xref: /openbmc/qemu/include/exec/memory.h (revision 9f2130f58d5dd4e1fcb435cca08bf77e7c32e6c6)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 
29 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
30 
31 #define MAX_PHYS_ADDR_SPACE_BITS 62
32 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
33 
34 #define TYPE_MEMORY_REGION "qemu:memory-region"
35 #define MEMORY_REGION(obj) \
36         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
37 
38 typedef struct MemoryRegionOps MemoryRegionOps;
39 typedef struct MemoryRegionMmio MemoryRegionMmio;
40 
41 struct MemoryRegionMmio {
42     CPUReadMemoryFunc *read[3];
43     CPUWriteMemoryFunc *write[3];
44 };
45 
46 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
47 
48 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
49 typedef enum {
50     IOMMU_NONE = 0,
51     IOMMU_RO   = 1,
52     IOMMU_WO   = 2,
53     IOMMU_RW   = 3,
54 } IOMMUAccessFlags;
55 
56 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
57 
58 struct IOMMUTLBEntry {
59     AddressSpace    *target_as;
60     hwaddr           iova;
61     hwaddr           translated_addr;
62     hwaddr           addr_mask;  /* 0xfff = 4k translation */
63     IOMMUAccessFlags perm;
64 };
65 
66 /*
67  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
68  * register with one or multiple IOMMU Notifier capability bit(s).
69  */
70 typedef enum {
71     IOMMU_NOTIFIER_NONE = 0,
72     /* Notify cache invalidations */
73     IOMMU_NOTIFIER_UNMAP = 0x1,
74     /* Notify entry changes (newly created entries) */
75     IOMMU_NOTIFIER_MAP = 0x2,
76 } IOMMUNotifierFlag;
77 
78 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
79 
80 struct IOMMUNotifier;
81 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
82                             IOMMUTLBEntry *data);
83 
84 struct IOMMUNotifier {
85     IOMMUNotify notify;
86     IOMMUNotifierFlag notifier_flags;
87     /* Notify for address space range start <= addr <= end */
88     hwaddr start;
89     hwaddr end;
90     QLIST_ENTRY(IOMMUNotifier) node;
91 };
92 typedef struct IOMMUNotifier IOMMUNotifier;
93 
94 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
95                                        IOMMUNotifierFlag flags,
96                                        hwaddr start, hwaddr end)
97 {
98     n->notify = fn;
99     n->notifier_flags = flags;
100     n->start = start;
101     n->end = end;
102 }
103 
104 /* New-style MMIO accessors can indicate that the transaction failed.
105  * A zero (MEMTX_OK) response means success; anything else is a failure
106  * of some kind. The memory subsystem will bitwise-OR together results
107  * if it is synthesizing an operation from multiple smaller accesses.
108  */
109 #define MEMTX_OK 0
110 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
111 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
112 typedef uint32_t MemTxResult;
113 
114 /*
115  * Memory region callbacks
116  */
117 struct MemoryRegionOps {
118     /* Read from the memory region. @addr is relative to @mr; @size is
119      * in bytes. */
120     uint64_t (*read)(void *opaque,
121                      hwaddr addr,
122                      unsigned size);
123     /* Write to the memory region. @addr is relative to @mr; @size is
124      * in bytes. */
125     void (*write)(void *opaque,
126                   hwaddr addr,
127                   uint64_t data,
128                   unsigned size);
129 
130     MemTxResult (*read_with_attrs)(void *opaque,
131                                    hwaddr addr,
132                                    uint64_t *data,
133                                    unsigned size,
134                                    MemTxAttrs attrs);
135     MemTxResult (*write_with_attrs)(void *opaque,
136                                     hwaddr addr,
137                                     uint64_t data,
138                                     unsigned size,
139                                     MemTxAttrs attrs);
140     /* Instruction execution pre-callback:
141      * @addr is the address of the access relative to the @mr.
142      * @size is the size of the area returned by the callback.
143      * @offset is the location of the pointer inside @mr.
144      *
145      * Returns a pointer to a location which contains guest code.
