xref: /openbmc/qemu/include/exec/memory.h (revision a37eaa53)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51 
52 struct MemoryRegionMmio {
53     CPUReadMemoryFunc *read[3];
54     CPUWriteMemoryFunc *write[3];
55 };
56 
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58 
59 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
60 typedef enum {
61     IOMMU_NONE = 0,
62     IOMMU_RO   = 1,
63     IOMMU_WO   = 2,
64     IOMMU_RW   = 3,
65 } IOMMUAccessFlags;
66 
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68 
69 struct IOMMUTLBEntry {
70     AddressSpace    *target_as;
71     hwaddr           iova;
72     hwaddr           translated_addr;
73     hwaddr           addr_mask;  /* 0xfff = 4k translation */
74     IOMMUAccessFlags perm;
75 };
76 
77 /*
78  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79  * register with one or multiple IOMMU Notifier capability bit(s).
80  */
81 typedef enum {
82     IOMMU_NOTIFIER_NONE = 0,
83     /* Notify cache invalidations */
84     IOMMU_NOTIFIER_UNMAP = 0x1,
85     /* Notify entry changes (newly created entries) */
86     IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88 
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90 
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93                             IOMMUTLBEntry *data);
94 
95 struct IOMMUNotifier {
96     IOMMUNotify notify;
97     IOMMUNotifierFlag notifier_flags;
98     /* Notify for address space range start <= addr <= end */
99     hwaddr start;
100     hwaddr end;
101     QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104 
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106                                        IOMMUNotifierFlag flags,
107                                        hwaddr start, hwaddr end)
108 {
109     n->notify = fn;
110     n->notifier_flags = flags;
111     n->start = start;
112     n->end = end;
113 }
114 
115 /*
116  * Memory region callbacks
117  */
118 struct MemoryRegionOps {
119     /* Read from the memory region. @addr is relative to @mr; @size is
120      * in bytes. */
121     uint64_t (*read)(void *opaque,
122                      hwaddr addr,
123                      unsigned size);
124     /* Write to the memory region. @addr is relative to @mr; @size is
125      * in bytes. */
126     void (*write)(void *opaque,
127                   hwaddr addr,
128                   uint64_t data,
129                   unsigned size);
130 
131     MemTxResult (*read_with_attrs)(void *opaque,
132                                    hwaddr addr,
133                                    uint64_t *data,
134                                    unsigned size,
135                                    MemTxAttrs attrs);
136     MemTxResult (*write_with_attrs)(void *opaque,
137                                     hwaddr addr,
138                                     uint64_t data,
139                                     unsigned size,
140                                     MemTxAttrs attrs);
141     /* Instruction execution pre-callback:
142      * @addr is the address of the access relative to the @mr.
143      * @size is the size of the area returned by the callback.
144      * @offset is the location of the pointer inside @mr.
145      *
146      * Returns a pointer to a location which contains guest code.
147      */
148     void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149                          unsigned *offset);
150 
151     enum device_endian endianness;
152     /* Guest-visible constraints: */
153     struct {
154         /* If nonzero, specify bounds on access sizes beyond which a machine
155          * check is thrown.
156          */
157         unsigned min_access_size;
158         unsigned max_access_size;
159         /* If true, unaligned accesses are supported.  Otherwise unaligned
160          * accesses throw machine checks.
161          */
162          bool unaligned;
163         /*
164          * If present, and returns #false, the transaction is not accepted
165          * by the device (and results in machine dependent behaviour such
166          * as a machine check exception).
167          */
168         bool (*accepts)(void *opaque, hwaddr addr,
169                         unsigned size, bool is_write);
170     } valid;
171     /* Internal implementation constraints: */
172     struct {
173         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
174          * will be rounded upwards and a partial result will be returned.
175          */
176         unsigned min_access_size;
177         /* If nonzero, specifies the maximum size implemented.  Larger sizes
178          * will be done as a series of accesses with smaller sizes.
179          */
180         unsigned max_access_size;
181         /* If true, unaligned accesses are supported.  Otherwise all accesses
182          * are converted to (possibly multiple) naturally aligned accesses.
183          */
184         bool unaligned;
185     } impl;
186 
187     /* If .read and .write are not present, old_mmio may be used for
188      * backwards compatibility with old mmio registration
189      */
190     const MemoryRegionMmio old_mmio;
191 };
192 
193 enum IOMMUMemoryRegionAttr {
194     IOMMU_ATTR_SPAPR_TCE_FD
195 };
196 
197 typedef struct IOMMUMemoryRegionClass {
198     /* private */
199     struct DeviceClass parent_class;
200 
201     /*
202      * Return a TLB entry that contains a given address. Flag should
203      * be the access permission of this translation operation. We can
204      * set flag to IOMMU_NONE to mean that we don't need any
205      * read/write permission checks, like, when for region replay.
206      */
207     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
208                                IOMMUAccessFlags flag);
209     /* Returns minimum supported page size */
210     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
211     /* Called when IOMMU Notifier flag changed */
212     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
213                                 IOMMUNotifierFlag old_flags,
214                                 IOMMUNotifierFlag new_flags);
215     /* Set this up to provide customized IOMMU replay function */
216     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
217 
218     /* Get IOMMU misc attributes */
219     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr,
220                     void *data);
221 } IOMMUMemoryRegionClass;
222 
223 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
224 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
225 
226 struct MemoryRegion {
227     Object parent_obj;
228 
229     /* All fields are private - violators will be prosecuted */
230 
231     /* The following fields should fit in a cache line */
232     bool romd_mode;
233     bool ram;
234     bool subpage;
235     bool readonly; /* For RAM regions */
236     bool rom_device;
237     bool flush_coalesced_mmio;
238     bool global_locking;
239     uint8_t dirty_log_mask;
240     bool is_iommu;
241     RAMBlock *ram_block;
242     Object *owner;
243 
244     const MemoryRegionOps *ops;
245     void *opaque;
246     MemoryRegion *container;
247     Int128 size;
248     hwaddr addr;
249     void (*destructor)(MemoryRegion *mr);
250     uint64_t align;
251     bool terminates;
252     bool ram_device;
253     bool enabled;
254     bool warning_printed; /* For reservations */
255     uint8_t vga_logging_count;
256     MemoryRegion *alias;
257     hwaddr alias_offset;
258     int32_t priority;
259     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
260     QTAILQ_ENTRY(MemoryRegion) subregions_link;
261     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
262     const char *name;
263     unsigned ioeventfd_nb;
264     MemoryRegionIoeventfd *ioeventfds;
265 };
266 
267 struct IOMMUMemoryRegion {
268     MemoryRegion parent_obj;
269 
270     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
271     IOMMUNotifierFlag iommu_notify_flags;
272 };
273 
274 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
275     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
276 
277 /**
278  * MemoryListener: callbacks structure for updates to the physical memory map
279  *
280  * Allows a component to adjust to changes in the guest-visible memory map.
281  * Use with memory_listener_register() and memory_listener_unregister().
