xref: /openbmc/qemu/include/exec/memory.h (revision a0359b56)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31 
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39                          TYPE_MEMORY_REGION)
40 
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54                       size_t len,
55                       MemoryRegion *mr);
56 #else
57 static inline void fuzz_dma_read_cb(size_t addr,
58                                     size_t len,
59                                     MemoryRegion *mr)
60 {
61     /* Do Nothing */
62 }
63 #endif
64 
65 /* Possible bits for global_dirty_log_{start|stop} */
66 
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
69 
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
75 
76 #define GLOBAL_DIRTY_MASK  (0x7)
77 
78 extern unsigned int global_dirty_tracking;
79 
80 typedef struct MemoryRegionOps MemoryRegionOps;
81 
82 struct ReservedRegion {
83     Range range;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  * @unmergeable: this section should not get merged with adjacent sections
99  */
100 struct MemoryRegionSection {
101     Int128 size;
102     MemoryRegion *mr;
103     FlatView *fv;
104     hwaddr offset_within_region;
105     hwaddr offset_within_address_space;
106     bool readonly;
107     bool nonvolatile;
108     bool unmergeable;
109 };
110 
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112 
113 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
114 typedef enum {
115     IOMMU_NONE = 0,
116     IOMMU_RO   = 1,
117     IOMMU_WO   = 2,
118     IOMMU_RW   = 3,
119 } IOMMUAccessFlags;
120 
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122 
123 struct IOMMUTLBEntry {
124     AddressSpace    *target_as;
125     hwaddr           iova;
126     hwaddr           translated_addr;
127     hwaddr           addr_mask;  /* 0xfff = 4k translation */
128     IOMMUAccessFlags perm;
129 };
130 
131 /*
132  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133  * register with one or multiple IOMMU Notifier capability bit(s).
134  *
135  * Normally there're two use cases for the notifiers:
136  *
137  *   (1) When the device needs accurate synchronizations of the vIOMMU page
138  *       tables, it needs to register with both MAP|UNMAP notifies (which
139  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140  *
141  *       Regarding to accurate synchronization, it's when the notified
142  *       device maintains a shadow page table and must be notified on each
143  *       guest MAP (page table entry creation) and UNMAP (invalidation)
144  *       events (e.g. VFIO). Both notifications must be accurate so that
145  *       the shadow page table is fully in sync with the guest view.
146  *
147  *   (2) When the device doesn't need accurate synchronizations of the
148  *       vIOMMU page tables, it needs to register only with UNMAP or
149  *       DEVIOTLB_UNMAP notifies.
150  *
151  *       It's when the device maintains a cache of IOMMU translations
152  *       (IOTLB) and is able to fill that cache by requesting translations
153  *       from the vIOMMU through a protocol similar to ATS (Address
154  *       Translation Service).
155  *
156  *       Note that in this mode the vIOMMU will not maintain a shadowed
157  *       page table for the address space, and the UNMAP messages can cover
158  *       more than the pages that used to get mapped.  The IOMMU notifiee
159  *       should be able to take care of over-sized invalidations.
160  */
161 typedef enum {
162     IOMMU_NOTIFIER_NONE = 0,
163     /* Notify cache invalidations */
164     IOMMU_NOTIFIER_UNMAP = 0x1,
165     /* Notify entry changes (newly created entries) */
166     IOMMU_NOTIFIER_MAP = 0x2,
167     /* Notify changes on device IOTLB entries */
168     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170 
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175 
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178                             IOMMUTLBEntry *data);
179 
180 struct IOMMUNotifier {
181     IOMMUNotify notify;
182     IOMMUNotifierFlag notifier_flags;
183     /* Notify for address space range start <= addr <= end */
184     hwaddr start;
185     hwaddr end;
186     int iommu_idx;
187     QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190 
191 typedef struct IOMMUTLBEvent {
192     IOMMUNotifierFlag type;
193     IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195 
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC   (1 << 0)
198 
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED     (1 << 1)
201 
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203  * Resizing RAM while migrating can result in the migration being canceled.
204  */
205 #define RAM_RESIZEABLE (1 << 2)
206 
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208  * zero the page and wake waiting processes.
209  * (Set during postcopy)
210  */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212 
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215 
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218 
219 
220 /*
221  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222  * support 'write-tracking' migration type.
223  * Implies ram_state->ram_wt_enabled.
224  */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226 
227 /*
228  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229  * pages if applicable) is skipped: will bail out if not supported. When not
230  * set, the OS will do the reservation, if supported for the memory type.
231  */
232 #define RAM_NORESERVE (1 << 7)
233 
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236 
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239 
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242 
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245 
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD   (1 << 12)
248 
249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
250                                        IOMMUNotifierFlag flags,
251                                        hwaddr start, hwaddr end,
252                                        int iommu_idx)
253 {
254     n->notify = fn;
255     n->notifier_flags = flags;
256     n->start = start;
257     n->end = end;
258     n->iommu_idx = iommu_idx;
259 }
260 
261 /*
262  * Memory region callbacks
263  */
264 struct MemoryRegionOps {
265     /* Read from the memory region. @addr is relative to @mr; @size is
266      * in bytes. */
267     uint64_t (*read)(void *opaque,
268                      hwaddr addr,
269                      unsigned size);
270     /* Write to the memory region. @addr is relative to @mr; @size is
271      * in bytes. */
272     void (*write)(void *opaque,
273                   hwaddr addr,
274                   uint64_t data,
275                   unsigned size);
276 
277     MemTxResult (*read_with_attrs)(void *opaque,
278                                    hwaddr addr,
279                                    uint64_t *data,
280                                    unsigned size,
281                                    MemTxAttrs attrs);
282     MemTxResult (*write_with_attrs)(void *opaque,
283                                     hwaddr addr,
284                                     uint64_t data,
285                                     unsigned size,
286                                     MemTxAttrs attrs);
287 
288     enum device_endian endianness;
289     /* Guest-visible constraints: */
290     struct {
291         /* If nonzero, specify bounds on access sizes beyond which a machine
292          * check is thrown.
293          */
294         unsigned min_access_size;
295         unsigned max_access_size;
296         /* If true, unaligned accesses are supported.  Otherwise unaligned
297          * accesses throw machine checks.
298          */
299          bool unaligned;
300         /*
301          * If present, and returns #false, the transaction is not accepted
302          * by the device (and results in machine dependent behaviour such
303          * as a machine check exception).
304          */
305         bool (*accepts)(void *opaque, hwaddr addr,
306                         unsigned size, bool is_write,
307                         MemTxAttrs attrs);
308     } valid;
309     /* Internal implementation constraints: */
310     struct {
311         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
312          * will be rounded upwards and a partial result will be returned.
313          */
314         unsigned min_access_size;
315         /* If nonzero, specifies the maximum size implemented.  Larger sizes
316          * will be done as a series of accesses with smaller sizes.
317          */
318         unsigned max_access_size;
319         /* If true, unaligned accesses are supported.  Otherwise all accesses
320          * are converted to (possibly multiple) naturally aligned accesses.
321          */
322         bool unaligned;
323     } impl;
324 };
325 
326 typedef struct MemoryRegionClass {
327     /* private */
328     ObjectClass parent_class;
329 } MemoryRegionClass;
330 
331 
332 enum IOMMUMemoryRegionAttr {
333     IOMMU_ATTR_SPAPR_TCE_FD
334 };
335 
336 /*
337  * IOMMUMemoryRegionClass:
338  *
339  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
340  * and provide an implementation of at least the @translate method here
341  * to handle requests to the memory region. Other methods are optional.
342  *
343  * The IOMMU implementation must use the IOMMU notifier infrastructure
344  * to report whenever mappings are changed, by calling
345  * memory_region_notify_iommu() (or, if necessary, by calling
346  * memory_region_notify_iommu_one() for each registered notifier).
347  *
348  * Conceptually an IOMMU provides a mapping from input address
349  * to an output TLB entry. If the IOMMU is aware of memory transaction
350  * attributes and the output TLB entry depends on the transaction
351  * attributes, we represent this using IOMMU indexes. Each index
352  * selects a particular translation table that the IOMMU has:
353  *
354  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
355  *
356  *   @translate takes an input address and an IOMMU index
357  *
358  * and the mapping returned can only depend on the input address and the
359  * IOMMU index.
360  *
361  * Most IOMMUs don't care about the transaction attributes and support
362  * only a single IOMMU index. A more complex IOMMU might have one index
363  * for secure transactions and one for non-secure transactions.
364  */
365 struct IOMMUMemoryRegionClass {
366     /* private: */
367     MemoryRegionClass parent_class;
368 
369     /* public: */
370     /**
371      * @translate:
372      *
373      * Return a TLB entry that contains a given address.
374      *
375      * The IOMMUAccessFlags indicated via @flag are optional and may
376      * be specified as IOMMU_NONE to indicate that the caller needs
377      * the full translation information for both reads and writes. If
378      * the access flags are specified then the IOMMU implementation
379      * may use this as an optimization, to stop doing a page table
380      * walk as soon as it knows that the requested permissions are not
381      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
382      * full page table walk and report the permissions in the returned
383      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
384      * return different mappings for reads and writes.)
385      *
386      * The returned information remains valid while the caller is
387      * holding the big QEMU lock or is inside an RCU critical section;
388      * if the caller wishes to cache the mapping beyond that it must
389      * register an IOMMU notifier so it can invalidate its cached
390      * information when the IOMMU mapping changes.
391      *
392      * @iommu: the IOMMUMemoryRegion
393      *
394      * @hwaddr: address to be translated within the memory region
395      *
396      * @flag: requested access permission
397      *
398      * @iommu_idx: IOMMU index for the translation
399      */
400     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
401                                IOMMUAccessFlags flag, int iommu_idx);
402     /**
403      * @get_min_page_size:
404      *
405      * Returns minimum supported page size in bytes.
406      *
407      * If this method is not provided then the minimum is assumed to
408      * be TARGET_PAGE_SIZE.
409      *
410      * @iommu: the IOMMUMemoryRegion
411      */
412     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
413     /**
414      * @notify_flag_changed:
415      *
416      * Called when IOMMU Notifier flag changes (ie when the set of
417      * events which IOMMU users are requesting notification for changes).
418      * Optional method -- need not be provided if the IOMMU does not
419      * need to know exactly which events must be notified.
420      *
421      * @iommu: the IOMMUMemoryRegion
422      *
423      * @old_flags: events which previously needed to be notified
424      *
425      * @new_flags: events which now need to be notified
426      *
427      * Returns 0 on success, or a negative errno; in particular
428      * returns -EINVAL if the new flag bitmap is not supported by the
429      * IOMMU memory region. In case of failure, the error object
430      * must be created
431      */
432     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
433                                IOMMUNotifierFlag old_flags,
434                                IOMMUNotifierFlag new_flags,
435                                Error **errp);
436     /**
437      * @replay:
438      *
439      * Called to handle memory_region_iommu_replay().
440      *
441      * The default implementation of memory_region_iommu_replay() is to
442      * call the IOMMU translate method for every page in the address space
443      * with flag == IOMMU_NONE and then call the notifier if translate
444      * returns a valid mapping. If this method is implemented then it
445      * overrides the default behaviour, and must provide the full semantics
446      * of memory_region_iommu_replay(), by calling @notifier for every
447      * translation present in the IOMMU.
448      *
449      * Optional method -- an IOMMU only needs to provide this method
450      * if the default is inefficient or produces undesirable side effects.
451      *
452      * Note: this is not related to record-and-replay functionality.
453      */
454     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
455 
456     /**
457      * @get_attr:
458      *
459      * Get IOMMU misc attributes. This is an optional method that
460      * can be used to allow users of the IOMMU to get implementation-specific
461      * information. The IOMMU implements this method to handle calls
462      * by IOMMU users to memory_region_iommu_get_attr() by filling in
463      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
464      * the IOMMU supports. If the method is unimplemented then
465      * memory_region_iommu_get_attr() will always return -EINVAL.
466      *
467      * @iommu: the IOMMUMemoryRegion
468      *
469      * @attr: attribute being queried
470      *
471      * @data: memory to fill in with the attribute data
472      *
473      * Returns 0 on success, or a negative errno; in particular
474      * returns -EINVAL for unrecognized or unimplemented attribute types.
475      */
476     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
477                     void *data);
478 
479     /**
480      * @attrs_to_index:
481      *
482      * Return the IOMMU index to use for a given set of transaction attributes.
483      *
484      * Optional method: if an IOMMU only supports a single IOMMU index then
485      * the default implementation of memory_region_iommu_attrs_to_index()
486      * will return 0.
487      *
488      * The indexes supported by an IOMMU must be contiguous, starting at 0.
489      *
490      * @iommu: the IOMMUMemoryRegion
491      * @attrs: memory transaction attributes
492      */
493     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
494 
495     /**
496      * @num_indexes:
497      *
498      * Return the number of IOMMU indexes this IOMMU supports.