146      */
147     void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
148                          unsigned *offset);
149 
150     enum device_endian endianness;
151     /* Guest-visible constraints: */
152     struct {
153         /* If nonzero, specify bounds on access sizes beyond which a machine
154          * check is thrown.
155          */
156         unsigned min_access_size;
157         unsigned max_access_size;
158         /* If true, unaligned accesses are supported.  Otherwise unaligned
159          * accesses throw machine checks.
160          */
161          bool unaligned;
162         /*
163          * If present, and returns #false, the transaction is not accepted
164          * by the device (and results in machine dependent behaviour such
165          * as a machine check exception).
166          */
167         bool (*accepts)(void *opaque, hwaddr addr,
168                         unsigned size, bool is_write);
169     } valid;
170     /* Internal implementation constraints: */
171     struct {
172         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
173          * will be rounded upwards and a partial result will be returned.
174          */
175         unsigned min_access_size;
176         /* If nonzero, specifies the maximum size implemented.  Larger sizes
177          * will be done as a series of accesses with smaller sizes.
178          */
179         unsigned max_access_size;
180         /* If true, unaligned accesses are supported.  Otherwise all accesses
181          * are converted to (possibly multiple) naturally aligned accesses.
182          */
183         bool unaligned;
184     } impl;
185 
186     /* If .read and .write are not present, old_mmio may be used for
187      * backwards compatibility with old mmio registration
188      */
189     const MemoryRegionMmio old_mmio;
190 };
191 
192 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
193 
194 struct MemoryRegionIOMMUOps {
195     /*
196      * Return a TLB entry that contains a given address. Flag should
197      * be the access permission of this translation operation. We can
198      * set flag to IOMMU_NONE to mean that we don't need any
199      * read/write permission checks, like, when for region replay.
200      */
201     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr,
202                                IOMMUAccessFlags flag);
203     /* Returns minimum supported page size */
204     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
205     /* Called when IOMMU Notifier flag changed */
206     void (*notify_flag_changed)(MemoryRegion *iommu,
207                                 IOMMUNotifierFlag old_flags,
208                                 IOMMUNotifierFlag new_flags);
209     /* Set this up to provide customized IOMMU replay function */
210     void (*replay)(MemoryRegion *iommu, IOMMUNotifier *notifier);
211 };
212 
213 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
214 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
215 
216 struct MemoryRegion {
217     Object parent_obj;
218 
219     /* All fields are private - violators will be prosecuted */
220 
221     /* The following fields should fit in a cache line */
222     bool romd_mode;
223     bool ram;
224     bool subpage;
225     bool readonly; /* For RAM regions */
226     bool rom_device;
227     bool flush_coalesced_mmio;
228     bool global_locking;
229     uint8_t dirty_log_mask;
230     RAMBlock *ram_block;
231     Object *owner;
232     const MemoryRegionIOMMUOps *iommu_ops;
233 
234     const MemoryRegionOps *ops;
235     void *opaque;
236     MemoryRegion *container;
237     Int128 size;
238     hwaddr addr;
239     void (*destructor)(MemoryRegion *mr);
240     uint64_t align;
241     bool terminates;
242     bool ram_device;
243     bool enabled;
244     bool warning_printed; /* For reservations */
245     uint8_t vga_logging_count;
246     MemoryRegion *alias;
247     hwaddr alias_offset;
248     int32_t priority;
249     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
250     QTAILQ_ENTRY(MemoryRegion) subregions_link;
251     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
252     const char *name;
253     unsigned ioeventfd_nb;
254     MemoryRegionIoeventfd *ioeventfds;
255     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
256     IOMMUNotifierFlag iommu_notify_flags;
257 };
258 
259 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
260     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
261 
262 /**
263  * MemoryListener: callbacks structure for updates to the physical memory map
264  *
265  * Allows a component to adjust to changes in the guest-visible memory map.
266  * Use with memory_listener_register() and memory_listener_unregister().