282  */
283 struct MemoryListener {
284     void (*begin)(MemoryListener *listener);
285     void (*commit)(MemoryListener *listener);
286     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
287     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
288     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
289     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
290                       int old, int new);
291     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
292                      int old, int new);
293     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
294     void (*log_global_start)(MemoryListener *listener);
295     void (*log_global_stop)(MemoryListener *listener);
296     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
297                         bool match_data, uint64_t data, EventNotifier *e);
298     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
299                         bool match_data, uint64_t data, EventNotifier *e);
300     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
301                                hwaddr addr, hwaddr len);
302     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
303                                hwaddr addr, hwaddr len);
304     /* Lower = earlier (during add), later (during del) */
305     unsigned priority;
306     AddressSpace *address_space;
307     QTAILQ_ENTRY(MemoryListener) link;
308     QTAILQ_ENTRY(MemoryListener) link_as;
309 };
310 
311 /**
312  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
313  */
314 struct AddressSpace {
315     /* All fields are private. */
316     struct rcu_head rcu;
317     char *name;
318     MemoryRegion *root;
319 
320     /* Accessed via RCU.  */
321     struct FlatView *current_map;
322 
323     int ioeventfd_nb;
324     struct MemoryRegionIoeventfd *ioeventfds;
325     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
326     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
327 };
328 
329 FlatView *address_space_to_flatview(AddressSpace *as);
330 
331 /**
332  * MemoryRegionSection: describes a fragment of a #MemoryRegion
333  *
334  * @mr: the region, or %NULL if empty
335  * @fv: the flat view of the address space the region is mapped in
336  * @offset_within_region: the beginning of the section, relative to @mr's start
337  * @size: the size of the section; will not exceed @mr's boundaries
338  * @offset_within_address_space: the address of the first byte of the section
339  *     relative to the region's address space
340  * @readonly: writes to this section are ignored
341  */
342 struct MemoryRegionSection {
343     MemoryRegion *mr;
344     FlatView *fv;
345     hwaddr offset_within_region;
346     Int128 size;
347     hwaddr offset_within_address_space;
348     bool readonly;
349 };
350 
351 /**
352  * memory_region_init: Initialize a memory region
353  *
354  * The region typically acts as a container for other memory regions.  Use
355  * memory_region_add_subregion() to add subregions.
356  *
357  * @mr: the #MemoryRegion to be initialized
358  * @owner: the object that tracks the region's reference count
359  * @name: used for debugging; not visible to the user or ABI
360  * @size: size of the region; any subregions beyond this size will be clipped
361  */
362 void memory_region_init(MemoryRegion *mr,
363                         struct Object *owner,
364                         const char *name,
365                         uint64_t size);
366 
367 /**
368  * memory_region_ref: Add 1 to a memory region's reference count
369  *
370  * Whenever memory regions are accessed outside the BQL, they need to be
371  * preserved against hot-unplug.  MemoryRegions actually do not have their
372  * own reference count; they piggyback on a QOM object, their "owner".
373  * This function adds a reference to the owner.
374  *
375  * All MemoryRegions must have an owner if they can disappear, even if the
376  * device they belong to operates exclusively under the BQL.  This is because
377  * the region could be returned at any time by memory_region_find, and this
378  * is usually under guest control.
379  *
380  * @mr: the #MemoryRegion
381  */
382 void memory_region_ref(MemoryRegion *mr);
383 
384 /**
385  * memory_region_unref: Remove 1 to a memory region's reference count
386  *
387  * Whenever memory regions are accessed outside the BQL, they need to be
388  * preserved against hot-unplug.  MemoryRegions actually do not have their
389  * own reference count; they piggyback on a QOM object, their "owner".
390  * This function removes a reference to the owner and possibly destroys it.
391  *
392  * @mr: the #MemoryRegion
393  */
394 void memory_region_unref(MemoryRegion *mr);
395 
396 /**
397  * memory_region_init_io: Initialize an I/O memory region.
398  *
399  * Accesses into the region will cause the callbacks in @ops to be called.
400  * if @size is nonzero, subregions will be clipped to @size.
401  *
402  * @mr: the #MemoryRegion to be initialized.
403  * @owner: the object that tracks the region's reference count
404  * @ops: a structure containing read and write callbacks to be used when
405  *       I/O is performed on the region.
406  * @opaque: passed to the read and write callbacks of the @ops structure.
407  * @name: used for debugging; not visible to the user or ABI
408  * @size: size of the region.
409  */
410 void memory_region_init_io(MemoryRegion *mr,
411                            struct Object *owner,
412                            const MemoryRegionOps *ops,
413                            void *opaque,
414                            const char *name,
415                            uint64_t size);
416 
417 /**
418  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
419  *                                    into the region will modify memory
420  *                                    directly.
421  *
422  * @mr: the #MemoryRegion to be initialized.
423  * @owner: the object that tracks the region's reference count
424  * @name: Region name, becomes part of RAMBlock name used in migration stream
425  *        must be unique within any device
426  * @size: size of the region.
427  * @errp: pointer to Error*, to store an error if it happens.
428  *
429  * Note that this function does not do anything to cause the data in the
430  * RAM memory region to be migrated; that is the responsibility of the caller.
431  */
432 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
433                                       struct Object *owner,
434                                       const char *name,
435                                       uint64_t size,
436                                       Error **errp);
437 
438 /**
439  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
440  *                                     RAM.  Accesses into the region will
441  *                                     modify memory directly.  Only an initial
442  *                                     portion of this RAM is actually used.
443  *                                     The used size can change across reboots.
444  *
445  * @mr: the #MemoryRegion to be initialized.
446  * @owner: the object that tracks the region's reference count
447  * @name: Region name, becomes part of RAMBlock name used in migration stream
448  *        must be unique within any device
449  * @size: used size of the region.
450  * @max_size: max size of the region.
451  * @resized: callback to notify owner about used size change.
452  * @errp: pointer to Error*, to store an error if it happens.
453  *
454  * Note that this function does not do anything to cause the data in the
455  * RAM memory region to be migrated; that is the responsibility of the caller.
456  */
457 void memory_region_init_resizeable_ram(MemoryRegion *mr,
458                                        struct Object *owner,
459                                        const char *name,
460                                        uint64_t size,
461                                        uint64_t max_size,
462                                        void (*resized)(const char*,
463                                                        uint64_t length,
464                                                        void *host),
465                                        Error **errp);
466 #ifdef __linux__
467 /**
468  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
469  *                                    mmap-ed backend.
470  *
471  * @mr: the #MemoryRegion to be initialized.
472  * @owner: the object that tracks the region's reference count
473  * @name: Region name, becomes part of RAMBlock name used in migration stream
474  *        must be unique within any device
475  * @size: size of the region.
476  * @align: alignment of the region base address; if 0, the default alignment
477  *         (getpagesize()) will be used.
478  * @share: %true if memory must be mmaped with the MAP_SHARED flag
479  * @path: the path in which to allocate the RAM.
480  * @errp: pointer to Error*, to store an error if it happens.
481  *
482  * Note that this function does not do anything to cause the data in the
483  * RAM memory region to be migrated; that is the responsibility of the caller.
484  */
485 void memory_region_init_ram_from_file(MemoryRegion *mr,
486                                       struct Object *owner,
487                                       const char *name,
488                                       uint64_t size,
489                                       uint64_t align,
490                                       bool share,
491                                       const char *path,
492                                       Error **errp);
493 
494 /**
495  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
496  *                                  mmap-ed backend.
497  *
498  * @mr: the #MemoryRegion to be initialized.
499  * @owner: the object that tracks the region's reference count
500  * @name: the name of the region.
501  * @size: size of the region.
502  * @share: %true if memory must be mmaped with the MAP_SHARED flag
503  * @fd: the fd to mmap.
504  * @errp: pointer to Error*, to store an error if it happens.
505  *
506  * Note that this function does not do anything to cause the data in the
507  * RAM memory region to be migrated; that is the responsibility of the caller.
508  */
509 void memory_region_init_ram_from_fd(MemoryRegion *mr,
510                                     struct Object *owner,
511                                     const char *name,
512                                     uint64_t size,
513                                     bool share,
514                                     int fd,
515                                     Error **errp);
516 #endif
517 
518 /**
519  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
520  *                              user-provided pointer.  Accesses into the
521  *                              region will modify memory directly.
522  *
523  * @mr: the #MemoryRegion to be initialized.
524  * @owner: the object that tracks the region's reference count
525  * @name: Region name, becomes part of RAMBlock name used in migration stream
526  *        must be unique within any device
527  * @size: size of the region.
528  * @ptr: memory to be mapped; must contain at least @size bytes.
529  *
530  * Note that this function does not do anything to cause the data in the
531  * RAM memory region to be migrated; that is the responsibility of the caller.
532  */
533 void memory_region_init_ram_ptr(MemoryRegion *mr,
534                                 struct Object *owner,
535                                 const char *name,
536                                 uint64_t size,
537                                 void *ptr);
538 
539 /**
540  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
541  *                                     a user-provided pointer.
