mr); 1426 1427 /** 1428 * memory_region_find: translate an address/size relative to a 1429 * MemoryRegion into a #MemoryRegionSection. 1430 * 1431 * Locates the first #MemoryRegion within @mr that overlaps the range 1432 * given by @addr and @size. 1433 * 1434 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1435 * It will have the following characteristics: 1436 * .@size = 0 iff no overlap was found 1437 * .@mr is non-%NULL iff an overlap was found 1438 * 1439 * Remember that in the return value the @offset_within_region is 1440 * relative to the returned region (in the .@mr field), not to the 1441 * @mr argument. 1442 * 1443 * Similarly, the .@offset_within_address_space is relative to the 1444 * address space that contains both regions, the passed and the 1445 * returned one. However, in the special case where the @mr argument 1446 * has no container (and thus is the root of the address space), the 1447 * following will hold: 1448 * .@offset_within_address_space >= @addr 1449 * .@offset_within_address_space + .@size <= @addr + @size 1450 * 1451 * @mr: a MemoryRegion within which @addr is a relative address 1452 * @addr: start of the area within @as to be searched 1453 * @size: size of the area to be searched 1454 */ 1455 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1456 hwaddr addr, uint64_t size); 1457 1458 /** 1459 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1460 * 1461 * Synchronizes the dirty page log for all address spaces. 1462 */ 1463 void memory_global_dirty_log_sync(void); 1464 1465 /** 1466 * memory_region_transaction_begin: Start a transaction. 1467 * 1468 * During a transaction, changes will be accumulated and made visible 1469 * only when the transaction ends (is committed). 1470 */ 1471 void memory_region_transaction_begin(void); 1472 1473 /** 1474 * memory_region_transaction_commit: Commit a transaction and make changes 1475 * visible to the guest. 1476 */ 1477 void memory_region_transaction_commit(void); 1478 1479 /** 1480 * memory_listener_register: register callbacks to be called when memory 1481 * sections are mapped or unmapped into an address 1482 * space 1483 * 1484 * @listener: an object containing the callbacks to be called 1485 * @filter: if non-%NULL, only regions in this address space will be observed 1486 */ 1487 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1488 1489 /** 1490 * memory_listener_unregister: undo the effect of memory_listener_register() 1491 * 1492 * @listener: an object containing the callbacks to be removed 1493 */ 1494 void memory_listener_unregister(MemoryListener *listener); 1495 1496 /** 1497 * memory_global_dirty_log_start: begin dirty logging for all regions 1498 */ 1499 void memory_global_dirty_log_start(void); 1500 1501 /** 1502 * memory_global_dirty_log_stop: end dirty logging for all regions 1503 */ 1504 void memory_global_dirty_log_stop(void); 1505 1506 void mtree_info(fprintf_function mon_printf, void *f, bool flatview, 1507 bool dispatch_tree); 1508 1509 /** 1510 * memory_region_request_mmio_ptr: request a pointer to an mmio 1511 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer. 1512 * When the device wants to invalidate the pointer it will call 1513 * memory_region_invalidate_mmio_ptr. 1514 * 1515 * @mr: #MemoryRegion to check 1516 * @addr: address within that region 1517 * 1518 * Returns true on success, false otherwise. 1519 */ 1520 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr); 1521 1522 /** 1523 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio 1524 * previously requested. 1525 * In the end that means that if something wants to execute from this area it 1526 * will need to request the pointer again. 1527 * 1528 * @mr: #MemoryRegion associated to the pointer. 1529 * @addr: address within that region 1530 * @size: size of that area. 1531 */ 1532 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset, 1533 unsigned size); 1534 1535 /** 1536 * memory_region_dispatch_read: perform a read directly to the specified 1537 * MemoryRegion. 1538 * 1539 * @mr: #MemoryRegion to access 1540 * @addr: address within that region 1541 * @pval: pointer to uint64_t which the data is written to 1542 * @size: size of the access in bytes 1543 * @attrs: memory transaction attributes to use for the access 1544 */ 1545 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1546 hwaddr addr, 1547 uint64_t *pval, 1548 unsigned size, 1549 MemTxAttrs attrs); 1550 /** 1551 * memory_region_dispatch_write: perform a write directly to the specified 1552 * MemoryRegion. 1553 * 1554 * @mr: #MemoryRegion to access 1555 * @addr: address within that region 1556 * @data: data to write 1557 * @size: size of the access in bytes 1558 * @attrs: memory transaction attributes to use for the access 1559 */ 1560 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1561 hwaddr addr, 1562 uint64_t data, 1563 unsigned size, 1564 MemTxAttrs attrs); 1565 1566 /** 1567 * address_space_init: initializes an address space 1568 * 1569 * @as: an uninitialized #AddressSpace 1570 * @root: a #MemoryRegion that routes addresses for the address space 1571 * @name: an address space name. The name is only used for debugging 1572 * output. 