267  */
268 struct MemoryListener {
269     void (*begin)(MemoryListener *listener);
270     void (*commit)(MemoryListener *listener);
271     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
272     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
273     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
274     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
275                       int old, int new);
276     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
277                      int old, int new);
278     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
279     void (*log_global_start)(MemoryListener *listener);
280     void (*log_global_stop)(MemoryListener *listener);
281     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
282                         bool match_data, uint64_t data, EventNotifier *e);
283     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
284                         bool match_data, uint64_t data, EventNotifier *e);
285     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
286                                hwaddr addr, hwaddr len);
287     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
288                                hwaddr addr, hwaddr len);
289     /* Lower = earlier (during add), later (during del) */
290     unsigned priority;
291     AddressSpace *address_space;
292     QTAILQ_ENTRY(MemoryListener) link;
293     QTAILQ_ENTRY(MemoryListener) link_as;
294 };
295 
296 /**
297  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
298  */
299 struct AddressSpace {
300     /* All fields are private. */
301     struct rcu_head rcu;
302     char *name;
303     MemoryRegion *root;
304     int ref_count;
305     bool malloced;
306 
307     /* Accessed via RCU.  */
308     struct FlatView *current_map;
309 
310     int ioeventfd_nb;
311     struct MemoryRegionIoeventfd *ioeventfds;
312     struct AddressSpaceDispatch *dispatch;
313     struct AddressSpaceDispatch *next_dispatch;
314     MemoryListener dispatch_listener;
315     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
316     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
317 };
318 
319 /**
320  * MemoryRegionSection: describes a fragment of a #MemoryRegion
321  *
322  * @mr: the region, or %NULL if empty
323  * @address_space: the address space the region is mapped in
324  * @offset_within_region: the beginning of the section, relative to @mr's start
325  * @size: the size of the section; will not exceed @mr's boundaries
326  * @offset_within_address_space: the address of the first byte of the section
327  *     relative to the region's address space
328  * @readonly: writes to this section are ignored
329  */
330 struct MemoryRegionSection {
331     MemoryRegion *mr;
332     AddressSpace *address_space;
333     hwaddr offset_within_region;
334     Int128 size;
335     hwaddr offset_within_address_space;
336     bool readonly;
337 };
338 
339 /**
340  * memory_region_init: Initialize a memory region
341  *
342  * The region typically acts as a container for other memory regions.  Use
343  * memory_region_add_subregion() to add subregions.
344  *
345  * @mr: the #MemoryRegion to be initialized
346  * @owner: the object that tracks the region's reference count
347  * @name: used for debugging; not visible to the user or ABI
348  * @size: size of the region; any subregions beyond this size will be clipped
349  */
350 void memory_region_init(MemoryRegion *mr,
351                         struct Object *owner,
352                         const char *name,
353                         uint64_t size);
354 
355 /**
356  * memory_region_ref: Add 1 to a memory region's reference count
357  *
358  * Whenever memory regions are accessed outside the BQL, they need to be
359  * preserved against hot-unplug.  MemoryRegions actually do not have their
360  * own reference count; they piggyback on a QOM object, their "owner".
361  * This function adds a reference to the owner.
362  *
363  * All MemoryRegions must have an owner if they can disappear, even if the
364  * device they belong to operates exclusively under the BQL.  This is because
365  * the region could be returned at any time by memory_region_find, and this
366  * is usually under guest control.
367  *
368  * @mr: the #MemoryRegion
369  */
370 void memory_region_ref(MemoryRegion *mr);
371 
372 /**
373  * memory_region_unref: Remove 1 to a memory region's reference count
374  *
375  * Whenever memory regions are accessed outside the BQL, they need to be
376  * preserved against hot-unplug.  MemoryRegions actually do not have their
377  * own reference count; they piggyback on a QOM object, their "owner".
378  * This function removes a reference to the owner and possibly destroys it.
379  *
380  * @mr: the #MemoryRegion
381  */
382 void memory_region_unref(MemoryRegion *mr);
383 
384 /**
385  * memory_region_init_io: Initialize an I/O memory region.
386  *
387  * Accesses into the region will cause the callbacks in @ops to be called.
388  * if @size is nonzero, subregions will be clipped to @size.
389  *
390  * @mr: the #MemoryRegion to be initialized.
391  * @owner: the object that tracks the region's reference count
392  * @ops: a structure containing read and write callbacks to be used when
393  *       I/O is performed on the region.
394  * @opaque: passed to the read and write callbacks of the @ops structure.