542  *
543  * A RAM device represents a mapping to a physical device, such as to a PCI
544  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
545  * into the VM address space and access to the region will modify memory
546  * directly.  However, the memory region should not be included in a memory
547  * dump (device may not be enabled/mapped at the time of the dump), and
548  * operations incompatible with manipulating MMIO should be avoided.  Replaces
549  * skip_dump flag.
550  *
551  * @mr: the #MemoryRegion to be initialized.
552  * @owner: the object that tracks the region's reference count
553  * @name: the name of the region.
554  * @size: size of the region.
555  * @ptr: memory to be mapped; must contain at least @size bytes.
556  *
557  * Note that this function does not do anything to cause the data in the
558  * RAM memory region to be migrated; that is the responsibility of the caller.
559  * (For RAM device memory regions, migrating the contents rarely makes sense.)
560  */
561 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
562                                        struct Object *owner,
563                                        const char *name,
564                                        uint64_t size,
565                                        void *ptr);
566 
567 /**
568  * memory_region_init_alias: Initialize a memory region that aliases all or a
569  *                           part of another memory region.
570  *
571  * @mr: the #MemoryRegion to be initialized.
572  * @owner: the object that tracks the region's reference count
573  * @name: used for debugging; not visible to the user or ABI
574  * @orig: the region to be referenced; @mr will be equivalent to
575  *        @orig between @offset and @offset + @size - 1.
576  * @offset: start of the section in @orig to be referenced.
577  * @size: size of the region.
578  */
579 void memory_region_init_alias(MemoryRegion *mr,
580                               struct Object *owner,
581                               const char *name,
582                               MemoryRegion *orig,
583                               hwaddr offset,
584                               uint64_t size);
585 
586 /**
587  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
588  *
589  * This has the same effect as calling memory_region_init_ram_nomigrate()
590  * and then marking the resulting region read-only with
591  * memory_region_set_readonly().
592  *
593  * Note that this function does not do anything to cause the data in the
594  * RAM side of the memory region to be migrated; that is the responsibility
595  * of the caller.
596  *
597  * @mr: the #MemoryRegion to be initialized.
598  * @owner: the object that tracks the region's reference count
599  * @name: Region name, becomes part of RAMBlock name used in migration stream
600  *        must be unique within any device
601  * @size: size of the region.
602  * @errp: pointer to Error*, to store an error if it happens.
603  */
604 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
605                                       struct Object *owner,
606                                       const char *name,
607                                       uint64_t size,
608                                       Error **errp);
609 
610 /**
611  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
612  *                                 Writes are handled via callbacks.
613  *
614  * Note that this function does not do anything to cause the data in the
615  * RAM side of the memory region to be migrated; that is the responsibility
616  * of the caller.
617  *
618  * @mr: the #MemoryRegion to be initialized.
619  * @owner: the object that tracks the region's reference count
620  * @ops: callbacks for write access handling (must not be NULL).
621  * @opaque: passed to the read and write callbacks of the @ops structure.
622  * @name: Region name, becomes part of RAMBlock name used in migration stream
623  *        must be unique within any device
624  * @size: size of the region.
625  * @errp: pointer to Error*, to store an error if it happens.
626  */
627 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
628                                              struct Object *owner,
629                                              const MemoryRegionOps *ops,
630                                              void *opaque,
631                                              const char *name,
632                                              uint64_t size,
633                                              Error **errp);
634 
635 /**
636  * memory_region_init_reservation: Initialize a memory region that reserves
637  *                                 I/O space.
638  *
639  * A reservation region primariy serves debugging purposes.  It claims I/O
640  * space that is not supposed to be handled by QEMU itself.  Any access via
641  * the memory API will cause an abort().
642  * This function is deprecated. Use memory_region_init_io() with NULL
643  * callbacks instead.
644  *
645  * @mr: the #MemoryRegion to be initialized
646  * @owner: the object that tracks the region's reference count
647  * @name: used for debugging; not visible to the user or ABI
648  * @size: size of the region.
649  */
650 static inline void memory_region_init_reservation(MemoryRegion *mr,
651                                     Object *owner,
652                                     const char *name,
653                                     uint64_t size)
654 {
655     memory_region_init_io(mr, owner, NULL, mr, name, size);
656 }
657 
658 /**
659  * memory_region_init_iommu: Initialize a memory region of a custom type
660  * that translates addresses
661  *
662  * An IOMMU region translates addresses and forwards accesses to a target
663  * memory region.
664  *
665  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
666  * @instance_size: the IOMMUMemoryRegion subclass instance size
667  * @mrtypename: the type name of the #IOMMUMemoryRegion
668  * @owner: the object that tracks the region's reference count
669  * @name: used for debugging; not visible to the user or ABI
670  * @size: size of the region.
671  */
672 void memory_region_init_iommu(void *_iommu_mr,
673                               size_t instance_size,
674                               const char *mrtypename,
675                               Object *owner,
676                               const char *name,
677                               uint64_t size);
678 
679 /**
680  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
681  *                          region will modify memory directly.
682  *
683  * @mr: the #MemoryRegion to be initialized
684  * @owner: the object that tracks the region's reference count (must be
685  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
686  * @name: name of the memory region
687  * @size: size of the region in bytes
688  * @errp: pointer to Error*, to store an error if it happens.
689  *
690  * This function allocates RAM for a board model or device, and
691  * arranges for it to be migrated (by calling vmstate_register_ram()
692  * if @owner is a DeviceState, or vmstate_register_ram_global() if
693  * @owner is NULL).
694  *
695  * TODO: Currently we restrict @owner to being either NULL (for
696  * global RAM regions with no owner) or devices, so that we can
697  * give the RAM block a unique name for migration purposes.
698  * We should lift this restriction and allow arbitrary Objects.
699  * If you pass a non-NULL non-device @owner then we will assert.
700  */
701 void memory_region_init_ram(MemoryRegion *mr,
702                             struct Object *owner,
703                             const char *name,
704                             uint64_t size,
705                             Error **errp);
706 
707 /**
708  * memory_region_init_rom: Initialize a ROM memory region.
709  *
710  * This has the same effect as calling memory_region_init_ram()
711  * and then marking the resulting region read-only with
712  * memory_region_set_readonly(). This includes arranging for the
713  * contents to be migrated.
714  *
715  * TODO: Currently we restrict @owner to being either NULL (for
716  * global RAM regions with no owner) or devices, so that we can
717  * give the RAM block a unique name for migration purposes.
718  * We should lift this restriction and allow arbitrary Objects.
719  * If you pass a non-NULL non-device @owner then we will assert.
720  *
721  * @mr: the #MemoryRegion to be initialized.
722  * @owner: the object that tracks the region's reference count
723  * @name: Region name, becomes part of RAMBlock name used in migration stream
724  *        must be unique within any device
725  * @size: size of the region.
726  * @errp: pointer to Error*, to store an error if it happens.
727  */
728 void memory_region_init_rom(MemoryRegion *mr,
729                             struct Object *owner,
730                             const char *name,
731                             uint64_t size,
732                             Error **errp);
733 
734 /**
735  * memory_region_init_rom_device:  Initialize a ROM memory region.
736  *                                 Writes are handled via callbacks.
737  *
738  * This function initializes a memory region backed by RAM for reads
739  * and callbacks for writes, and arranges for the RAM backing to
740  * be migrated (by calling vmstate_register_ram()
741  * if @owner is a DeviceState, or vmstate_register_ram_global() if
742  * @owner is NULL).
743  *
744  * TODO: Currently we restrict @owner to being either NULL (for
745  * global RAM regions with no owner) or devices, so that we can
746  * give the RAM block a unique name for migration purposes.
747  * We should lift this restriction and allow arbitrary Objects.
748  * If you pass a non-NULL non-device @owner then we will assert.
749  *
750  * @mr: the #MemoryRegion to be initialized.
751  * @owner: the object that tracks the region's reference count
752  * @ops: callbacks for write access handling (must not be NULL).
753  * @name: Region name, becomes part of RAMBlock name used in migration stream
754  *        must be unique within any device
755  * @size: size of the region.