1573 */ 1574 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1575 1576 /** 1577 * address_space_destroy: destroy an address space 1578 * 1579 * Releases all resources associated with an address space. After an address space 1580 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1581 * as well. 1582 * 1583 * @as: address space to be destroyed 1584 */ 1585 void address_space_destroy(AddressSpace *as); 1586 1587 /** 1588 * address_space_rw: read from or write to an address space. 1589 * 1590 * Return a MemTxResult indicating whether the operation succeeded 1591 * or failed (eg unassigned memory, device rejected the transaction, 1592 * IOMMU fault). 1593 * 1594 * @as: #AddressSpace to be accessed 1595 * @addr: address within that address space 1596 * @attrs: memory transaction attributes 1597 * @buf: buffer with the data transferred 1598 * @is_write: indicates the transfer direction 1599 */ 1600 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1601 MemTxAttrs attrs, uint8_t *buf, 1602 int len, bool is_write); 1603 1604 /** 1605 * address_space_write: write to address space. 1606 * 1607 * Return a MemTxResult indicating whether the operation succeeded 1608 * or failed (eg unassigned memory, device rejected the transaction, 1609 * IOMMU fault). 1610 * 1611 * @as: #AddressSpace to be accessed 1612 * @addr: address within that address space 1613 * @attrs: memory transaction attributes 1614 * @buf: buffer with the data transferred 1615 */ 1616 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1617 MemTxAttrs attrs, 1618 const uint8_t *buf, int len); 1619 1620 /* address_space_ld*: load from an address space 1621 * address_space_st*: store to an address space 1622 * 1623 * These functions perform a load or store of the byte, word, 1624 * longword or quad to the specified address within the AddressSpace. 1625 * The _le suffixed functions treat the data as little endian; 1626 * _be indicates big endian; no suffix indicates "same endianness 1627 * as guest CPU". 1628 * 1629 * The "guest CPU endianness" accessors are deprecated for use outside 1630 * target-* code; devices should be CPU-agnostic and use either the LE 1631 * or the BE accessors. 1632 * 1633 * @as #AddressSpace to be accessed 1634 * @addr: address within that address space 1635 * @val: data value, for stores 1636 * @attrs: memory transaction attributes 1637 * @result: location to write the success/failure of the transaction; 1638 * if NULL, this information is discarded 1639 */ 1640 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1641 MemTxAttrs attrs, MemTxResult *result); 1642 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1643 MemTxAttrs attrs, MemTxResult *result); 1644 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1645 MemTxAttrs attrs, MemTxResult *result); 1646 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1647 MemTxAttrs attrs, MemTxResult *result); 1648 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1649 MemTxAttrs attrs, MemTxResult *result); 1650 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1651 MemTxAttrs attrs, MemTxResult *result); 1652 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1653 MemTxAttrs attrs, MemTxResult *result); 1654 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1655 MemTxAttrs attrs, MemTxResult *result); 1656 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1657 MemTxAttrs attrs, MemTxResult *result); 1658 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1659 MemTxAttrs attrs, MemTxResult *result); 1660 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1661 MemTxAttrs attrs, MemTxResult *result); 1662 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1663 MemTxAttrs attrs, MemTxResult *result); 1664 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1665 MemTxAttrs attrs, MemTxResult *result); 1666 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1667 MemTxAttrs attrs, MemTxResult *result); 1668 1669 uint32_t ldub_phys(AddressSpace *as, hwaddr addr); 1670 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr); 1671 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr); 1672 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr); 1673 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr); 1674 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr); 1675 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr); 1676 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1677 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1678 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1679 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1680 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1681 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1682 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1683 1684 struct MemoryRegionCache { 1685 hwaddr xlat; 1686 hwaddr len; 1687 AddressSpace *as; 1688 }; 1689 1690 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL }) 1691 1692 /* address_space_cache_init: prepare for repeated access to a physical 1693 * memory region 1694 * 1695 * @cache: #MemoryRegionCache to be filled 1696 * @as: #AddressSpace to be accessed 1697 * @addr: address within that address space 1698 * @len: length of buffer 1699 * @is_write: indicates the transfer direction 1700 * 1701 * Will only work with RAM, and may map a subset of the requested range by 1702 * returning a value that is less than @len. On failure, return a negative 1703 * errno value. 