499      *
500      * Optional method: if this method is not provided, then
501      * memory_region_iommu_num_indexes() will return 1, indicating that
502      * only a single IOMMU index is supported.
503      *
504      * @iommu: the IOMMUMemoryRegion
505      */
506     int (*num_indexes)(IOMMUMemoryRegion *iommu);
507 
508     /**
509      * @iommu_set_page_size_mask:
510      *
511      * Restrict the page size mask that can be supported with a given IOMMU
512      * memory region. Used for example to propagate host physical IOMMU page
513      * size mask limitations to the virtual IOMMU.
514      *
515      * Optional method: if this method is not provided, then the default global
516      * page mask is used.
517      *
518      * @iommu: the IOMMUMemoryRegion
519      *
520      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
521      * representing the smallest page size, must be set. Additional set bits
522      * represent supported block sizes. For example a host physical IOMMU that
523      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
524      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
525      * block sizes is specified with mask 0xfffffffffffff000.
526      *
527      * Returns 0 on success, or a negative error. In case of failure, the error
528      * object must be created.
529      */
530      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
531                                      uint64_t page_size_mask,
532                                      Error **errp);
533     /**
534      * @iommu_set_iova_ranges:
535      *
536      * Propagate information about the usable IOVA ranges for a given IOMMU
537      * memory region. Used for example to propagate host physical device
538      * reserved memory region constraints to the virtual IOMMU.
539      *
540      * Optional method: if this method is not provided, then the default IOVA
541      * aperture is used.
542      *
543      * @iommu: the IOMMUMemoryRegion
544      *
545      * @iova_ranges: list of ordered IOVA ranges (at least one range)
546      *
547      * Returns 0 on success, or a negative error. In case of failure, the error
548      * object must be created.
549      */
550      int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu,
551                                   GList *iova_ranges,
552                                   Error **errp);
553 };
554 
555 typedef struct RamDiscardListener RamDiscardListener;
556 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
557                                  MemoryRegionSection *section);
558 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
559                                  MemoryRegionSection *section);
560 
561 struct RamDiscardListener {
562     /*
563      * @notify_populate:
564      *
565      * Notification that previously discarded memory is about to get populated.
566      * Listeners are able to object. If any listener objects, already
567      * successfully notified listeners are notified about a discard again.
568      *
569      * @rdl: the #RamDiscardListener getting notified
570      * @section: the #MemoryRegionSection to get populated. The section
571      *           is aligned within the memory region to the minimum granularity
572      *           unless it would exceed the registered section.
573      *
574      * Returns 0 on success. If the notification is rejected by the listener,
575      * an error is returned.
576      */
577     NotifyRamPopulate notify_populate;
578 
579     /*
580      * @notify_discard:
581      *
582      * Notification that previously populated memory was discarded successfully
583      * and listeners should drop all references to such memory and prevent
584      * new population (e.g., unmap).
585      *
586      * @rdl: the #RamDiscardListener getting notified
587      * @section: the #MemoryRegionSection to get populated. The section
588      *           is aligned within the memory region to the minimum granularity
589      *           unless it would exceed the registered section.
590      */
591     NotifyRamDiscard notify_discard;
592 
593     /*
594      * @double_discard_supported:
595      *
596      * The listener suppors getting @notify_discard notifications that span
597      * already discarded parts.
598      */
599     bool double_discard_supported;
600 
601     MemoryRegionSection *section;
602     QLIST_ENTRY(RamDiscardListener) next;
603 };
604 
605 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
606                                              NotifyRamPopulate populate_fn,
607                                              NotifyRamDiscard discard_fn,
608                                              bool double_discard_supported)
609 {
610     rdl->notify_populate = populate_fn;
611     rdl->notify_discard = discard_fn;
612     rdl->double_discard_supported = double_discard_supported;
613 }
614 
615 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
616 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
617 
618 /*
619  * RamDiscardManagerClass:
620  *
621  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
622  * regions are currently populated to be used/accessed by the VM, notifying
623  * after parts were discarded (freeing up memory) and before parts will be
624  * populated (consuming memory), to be used/accessed by the VM.
625  *
626  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
627  * #MemoryRegion isn't mapped into an address space yet (either directly
628  * or via an alias); it cannot change while the #MemoryRegion is
629  * mapped into an address space.
630  *
631  * The #RamDiscardManager is intended to be used by technologies that are
632  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
633  * memory inside a #MemoryRegion), and require proper coordination to only
634  * map the currently populated parts, to hinder parts that are expected to
635  * remain discarded from silently getting populated and consuming memory.
636  * Technologies that support discarding of RAM don't have to bother and can
637  * simply map the whole #MemoryRegion.
638  *
639  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
640  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
641  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
642  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
643  * properly coordinate with listeners before memory is plugged (populated),
644  * and after memory is unplugged (discarded).
645  *
646  * Listeners are called in multiples of the minimum granularity (unless it
647  * would exceed the registered range) and changes are aligned to the minimum
648  * granularity within the #MemoryRegion. Listeners have to prepare for memory
649  * becoming discarded in a different granularity than it was populated and the
650  * other way around.
651  */
652 struct RamDiscardManagerClass {
653     /* private */
654     InterfaceClass parent_class;
655 
656     /* public */
657 
658     /**
659      * @get_min_granularity:
660      *
661      * Get the minimum granularity in which listeners will get notified
662      * about changes within the #MemoryRegion via the #RamDiscardManager.
663      *
664      * @rdm: the #RamDiscardManager
665      * @mr: the #MemoryRegion
666      *
667      * Returns the minimum granularity.
668      */
669     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
670                                     const MemoryRegion *mr);
671 
672     /**
673      * @is_populated:
674      *
675      * Check whether the given #MemoryRegionSection is completely populated
676      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
677      * There are no alignment requirements.
678      *
679      * @rdm: the #RamDiscardManager
680      * @section: the #MemoryRegionSection
681      *
682      * Returns whether the given range is completely populated.
683      */
684     bool (*is_populated)(const RamDiscardManager *rdm,
685                          const MemoryRegionSection *section);
686 
687     /**
688      * @replay_populated:
689      *
690      * Call the #ReplayRamPopulate callback for all populated parts within the
691      * #MemoryRegionSection via the #RamDiscardManager.
692      *
693      * In case any call fails, no further calls are made.
694      *
695      * @rdm: the #RamDiscardManager
696      * @section: the #MemoryRegionSection
697      * @replay_fn: the #ReplayRamPopulate callback
698      * @opaque: pointer to forward to the callback
699      *
700      * Returns 0 on success, or a negative error if any notification failed.
701      */
702     int (*replay_populated)(const RamDiscardManager *rdm,
703                             MemoryRegionSection *section,
704                             ReplayRamPopulate replay_fn, void *opaque);
705 
706     /**
707      * @replay_discarded:
708      *
709      * Call the #ReplayRamDiscard callback for all discarded parts within the
710      * #MemoryRegionSection via the #RamDiscardManager.
711      *
712      * @rdm: the #RamDiscardManager
713      * @section: the #MemoryRegionSection
714      * @replay_fn: the #ReplayRamDiscard callback
715      * @opaque: pointer to forward to the callback
716      */
717     void (*replay_discarded)(const RamDiscardManager *rdm,
718                              MemoryRegionSection *section,
719                              ReplayRamDiscard replay_fn, void *opaque);
720 
721     /**
722      * @register_listener:
723      *
724      * Register a #RamDiscardListener for the given #MemoryRegionSection and
725      * immediately notify the #RamDiscardListener about all populated parts
726      * within the #MemoryRegionSection via the #RamDiscardManager.
727      *
728      * In case any notification fails, no further notifications are triggered
729      * and an error is logged.
730      *
731      * @rdm: the #RamDiscardManager
732      * @rdl: the #RamDiscardListener
733      * @section: the #MemoryRegionSection
734      */
735     void (*register_listener)(RamDiscardManager *rdm,
736                               RamDiscardListener *rdl,
737                               MemoryRegionSection *section);
738 
739     /**
740      * @unregister_listener:
741      *
742      * Unregister a previously registered #RamDiscardListener via the
743      * #RamDiscardManager after notifying the #RamDiscardListener about all
744      * populated parts becoming unpopulated within the registered
745      * #MemoryRegionSection.
746      *
747      * @rdm: the #RamDiscardManager
748      * @rdl: the #RamDiscardListener
749      */
750     void (*unregister_listener)(RamDiscardManager *rdm,
751                                 RamDiscardListener *rdl);
752 };
753 
754 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
755                                                  const MemoryRegion *mr);
756 
757 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
758                                       const MemoryRegionSection *section);
759 
760 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
761                                          MemoryRegionSection *section,
762                                          ReplayRamPopulate replay_fn,
763                                          void *opaque);
764 
765 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
766                                           MemoryRegionSection *section,
767                                           ReplayRamDiscard replay_fn,
768                                           void *opaque);
769 
770 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
771                                            RamDiscardListener *rdl,
772                                            MemoryRegionSection *section);
773 
774 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
775                                              RamDiscardListener *rdl);
776 
777 /**
778  * memory_get_xlat_addr: Extract addresses from a TLB entry
779  *
780  * @iotlb: pointer to an #IOMMUTLBEntry
781  * @vaddr: virtual address
782  * @ram_addr: RAM address
783  * @read_only: indicates if writes are allowed
784  * @mr_has_discard_manager: indicates memory is controlled by a
785  *                          RamDiscardManager
786  * @errp: pointer to Error*, to store an error if it happens.
787  *
788  * Return: true on success, else false setting @errp with error.
789  */
790 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
791                           ram_addr_t *ram_addr, bool *read_only,
792                           bool *mr_has_discard_manager, Error **errp);
793 
794 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
795 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
796 
797 /** MemoryRegion:
798  *
799  * A struct representing a memory region.
800  */
801 struct MemoryRegion {
802     Object parent_obj;
803 
804     /* private: */
805 
806     /* The following fields should fit in a cache line */
807     bool romd_mode;
808     bool ram;
809     bool subpage;
810     bool readonly; /* For RAM regions */
811     bool nonvolatile;
812     bool rom_device;
813     bool flush_coalesced_mmio;
814     bool unmergeable;
815     uint8_t dirty_log_mask;
816     bool is_iommu;
817     RAMBlock *ram_block;
818     Object *owner;
819     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
820     DeviceState *dev;
821 
822     const MemoryRegionOps *ops;
823     void *opaque;
824     MemoryRegion *container;
825     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
826     Int128 size;
827     hwaddr addr;
828     void (*destructor)(MemoryRegion *mr);
829     uint64_t align;
830     bool terminates;
831     bool ram_device;
832     bool enabled;
833     bool warning_printed; /* For reservations */
834     uint8_t vga_logging_count;
835     MemoryRegion *alias;
836     hwaddr alias_offset;
837     int32_t priority;
838     QTAILQ_HEAD(, MemoryRegion) subregions;
839     QTAILQ_ENTRY(MemoryRegion) subregions_link;
840     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
841     const char *name;
842     unsigned ioeventfd_nb;
843     MemoryRegionIoeventfd *ioeventfds;
844     RamDiscardManager *rdm; /* Only for RAM */
845 
846     /* For devices designed to perform re-entrant IO into their own IO MRs */
847     bool disable_reentrancy_guard;
848 };
849 
850 struct IOMMUMemoryRegion {
851     MemoryRegion parent_obj;
852 
853     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
854     IOMMUNotifierFlag iommu_notify_flags;
855 };
856 
857 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
858     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
859 
860 #define MEMORY_LISTENER_PRIORITY_MIN            0
861 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
862 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
863 
864 /**
865  * struct MemoryListener: callbacks structure for updates to the physical memory map
866  *
867  * Allows a component to adjust to changes in the guest-visible memory map.
868  * Use with memory_listener_register() and memory_listener_unregister().
869  */
870 struct MemoryListener {
871     /**
872      * @begin:
873      *
874      * Called at the beginning of an address space update transaction.
875      * Followed by calls to #MemoryListener.region_add(),
876      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
877      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
878      * increasing address order.
879      *
880      * @listener: The #MemoryListener.
881      */
882     void (*begin)(MemoryListener *listener);
883 
884     /**
885      * @commit:
886      *
887      * Called at the end of an address space update transaction,
888      * after the last call to #MemoryListener.region_add(),
889      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
890      * #MemoryListener.log_start() and #MemoryListener.log_stop().
891      *
892      * @listener: The #MemoryListener.
893      */
894     void (*commit)(MemoryListener *listener);
895 
896     /**
897      * @region_add:
898      *
899      * Called during an address space update transaction,
900      * for a section of the address space that is new in this address space
901      * space since the last transaction.
902      *
903      * @listener: The #MemoryListener.
904      * @section: The new #MemoryRegionSection.