756  * @errp: pointer to Error*, to store an error if it happens.
757  */
758 void memory_region_init_rom_device(MemoryRegion *mr,
759                                    struct Object *owner,
760                                    const MemoryRegionOps *ops,
761                                    void *opaque,
762                                    const char *name,
763                                    uint64_t size,
764                                    Error **errp);
765 
766 
767 /**
768  * memory_region_owner: get a memory region's owner.
769  *
770  * @mr: the memory region being queried.
771  */
772 struct Object *memory_region_owner(MemoryRegion *mr);
773 
774 /**
775  * memory_region_size: get a memory region's size.
776  *
777  * @mr: the memory region being queried.
778  */
779 uint64_t memory_region_size(MemoryRegion *mr);
780 
781 /**
782  * memory_region_is_ram: check whether a memory region is random access
783  *
784  * Returns %true is a memory region is random access.
785  *
786  * @mr: the memory region being queried
787  */
788 static inline bool memory_region_is_ram(MemoryRegion *mr)
789 {
790     return mr->ram;
791 }
792 
793 /**
794  * memory_region_is_ram_device: check whether a memory region is a ram device
795  *
796  * Returns %true is a memory region is a device backed ram region
797  *
798  * @mr: the memory region being queried
799  */
800 bool memory_region_is_ram_device(MemoryRegion *mr);
801 
802 /**
803  * memory_region_is_romd: check whether a memory region is in ROMD mode
804  *
805  * Returns %true if a memory region is a ROM device and currently set to allow
806  * direct reads.
807  *
808  * @mr: the memory region being queried
809  */
810 static inline bool memory_region_is_romd(MemoryRegion *mr)
811 {
812     return mr->rom_device && mr->romd_mode;
813 }
814 
815 /**
816  * memory_region_get_iommu: check whether a memory region is an iommu
817  *
818  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
819  * otherwise NULL.
820  *
821  * @mr: the memory region being queried
822  */
823 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
824 {
825     if (mr->alias) {
826         return memory_region_get_iommu(mr->alias);
827     }
828     if (mr->is_iommu) {
829         return (IOMMUMemoryRegion *) mr;
830     }
831     return NULL;
832 }
833 
834 /**
835  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
836  *   if an iommu or NULL if not
837  *
838  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
839  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
840  *
841  * @mr: the memory region being queried
842  */
843 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
844         IOMMUMemoryRegion *iommu_mr)
845 {
846     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
847 }
848 
849 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
850 
851 /**
852  * memory_region_iommu_get_min_page_size: get minimum supported page size
853  * for an iommu
854  *
855  * Returns minimum supported page size for an iommu.
856  *
857  * @iommu_mr: the memory region being queried
858  */
859 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
860 
861 /**
862  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
863  *
864  * The notification type will be decided by entry.perm bits:
865  *
866  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
867  * - For MAP (newly added entry) notifies: set entry.perm to the
868  *   permission of the page (which is definitely !IOMMU_NONE).
869  *
870  * Note: for any IOMMU implementation, an in-place mapping change
871  * should be notified with an UNMAP followed by a MAP.
872  *
873  * @iommu_mr: the memory region that was changed
874  * @entry: the new entry in the IOMMU translation table.  The entry
875  *         replaces all old entries for the same virtual I/O address range.
876  *         Deleted entries have .@perm == 0.
877  */
878 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
879                                 IOMMUTLBEntry entry);
880 
881 /**
882  * memory_region_notify_one: notify a change in an IOMMU translation
883  *                           entry to a single notifier
884  *
885  * This works just like memory_region_notify_iommu(), but it only
886  * notifies a specific notifier, not all of them.
887  *
888  * @notifier: the notifier to be notified
889  * @entry: the new entry in the IOMMU translation table.  The entry
890  *         replaces all old entries for the same virtual I/O address range.
891  *         Deleted entries have .@perm == 0.
892  */
893 void memory_region_notify_one(IOMMUNotifier *notifier,
894                               IOMMUTLBEntry *entry);
895 
896 /**
897  * memory_region_register_iommu_notifier: register a notifier for changes to
898  * IOMMU translation entries.
899  *
900  * @mr: the memory region to observe
901  * @n: the IOMMUNotifier to be added; the notify callback receives a
902  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
903  *     ceases to be valid on exit from the notifier.
904  */
905 void memory_region_register_iommu_notifier(MemoryRegion *mr,
906                                            IOMMUNotifier *n);
907 
908 /**
909  * memory_region_iommu_replay: replay existing IOMMU translations to
910  * a notifier with the minimum page granularity returned by
911  * mr->iommu_ops->get_page_size().
912  *
913  * @iommu_mr: the memory region to observe
914  * @n: the notifier to which to replay iommu mappings
915  */
916 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
917 
918 /**
919  * memory_region_iommu_replay_all: replay existing IOMMU translations
920  * to all the notifiers registered.
921  *
922  * @iommu_mr: the memory region to observe
923  */
924 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
925 
926 /**
927  * memory_region_unregister_iommu_notifier: unregister a notifier for
928  * changes to IOMMU translation entries.
929  *
930  * @mr: the memory region which was observed and for which notity_stopped()
931  *      needs to be called
932  * @n: the notifier to be removed.
933  */
934 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
935                                              IOMMUNotifier *n);
936 
937 /**
938  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
939  * defined on the IOMMU.
940  *
941  * Returns 0 if succeded, error code otherwise.
942  *
943  * @iommu_mr: the memory region
944  * @attr: the requested attribute
945  * @data: a pointer to the requested attribute data
946  */
947 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
948                                  enum IOMMUMemoryRegionAttr attr,
949                                  void *data);
950 
951 /**
952  * memory_region_name: get a memory region's name
953  *
954  * Returns the string that was used to initialize the memory region.
955  *
956  * @mr: the memory region being queried
957  */
958 const char *memory_region_name(const MemoryRegion *mr);
959 
960 /**
961  * memory_region_is_logging: return whether a memory region is logging writes
962  *
963  * Returns %true if the memory region is logging writes for the given client
964  *
965  * @mr: the memory region being queried
966  * @client: the client being queried
967  */
968 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
969 
970 /**
971  * memory_region_get_dirty_log_mask: return the clients for which a
972  * memory region is logging writes.
973  *
974  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
975  * are the bit indices.
976  *
977  * @mr: the memory region being queried
978  */
979 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
980 
981 /**
982  * memory_region_is_rom: check whether a memory region is ROM
983  *
984  * Returns %true is a memory region is read-only memory.
985  *
986  * @mr: the memory region being queried
987  */
988 static inline bool memory_region_is_rom(MemoryRegion *mr)
989 {
990     return mr->ram && mr->readonly;
991 }
992 
993 
994 /**
995  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
996  *
997  * Returns a file descriptor backing a file-based RAM memory region,
998  * or -1 if the region is not a file-based RAM memory region.
999  *
1000  * @mr: the RAM or alias memory region being queried.
1001  */
1002 int memory_region_get_fd(MemoryRegion *mr);
1003 
1004 /**
1005  * memory_region_from_host: Convert a pointer into a RAM memory region
1006  * and an offset within it.
1007  *
1008  * Given a host pointer inside a RAM memory region (created with
1009  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1010  * the MemoryRegion and the offset within it.
1011  *
1012  * Use with care; by the time this function returns, the returned pointer is
1013  * not protected by RCU anymore.  If the caller is not within an RCU critical
1014  * section and does not hold the iothread lock, it must have other means of
1015  * protecting the pointer, such as a reference to the region that includes
1016  * the incoming ram_addr_t.
1017  *
1018  * @ptr: the host pointer to be converted
1019  * @offset: the offset within memory region
1020  */
1021 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1022 
1023 /**
1024  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1025  *
1026  * Returns a host pointer to a RAM memory region (created with
1027  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1028  *
1029  * Use with care; by the time this function returns, the returned pointer is
1030  * not protected by RCU anymore.  If the caller is not within an RCU critical
1031  * section and does not hold the iothread lock, it must have other means of
1032  * protecting the pointer, such as a reference to the region that includes
1033  * the incoming ram_addr_t.