1704 * 1705 * Because it only works with RAM, this function can be used for 1706 * read-modify-write operations. In this case, is_write should be %true. 1707 * 1708 * Note that addresses passed to the address_space_*_cached functions 1709 * are relative to @addr. 1710 */ 1711 int64_t address_space_cache_init(MemoryRegionCache *cache, 1712 AddressSpace *as, 1713 hwaddr addr, 1714 hwaddr len, 1715 bool is_write); 1716 1717 /** 1718 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1719 * 1720 * @cache: The #MemoryRegionCache to operate on. 1721 * @addr: The first physical address that was written, relative to the 1722 * address that was passed to @address_space_cache_init. 1723 * @access_len: The number of bytes that were written starting at @addr. 1724 */ 1725 void address_space_cache_invalidate(MemoryRegionCache *cache, 1726 hwaddr addr, 1727 hwaddr access_len); 1728 1729 /** 1730 * address_space_cache_destroy: free a #MemoryRegionCache 1731 * 1732 * @cache: The #MemoryRegionCache whose memory should be released. 1733 */ 1734 void address_space_cache_destroy(MemoryRegionCache *cache); 1735 1736 /* address_space_ld*_cached: load from a cached #MemoryRegion 1737 * address_space_st*_cached: store into a cached #MemoryRegion 1738 * 1739 * These functions perform a load or store of the byte, word, 1740 * longword or quad to the specified address. The address is 1741 * a physical address in the AddressSpace, but it must lie within 1742 * a #MemoryRegion that was mapped with address_space_cache_init. 1743 * 1744 * The _le suffixed functions treat the data as little endian; 1745 * _be indicates big endian; no suffix indicates "same endianness 1746 * as guest CPU". 1747 * 1748 * The "guest CPU endianness" accessors are deprecated for use outside 1749 * target-* code; devices should be CPU-agnostic and use either the LE 1750 * or the BE accessors. 1751 * 1752 * @cache: previously initialized #MemoryRegionCache to be accessed 1753 * @addr: address within the address space 1754 * @val: data value, for stores 1755 * @attrs: memory transaction attributes 1756 * @result: location to write the success/failure of the transaction; 1757 * if NULL, this information is discarded 1758 */ 1759 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr, 1760 MemTxAttrs attrs, MemTxResult *result); 1761 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr, 1762 MemTxAttrs attrs, MemTxResult *result); 1763 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr, 1764 MemTxAttrs attrs, MemTxResult *result); 1765 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr, 1766 MemTxAttrs attrs, MemTxResult *result); 1767 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr, 1768 MemTxAttrs attrs, MemTxResult *result); 1769 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr, 1770 MemTxAttrs attrs, MemTxResult *result); 1771 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr, 1772 MemTxAttrs attrs, MemTxResult *result); 1773 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1774 MemTxAttrs attrs, MemTxResult *result); 1775 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1776 MemTxAttrs attrs, MemTxResult *result); 1777 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1778 MemTxAttrs attrs, MemTxResult *result); 1779 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1780 MemTxAttrs attrs, MemTxResult *result); 1781 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1782 MemTxAttrs attrs, MemTxResult *result); 1783 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1784 MemTxAttrs attrs, MemTxResult *result); 1785 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1786 MemTxAttrs attrs, MemTxResult *result); 1787 1788 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1789 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1790 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1791 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1792 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1793 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1794 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1795 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1796 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1797 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1798 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1799 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1800 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1801 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1802 /* address_space_get_iotlb_entry: translate an address into an IOTLB 1803 * entry. Should be called from an RCU critical section. 1804 */ 1805 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1806 bool is_write); 1807 1808 /* address_space_translate: translate an address range into an address space 1809 * into a MemoryRegion and an address range into that section. Should be 1810 * called from an RCU critical section, to avoid that the last reference 1811 * to the returned region disappears after address_space_translate returns. 1812 * 1813 * @as: #AddressSpace to be accessed 1814 * @addr: address within that address space 1815 * @xlat: pointer to address within the returned memory region section's 1816 * #MemoryRegion. 