905      */
906     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
907 
908     /**
909      * @region_del:
910      *
911      * Called during an address space update transaction,
912      * for a section of the address space that has disappeared in the address
913      * space since the last transaction.
914      *
915      * @listener: The #MemoryListener.
916      * @section: The old #MemoryRegionSection.
917      */
918     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
919 
920     /**
921      * @region_nop:
922      *
923      * Called during an address space update transaction,
924      * for a section of the address space that is in the same place in the address
925      * space as in the last transaction.
926      *
927      * @listener: The #MemoryListener.
928      * @section: The #MemoryRegionSection.
929      */
930     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
931 
932     /**
933      * @log_start:
934      *
935      * Called during an address space update transaction, after
936      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
937      * #MemoryListener.region_nop(), if dirty memory logging clients have
938      * become active since the last transaction.
939      *
940      * @listener: The #MemoryListener.
941      * @section: The #MemoryRegionSection.
942      * @old: A bitmap of dirty memory logging clients that were active in
943      * the previous transaction.
944      * @new: A bitmap of dirty memory logging clients that are active in
945      * the current transaction.
946      */
947     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
948                       int old, int new);
949 
950     /**
951      * @log_stop:
952      *
953      * Called during an address space update transaction, after
954      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
955      * #MemoryListener.region_nop() and possibly after
956      * #MemoryListener.log_start(), if dirty memory logging clients have
957      * become inactive since the last transaction.
958      *
959      * @listener: The #MemoryListener.
960      * @section: The #MemoryRegionSection.
961      * @old: A bitmap of dirty memory logging clients that were active in
962      * the previous transaction.
963      * @new: A bitmap of dirty memory logging clients that are active in
964      * the current transaction.
965      */
966     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
967                      int old, int new);
968 
969     /**
970      * @log_sync:
971      *
972      * Called by memory_region_snapshot_and_clear_dirty() and
973      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
974      * copy of the dirty memory bitmap for a #MemoryRegionSection.
975      *
976      * @listener: The #MemoryListener.
977      * @section: The #MemoryRegionSection.
978      */
979     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
980 
981     /**
982      * @log_sync_global:
983      *
984      * This is the global version of @log_sync when the listener does
985      * not have a way to synchronize the log with finer granularity.
986      * When the listener registers with @log_sync_global defined, then
987      * its @log_sync must be NULL.  Vice versa.
988      *
989      * @listener: The #MemoryListener.
990      * @last_stage: The last stage to synchronize the log during migration.
991      * The caller should guarantee that the synchronization with true for
992      * @last_stage is triggered for once after all VCPUs have been stopped.
993      */
994     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
995 
996     /**
997      * @log_clear:
998      *
999      * Called before reading the dirty memory bitmap for a
1000      * #MemoryRegionSection.
1001      *
1002      * @listener: The #MemoryListener.
1003      * @section: The #MemoryRegionSection.
1004      */
1005     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
1006 
1007     /**
1008      * @log_global_start:
1009      *
1010      * Called by memory_global_dirty_log_start(), which
1011      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
1012      * the address space.  #MemoryListener.log_global_start() is also
1013      * called when a #MemoryListener is added, if global dirty logging is
1014      * active at that time.
1015      *
1016      * @listener: The #MemoryListener.
1017      * @errp: pointer to Error*, to store an error if it happens.
1018      *
1019      * Return: true on success, else false setting @errp with error.
1020      */
1021     bool (*log_global_start)(MemoryListener *listener, Error **errp);
1022 
1023     /**
1024      * @log_global_stop:
1025      *
1026      * Called by memory_global_dirty_log_stop(), which
1027      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1028      * the address space.
1029      *
1030      * @listener: The #MemoryListener.
1031      */
1032     void (*log_global_stop)(MemoryListener *listener);
1033 
1034     /**
1035      * @log_global_after_sync:
1036      *
1037      * Called after reading the dirty memory bitmap
1038      * for any #MemoryRegionSection.
1039      *
1040      * @listener: The #MemoryListener.
1041      */
1042     void (*log_global_after_sync)(MemoryListener *listener);
1043 
1044     /**
1045      * @eventfd_add:
1046      *
1047      * Called during an address space update transaction,
1048      * for a section of the address space that has had a new ioeventfd
1049      * registration since the last transaction.
1050      *
1051      * @listener: The #MemoryListener.
1052      * @section: The new #MemoryRegionSection.
1053      * @match_data: The @match_data parameter for the new ioeventfd.
1054      * @data: The @data parameter for the new ioeventfd.
1055      * @e: The #EventNotifier parameter for the new ioeventfd.
1056      */
1057     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1058                         bool match_data, uint64_t data, EventNotifier *e);
1059 
1060     /**
1061      * @eventfd_del:
1062      *
1063      * Called during an address space update transaction,
1064      * for a section of the address space that has dropped an ioeventfd
1065      * registration since the last transaction.
1066      *
1067      * @listener: The #MemoryListener.
1068      * @section: The new #MemoryRegionSection.
1069      * @match_data: The @match_data parameter for the dropped ioeventfd.
1070      * @data: The @data parameter for the dropped ioeventfd.
1071      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1072      */
1073     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1074                         bool match_data, uint64_t data, EventNotifier *e);
1075 
1076     /**
1077      * @coalesced_io_add:
1078      *
1079      * Called during an address space update transaction,
1080      * for a section of the address space that has had a new coalesced
1081      * MMIO range registration since the last transaction.
1082      *
1083      * @listener: The #MemoryListener.
1084      * @section: The new #MemoryRegionSection.
1085      * @addr: The starting address for the coalesced MMIO range.
1086      * @len: The length of the coalesced MMIO range.
1087      */
1088     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1089                                hwaddr addr, hwaddr len);
1090 
1091     /**
1092      * @coalesced_io_del:
1093      *
1094      * Called during an address space update transaction,
1095      * for a section of the address space that has dropped a coalesced
1096      * MMIO range since the last transaction.
1097      *
1098      * @listener: The #MemoryListener.
1099      * @section: The new #MemoryRegionSection.
1100      * @addr: The starting address for the coalesced MMIO range.
1101      * @len: The length of the coalesced MMIO range.
1102      */
1103     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1104                                hwaddr addr, hwaddr len);
1105     /**
1106      * @priority:
1107      *
1108      * Govern the order in which memory listeners are invoked. Lower priorities
1109      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1110      * or "stop" callbacks.
1111      */
1112     unsigned priority;
1113 
1114     /**
1115      * @name:
1116      *
1117      * Name of the listener.  It can be used in contexts where we'd like to
1118      * identify one memory listener with the rest.
1119      */
1120     const char *name;
1121 
1122     /* private: */
1123     AddressSpace *address_space;
1124     QTAILQ_ENTRY(MemoryListener) link;
1125     QTAILQ_ENTRY(MemoryListener) link_as;
1126 };
1127 
1128 typedef struct AddressSpaceMapClient {
1129     QEMUBH *bh;
1130     QLIST_ENTRY(AddressSpaceMapClient) link;
1131 } AddressSpaceMapClient;
1132 
1133 typedef struct {
1134     MemoryRegion *mr;
1135     void *buffer;
1136     hwaddr addr;
1137     hwaddr len;
1138     bool in_use;
1139 } BounceBuffer;
1140 
1141 /**
1142  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1143  */
1144 struct AddressSpace {
1145     /* private: */
1146     struct rcu_head rcu;
1147     char *name;
1148     MemoryRegion *root;
1149 
1150     /* Accessed via RCU.  */
1151     struct FlatView *current_map;
1152 
1153     int ioeventfd_nb;
1154     int ioeventfd_notifiers;
1155     struct MemoryRegionIoeventfd *ioeventfds;
1156     QTAILQ_HEAD(, MemoryListener) listeners;
1157     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1158 
1159     /* Bounce buffer to use for this address space. */
1160     BounceBuffer bounce;
1161     /* List of callbacks to invoke when buffers free up */
1162     QemuMutex map_client_list_lock;
1163     QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1164 };
1165 
1166 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1167 typedef struct FlatRange FlatRange;
1168 
1169 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1170  * order.
1171  */
1172 struct FlatView {
1173     struct rcu_head rcu;
1174     unsigned ref;
1175     FlatRange *ranges;
1176     unsigned nr;
1177     unsigned nr_allocated;
1178     struct AddressSpaceDispatch *dispatch;
1179     MemoryRegion *root;
1180 };
1181 
1182 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1183 {
1184     return qatomic_rcu_read(&as->current_map);
1185 }
1186 
1187 /**
1188  * typedef flatview_cb: callback for flatview_for_each_range()
1189  *
1190  * @start: start address of the range within the FlatView
1191  * @len: length of the range in bytes
1192  * @mr: MemoryRegion covering this range
1193  * @offset_in_region: offset of the first byte of the range within @mr
1194  * @opaque: data pointer passed to flatview_for_each_range()
1195  *
1196  * Returns: true to stop the iteration, false to keep going.
1197  */
1198 typedef bool (*flatview_cb)(Int128 start,
1199                             Int128 len,
1200                             const MemoryRegion *mr,
1201                             hwaddr offset_in_region,
1202                             void *opaque);
1203 
1204 /**
1205  * flatview_for_each_range: Iterate through a FlatView
1206  * @fv: the FlatView to iterate through
1207  * @cb: function to call for each range
1208  * @opaque: opaque data pointer to pass to @cb
1209  *
1210  * A FlatView is made up of a list of non-overlapping ranges, each of
1211  * which is a slice of a MemoryRegion. This function iterates through
1212  * each range in @fv, calling @cb. The callback function can terminate
1213  * iteration early by returning 'true'.
1214  */
1215 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1216 
1217 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1218                                           MemoryRegionSection *b)
1219 {
1220     return a->mr == b->mr &&
1221            a->fv == b->fv &&
1222            a->offset_within_region == b->offset_within_region &&
1223            a->offset_within_address_space == b->offset_within_address_space &&
1224            int128_eq(a->size, b->size) &&
1225            a->readonly == b->readonly &&
1226            a->nonvolatile == b->nonvolatile;
1227 }
1228 
1229 /**
1230  * memory_region_section_new_copy: Copy a memory region section
1231  *
1232  * Allocate memory for a new copy, copy the memory region section, and
1233  * properly take a reference on all relevant members.
1234  *
1235  * @s: the #MemoryRegionSection to copy
1236  */
1237 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1238 
1239 /**
1240  * memory_region_section_new_copy: Free a copied memory region section
1241  *
1242  * Free a copy of a memory section created via memory_region_section_new_copy().
1243  * properly dropping references on all relevant members.
1244  *
1245  * @s: the #MemoryRegionSection to copy
1246  */
1247 void memory_region_section_free_copy(MemoryRegionSection *s);
1248 
1249 /**
1250  * memory_region_init: Initialize a memory region
1251  *
1252  * The region typically acts as a container for other memory regions.  Use
1253  * memory_region_add_subregion() to add subregions.
1254  *
1255  * @mr: the #MemoryRegion to be initialized
1256  * @owner: the object that tracks the region's reference count
1257  * @name: used for debugging; not visible to the user or ABI
1258  * @size: size of the region; any subregions beyond this size will be clipped
1259  */
1260 void memory_region_init(MemoryRegion *mr,
1261                         Object *owner,
1262                         const char *name,
1263                         uint64_t size);
1264 
1265 /**
1266  * memory_region_ref: Add 1 to a memory region's reference count
1267  *
1268  * Whenever memory regions are accessed outside the BQL, they need to be
1269  * preserved against hot-unplug.  MemoryRegions actually do not have their
1270  * own reference count; they piggyback on a QOM object, their "owner".
1271  * This function adds a reference to the owner.
1272  *
1273  * All MemoryRegions must have an owner if they can disappear, even if the
1274  * device they belong to operates exclusively under the BQL.  This is because
1275  * the region could be returned at any time by memory_region_find, and this
1276  * is usually under guest control.
1277  *
1278  * @mr: the #MemoryRegion
1279  */
1280 void memory_region_ref(MemoryRegion *mr);
1281 
1282 /**
1283  * memory_region_unref: Remove 1 to a memory region's reference count
1284  *
1285  * Whenever memory regions are accessed outside the BQL, they need to be
1286  * preserved against hot-unplug.  MemoryRegions actually do not have their
1287  * own reference count; they piggyback on a QOM object, their "owner".
1288  * This function removes a reference to the owner and possibly destroys it.
1289  *
1290  * @mr: the #MemoryRegion
1291  */
1292 void memory_region_unref(MemoryRegion *mr);
1293 
1294 /**
1295  * memory_region_init_io: Initialize an I/O memory region.
1296  *
1297  * Accesses into the region will cause the callbacks in @ops to be called.
1298  * if @size is nonzero, subregions will be clipped to @size.
1299  *
1300  * @mr: the #MemoryRegion to be initialized.
1301  * @owner: the object that tracks the region's reference count
1302  * @ops: a structure containing read and write callbacks to be used when
1303  *       I/O is performed on the region.