1034  *
1035  * @mr: the memory region being queried.
1036  */
1037 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1038 
1039 /* memory_region_ram_resize: Resize a RAM region.
1040  *
1041  * Only legal before guest might have detected the memory size: e.g. on
1042  * incoming migration, or right after reset.
1043  *
1044  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1045  * @newsize: the new size the region
1046  * @errp: pointer to Error*, to store an error if it happens.
1047  */
1048 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1049                               Error **errp);
1050 
1051 /**
1052  * memory_region_set_log: Turn dirty logging on or off for a region.
1053  *
1054  * Turns dirty logging on or off for a specified client (display, migration).
1055  * Only meaningful for RAM regions.
1056  *
1057  * @mr: the memory region being updated.
1058  * @log: whether dirty logging is to be enabled or disabled.
1059  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1060  */
1061 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1062 
1063 /**
1064  * memory_region_get_dirty: Check whether a range of bytes is dirty
1065  *                          for a specified client.
1066  *
1067  * Checks whether a range of bytes has been written to since the last
1068  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1069  * must be enabled.
1070  *
1071  * @mr: the memory region being queried.
1072  * @addr: the address (relative to the start of the region) being queried.
1073  * @size: the size of the range being queried.
1074  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1075  *          %DIRTY_MEMORY_VGA.
1076  */
1077 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1078                              hwaddr size, unsigned client);
1079 
1080 /**
1081  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1082  *
1083  * Marks a range of bytes as dirty, after it has been dirtied outside
1084  * guest code.
1085  *
1086  * @mr: the memory region being dirtied.
1087  * @addr: the address (relative to the start of the region) being dirtied.
1088  * @size: size of the range being dirtied.
1089  */
1090 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1091                              hwaddr size);
1092 
1093 /**
1094  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1095  *                                     for a specified client. It clears them.
1096  *
1097  * Checks whether a range of bytes has been written to since the last
1098  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1099  * must be enabled.
1100  *
1101  * @mr: the memory region being queried.
1102  * @addr: the address (relative to the start of the region) being queried.
1103  * @size: the size of the range being queried.
1104  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1105  *          %DIRTY_MEMORY_VGA.
1106  */
1107 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1108                                         hwaddr size, unsigned client);
1109 
1110 /**
1111  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1112  *                                         bitmap and clear it.
1113  *
1114  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1115  * returns the snapshot.  The snapshot can then be used to query dirty
1116  * status, using memory_region_snapshot_get_dirty.  Unlike
1117  * memory_region_test_and_clear_dirty this allows to query the same
1118  * page multiple times, which is especially useful for display updates
1119  * where the scanlines often are not page aligned.
1120  *
1121  * The dirty bitmap region which gets copyed into the snapshot (and
1122  * cleared afterwards) can be larger than requested.  The boundaries
1123  * are rounded up/down so complete bitmap longs (covering 64 pages on
1124  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1125  * isn't a problem for display updates as the extra pages are outside
1126  * the visible area, and in case the visible area changes a full
1127  * display redraw is due anyway.  Should other use cases for this
1128  * function emerge we might have to revisit this implementation
1129  * detail.
1130  *
1131  * Use g_free to release DirtyBitmapSnapshot.
1132  *
1133  * @mr: the memory region being queried.
1134  * @addr: the address (relative to the start of the region) being queried.
1135  * @size: the size of the range being queried.
1136  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1137  */
1138 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1139                                                             hwaddr addr,
1140                                                             hwaddr size,
1141                                                             unsigned client);
1142 
1143 /**
1144  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1145  *                                   in the specified dirty bitmap snapshot.
1146  *
1147  * @mr: the memory region being queried.
1148  * @snap: the dirty bitmap snapshot
1149  * @addr: the address (relative to the start of the region) being queried.
1150  * @size: the size of the range being queried.
1151  */
1152 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1153                                       DirtyBitmapSnapshot *snap,
1154                                       hwaddr addr, hwaddr size);
1155 
1156 /**
1157  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1158  *                                  any external TLBs (e.g. kvm)
1159  *
1160  * Flushes dirty information from accelerators such as kvm and vhost-net
1161  * and makes it available to users of the memory API.
1162  *
1163  * @mr: the region being flushed.
1164  */
1165 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1166 
1167 /**
1168  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1169  *                            client.
1170  *
1171  * Marks a range of pages as no longer dirty.
1172  *
1173  * @mr: the region being updated.
1174  * @addr: the start of the subrange being cleaned.
1175  * @size: the size of the subrange being cleaned.
1176  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1177  *          %DIRTY_MEMORY_VGA.
1178  */
1179 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1180                                hwaddr size, unsigned client);
1181 
1182 /**
1183  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1184  *
1185  * Allows a memory region to be marked as read-only (turning it into a ROM).
1186  * only useful on RAM regions.
1187  *
1188  * @mr: the region being updated.
1189  * @readonly: whether rhe region is to be ROM or RAM.
1190  */
1191 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1192 
1193 /**
1194  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1195  *
1196  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1197  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1198  * device is mapped to guest memory and satisfies read access directly.
1199  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1200  * Writes are always handled by the #MemoryRegion.write function.
1201  *
1202  * @mr: the memory region to be updated
1203  * @romd_mode: %true to put the region into ROMD mode
1204  */
1205 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1206 
1207 /**
1208  * memory_region_set_coalescing: Enable memory coalescing for the region.
1209  *
1210  * Enabled writes to a region to be queued for later processing. MMIO ->write
1211  * callbacks may be delayed until a non-coalesced MMIO is issued.
1212  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1213  *
1214  * @mr: the memory region to be write coalesced
1215  */
1216 void memory_region_set_coalescing(MemoryRegion *mr);
1217 
1218 /**
1219  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1220  *                               a region.
1221  *
1222  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1223  * Multiple calls can be issued coalesced disjoint ranges.
1224  *
1225  * @mr: the memory region to be updated.
1226  * @offset: the start of the range within the region to be coalesced.
1227  * @size: the size of the subrange to be coalesced.
1228  */
1229 void memory_region_add_coalescing(MemoryRegion *mr,
1230                                   hwaddr offset,
1231                                   uint64_t size);
1232 
1233 /**
1234  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1235  *
1236  * Disables any coalescing caused by memory_region_set_coalescing() or
1237  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1238  * hardware.
1239  *
1240  * @mr: the memory region to be updated.
1241  */
1242 void memory_region_clear_coalescing(MemoryRegion *mr);
1243 
1244 /**
1245  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1246  *                                    accesses.
1247  *
1248  * Ensure that pending coalesced MMIO request are flushed before the memory
1249  * region is accessed. This property is automatically enabled for all regions
1250  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1251  *
1252  * @mr: the memory region to be updated.
1253  */
1254 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1255 
1256 /**
1257  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1258  *                                      accesses.
1259  *
1260  * Clear the automatic coalesced MMIO flushing enabled via
1261  * memory_region_set_flush_coalesced. Note that this service has no effect on
1262  * memory regions that have MMIO coalescing enabled for themselves. For them,
1263  * automatic flushing will stop once coalescing is disabled.
1264  *
1265  * @mr: the memory region to be updated.
1266  */
1267 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1268 
1269 /**
1270  * memory_region_clear_global_locking: Declares that access processing does
1271  *                                     not depend on the QEMU global lock.
1272  *
1273  * By clearing this property, accesses to the memory region will be processed
1274  * outside of QEMU's global lock (unless the lock is held on when issuing the
1275  * access request). In this case, the device model implementing the access
1276  * handlers is responsible for synchronization of concurrency.
1277  *
1278  * @mr: the memory region to be updated.
1279  */
1280 void memory_region_clear_global_locking(MemoryRegion *mr);
1281 
1282 /**
1283  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1284  *                            is written to a location.
1285  *
1286  * Marks a word in an IO region (initialized with memory_region_init_io())
1287  * as a trigger for an eventfd event.  The I/O callback will not be called.