1817 * @len: pointer to length 1818 * @is_write: indicates the transfer direction 1819 */ 1820 MemoryRegion *flatview_translate(FlatView *fv, 1821 hwaddr addr, hwaddr *xlat, 1822 hwaddr *len, bool is_write); 1823 1824 static inline MemoryRegion *address_space_translate(AddressSpace *as, 1825 hwaddr addr, hwaddr *xlat, 1826 hwaddr *len, bool is_write) 1827 { 1828 return flatview_translate(address_space_to_flatview(as), 1829 addr, xlat, len, is_write); 1830 } 1831 1832 /* address_space_access_valid: check for validity of accessing an address 1833 * space range 1834 * 1835 * Check whether memory is assigned to the given address space range, and 1836 * access is permitted by any IOMMU regions that are active for the address 1837 * space. 1838 * 1839 * For now, addr and len should be aligned to a page size. This limitation 1840 * will be lifted in the future. 1841 * 1842 * @as: #AddressSpace to be accessed 1843 * @addr: address within that address space 1844 * @len: length of the area to be checked 1845 * @is_write: indicates the transfer direction 1846 */ 1847 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1848 1849 /* address_space_map: map a physical memory region into a host virtual address 1850 * 1851 * May map a subset of the requested range, given by and returned in @plen. 1852 * May return %NULL if resources needed to perform the mapping are exhausted. 1853 * Use only for reads OR writes - not for read-modify-write operations. 1854 * Use cpu_register_map_client() to know when retrying the map operation is 1855 * likely to succeed. 1856 * 1857 * @as: #AddressSpace to be accessed 1858 * @addr: address within that address space 1859 * @plen: pointer to length of buffer; updated on return 1860 * @is_write: indicates the transfer direction 1861 */ 1862 void *address_space_map(AddressSpace *as, hwaddr addr, 1863 hwaddr *plen, bool is_write); 1864 1865 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1866 * 1867 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1868 * the amount of memory that was actually read or written by the caller. 1869 * 1870 * @as: #AddressSpace used 1871 * @addr: address within that address space 1872 * @len: buffer length as returned by address_space_map() 1873 * @access_len: amount of data actually transferred 1874 * @is_write: indicates the transfer direction 1875 */ 1876 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1877 int is_write, hwaddr access_len); 1878 1879 1880 /* Internal functions, part of the implementation of address_space_read. */ 1881 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 1882 MemTxAttrs attrs, uint8_t *buf, 1883 int len, hwaddr addr1, hwaddr l, 1884 MemoryRegion *mr); 1885 1886 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr, 1887 MemTxAttrs attrs, uint8_t *buf, int len); 1888 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 1889 1890 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1891 { 1892 if (is_write) { 1893 return memory_region_is_ram(mr) && 1894 !mr->readonly && !memory_region_is_ram_device(mr); 1895 } else { 1896 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 1897 memory_region_is_romd(mr); 1898 } 1899 } 1900 1901 /** 1902 * address_space_read: read from an address space. 1903 * 1904 * Return a MemTxResult indicating whether the operation succeeded 1905 * or failed (eg unassigned memory, device rejected the transaction, 1906 * IOMMU fault). 1907 * 1908 * @as: #AddressSpace to be accessed 1909 * @addr: address within that address space 1910 * @attrs: memory transaction attributes 1911 * @buf: buffer with the data transferred 1912 */ 1913 static inline __attribute__((__always_inline__)) 1914 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 1915 uint8_t *buf, int len) 1916 { 1917 MemTxResult result = MEMTX_OK; 1918 hwaddr l, addr1; 1919 void *ptr; 1920 MemoryRegion *mr; 1921 1922 if (__builtin_constant_p(len)) { 1923 if (len) { 1924 rcu_read_lock(); 1925 l = len; 1926 mr = flatview_translate(fv, addr, &addr1, &l, false); 1927 if (len == l && memory_access_is_direct(mr, false)) { 1928 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 1929 memcpy(buf, ptr, len); 1930 } else { 1931 result = flatview_read_continue(fv, addr, attrs, buf, len, 1932 addr1, l, mr); 1933 } 1934 rcu_read_unlock(); 1935 } 1936 } else { 1937 result = flatview_read_full(fv, addr, attrs, buf, len); 1938 } 1939 return result; 1940 } 1941 1942 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 1943 MemTxAttrs attrs, uint8_t *buf, 1944 int len) 1945 { 1946 return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len); 1947 } 1948 1949 /** 1950 * address_space_read_cached: read from a cached RAM region 1951 * 1952 * @cache: Cached region to be addressed 1953 * @addr: address relative to the base of the RAM region 1954 * @buf: buffer with the data transferred 1955 * @len: length of the data transferred 1956 */ 1957 static inline void 1958 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 1959 void *buf, int len) 1960 { 1961 assert(addr < cache->len && len <= cache->len - addr); 1962 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 1963 } 1964 1965 /** 1966 * address_space_write_cached: write to a cached RAM region 1967 * 1968 * @cache: Cached region to be addressed 1969 * @addr: address relative to the base of the RAM region 1970 * @buf: buffer with the data transferred 1971 * @len: length of the data transferred 1972 */ 1973 static inline void 1974 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 1975 void *buf, int len) 1976 { 1977 assert(addr < cache->len && len <= cache->len - addr); 1978 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 1979 } 1980 1981 #endif 1982 1983 #endif 1984