1304  * @opaque: passed to the read and write callbacks of the @ops structure.
1305  * @name: used for debugging; not visible to the user or ABI
1306  * @size: size of the region.
1307  */
1308 void memory_region_init_io(MemoryRegion *mr,
1309                            Object *owner,
1310                            const MemoryRegionOps *ops,
1311                            void *opaque,
1312                            const char *name,
1313                            uint64_t size);
1314 
1315 /**
1316  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1317  *                                    into the region will modify memory
1318  *                                    directly.
1319  *
1320  * @mr: the #MemoryRegion to be initialized.
1321  * @owner: the object that tracks the region's reference count
1322  * @name: Region name, becomes part of RAMBlock name used in migration stream
1323  *        must be unique within any device
1324  * @size: size of the region.
1325  * @errp: pointer to Error*, to store an error if it happens.
1326  *
1327  * Note that this function does not do anything to cause the data in the
1328  * RAM memory region to be migrated; that is the responsibility of the caller.
1329  *
1330  * Return: true on success, else false setting @errp with error.
1331  */
1332 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1333                                       Object *owner,
1334                                       const char *name,
1335                                       uint64_t size,
1336                                       Error **errp);
1337 
1338 /**
1339  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1340  *                                          Accesses into the region will
1341  *                                          modify memory directly.
1342  *
1343  * @mr: the #MemoryRegion to be initialized.
1344  * @owner: the object that tracks the region's reference count
1345  * @name: Region name, becomes part of RAMBlock name used in migration stream
1346  *        must be unique within any device
1347  * @size: size of the region.
1348  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1349  *             RAM_GUEST_MEMFD.
1350  * @errp: pointer to Error*, to store an error if it happens.
1351  *
1352  * Note that this function does not do anything to cause the data in the
1353  * RAM memory region to be migrated; that is the responsibility of the caller.
1354  *
1355  * Return: true on success, else false setting @errp with error.
1356  */
1357 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1358                                             Object *owner,
1359                                             const char *name,
1360                                             uint64_t size,
1361                                             uint32_t ram_flags,
1362                                             Error **errp);
1363 
1364 /**
1365  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1366  *                                     RAM.  Accesses into the region will
1367  *                                     modify memory directly.  Only an initial
1368  *                                     portion of this RAM is actually used.
1369  *                                     Changing the size while migrating
1370  *                                     can result in the migration being
1371  *                                     canceled.
1372  *
1373  * @mr: the #MemoryRegion to be initialized.
1374  * @owner: the object that tracks the region's reference count
1375  * @name: Region name, becomes part of RAMBlock name used in migration stream
1376  *        must be unique within any device
1377  * @size: used size of the region.
1378  * @max_size: max size of the region.
1379  * @resized: callback to notify owner about used size change.
1380  * @errp: pointer to Error*, to store an error if it happens.
1381  *
1382  * Note that this function does not do anything to cause the data in the
1383  * RAM memory region to be migrated; that is the responsibility of the caller.
1384  *
1385  * Return: true on success, else false setting @errp with error.
1386  */
1387 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1388                                        Object *owner,
1389                                        const char *name,
1390                                        uint64_t size,
1391                                        uint64_t max_size,
1392                                        void (*resized)(const char*,
1393                                                        uint64_t length,
1394                                                        void *host),
1395                                        Error **errp);
1396 #ifdef CONFIG_POSIX
1397 
1398 /**
1399  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1400  *                                    mmap-ed backend.
1401  *
1402  * @mr: the #MemoryRegion to be initialized.
1403  * @owner: the object that tracks the region's reference count
1404  * @name: Region name, becomes part of RAMBlock name used in migration stream
1405  *        must be unique within any device
1406  * @size: size of the region.
1407  * @align: alignment of the region base address; if 0, the default alignment
1408  *         (getpagesize()) will be used.
1409  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1410  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1411  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1412  * @path: the path in which to allocate the RAM.
1413  * @offset: offset within the file referenced by path
1414  * @errp: pointer to Error*, to store an error if it happens.
1415  *
1416  * Note that this function does not do anything to cause the data in the
1417  * RAM memory region to be migrated; that is the responsibility of the caller.
1418  *
1419  * Return: true on success, else false setting @errp with error.
1420  */
1421 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1422                                       Object *owner,
1423                                       const char *name,
1424                                       uint64_t size,
1425                                       uint64_t align,
1426                                       uint32_t ram_flags,
1427                                       const char *path,
1428                                       ram_addr_t offset,
1429                                       Error **errp);
1430 
1431 /**
1432  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1433  *                                  mmap-ed backend.
1434  *
1435  * @mr: the #MemoryRegion to be initialized.
1436  * @owner: the object that tracks the region's reference count
1437  * @name: the name of the region.
1438  * @size: size of the region.
1439  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1440  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1441  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1442  * @fd: the fd to mmap.
1443  * @offset: offset within the file referenced by fd
1444  * @errp: pointer to Error*, to store an error if it happens.
1445  *
1446  * Note that this function does not do anything to cause the data in the
1447  * RAM memory region to be migrated; that is the responsibility of the caller.
1448  *
1449  * Return: true on success, else false setting @errp with error.
1450  */
1451 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1452                                     Object *owner,
1453                                     const char *name,
1454                                     uint64_t size,
1455                                     uint32_t ram_flags,
1456                                     int fd,
1457                                     ram_addr_t offset,
1458                                     Error **errp);
1459 #endif
1460 
1461 /**
1462  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1463  *                              user-provided pointer.  Accesses into the
1464  *                              region will modify memory directly.
1465  *
1466  * @mr: the #MemoryRegion to be initialized.
1467  * @owner: the object that tracks the region's reference count
1468  * @name: Region name, becomes part of RAMBlock name used in migration stream
1469  *        must be unique within any device
1470  * @size: size of the region.
1471  * @ptr: memory to be mapped; must contain at least @size bytes.
1472  *
1473  * Note that this function does not do anything to cause the data in the
1474  * RAM memory region to be migrated; that is the responsibility of the caller.
1475  */
1476 void memory_region_init_ram_ptr(MemoryRegion *mr,
1477                                 Object *owner,
1478                                 const char *name,
1479                                 uint64_t size,
1480                                 void *ptr);
1481 
1482 /**
1483  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1484  *                                     a user-provided pointer.
1485  *
1486  * A RAM device represents a mapping to a physical device, such as to a PCI
1487  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1488  * into the VM address space and access to the region will modify memory
1489  * directly.  However, the memory region should not be included in a memory
1490  * dump (device may not be enabled/mapped at the time of the dump), and
1491  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1492  * skip_dump flag.
1493  *
1494  * @mr: the #MemoryRegion to be initialized.
1495  * @owner: the object that tracks the region's reference count
1496  * @name: the name of the region.
1497  * @size: size of the region.
1498  * @ptr: memory to be mapped; must contain at least @size bytes.
1499  *
1500  * Note that this function does not do anything to cause the data in the
1501  * RAM memory region to be migrated; that is the responsibility of the caller.
1502  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1503  */
1504 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1505                                        Object *owner,
1506                                        const char *name,
1507                                        uint64_t size,
1508                                        void *ptr);
1509 
1510 /**
1511  * memory_region_init_alias: Initialize a memory region that aliases all or a
1512  *                           part of another memory region.
1513  *
1514  * @mr: the #MemoryRegion to be initialized.
1515  * @owner: the object that tracks the region's reference count
1516  * @name: used for debugging; not visible to the user or ABI
1517  * @orig: the region to be referenced; @mr will be equivalent to
1518  *        @orig between @offset and @offset + @size - 1.
1519  * @offset: start of the section in @orig to be referenced.
1520  * @size: size of the region.
1521  */
1522 void memory_region_init_alias(MemoryRegion *mr,
1523                               Object *owner,
1524                               const char *name,
1525                               MemoryRegion *orig,
1526                               hwaddr offset,
1527                               uint64_t size);
1528 
1529 /**
1530  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1531  *
1532  * This has the same effect as calling memory_region_init_ram_nomigrate()
1533  * and then marking the resulting region read-only with
1534  * memory_region_set_readonly().
1535  *
1536  * Note that this function does not do anything to cause the data in the
1537  * RAM side of the memory region to be migrated; that is the responsibility
1538  * of the caller.
1539  *
1540  * @mr: the #MemoryRegion to be initialized.
1541  * @owner: the object that tracks the region's reference count
1542  * @name: Region name, becomes part of RAMBlock name used in migration stream
1543  *        must be unique within any device
1544  * @size: size of the region.
1545  * @errp: pointer to Error*, to store an error if it happens.
1546  *
1547  * Return: true on success, else false setting @errp with error.
1548  */
1549 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1550                                       Object *owner,
1551                                       const char *name,
1552                                       uint64_t size,
1553                                       Error **errp);
1554 
1555 /**
1556  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1557  *                                 Writes are handled via callbacks.
1558  *
1559  * Note that this function does not do anything to cause the data in the
1560  * RAM side of the memory region to be migrated; that is the responsibility
1561  * of the caller.
1562  *
1563  * @mr: the #MemoryRegion to be initialized.
1564  * @owner: the object that tracks the region's reference count
1565  * @ops: callbacks for write access handling (must not be NULL).
1566  * @opaque: passed to the read and write callbacks of the @ops structure.
1567  * @name: Region name, becomes part of RAMBlock name used in migration stream
1568  *        must be unique within any device
1569  * @size: size of the region.
1570  * @errp: pointer to Error*, to store an error if it happens.
1571  *
1572  * Return: true on success, else false setting @errp with error.
1573  */
1574 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1575                                              Object *owner,
1576                                              const MemoryRegionOps *ops,
1577                                              void *opaque,
1578                                              const char *name,
1579                                              uint64_t size,
1580                                              Error **errp);
1581 
1582 /**
1583  * memory_region_init_iommu: Initialize a memory region of a custom type
1584  * that translates addresses
1585  *
1586  * An IOMMU region translates addresses and forwards accesses to a target
1587  * memory region.
1588  *
1589  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1590  * @_iommu_mr should be a pointer to enough memory for an instance of
1591  * that subclass, @instance_size is the size of that subclass, and
1592  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1593  * instance of the subclass, and its methods will then be called to handle
1594  * accesses to the memory region. See the documentation of
1595  * #IOMMUMemoryRegionClass for further details.
1596  *
1597  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1598  * @instance_size: the IOMMUMemoryRegion subclass instance size
1599  * @mrtypename: the type name of the #IOMMUMemoryRegion
1600  * @owner: the object that tracks the region's reference count
1601  * @name: used for debugging; not visible to the user or ABI
1602  * @size: size of the region.
1603  */
1604 void memory_region_init_iommu(void *_iommu_mr,
1605                               size_t instance_size,
1606                               const char *mrtypename,
1607                               Object *owner,
1608                               const char *name,
1609                               uint64_t size);
1610 
1611 /**
1612  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1613  *                          region will modify memory directly.
1614  *
1615  * @mr: the #MemoryRegion to be initialized
1616  * @owner: the object that tracks the region's reference count (must be
1617  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1618  * @name: name of the memory region
1619  * @size: size of the region in bytes
1620  * @errp: pointer to Error*, to store an error if it happens.
1621  *
1622  * This function allocates RAM for a board model or device, and
1623  * arranges for it to be migrated (by calling vmstate_register_ram()
1624  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1625  * @owner is NULL).
1626  *
1627  * TODO: Currently we restrict @owner to being either NULL (for
1628  * global RAM regions with no owner) or devices, so that we can
1629  * give the RAM block a unique name for migration purposes.
1630  * We should lift this restriction and allow arbitrary Objects.
1631  * If you pass a non-NULL non-device @owner then we will assert.
1632  *
1633  * Return: true on success, else false setting @errp with error.
1634  */
1635 bool memory_region_init_ram(MemoryRegion *mr,
1636                             Object *owner,
1637                             const char *name,
1638                             uint64_t size,
1639                             Error **errp);
1640 
1641 /**
1642  * memory_region_init_rom: Initialize a ROM memory region.
1643  *
1644  * This has the same effect as calling memory_region_init_ram()
1645  * and then marking the resulting region read-only with
1646  * memory_region_set_readonly(). This includes arranging for the
1647  * contents to be migrated.
1648  *
1649  * TODO: Currently we restrict @owner to being either NULL (for
1650  * global RAM regions with no owner) or devices, so that we can
1651  * give the RAM block a unique name for migration purposes.
1652  * We should lift this restriction and allow arbitrary Objects.
1653  * If you pass a non-NULL non-device @owner then we will assert.
1654  *
1655  * @mr: the #MemoryRegion to be initialized.
1656  * @owner: the object that tracks the region's reference count
1657  * @name: Region name, becomes part of RAMBlock name used in migration stream
1658  *        must be unique within any device
1659  * @size: size of the region.
1660  * @errp: pointer to Error*, to store an error if it happens.