1288  * The caller must be prepared to handle failure (that is, take the required
1289  * action if the callback _is_ called).
1290  *
1291  * @mr: the memory region being updated.
1292  * @addr: the address within @mr that is to be monitored
1293  * @size: the size of the access to trigger the eventfd
1294  * @match_data: whether to match against @data, instead of just @addr
1295  * @data: the data to match against the guest write
1296  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1297  **/
1298 void memory_region_add_eventfd(MemoryRegion *mr,
1299                                hwaddr addr,
1300                                unsigned size,
1301                                bool match_data,
1302                                uint64_t data,
1303                                EventNotifier *e);
1304 
1305 /**
1306  * memory_region_del_eventfd: Cancel an eventfd.
1307  *
1308  * Cancels an eventfd trigger requested by a previous
1309  * memory_region_add_eventfd() call.
1310  *
1311  * @mr: the memory region being updated.
1312  * @addr: the address within @mr that is to be monitored
1313  * @size: the size of the access to trigger the eventfd
1314  * @match_data: whether to match against @data, instead of just @addr
1315  * @data: the data to match against the guest write
1316  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1317  */
1318 void memory_region_del_eventfd(MemoryRegion *mr,
1319                                hwaddr addr,
1320                                unsigned size,
1321                                bool match_data,
1322                                uint64_t data,
1323                                EventNotifier *e);
1324 
1325 /**
1326  * memory_region_add_subregion: Add a subregion to a container.
1327  *
1328  * Adds a subregion at @offset.  The subregion may not overlap with other
1329  * subregions (except for those explicitly marked as overlapping).  A region
1330  * may only be added once as a subregion (unless removed with
1331  * memory_region_del_subregion()); use memory_region_init_alias() if you
1332  * want a region to be a subregion in multiple locations.
1333  *
1334  * @mr: the region to contain the new subregion; must be a container
1335  *      initialized with memory_region_init().
1336  * @offset: the offset relative to @mr where @subregion is added.
1337  * @subregion: the subregion to be added.
1338  */
1339 void memory_region_add_subregion(MemoryRegion *mr,
1340                                  hwaddr offset,
1341                                  MemoryRegion *subregion);
1342 /**
1343  * memory_region_add_subregion_overlap: Add a subregion to a container
1344  *                                      with overlap.
1345  *
1346  * Adds a subregion at @offset.  The subregion may overlap with other
1347  * subregions.  Conflicts are resolved by having a higher @priority hide a
1348  * lower @priority. Subregions without priority are taken as @priority 0.
1349  * A region may only be added once as a subregion (unless removed with
1350  * memory_region_del_subregion()); use memory_region_init_alias() if you
1351  * want a region to be a subregion in multiple locations.
1352  *
1353  * @mr: the region to contain the new subregion; must be a container
1354  *      initialized with memory_region_init().
1355  * @offset: the offset relative to @mr where @subregion is added.
1356  * @subregion: the subregion to be added.
1357  * @priority: used for resolving overlaps; highest priority wins.
1358  */
1359 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1360                                          hwaddr offset,
1361                                          MemoryRegion *subregion,
1362                                          int priority);
1363 
1364 /**
1365  * memory_region_get_ram_addr: Get the ram address associated with a memory
1366  *                             region
1367  */
1368 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1369 
1370 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1371 /**
1372  * memory_region_del_subregion: Remove a subregion.
1373  *
1374  * Removes a subregion from its container.
1375  *
1376  * @mr: the container to be updated.
1377  * @subregion: the region being removed; must be a current subregion of @mr.
1378  */
1379 void memory_region_del_subregion(MemoryRegion *mr,
1380                                  MemoryRegion *subregion);
1381 
1382 /*
1383  * memory_region_set_enabled: dynamically enable or disable a region
1384  *
1385  * Enables or disables a memory region.  A disabled memory region
1386  * ignores all accesses to itself and its subregions.  It does not
1387  * obscure sibling subregions with lower priority - it simply behaves as
1388  * if it was removed from the hierarchy.
1389  *
1390  * Regions default to being enabled.
1391  *
1392  * @mr: the region to be updated
1393  * @enabled: whether to enable or disable the region
1394  */
1395 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1396 
1397 /*
1398  * memory_region_set_address: dynamically update the address of a region
1399  *
1400  * Dynamically updates the address of a region, relative to its container.
1401  * May be used on regions are currently part of a memory hierarchy.
1402  *
1403  * @mr: the region to be updated
1404  * @addr: new address, relative to container region
1405  */
1406 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1407 
1408 /*
1409  * memory_region_set_size: dynamically update the size of a region.
1410  *
1411  * Dynamically updates the size of a region.
1412  *
1413  * @mr: the region to be updated
1414  * @size: used size of the region.
1415  */
1416 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1417 
1418 /*
1419  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1420  *
1421  * Dynamically updates the offset into the target region that an alias points
1422  * to, as if the fourth argument to memory_region_init_alias() has changed.
1423  *
1424  * @mr: the #MemoryRegion to be updated; should be an alias.
1425  * @offset: the new offset into the target memory region
1426  */
1427 void memory_region_set_alias_offset(MemoryRegion *mr,
1428                                     hwaddr offset);
1429 
1430 /**
1431  * memory_region_present: checks if an address relative to a @container
1432  * translates into #MemoryRegion within @container
1433  *
1434  * Answer whether a #MemoryRegion within @container covers the address
1435  * @addr.
1436  *
1437  * @container: a #MemoryRegion within which @addr is a relative address
1438  * @addr: the area within @container to be searched
1439  */
1440 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1441 
1442 /**
1443  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1444  * into any address space.
1445  *
1446  * @mr: a #MemoryRegion which should be checked if it's mapped
1447  */
1448 bool memory_region_is_mapped(MemoryRegion *mr);
1449 
1450 /**
1451  * memory_region_find: translate an address/size relative to a
1452  * MemoryRegion into a #MemoryRegionSection.
1453  *
1454  * Locates the first #MemoryRegion within @mr that overlaps the range
1455  * given by @addr and @size.
1456  *
1457  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1458  * It will have the following characteristics:
1459  *    .@size = 0 iff no overlap was found
1460  *    .@mr is non-%NULL iff an overlap was found
1461  *
1462  * Remember that in the return value the @offset_within_region is
1463  * relative to the returned region (in the .@mr field), not to the
1464  * @mr argument.
1465  *
1466  * Similarly, the .@offset_within_address_space is relative to the
1467  * address space that contains both regions, the passed and the
1468  * returned one.  However, in the special case where the @mr argument
1469  * has no container (and thus is the root of the address space), the
1470  * following will hold:
1471  *    .@offset_within_address_space >= @addr
1472  *    .@offset_within_address_space + .@size <= @addr + @size
1473  *
1474  * @mr: a MemoryRegion within which @addr is a relative address
1475  * @addr: start of the area within @as to be searched
1476  * @size: size of the area to be searched
1477  */
1478 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1479                                        hwaddr addr, uint64_t size);
1480 
1481 /**
1482  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1483  *
1484  * Synchronizes the dirty page log for all address spaces.
1485  */
1486 void memory_global_dirty_log_sync(void);
1487 
1488 /**
1489  * memory_region_transaction_begin: Start a transaction.
1490  *
1491  * During a transaction, changes will be accumulated and made visible
1492  * only when the transaction ends (is committed).
1493  */
1494 void memory_region_transaction_begin(void);
1495 
1496 /**
1497  * memory_region_transaction_commit: Commit a transaction and make changes
1498  *                                   visible to the guest.