1661  *
1662  * Return: true on success, else false setting @errp with error.
1663  */
1664 bool memory_region_init_rom(MemoryRegion *mr,
1665                             Object *owner,
1666                             const char *name,
1667                             uint64_t size,
1668                             Error **errp);
1669 
1670 /**
1671  * memory_region_init_rom_device:  Initialize a ROM memory region.
1672  *                                 Writes are handled via callbacks.
1673  *
1674  * This function initializes a memory region backed by RAM for reads
1675  * and callbacks for writes, and arranges for the RAM backing to
1676  * be migrated (by calling vmstate_register_ram()
1677  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1678  * @owner is NULL).
1679  *
1680  * TODO: Currently we restrict @owner to being either NULL (for
1681  * global RAM regions with no owner) or devices, so that we can
1682  * give the RAM block a unique name for migration purposes.
1683  * We should lift this restriction and allow arbitrary Objects.
1684  * If you pass a non-NULL non-device @owner then we will assert.
1685  *
1686  * @mr: the #MemoryRegion to be initialized.
1687  * @owner: the object that tracks the region's reference count
1688  * @ops: callbacks for write access handling (must not be NULL).
1689  * @opaque: passed to the read and write callbacks of the @ops structure.
1690  * @name: Region name, becomes part of RAMBlock name used in migration stream
1691  *        must be unique within any device
1692  * @size: size of the region.
1693  * @errp: pointer to Error*, to store an error if it happens.
1694  *
1695  * Return: true on success, else false setting @errp with error.
1696  */
1697 bool memory_region_init_rom_device(MemoryRegion *mr,
1698                                    Object *owner,
1699                                    const MemoryRegionOps *ops,
1700                                    void *opaque,
1701                                    const char *name,
1702                                    uint64_t size,
1703                                    Error **errp);
1704 
1705 
1706 /**
1707  * memory_region_owner: get a memory region's owner.
1708  *
1709  * @mr: the memory region being queried.
1710  */
1711 Object *memory_region_owner(MemoryRegion *mr);
1712 
1713 /**
1714  * memory_region_size: get a memory region's size.
1715  *
1716  * @mr: the memory region being queried.
1717  */
1718 uint64_t memory_region_size(MemoryRegion *mr);
1719 
1720 /**
1721  * memory_region_is_ram: check whether a memory region is random access
1722  *
1723  * Returns %true if a memory region is random access.
1724  *
1725  * @mr: the memory region being queried
1726  */
1727 static inline bool memory_region_is_ram(MemoryRegion *mr)
1728 {
1729     return mr->ram;
1730 }
1731 
1732 /**
1733  * memory_region_is_ram_device: check whether a memory region is a ram device
1734  *
1735  * Returns %true if a memory region is a device backed ram region
1736  *
1737  * @mr: the memory region being queried
1738  */
1739 bool memory_region_is_ram_device(MemoryRegion *mr);
1740 
1741 /**
1742  * memory_region_is_romd: check whether a memory region is in ROMD mode
1743  *
1744  * Returns %true if a memory region is a ROM device and currently set to allow
1745  * direct reads.
1746  *
1747  * @mr: the memory region being queried
1748  */
1749 static inline bool memory_region_is_romd(MemoryRegion *mr)
1750 {
1751     return mr->rom_device && mr->romd_mode;
1752 }
1753 
1754 /**
1755  * memory_region_is_protected: check whether a memory region is protected
1756  *
1757  * Returns %true if a memory region is protected RAM and cannot be accessed
1758  * via standard mechanisms, e.g. DMA.
1759  *
1760  * @mr: the memory region being queried
1761  */
1762 bool memory_region_is_protected(MemoryRegion *mr);
1763 
1764 /**
1765  * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1766  *     associated
1767  *
1768  * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1769  *
1770  * @mr: the memory region being queried
1771  */
1772 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1773 
1774 /**
1775  * memory_region_get_iommu: check whether a memory region is an iommu
1776  *
1777  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1778  * otherwise NULL.
1779  *
1780  * @mr: the memory region being queried
1781  */
1782 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1783 {
1784     if (mr->alias) {
1785         return memory_region_get_iommu(mr->alias);
1786     }
1787     if (mr->is_iommu) {
1788         return (IOMMUMemoryRegion *) mr;
1789     }
1790     return NULL;
1791 }
1792 
1793 /**
1794  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1795  *   if an iommu or NULL if not
1796  *
1797  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1798  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1799  *
1800  * @iommu_mr: the memory region being queried
1801  */
1802 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1803         IOMMUMemoryRegion *iommu_mr)
1804 {
1805     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1806 }
1807 
1808 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1809 
1810 /**
1811  * memory_region_iommu_get_min_page_size: get minimum supported page size
1812  * for an iommu
1813  *
1814  * Returns minimum supported page size for an iommu.
1815  *
1816  * @iommu_mr: the memory region being queried
1817  */
1818 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1819 
1820 /**
1821  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1822  *
1823  * Note: for any IOMMU implementation, an in-place mapping change
1824  * should be notified with an UNMAP followed by a MAP.
1825  *
1826  * @iommu_mr: the memory region that was changed
1827  * @iommu_idx: the IOMMU index for the translation table which has changed
1828  * @event: TLB event with the new entry in the IOMMU translation table.
1829  *         The entry replaces all old entries for the same virtual I/O address
1830  *         range.
1831  */
1832 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1833                                 int iommu_idx,
1834                                 IOMMUTLBEvent event);
1835 
1836 /**
1837  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1838  *                           entry to a single notifier
1839  *
1840  * This works just like memory_region_notify_iommu(), but it only
1841  * notifies a specific notifier, not all of them.
1842  *
1843  * @notifier: the notifier to be notified
1844  * @event: TLB event with the new entry in the IOMMU translation table.
1845  *         The entry replaces all old entries for the same virtual I/O address
1846  *         range.
1847  */
1848 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1849                                     IOMMUTLBEvent *event);
1850 
1851 /**
1852  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1853  *                                           translation that covers the
1854  *                                           range of a notifier
1855  *
1856  * @notifier: the notifier to be notified
1857  */
1858 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1859 
1860 
1861 /**
1862  * memory_region_register_iommu_notifier: register a notifier for changes to
1863  * IOMMU translation entries.
1864  *
1865  * Returns 0 on success, or a negative errno otherwise. In particular,
1866  * -EINVAL indicates that at least one of the attributes of the notifier
1867  * is not supported (flag/range) by the IOMMU memory region. In case of error
1868  * the error object must be created.
1869  *
1870  * @mr: the memory region to observe
1871  * @n: the IOMMUNotifier to be added; the notify callback receives a
1872  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1873  *     ceases to be valid on exit from the notifier.
1874  * @errp: pointer to Error*, to store an error if it happens.
1875  */
1876 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1877                                           IOMMUNotifier *n, Error **errp);
1878 
1879 /**
1880  * memory_region_iommu_replay: replay existing IOMMU translations to
1881  * a notifier with the minimum page granularity returned by
1882  * mr->iommu_ops->get_page_size().
1883  *
1884  * Note: this is not related to record-and-replay functionality.
1885  *
1886  * @iommu_mr: the memory region to observe
1887  * @n: the notifier to which to replay iommu mappings
1888  */
1889 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1890 
1891 /**
1892  * memory_region_unregister_iommu_notifier: unregister a notifier for
1893  * changes to IOMMU translation entries.
1894  *
1895  * @mr: the memory region which was observed and for which notity_stopped()
1896  *      needs to be called
1897  * @n: the notifier to be removed.
1898  */
1899 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1900                                              IOMMUNotifier *n);
1901 
1902 /**
1903  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1904  * defined on the IOMMU.
1905  *
1906  * Returns 0 on success, or a negative errno otherwise. In particular,
1907  * -EINVAL indicates that the IOMMU does not support the requested
1908  * attribute.
1909  *
1910  * @iommu_mr: the memory region
1911  * @attr: the requested attribute
1912  * @data: a pointer to the requested attribute data
1913  */
1914 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1915                                  enum IOMMUMemoryRegionAttr attr,
1916                                  void *data);
1917 
1918 /**
1919  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1920  * use for translations with the given memory transaction attributes.
1921  *
1922  * @iommu_mr: the memory region
1923  * @attrs: the memory transaction attributes
1924  */
1925 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1926                                        MemTxAttrs attrs);
1927 
1928 /**
1929  * memory_region_iommu_num_indexes: return the total number of IOMMU
1930  * indexes that this IOMMU supports.
1931  *
1932  * @iommu_mr: the memory region
1933  */
1934 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1935 
1936 /**
1937  * memory_region_iommu_set_page_size_mask: set the supported page
1938  * sizes for a given IOMMU memory region
1939  *
1940  * @iommu_mr: IOMMU memory region
1941  * @page_size_mask: supported page size mask
1942  * @errp: pointer to Error*, to store an error if it happens.
1943  */
1944 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1945                                            uint64_t page_size_mask,
1946                                            Error **errp);
1947 
1948 /**
1949  * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges
1950  * for a given IOMMU MR region
1951  *
1952  * @iommu: IOMMU memory region
1953  * @iova_ranges: list of ordered IOVA ranges (at least one range)
1954  * @errp: pointer to Error*, to store an error if it happens.
1955  */
1956 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu,
1957                                         GList *iova_ranges,
1958                                         Error **errp);
1959 
1960 /**
1961  * memory_region_name: get a memory region's name
1962  *
1963  * Returns the string that was used to initialize the memory region.
1964  *
1965  * @mr: the memory region being queried
1966  */
1967 const char *memory_region_name(const MemoryRegion *mr);
1968 
1969 /**
1970  * memory_region_is_logging: return whether a memory region is logging writes
1971  *
1972  * Returns %true if the memory region is logging writes for the given client
1973  *
1974  * @mr: the memory region being queried
1975  * @client: the client being queried
1976  */
1977 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1978 
1979 /**
1980  * memory_region_get_dirty_log_mask: return the clients for which a
1981  * memory region is logging writes.
1982  *
1983  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1984  * are the bit indices.
1985  *
1986  * @mr: the memory region being queried
1987  */
1988 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1989 
1990 /**
1991  * memory_region_is_rom: check whether a memory region is ROM
1992  *
1993  * Returns %true if a memory region is read-only memory.
1994  *
1995  * @mr: the memory region being queried
1996  */
1997 static inline bool memory_region_is_rom(MemoryRegion *mr)
1998 {
1999     return mr->ram && mr->readonly;
2000 }
2001 
2002 /**
2003  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
2004  *
2005  * Returns %true is a memory region is non-volatile memory.
2006  *
2007  * @mr: the memory region being queried
2008  */
2009 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
2010 {
2011     return mr->nonvolatile;
2012 }
2013 
2014 /**
2015  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
2016  *
2017  * Returns a file descriptor backing a file-based RAM memory region,
2018  * or -1 if the region is not a file-based RAM memory region.
2019  *
2020  * @mr: the RAM or alias memory region being queried.
2021  */
2022 int memory_region_get_fd(MemoryRegion *mr);
2023 
2024 /**
2025  * memory_region_from_host: Convert a pointer into a RAM memory region
2026  * and an offset within it.
2027  *
2028  * Given a host pointer inside a RAM memory region (created with
2029  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
2030  * the MemoryRegion and the offset within it.
2031  *
2032  * Use with care; by the time this function returns, the returned pointer is
2033  * not protected by RCU anymore.  If the caller is not within an RCU critical
2034  * section and does not hold the BQL, it must have other means of
2035  * protecting the pointer, such as a reference to the region that includes
2036  * the incoming ram_addr_t.
2037  *
2038  * @ptr: the host pointer to be converted
2039  * @offset: the offset within memory region
2040  */
2041 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
2042 
2043 /**
2044  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
2045  *
2046  * Returns a host pointer to a RAM memory region (created with
2047  * memory_region_init_ram() or memory_region_init_ram_ptr()).
2048  *
2049  * Use with care; by the time this function returns, the returned pointer is
2050  * not protected by RCU anymore.  If the caller is not within an RCU critical
2051  * section and does not hold the BQL, it must have other means of
2052  * protecting the pointer, such as a reference to the region that includes
2053  * the incoming ram_addr_t.
2054  *
2055  * @mr: the memory region being queried.
2056  */
2057 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2058 
2059 /* memory_region_ram_resize: Resize a RAM region.
2060  *
2061  * Resizing RAM while migrating can result in the migration being canceled.
2062  * Care has to be taken if the guest might have already detected the memory.
2063  *
2064  * @mr: a memory region created with @memory_region_init_resizeable_ram.
2065  * @newsize: the new size the region
2066  * @errp: pointer to Error*, to store an error if it happens.
2067  */
2068 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2069                               Error **errp);
2070 
2071 /**
2072  * memory_region_msync: Synchronize selected address range of
2073  * a memory mapped region
2074  *
2075  * @mr: the memory region to be msync
2076  * @addr: the initial address of the range to be sync
2077  * @size: the size of the range to be sync
2078  */
2079 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2080 
2081 /**
2082  * memory_region_writeback: Trigger cache writeback for
2083  * selected address range
2084  *
2085  * @mr: the memory region to be updated
2086  * @addr: the initial address of the range to be written back
2087  * @size: the size of the range to be written back
2088  */
2089 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2090 
2091 /**
2092  * memory_region_set_log: Turn dirty logging on or off for a region.
2093  *
2094  * Turns dirty logging on or off for a specified client (display, migration).
2095  * Only meaningful for RAM regions.
2096  *
2097  * @mr: the memory region being updated.
2098  * @log: whether dirty logging is to be enabled or disabled.
2099  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2100  */
2101 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2102 
2103 /**
2104  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2105  *
2106  * Marks a range of bytes as dirty, after it has been dirtied outside
2107  * guest code.
2108  *
2109  * @mr: the memory region being dirtied.
2110  * @addr: the address (relative to the start of the region) being dirtied.
2111  * @size: size of the range being dirtied.
2112  */
2113 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2114                              hwaddr size);
2115 
2116 /**
2117  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2118  *
2119  * This function is called when the caller wants to clear the remote
2120  * dirty bitmap of a memory range within the memory region.  This can
2121  * be used by e.g. KVM to manually clear dirty log when
2122  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2123  * kernel.
2124  *
2125  * @mr:     the memory region to clear the dirty log upon
2126  * @start:  start address offset within the memory region
2127  * @len:    length of the memory region to clear dirty bitmap
2128  */
2129 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2130                                       hwaddr len);
2131 
2132 /**
2133  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2134  *                                         bitmap and clear it.
2135  *
2136  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2137  * returns the snapshot.  The snapshot can then be used to query dirty
2138  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2139  * querying the same page multiple times, which is especially useful for
2140  * display updates where the scanlines often are not page aligned.
2141  *
2142  * The dirty bitmap region which gets copied into the snapshot (and
2143  * cleared afterwards) can be larger than requested.  The boundaries
2144  * are rounded up/down so complete bitmap longs (covering 64 pages on
2145  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2146  * isn't a problem for display updates as the extra pages are outside
2147  * the visible area, and in case the visible area changes a full
2148  * display redraw is due anyway.  Should other use cases for this
2149  * function emerge we might have to revisit this implementation
2150  * detail.
2151  *
2152  * Use g_free to release DirtyBitmapSnapshot.
2153  *
2154  * @mr: the memory region being queried.
2155  * @addr: the address (relative to the start of the region) being queried.
2156  * @size: the size of the range being queried.
2157  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2158  */
2159 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2160                                                             hwaddr addr,
2161                                                             hwaddr size,
2162                                                             unsigned client);
2163 
2164 /**
2165  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2166  *                                   in the specified dirty bitmap snapshot.
2167  *
2168  * @mr: the memory region being queried.
2169  * @snap: the dirty bitmap snapshot
2170  * @addr: the address (relative to the start of the region) being queried.
2171  * @size: the size of the range being queried.
2172  */
2173 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2174                                       DirtyBitmapSnapshot *snap,
2175                                       hwaddr addr, hwaddr size);
2176 
2177 /**
2178  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2179  *                            client.
2180  *
2181  * Marks a range of pages as no longer dirty.
2182  *
2183  * @mr: the region being updated.
2184  * @addr: the start of the subrange being cleaned.
2185  * @size: the size of the subrange being cleaned.
2186  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2187  *          %DIRTY_MEMORY_VGA.
2188  */
2189 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2190                                hwaddr size, unsigned client);
2191 
2192 /**
2193  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2194  *                                 TBs (for self-modifying code).
2195  *
2196  * The MemoryRegionOps->write() callback of a ROM device must use this function
2197  * to mark byte ranges that have been modified internally, such as by directly
2198  * accessing the memory returned by memory_region_get_ram_ptr().
2199  *
2200  * This function marks the range dirty and invalidates TBs so that TCG can
2201  * detect self-modifying code.
2202  *
2203  * @mr: the region being flushed.
2204  * @addr: the start, relative to the start of the region, of the range being
2205  *        flushed.
2206  * @size: the size, in bytes, of the range being flushed.
2207  */
2208 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2209 
2210 /**
2211  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2212  *
2213  * Allows a memory region to be marked as read-only (turning it into a ROM).
2214  * only useful on RAM regions.
2215  *
2216  * @mr: the region being updated.
2217  * @readonly: whether rhe region is to be ROM or RAM.
2218  */
2219 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2220 
2221 /**
2222  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2223  *
2224  * Allows a memory region to be marked as non-volatile.
2225  * only useful on RAM regions.
2226  *
2227  * @mr: the region being updated.
2228  * @nonvolatile: whether rhe region is to be non-volatile.
2229  */
2230 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2231 
2232 /**
2233  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2234  *
2235  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2236  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2237  * device is mapped to guest memory and satisfies read access directly.
2238  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2239  * Writes are always handled by the #MemoryRegion.write function.
2240  *
2241  * @mr: the memory region to be updated
2242  * @romd_mode: %true to put the region into ROMD mode
2243  */
2244 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2245 
2246 /**
2247  * memory_region_set_coalescing: Enable memory coalescing for the region.
2248  *
2249  * Enabled writes to a region to be queued for later processing. MMIO ->write
2250  * callbacks may be delayed until a non-coalesced MMIO is issued.
2251  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2252  *
2253  * @mr: the memory region to be write coalesced
2254  */
2255 void memory_region_set_coalescing(MemoryRegion *mr);
2256 
2257 /**
2258  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2259  *                               a region.
2260  *
2261  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2262  * Multiple calls can be issued coalesced disjoint ranges.
2263  *
2264  * @mr: the memory region to be updated.
2265  * @offset: the start of the range within the region to be coalesced.
2266  * @size: the size of the subrange to be coalesced.
2267  */
2268 void memory_region_add_coalescing(MemoryRegion *mr,
2269                                   hwaddr offset,
2270                                   uint64_t size);
2271 
2272 /**
2273  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2274  *
2275  * Disables any coalescing caused by memory_region_set_coalescing() or
2276  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2277  * hardware.
2278  *
2279  * @mr: the memory region to be updated.
2280  */
2281 void memory_region_clear_coalescing(MemoryRegion *mr);
2282 
2283 /**
2284  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2285  *                                    accesses.
2286  *
2287  * Ensure that pending coalesced MMIO request are flushed before the memory
2288  * region is accessed. This property is automatically enabled for all regions
2289  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2290  *
2291  * @mr: the memory region to be updated.
2292  */
2293 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2294 
2295 /**
2296  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2297  *                                      accesses.
2298  *
2299  * Clear the automatic coalesced MMIO flushing enabled via
2300  * memory_region_set_flush_coalesced. Note that this service has no effect on
2301  * memory regions that have MMIO coalescing enabled for themselves. For them,
2302  * automatic flushing will stop once coalescing is disabled.
2303  *
2304  * @mr: the memory region to be updated.
2305  */
2306 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2307 
2308 /**
2309  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2310  *                            is written to a location.
2311  *
2312  * Marks a word in an IO region (initialized with memory_region_init_io())
2313  * as a trigger for an eventfd event.  The I/O callback will not be called.
2314  * The caller must be prepared to handle failure (that is, take the required
2315  * action if the callback _is_ called).
2316  *
2317  * @mr: the memory region being updated.
2318  * @addr: the address within @mr that is to be monitored
2319  * @size: the size of the access to trigger the eventfd
2320  * @match_data: whether to match against @data, instead of just @addr
2321  * @data: the data to match against the guest write
2322  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2323  **/
2324 void memory_region_add_eventfd(MemoryRegion *mr,
2325                                hwaddr addr,
2326                                unsigned size,
2327                                bool match_data,
2328                                uint64_t data,
2329                                EventNotifier *e);
2330 
2331 /**
2332  * memory_region_del_eventfd: Cancel an eventfd.
2333  *
2334  * Cancels an eventfd trigger requested by a previous
2335  * memory_region_add_eventfd() call.
2336  *
2337  * @mr: the memory region being updated.
2338  * @addr: the address within @mr that is to be monitored
2339  * @size: the size of the access to trigger the eventfd
2340  * @match_data: whether to match against @data, instead of just @addr
2341  * @data: the data to match against the guest write
2342  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2343  */
2344 void memory_region_del_eventfd(MemoryRegion *mr,
2345                                hwaddr addr,
2346                                unsigned size,
2347                                bool match_data,
2348                                uint64_t data,
2349                                EventNotifier *e);
2350 
2351 /**
2352  * memory_region_add_subregion: Add a subregion to a container.
2353  *
2354  * Adds a subregion at @offset.  The subregion may not overlap with other
2355  * subregions (except for those explicitly marked as overlapping).  A region
2356  * may only be added once as a subregion (unless removed with
2357  * memory_region_del_subregion()); use memory_region_init_alias() if you
2358  * want a region to be a subregion in multiple locations.
2359  *
2360  * @mr: the region to contain the new subregion; must be a container
2361  *      initialized with memory_region_init().
2362  * @offset: the offset relative to @mr where @subregion is added.
2363  * @subregion: the subregion to be added.
2364  */
2365 void memory_region_add_subregion(MemoryRegion *mr,
2366                                  hwaddr offset,
2367                                  MemoryRegion *subregion);
2368 /**
2369  * memory_region_add_subregion_overlap: Add a subregion to a container
2370  *                                      with overlap.
2371  *
2372  * Adds a subregion at @offset.  The subregion may overlap with other
2373  * subregions.  Conflicts are resolved by having a higher @priority hide a
2374  * lower @priority. Subregions without priority are taken as @priority 0.
2375  * A region may only be added once as a subregion (unless removed with
2376  * memory_region_del_subregion()); use memory_region_init_alias() if you
2377  * want a region to be a subregion in multiple locations.
2378  *
2379  * @mr: the region to contain the new subregion; must be a container
2380  *      initialized with memory_region_init().
2381  * @offset: the offset relative to @mr where @subregion is added.
2382  * @subregion: the subregion to be added.
2383  * @priority: used for resolving overlaps; highest priority wins.
2384  */
2385 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2386                                          hwaddr offset,
2387                                          MemoryRegion *subregion,
2388                                          int priority);
2389 
2390 /**
2391  * memory_region_get_ram_addr: Get the ram address associated with a memory
2392  *                             region
2393  *
2394  * @mr: the region to be queried
2395  */
2396 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2397 
2398 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2399 /**
2400  * memory_region_del_subregion: Remove a subregion.
2401  *
2402  * Removes a subregion from its container.
2403  *
2404  * @mr: the container to be updated.
2405  * @subregion: the region being removed; must be a current subregion of @mr.
2406  */
2407 void memory_region_del_subregion(MemoryRegion *mr,
2408                                  MemoryRegion *subregion);
2409 
2410 /*
2411  * memory_region_set_enabled: dynamically enable or disable a region
2412  *
2413  * Enables or disables a memory region.  A disabled memory region
2414  * ignores all accesses to itself and its subregions.  It does not
2415  * obscure sibling subregions with lower priority - it simply behaves as
2416  * if it was removed from the hierarchy.
2417  *
2418  * Regions default to being enabled.
2419  *
2420  * @mr: the region to be updated
2421  * @enabled: whether to enable or disable the region
2422  */
2423 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2424 
2425 /*
2426  * memory_region_set_address: dynamically update the address of a region
2427  *
2428  * Dynamically updates the address of a region, relative to its container.
2429  * May be used on regions are currently part of a memory hierarchy.
2430  *
2431  * @mr: the region to be updated
2432  * @addr: new address, relative to container region
2433  */
2434 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2435 
2436 /*
2437  * memory_region_set_size: dynamically update the size of a region.
2438  *
2439  * Dynamically updates the size of a region.
2440  *
2441  * @mr: the region to be updated
2442  * @size: used size of the region.
2443  */
2444 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2445 
2446 /*
2447  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2448  *
2449  * Dynamically updates the offset into the target region that an alias points
2450  * to, as if the fourth argument to memory_region_init_alias() has changed.
2451  *
2452  * @mr: the #MemoryRegion to be updated; should be an alias.
2453  * @offset: the new offset into the target memory region
2454  */
2455 void memory_region_set_alias_offset(MemoryRegion *mr,
2456                                     hwaddr offset);
2457 
2458 /*
2459  * memory_region_set_unmergeable: Set a memory region unmergeable
2460  *
2461  * Mark a memory region unmergeable, resulting in the memory region (or
2462  * everything contained in a memory region container) not getting merged when
2463  * simplifying the address space and notifying memory listeners. Consequently,
2464  * memory listeners will never get notified about ranges that are larger than
2465  * the original memory regions.