1499  */
1500 void memory_region_transaction_commit(void);
1501 
1502 /**
1503  * memory_listener_register: register callbacks to be called when memory
1504  *                           sections are mapped or unmapped into an address
1505  *                           space
1506  *
1507  * @listener: an object containing the callbacks to be called
1508  * @filter: if non-%NULL, only regions in this address space will be observed
1509  */
1510 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1511 
1512 /**
1513  * memory_listener_unregister: undo the effect of memory_listener_register()
1514  *
1515  * @listener: an object containing the callbacks to be removed
1516  */
1517 void memory_listener_unregister(MemoryListener *listener);
1518 
1519 /**
1520  * memory_global_dirty_log_start: begin dirty logging for all regions
1521  */
1522 void memory_global_dirty_log_start(void);
1523 
1524 /**
1525  * memory_global_dirty_log_stop: end dirty logging for all regions
1526  */
1527 void memory_global_dirty_log_stop(void);
1528 
1529 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1530                 bool dispatch_tree);
1531 
1532 /**
1533  * memory_region_request_mmio_ptr: request a pointer to an mmio
1534  * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1535  * When the device wants to invalidate the pointer it will call
1536  * memory_region_invalidate_mmio_ptr.
1537  *
1538  * @mr: #MemoryRegion to check
1539  * @addr: address within that region
1540  *
1541  * Returns true on success, false otherwise.
1542  */
1543 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1544 
1545 /**
1546  * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1547  * previously requested.
1548  * In the end that means that if something wants to execute from this area it
1549  * will need to request the pointer again.
1550  *
1551  * @mr: #MemoryRegion associated to the pointer.
1552  * @offset: offset within the memory region
1553  * @size: size of that area.
1554  */
1555 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1556                                        unsigned size);
1557 
1558 /**
1559  * memory_region_dispatch_read: perform a read directly to the specified
1560  * MemoryRegion.
1561  *
1562  * @mr: #MemoryRegion to access
1563  * @addr: address within that region
1564  * @pval: pointer to uint64_t which the data is written to
1565  * @size: size of the access in bytes
1566  * @attrs: memory transaction attributes to use for the access
1567  */
1568 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1569                                         hwaddr addr,
1570                                         uint64_t *pval,
1571                                         unsigned size,
1572                                         MemTxAttrs attrs);
1573 /**
1574  * memory_region_dispatch_write: perform a write directly to the specified
1575  * MemoryRegion.
1576  *
1577  * @mr: #MemoryRegion to access
1578  * @addr: address within that region
1579  * @data: data to write
1580  * @size: size of the access in bytes
1581  * @attrs: memory transaction attributes to use for the access
1582  */
1583 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1584                                          hwaddr addr,
1585                                          uint64_t data,
1586                                          unsigned size,
1587                                          MemTxAttrs attrs);
1588 
1589 /**
1590  * address_space_init: initializes an address space
1591  *
1592  * @as: an uninitialized #AddressSpace
1593  * @root: a #MemoryRegion that routes addresses for the address space
1594  * @name: an address space name.  The name is only used for debugging
1595  *        output.
1596  */
1597 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1598 
1599 /**
1600  * address_space_destroy: destroy an address space
1601  *
1602  * Releases all resources associated with an address space.  After an address space
1603  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1604  * as well.
1605  *
1606  * @as: address space to be destroyed
1607  */
1608 void address_space_destroy(AddressSpace *as);
1609 
1610 /**
1611  * address_space_rw: read from or write to an address space.
1612  *
1613  * Return a MemTxResult indicating whether the operation succeeded
1614  * or failed (eg unassigned memory, device rejected the transaction,
1615  * IOMMU fault).
1616  *
1617  * @as: #AddressSpace to be accessed
1618  * @addr: address within that address space
1619  * @attrs: memory transaction attributes
1620  * @buf: buffer with the data transferred
1621  * @len: the number of bytes to read or write
1622  * @is_write: indicates the transfer direction
1623  */
1624 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1625                              MemTxAttrs attrs, uint8_t *buf,
1626                              int len, bool is_write);
1627 
1628 /**
1629  * address_space_write: write to address space.
1630  *
1631  * Return a MemTxResult indicating whether the operation succeeded
1632  * or failed (eg unassigned memory, device rejected the transaction,
1633  * IOMMU fault).
1634  *
1635  * @as: #AddressSpace to be accessed
1636  * @addr: address within that address space
1637  * @attrs: memory transaction attributes
1638  * @buf: buffer with the data transferred
1639  * @len: the number of bytes to write
1640  */
1641 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1642                                 MemTxAttrs attrs,
1643                                 const uint8_t *buf, int len);
1644 
1645 /* address_space_ld*: load from an address space
1646  * address_space_st*: store to an address space
1647  *
1648  * These functions perform a load or store of the byte, word,
1649  * longword or quad to the specified address within the AddressSpace.
1650  * The _le suffixed functions treat the data as little endian;
1651  * _be indicates big endian; no suffix indicates "same endianness
1652  * as guest CPU".
1653  *
1654  * The "guest CPU endianness" accessors are deprecated for use outside
1655  * target-* code; devices should be CPU-agnostic and use either the LE
1656  * or the BE accessors.
1657  *
1658  * @as #AddressSpace to be accessed
1659  * @addr: address within that address space
1660  * @val: data value, for stores
1661  * @attrs: memory transaction attributes
1662  * @result: location to write the success/failure of the transaction;
1663  *   if NULL, this information is discarded
1664  */
1665 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1666                             MemTxAttrs attrs, MemTxResult *result);
1667 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1668                             MemTxAttrs attrs, MemTxResult *result);
1669 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1670                             MemTxAttrs attrs, MemTxResult *result);
1671 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1672                             MemTxAttrs attrs, MemTxResult *result);
1673 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1674                             MemTxAttrs attrs, MemTxResult *result);
1675 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1676                             MemTxAttrs attrs, MemTxResult *result);
1677 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1678                             MemTxAttrs attrs, MemTxResult *result);
1679 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1680                             MemTxAttrs attrs, MemTxResult *result);
1681 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1682                             MemTxAttrs attrs, MemTxResult *result);
1683 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1684                             MemTxAttrs attrs, MemTxResult *result);
1685 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1686                             MemTxAttrs attrs, MemTxResult *result);
1687 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1688                             MemTxAttrs attrs, MemTxResult *result);
1689 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1690                             MemTxAttrs attrs, MemTxResult *result);
1691 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1692                             MemTxAttrs attrs, MemTxResult *result);
1693 
1694 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1695 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1696 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1697 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1698 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1699 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1700 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1701 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1702 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1703 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1704 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1705 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1706 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1707 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1708 
1709 struct MemoryRegionCache {
1710     hwaddr xlat;
1711     hwaddr len;
1712     AddressSpace *as;
1713 };
1714 
1715 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1716 
1717 /* address_space_cache_init: prepare for repeated access to a physical
1718  * memory region
1719  *
1720  * @cache: #MemoryRegionCache to be filled
1721  * @as: #AddressSpace to be accessed
1722  * @addr: address within that address space
1723  * @len: length of buffer
1724  * @is_write: indicates the transfer direction
1725  *
1726  * Will only work with RAM, and may map a subset of the requested range by
1727  * returning a value that is less than @len.  On failure, return a negative
1728  * errno value.
1729  *
1730  * Because it only works with RAM, this function can be used for
1731  * read-modify-write operations.  In this case, is_write should be %true.
1732  *
1733  * Note that addresses passed to the address_space_*_cached functions
1734  * are relative to @addr.
1735  */
1736 int64_t address_space_cache_init(MemoryRegionCache *cache,
1737                                  AddressSpace *as,
1738                                  hwaddr addr,
1739                                  hwaddr len,
1740                                  bool is_write);
1741 
1742 /**
1743  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1744  *
1745  * @cache: The #MemoryRegionCache to operate on.
1746  * @addr: The first physical address that was written, relative to the
1747  * address that was passed to @address_space_cache_init.
1748  * @access_len: The number of bytes that were written starting at @addr.
1749  */
1750 void address_space_cache_invalidate(MemoryRegionCache *cache,
1751                                     hwaddr addr,
1752                                     hwaddr access_len);
1753 
1754 /**
1755  * address_space_cache_destroy: free a #MemoryRegionCache
1756  *
1757  * @cache: The #MemoryRegionCache whose memory should be released.
1758  */
1759 void address_space_cache_destroy(MemoryRegionCache *cache);
1760 
1761 /* address_space_ld*_cached: load from a cached #MemoryRegion
1762  * address_space_st*_cached: store into a cached #MemoryRegion
1763  *
1764  * These functions perform a load or store of the byte, word,
1765  * longword or quad to the specified address.  The address is
1766  * a physical address in the AddressSpace, but it must lie within
1767  * a #MemoryRegion that was mapped with address_space_cache_init.
1768  *
1769  * The _le suffixed functions treat the data as little endian;
1770  * _be indicates big endian; no suffix indicates "same endianness
1771  * as guest CPU".
1772  *
1773  * The "guest CPU endianness" accessors are deprecated for use outside
1774  * target-* code; devices should be CPU-agnostic and use either the LE
1775  * or the BE accessors.
1776  *
1777  * @cache: previously initialized #MemoryRegionCache to be accessed
1778  * @addr: address within the address space
1779  * @val: data value, for stores
1780  * @attrs: memory transaction attributes
1781  * @result: location to write the success/failure of the transaction;
1782  *   if NULL, this information is discarded
1783  */
1784 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1785                             MemTxAttrs attrs, MemTxResult *result);
1786 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1787                             MemTxAttrs attrs, MemTxResult *result);
1788 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1789                             MemTxAttrs attrs, MemTxResult *result);
1790 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1791                             MemTxAttrs attrs, MemTxResult *result);
1792 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1793                             MemTxAttrs attrs, MemTxResult *result);
1794 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1795                             MemTxAttrs attrs, MemTxResult *result);
1796 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1797                             MemTxAttrs attrs, MemTxResult *result);
1798 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1799                             MemTxAttrs attrs, MemTxResult *result);
1800 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1801                             MemTxAttrs attrs, MemTxResult *result);
1802 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1803                             MemTxAttrs attrs, MemTxResult *result);
1804 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1805                             MemTxAttrs attrs, MemTxResult *result);
1806 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1807                             MemTxAttrs attrs, MemTxResult *result);
1808 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1809                             MemTxAttrs attrs, MemTxResult *result);
1810 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1811                             MemTxAttrs attrs, MemTxResult *result);
1812 
1813 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1814 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1815 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1816 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1817 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1818 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1819 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1820 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1821 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1822 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1823 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1824 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1825 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1826 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1827 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1828  * entry. Should be called from an RCU critical section.
1829  */
1830 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1831                                             bool is_write);
1832 
1833 /* address_space_translate: translate an address range into an address space
1834  * into a MemoryRegion and an address range into that section.  Should be
1835  * called from an RCU critical section, to avoid that the last reference
1836  * to the returned region disappears after address_space_translate returns.
1837  *
1838  * @fv: #FlatView to be accessed
1839  * @addr: address within that address space
1840  * @xlat: pointer to address within the returned memory region section's
1841  * #MemoryRegion.
1842  * @len: pointer to length
1843  * @is_write: indicates the transfer direction
1844  */
1845 MemoryRegion *flatview_translate(FlatView *fv,
1846                                  hwaddr addr, hwaddr *xlat,
1847                                  hwaddr *len, bool is_write);
1848 
1849 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1850                                                     hwaddr addr, hwaddr *xlat,
1851                                                     hwaddr *len, bool is_write)
1852 {
1853     return flatview_translate(address_space_to_flatview(as),
1854                               addr, xlat, len, is_write);
1855 }
1856 
1857 /* address_space_access_valid: check for validity of accessing an address
1858  * space range
1859  *
1860  * Check whether memory is assigned to the given address space range, and
1861  * access is permitted by any IOMMU regions that are active for the address
1862  * space.
1863  *
1864  * For now, addr and len should be aligned to a page size.  This limitation
1865  * will be lifted in the future.
1866  *
1867  * @as: #AddressSpace to be accessed
1868  * @addr: address within that address space
1869  * @len: length of the area to be checked
1870  * @is_write: indicates the transfer direction
1871  */
1872 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1873 
1874 /* address_space_map: map a physical memory region into a host virtual address
1875  *
1876  * May map a subset of the requested range, given by and returned in @plen.
1877  * May return %NULL if resources needed to perform the mapping are exhausted.
1878  * Use only for reads OR writes - not for read-modify-write operations.
1879  * Use cpu_register_map_client() to know when retrying the map operation is
1880  * likely to succeed.
1881  *
1882  * @as: #AddressSpace to be accessed
1883  * @addr: address within that address space
1884  * @plen: pointer to length of buffer; updated on return
1885  * @is_write: indicates the transfer direction
1886  */
1887 void *address_space_map(AddressSpace *as, hwaddr addr,
1888                         hwaddr *plen, bool is_write);
1889 
1890 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1891  *
1892  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1893  * the amount of memory that was actually read or written by the caller.
1894  *
1895  * @as: #AddressSpace used
1896  * @buffer: host pointer as returned by address_space_map()
1897  * @len: buffer length as returned by address_space_map()
1898  * @access_len: amount of data actually transferred
1899  * @is_write: indicates the transfer direction
1900  */
1901 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1902                          int is_write, hwaddr access_len);
1903 
1904 
1905 /* Internal functions, part of the implementation of address_space_read.  */
1906 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1907                                    MemTxAttrs attrs, uint8_t *buf,
1908                                    int len, hwaddr addr1, hwaddr l,
1909                                    MemoryRegion *mr);
1910 
1911 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
1912                                MemTxAttrs attrs, uint8_t *buf, int len);
1913 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1914 
1915 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1916 {
1917     if (is_write) {
1918         return memory_region_is_ram(mr) &&
1919                !mr->readonly && !memory_region_is_ram_device(mr);
1920     } else {
1921         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1922                memory_region_is_romd(mr);
1923     }
1924 }
1925 
1926 /**
1927  * address_space_read: read from an address space.
1928  *
1929  * Return a MemTxResult indicating whether the operation succeeded
1930  * or failed (eg unassigned memory, device rejected the transaction,
1931  * IOMMU fault).
1932  *
1933  * @fv: #FlatView to be accessed
1934  * @addr: address within that address space
1935  * @attrs: memory transaction attributes
1936  * @buf: buffer with the data transferred
1937  */
1938 static inline __attribute__((__always_inline__))
1939 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
1940                           uint8_t *buf, int len)
1941 {
1942     MemTxResult result = MEMTX_OK;
1943     hwaddr l, addr1;
1944     void *ptr;
1945     MemoryRegion *mr;
1946 
1947     if (__builtin_constant_p(len)) {
1948         if (len) {
1949             rcu_read_lock();
1950             l = len;
1951             mr = flatview_translate(fv, addr, &addr1, &l, false);
1952             if (len == l && memory_access_is_direct(mr, false)) {
1953                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1954                 memcpy(buf, ptr, len);
1955             } else {
1956                 result = flatview_read_continue(fv, addr, attrs, buf, len,
1957                                                 addr1, l, mr);
1958             }
1959             rcu_read_unlock();
1960         }
1961     } else {
1962         result = flatview_read_full(fv, addr, attrs, buf, len);
1963     }
1964     return result;
1965 }
1966 
1967 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1968                                              MemTxAttrs attrs, uint8_t *buf,
1969                                              int len)
1970 {
1971     return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
1972 }
1973 
1974 /**
1975  * address_space_read_cached: read from a cached RAM region
1976  *
1977  * @cache: Cached region to be addressed
1978  * @addr: address relative to the base of the RAM region
1979  * @buf: buffer with the data transferred
1980  * @len: length of the data transferred
1981  */
1982 static inline void
1983 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1984                           void *buf, int len)
1985 {
1986     assert(addr < cache->len && len <= cache->len - addr);
1987     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1988 }
1989 
1990 /**
1991  * address_space_write_cached: write to a cached RAM region
1992  *
1993  * @cache: Cached region to be addressed
1994  * @addr: address relative to the base of the RAM region
1995  * @buf: buffer with the data transferred
1996  * @len: length of the data transferred
1997  */
1998 static inline void
1999 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2000                            void *buf, int len)
2001 {
2002     assert(addr < cache->len && len <= cache->len - addr);
2003     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2004 }
2005 
2006 #endif
2007 
2008 #endif
2009