2466  *
2467  * This is primarily useful when multiple aliases to a RAM memory region are
2468  * mapped into a memory region container, and updates (e.g., enable/disable or
2469  * map/unmap) of individual memory region aliases are not supposed to affect
2470  * other memory regions in the same container.
2471  *
2472  * @mr: the #MemoryRegion to be updated
2473  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2474  */
2475 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2476 
2477 /**
2478  * memory_region_present: checks if an address relative to a @container
2479  * translates into #MemoryRegion within @container
2480  *
2481  * Answer whether a #MemoryRegion within @container covers the address
2482  * @addr.
2483  *
2484  * @container: a #MemoryRegion within which @addr is a relative address
2485  * @addr: the area within @container to be searched
2486  */
2487 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2488 
2489 /**
2490  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2491  * into another memory region, which does not necessarily imply that it is
2492  * mapped into an address space.
2493  *
2494  * @mr: a #MemoryRegion which should be checked if it's mapped
2495  */
2496 bool memory_region_is_mapped(MemoryRegion *mr);
2497 
2498 /**
2499  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2500  * #MemoryRegion
2501  *
2502  * The #RamDiscardManager cannot change while a memory region is mapped.
2503  *
2504  * @mr: the #MemoryRegion
2505  */
2506 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2507 
2508 /**
2509  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2510  * #RamDiscardManager assigned
2511  *
2512  * @mr: the #MemoryRegion
2513  */
2514 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2515 {
2516     return !!memory_region_get_ram_discard_manager(mr);
2517 }
2518 
2519 /**
2520  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2521  * #MemoryRegion
2522  *
2523  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2524  * that does not cover RAM, or a #MemoryRegion that already has a
2525  * #RamDiscardManager assigned.
2526  *
2527  * @mr: the #MemoryRegion
2528  * @rdm: #RamDiscardManager to set
2529  */
2530 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2531                                            RamDiscardManager *rdm);
2532 
2533 /**
2534  * memory_region_find: translate an address/size relative to a
2535  * MemoryRegion into a #MemoryRegionSection.
2536  *
2537  * Locates the first #MemoryRegion within @mr that overlaps the range
2538  * given by @addr and @size.
2539  *
2540  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2541  * It will have the following characteristics:
2542  * - @size = 0 iff no overlap was found
2543  * - @mr is non-%NULL iff an overlap was found
2544  *
2545  * Remember that in the return value the @offset_within_region is
2546  * relative to the returned region (in the .@mr field), not to the
2547  * @mr argument.
2548  *
2549  * Similarly, the .@offset_within_address_space is relative to the
2550  * address space that contains both regions, the passed and the
2551  * returned one.  However, in the special case where the @mr argument
2552  * has no container (and thus is the root of the address space), the
2553  * following will hold:
2554  * - @offset_within_address_space >= @addr
2555  * - @offset_within_address_space + .@size <= @addr + @size
2556  *
2557  * @mr: a MemoryRegion within which @addr is a relative address
2558  * @addr: start of the area within @as to be searched
2559  * @size: size of the area to be searched
2560  */
2561 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2562                                        hwaddr addr, uint64_t size);
2563 
2564 /**
2565  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2566  *
2567  * Synchronizes the dirty page log for all address spaces.
2568  *
2569  * @last_stage: whether this is the last stage of live migration
2570  */
2571 void memory_global_dirty_log_sync(bool last_stage);
2572 
2573 /**
2574  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2575  *
2576  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2577  * This function must be called after the dirty log bitmap is cleared, and
2578  * before dirty guest memory pages are read.  If you are using
2579  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2580  * care of doing this.
2581  */
2582 void memory_global_after_dirty_log_sync(void);
2583 
2584 /**
2585  * memory_region_transaction_begin: Start a transaction.
2586  *
2587  * During a transaction, changes will be accumulated and made visible
2588  * only when the transaction ends (is committed).
2589  */
2590 void memory_region_transaction_begin(void);
2591 
2592 /**
2593  * memory_region_transaction_commit: Commit a transaction and make changes
2594  *                                   visible to the guest.
2595  */
2596 void memory_region_transaction_commit(void);
2597 
2598 /**
2599  * memory_listener_register: register callbacks to be called when memory
2600  *                           sections are mapped or unmapped into an address
2601  *                           space
2602  *
2603  * @listener: an object containing the callbacks to be called
2604  * @filter: if non-%NULL, only regions in this address space will be observed
2605  */
2606 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2607 
2608 /**
2609  * memory_listener_unregister: undo the effect of memory_listener_register()
2610  *
2611  * @listener: an object containing the callbacks to be removed
2612  */
2613 void memory_listener_unregister(MemoryListener *listener);
2614 
2615 /**
2616  * memory_global_dirty_log_start: begin dirty logging for all regions
2617  *
2618  * @flags: purpose of starting dirty log, migration or dirty rate
2619  * @errp: pointer to Error*, to store an error if it happens.
2620  *
2621  * Return: true on success, else false setting @errp with error.
2622  */
2623 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2624 
2625 /**
2626  * memory_global_dirty_log_stop: end dirty logging for all regions
2627  *
2628  * @flags: purpose of stopping dirty log, migration or dirty rate
2629  */
2630 void memory_global_dirty_log_stop(unsigned int flags);
2631 
2632 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2633 
2634 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2635                                 unsigned size, bool is_write,
2636                                 MemTxAttrs attrs);
2637 
2638 /**
2639  * memory_region_dispatch_read: perform a read directly to the specified
2640  * MemoryRegion.
2641  *
2642  * @mr: #MemoryRegion to access
2643  * @addr: address within that region
2644  * @pval: pointer to uint64_t which the data is written to
2645  * @op: size, sign, and endianness of the memory operation
2646  * @attrs: memory transaction attributes to use for the access
2647  */
2648 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2649                                         hwaddr addr,
2650                                         uint64_t *pval,
2651                                         MemOp op,
2652                                         MemTxAttrs attrs);
2653 /**
2654  * memory_region_dispatch_write: perform a write directly to the specified
2655  * MemoryRegion.
2656  *
2657  * @mr: #MemoryRegion to access
2658  * @addr: address within that region
2659  * @data: data to write
2660  * @op: size, sign, and endianness of the memory operation
2661  * @attrs: memory transaction attributes to use for the access
2662  */
2663 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2664                                          hwaddr addr,
2665                                          uint64_t data,
2666                                          MemOp op,
2667                                          MemTxAttrs attrs);
2668 
2669 /**
2670  * address_space_init: initializes an address space
2671  *
2672  * @as: an uninitialized #AddressSpace
2673  * @root: a #MemoryRegion that routes addresses for the address space
2674  * @name: an address space name.  The name is only used for debugging
2675  *        output.
2676  */
2677 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2678 
2679 /**
2680  * address_space_destroy: destroy an address space
2681  *
2682  * Releases all resources associated with an address space.  After an address space
2683  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2684  * as well.
2685  *
2686  * @as: address space to be destroyed
2687  */
2688 void address_space_destroy(AddressSpace *as);
2689 
2690 /**
2691  * address_space_remove_listeners: unregister all listeners of an address space
2692  *
2693  * Removes all callbacks previously registered with memory_listener_register()
2694  * for @as.
2695  *
2696  * @as: an initialized #AddressSpace
2697  */
2698 void address_space_remove_listeners(AddressSpace *as);
2699 
2700 /**
2701  * address_space_rw: read from or write to an address space.
2702  *
2703  * Return a MemTxResult indicating whether the operation succeeded
2704  * or failed (eg unassigned memory, device rejected the transaction,
2705  * IOMMU fault).
2706  *
2707  * @as: #AddressSpace to be accessed
2708  * @addr: address within that address space
2709  * @attrs: memory transaction attributes
2710  * @buf: buffer with the data transferred
2711  * @len: the number of bytes to read or write
2712  * @is_write: indicates the transfer direction
2713  */
2714 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2715                              MemTxAttrs attrs, void *buf,
2716                              hwaddr len, bool is_write);
2717 
2718 /**
2719  * address_space_write: write to address space.
2720  *
2721  * Return a MemTxResult indicating whether the operation succeeded
2722  * or failed (eg unassigned memory, device rejected the transaction,
2723  * IOMMU fault).
2724  *
2725  * @as: #AddressSpace to be accessed
2726  * @addr: address within that address space
2727  * @attrs: memory transaction attributes
2728  * @buf: buffer with the data transferred
2729  * @len: the number of bytes to write
2730  */
2731 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2732                                 MemTxAttrs attrs,
2733                                 const void *buf, hwaddr len);
2734 
2735 /**
2736  * address_space_write_rom: write to address space, including ROM.
2737  *
2738  * This function writes to the specified address space, but will
2739  * write data to both ROM and RAM. This is used for non-guest
2740  * writes like writes from the gdb debug stub or initial loading
2741  * of ROM contents.
2742  *
2743  * Note that portions of the write which attempt to write data to
2744  * a device will be silently ignored -- only real RAM and ROM will
2745  * be written to.
2746  *
2747  * Return a MemTxResult indicating whether the operation succeeded
2748  * or failed (eg unassigned memory, device rejected the transaction,
2749  * IOMMU fault).
2750  *
2751  * @as: #AddressSpace to be accessed
2752  * @addr: address within that address space
2753  * @attrs: memory transaction attributes
2754  * @buf: buffer with the data transferred
2755  * @len: the number of bytes to write
2756  */
2757 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2758                                     MemTxAttrs attrs,
2759                                     const void *buf, hwaddr len);
2760 
2761 /* address_space_ld*: load from an address space
2762  * address_space_st*: store to an address space
2763  *
2764  * These functions perform a load or store of the byte, word,
2765  * longword or quad to the specified address within the AddressSpace.
2766  * The _le suffixed functions treat the data as little endian;
2767  * _be indicates big endian; no suffix indicates "same endianness
2768  * as guest CPU".
2769  *
2770  * The "guest CPU endianness" accessors are deprecated for use outside
2771  * target-* code; devices should be CPU-agnostic and use either the LE
2772  * or the BE accessors.
2773  *
2774  * @as #AddressSpace to be accessed
2775  * @addr: address within that address space
2776  * @val: data value, for stores
2777  * @attrs: memory transaction attributes
2778  * @result: location to write the success/failure of the transaction;
2779  *   if NULL, this information is discarded
2780  */
2781 
2782 #define SUFFIX
2783 #define ARG1         as
2784 #define ARG1_DECL    AddressSpace *as
2785 #include "exec/memory_ldst.h.inc"
2786 
2787 #define SUFFIX
2788 #define ARG1         as
2789 #define ARG1_DECL    AddressSpace *as
2790 #include "exec/memory_ldst_phys.h.inc"
2791 
2792 struct MemoryRegionCache {
2793     void *ptr;
2794     hwaddr xlat;
2795     hwaddr len;
2796     FlatView *fv;
2797     MemoryRegionSection mrs;
2798     bool is_write;
2799 };
2800 
2801 /* address_space_ld*_cached: load from a cached #MemoryRegion
2802  * address_space_st*_cached: store into a cached #MemoryRegion
2803  *
2804  * These functions perform a load or store of the byte, word,
2805  * longword or quad to the specified address.  The address is
2806  * a physical address in the AddressSpace, but it must lie within
2807  * a #MemoryRegion that was mapped with address_space_cache_init.
2808  *
2809  * The _le suffixed functions treat the data as little endian;
2810  * _be indicates big endian; no suffix indicates "same endianness
2811  * as guest CPU".
2812  *
2813  * The "guest CPU endianness" accessors are deprecated for use outside
2814  * target-* code; devices should be CPU-agnostic and use either the LE
2815  * or the BE accessors.
2816  *
2817  * @cache: previously initialized #MemoryRegionCache to be accessed
2818  * @addr: address within the address space
2819  * @val: data value, for stores
2820  * @attrs: memory transaction attributes
2821  * @result: location to write the success/failure of the transaction;
2822  *   if NULL, this information is discarded
2823  */
2824 
2825 #define SUFFIX       _cached_slow
2826 #define ARG1         cache
2827 #define ARG1_DECL    MemoryRegionCache *cache
2828 #include "exec/memory_ldst.h.inc"
2829 
2830 /* Inline fast path for direct RAM access.  */
2831 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2832     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2833 {
2834     assert(addr < cache->len);
2835     if (likely(cache->ptr)) {
2836         return ldub_p(cache->ptr + addr);
2837     } else {
2838         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2839     }
2840 }
2841 
2842 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2843     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2844 {
2845     assert(addr < cache->len);
2846     if (likely(cache->ptr)) {
2847         stb_p(cache->ptr + addr, val);
2848     } else {
2849         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2850     }
2851 }
2852 
2853 #define ENDIANNESS   _le
2854 #include "exec/memory_ldst_cached.h.inc"
2855 
2856 #define ENDIANNESS   _be
2857 #include "exec/memory_ldst_cached.h.inc"
2858 
2859 #define SUFFIX       _cached
2860 #define ARG1         cache
2861 #define ARG1_DECL    MemoryRegionCache *cache
2862 #include "exec/memory_ldst_phys.h.inc"
2863 
2864 /* address_space_cache_init: prepare for repeated access to a physical
2865  * memory region
2866  *
2867  * @cache: #MemoryRegionCache to be filled
2868  * @as: #AddressSpace to be accessed
2869  * @addr: address within that address space
2870  * @len: length of buffer
2871  * @is_write: indicates the transfer direction
2872  *
2873  * Will only work with RAM, and may map a subset of the requested range by
2874  * returning a value that is less than @len.  On failure, return a negative
2875  * errno value.
2876  *
2877  * Because it only works with RAM, this function can be used for
2878  * read-modify-write operations.  In this case, is_write should be %true.
2879  *
2880  * Note that addresses passed to the address_space_*_cached functions
2881  * are relative to @addr.
2882  */
2883 int64_t address_space_cache_init(MemoryRegionCache *cache,
2884                                  AddressSpace *as,
2885                                  hwaddr addr,
2886                                  hwaddr len,
2887                                  bool is_write);
2888 
2889 /**
2890  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2891  *
2892  * @cache: The #MemoryRegionCache to operate on.
2893  *
2894  * Initializes #MemoryRegionCache structure without memory region attached.
2895  * Cache initialized this way can only be safely destroyed, but not used.
2896  */
2897 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2898 {
2899     cache->mrs.mr = NULL;
2900     /* There is no real need to initialize fv, but it makes Coverity happy. */
2901     cache->fv = NULL;
2902 }
2903 
2904 /**
2905  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2906  *
2907  * @cache: The #MemoryRegionCache to operate on.
2908  * @addr: The first physical address that was written, relative to the
2909  * address that was passed to @address_space_cache_init.
2910  * @access_len: The number of bytes that were written starting at @addr.
2911  */
2912 void address_space_cache_invalidate(MemoryRegionCache *cache,
2913                                     hwaddr addr,
2914                                     hwaddr access_len);
2915 
2916 /**
2917  * address_space_cache_destroy: free a #MemoryRegionCache
2918  *
2919  * @cache: The #MemoryRegionCache whose memory should be released.
2920  */
2921 void address_space_cache_destroy(MemoryRegionCache *cache);
2922 
2923 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2924  * entry. Should be called from an RCU critical section.
2925  */
2926 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2927                                             bool is_write, MemTxAttrs attrs);
2928 
2929 /* address_space_translate: translate an address range into an address space
2930  * into a MemoryRegion and an address range into that section.  Should be
2931  * called from an RCU critical section, to avoid that the last reference
2932  * to the returned region disappears after address_space_translate returns.
2933  *
2934  * @fv: #FlatView to be accessed
2935  * @addr: address within that address space
2936  * @xlat: pointer to address within the returned memory region section's
2937  * #MemoryRegion.
2938  * @len: pointer to length
2939  * @is_write: indicates the transfer direction
2940  * @attrs: memory attributes
2941  */
2942 MemoryRegion *flatview_translate(FlatView *fv,
2943                                  hwaddr addr, hwaddr *xlat,
2944                                  hwaddr *len, bool is_write,
2945                                  MemTxAttrs attrs);
2946 
2947 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2948                                                     hwaddr addr, hwaddr *xlat,
2949                                                     hwaddr *len, bool is_write,
2950                                                     MemTxAttrs attrs)
2951 {
2952     return flatview_translate(address_space_to_flatview(as),
2953                               addr, xlat, len, is_write, attrs);
2954 }
2955 
2956 /* address_space_access_valid: check for validity of accessing an address
2957  * space range
2958  *
2959  * Check whether memory is assigned to the given address space range, and
2960  * access is permitted by any IOMMU regions that are active for the address
2961  * space.
2962  *
2963  * For now, addr and len should be aligned to a page size.  This limitation
2964  * will be lifted in the future.
2965  *
2966  * @as: #AddressSpace to be accessed
2967  * @addr: address within that address space
2968  * @len: length of the area to be checked
2969  * @is_write: indicates the transfer direction
2970  * @attrs: memory attributes
2971  */
2972 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2973                                 bool is_write, MemTxAttrs attrs);
2974 
2975 /* address_space_map: map a physical memory region into a host virtual address
2976  *
2977  * May map a subset of the requested range, given by and returned in @plen.
2978  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2979  * the mapping are exhausted.
2980  * Use only for reads OR writes - not for read-modify-write operations.
2981  * Use address_space_register_map_client() to know when retrying the map
2982  * operation is likely to succeed.
2983  *
2984  * @as: #AddressSpace to be accessed
2985  * @addr: address within that address space
2986  * @plen: pointer to length of buffer; updated on return
2987  * @is_write: indicates the transfer direction
2988  * @attrs: memory attributes
2989  */
2990 void *address_space_map(AddressSpace *as, hwaddr addr,
2991                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2992 
2993 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2994  *
2995  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2996  * the amount of memory that was actually read or written by the caller.
2997  *
2998  * @as: #AddressSpace used
2999  * @buffer: host pointer as returned by address_space_map()
3000  * @len: buffer length as returned by address_space_map()
3001  * @access_len: amount of data actually transferred
3002  * @is_write: indicates the transfer direction
3003  */
3004 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3005                          bool is_write, hwaddr access_len);
3006 
3007 /*
3008  * address_space_register_map_client: Register a callback to invoke when
3009  * resources for address_space_map() are available again.
3010  *
3011  * address_space_map may fail when there are not enough resources available,
3012  * such as when bounce buffer memory would exceed the limit. The callback can
3013  * be used to retry the address_space_map operation. Note that the callback
3014  * gets automatically removed after firing.
3015  *
3016  * @as: #AddressSpace to be accessed
3017  * @bh: callback to invoke when address_space_map() retry is appropriate
3018  */
3019 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
3020 
3021 /*
3022  * address_space_unregister_map_client: Unregister a callback that has
3023  * previously been registered and not fired yet.
3024  *
3025  * @as: #AddressSpace to be accessed
3026  * @bh: callback to unregister
3027  */
3028 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
3029 
3030 /* Internal functions, part of the implementation of address_space_read.  */
3031 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3032                                     MemTxAttrs attrs, void *buf, hwaddr len);
3033 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3034                                    MemTxAttrs attrs, void *buf,
3035                                    hwaddr len, hwaddr addr1, hwaddr l,
3036                                    MemoryRegion *mr);
3037 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
3038 
3039 /* Internal functions, part of the implementation of address_space_read_cached
3040  * and address_space_write_cached.  */
3041 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
3042                                            hwaddr addr, void *buf, hwaddr len);
3043 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
3044                                             hwaddr addr, const void *buf,
3045                                             hwaddr len);
3046 
3047 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
3048 bool prepare_mmio_access(MemoryRegion *mr);
3049 
3050 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
3051 {
3052     if (is_write) {
3053         return memory_region_is_ram(mr) && !mr->readonly &&
3054                !mr->rom_device && !memory_region_is_ram_device(mr);
3055     } else {
3056         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
3057                memory_region_is_romd(mr);
3058     }
3059 }
3060 
3061 /**
3062  * address_space_read: read from an address space.
3063  *
3064  * Return a MemTxResult indicating whether the operation succeeded
3065  * or failed (eg unassigned memory, device rejected the transaction,
3066  * IOMMU fault).  Called within RCU critical section.
3067  *
3068  * @as: #AddressSpace to be accessed
3069  * @addr: address within that address space
3070  * @attrs: memory transaction attributes
3071  * @buf: buffer with the data transferred
3072  * @len: length of the data transferred
3073  */
3074 static inline __attribute__((__always_inline__))
3075 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3076                                MemTxAttrs attrs, void *buf,
3077                                hwaddr len)
3078 {
3079     MemTxResult result = MEMTX_OK;
3080     hwaddr l, addr1;
3081     void *ptr;
3082     MemoryRegion *mr;
3083     FlatView *fv;
3084 
3085     if (__builtin_constant_p(len)) {
3086         if (len) {
3087             RCU_READ_LOCK_GUARD();
3088             fv = address_space_to_flatview(as);
3089             l = len;
3090             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3091             if (len == l && memory_access_is_direct(mr, false)) {
3092                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3093                 memcpy(buf, ptr, len);
3094             } else {
3095                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3096                                                 addr1, l, mr);
3097             }
3098         }
3099     } else {
3100         result = address_space_read_full(as, addr, attrs, buf, len);
3101     }
3102     return result;
3103 }
3104 
3105 /**
3106  * address_space_read_cached: read from a cached RAM region
3107  *
3108  * @cache: Cached region to be addressed
3109  * @addr: address relative to the base of the RAM region
3110  * @buf: buffer with the data transferred
3111  * @len: length of the data transferred
3112  */
3113 static inline MemTxResult
3114 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3115                           void *buf, hwaddr len)
3116 {
3117     assert(addr < cache->len && len <= cache->len - addr);
3118     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3119     if (likely(cache->ptr)) {
3120         memcpy(buf, cache->ptr + addr, len);
3121         return MEMTX_OK;
3122     } else {
3123         return address_space_read_cached_slow(cache, addr, buf, len);
3124     }
3125 }
3126 
3127 /**
3128  * address_space_write_cached: write to a cached RAM region
3129  *
3130  * @cache: Cached region to be addressed
3131  * @addr: address relative to the base of the RAM region
3132  * @buf: buffer with the data transferred
3133  * @len: length of the data transferred
3134  */
3135 static inline MemTxResult
3136 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3137                            const void *buf, hwaddr len)
3138 {
3139     assert(addr < cache->len && len <= cache->len - addr);
3140     if (likely(cache->ptr)) {
3141         memcpy(cache->ptr + addr, buf, len);
3142         return MEMTX_OK;
3143     } else {
3144         return address_space_write_cached_slow(cache, addr, buf, len);
3145     }
3146 }
3147 
3148 /**
3149  * address_space_set: Fill address space with a constant byte.
3150  *
3151  * Return a MemTxResult indicating whether the operation succeeded
3152  * or failed (eg unassigned memory, device rejected the transaction,
3153  * IOMMU fault).
3154  *
3155  * @as: #AddressSpace to be accessed
3156  * @addr: address within that address space
3157  * @c: constant byte to fill the memory
3158  * @len: the number of bytes to fill with the constant byte
3159  * @attrs: memory transaction attributes
3160  */
3161 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3162                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3163 
3164 #ifdef COMPILING_PER_TARGET
3165 /* enum device_endian to MemOp.  */
3166 static inline MemOp devend_memop(enum device_endian end)
3167 {
3168     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3169                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3170 
3171 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3172     /* Swap if non-host endianness or native (target) endianness */
3173     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3174 #else
3175     const int non_host_endianness =
3176         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3177 
3178     /* In this case, native (target) endianness needs no swap.  */
3179     return (end == non_host_endianness) ? MO_BSWAP : 0;
3180 #endif
3181 }
3182 #endif /* COMPILING_PER_TARGET */
3183 
3184 /*
3185  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3186  * to manage the actual amount of memory consumed by the VM (then, the memory
3187  * provided by RAM blocks might be bigger than the desired memory consumption).
3188  * This *must* be set if:
3189  * - Discarding parts of a RAM blocks does not result in the change being
3190  *   reflected in the VM and the pages getting freed.
3191  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3192  *   discards blindly.
3193  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3194  *   encrypted VMs).
3195  * Technologies that only temporarily pin the current working set of a
3196  * driver are fine, because we don't expect such pages to be discarded
3197  * (esp. based on guest action like balloon inflation).
3198  *
3199  * This is *not* to be used to protect from concurrent discards (esp.,
3200  * postcopy).
3201  *
3202  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3203  * discards to work reliably is active.
3204  */
3205 int ram_block_discard_disable(bool state);
3206 
3207 /*
3208  * See ram_block_discard_disable(): only disable uncoordinated discards,
3209  * keeping coordinated discards (via the RamDiscardManager) enabled.
3210  */
3211 int ram_block_uncoordinated_discard_disable(bool state);
3212 
3213 /*
3214  * Inhibit technologies that disable discarding of pages in RAM blocks.
3215  *
3216  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3217  * broken.
3218  */
3219 int ram_block_discard_require(bool state);
3220 
3221 /*
3222  * See ram_block_discard_require(): only inhibit technologies that disable
3223  * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3224  * technologies that only inhibit uncoordinated discards (via the
3225  * RamDiscardManager).
3226  */
3227 int ram_block_coordinated_discard_require(bool state);
3228 
3229 /*
3230  * Test if any discarding of memory in ram blocks is disabled.
3231  */
3232 bool ram_block_discard_is_disabled(void);
3233 
3234 /*
3235  * Test if any discarding of memory in ram blocks is required to work reliably.
3236  */
3237 bool ram_block_discard_is_required(void);
3238 
3239 #endif
3240 
3241 #endif
3242