395  * @name: used for debugging; not visible to the user or ABI
396  * @size: size of the region.
397  */
398 void memory_region_init_io(MemoryRegion *mr,
399                            struct Object *owner,
400                            const MemoryRegionOps *ops,
401                            void *opaque,
402                            const char *name,
403                            uint64_t size);
404 
405 /**
406  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
407  *                          region will modify memory directly.
408  *
409  * @mr: the #MemoryRegion to be initialized.
410  * @owner: the object that tracks the region's reference count
411  * @name: Region name, becomes part of RAMBlock name used in migration stream
412  *        must be unique within any device
413  * @size: size of the region.
414  * @errp: pointer to Error*, to store an error if it happens.
415  */
416 void memory_region_init_ram(MemoryRegion *mr,
417                             struct Object *owner,
418                             const char *name,
419                             uint64_t size,
420                             Error **errp);
421 
422 /**
423  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
424  *                                     RAM.  Accesses into the region will
425  *                                     modify memory directly.  Only an initial
426  *                                     portion of this RAM is actually used.
427  *                                     The used size can change across reboots.
428  *
429  * @mr: the #MemoryRegion to be initialized.
430  * @owner: the object that tracks the region's reference count
431  * @name: Region name, becomes part of RAMBlock name used in migration stream
432  *        must be unique within any device
433  * @size: used size of the region.
434  * @max_size: max size of the region.
435  * @resized: callback to notify owner about used size change.
436  * @errp: pointer to Error*, to store an error if it happens.
437  */
438 void memory_region_init_resizeable_ram(MemoryRegion *mr,
439                                        struct Object *owner,
440                                        const char *name,
441                                        uint64_t size,
442                                        uint64_t max_size,
443                                        void (*resized)(const char*,
444                                                        uint64_t length,
445                                                        void *host),
446                                        Error **errp);
447 #ifdef __linux__
448 /**
449  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
450  *                                    mmap-ed backend.
451  *
452  * @mr: the #MemoryRegion to be initialized.
453  * @owner: the object that tracks the region's reference count
454  * @name: Region name, becomes part of RAMBlock name used in migration stream
455  *        must be unique within any device
456  * @size: size of the region.
457  * @share: %true if memory must be mmaped with the MAP_SHARED flag
458  * @path: the path in which to allocate the RAM.
459  * @errp: pointer to Error*, to store an error if it happens.
460  */
461 void memory_region_init_ram_from_file(MemoryRegion *mr,
462                                       struct Object *owner,
463                                       const char *name,
464                                       uint64_t size,
465                                       bool share,
466                                       const char *path,
467                                       Error **errp);
468 
469 /**
470  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
471  *                                  mmap-ed backend.
472  *
473  * @mr: the #MemoryRegion to be initialized.
474  * @owner: the object that tracks the region's reference count
475  * @name: the name of the region.
476  * @size: size of the region.
477  * @share: %true if memory must be mmaped with the MAP_SHARED flag
478  * @fd: the fd to mmap.
479  * @errp: pointer to Error*, to store an error if it happens.
480  */
481 void memory_region_init_ram_from_fd(MemoryRegion *mr,
482                                     struct Object *owner,
483                                     const char *name,
484                                     uint64_t size,
485                                     bool share,
486                                     int fd,
487                                     Error **errp);
488 #endif
489 
490 /**
491  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
492  *                              user-provided pointer.  Accesses into the
493  *                              region will modify memory directly.
494  *
495  * @mr: the #MemoryRegion to be initialized.
496  * @owner: the object that tracks the region's reference count
497  * @name: Region name, becomes part of RAMBlock name used in migration stream
498  *        must be unique within any device
499  * @size: size of the region.
500  * @ptr: memory to be mapped; must contain at least @size bytes.
501  */
502 void memory_region_init_ram_ptr(MemoryRegion *mr,
503                                 struct Object *owner,
504                                 const char *name,
505                                 uint64_t size,
506                                 void *ptr);
507 
508 /**
509  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
510  *                                     a user-provided pointer.
511  *
512  * A RAM device represents a mapping to a physical device, such as to a PCI
513  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
514  * into the VM address space and access to the region will modify memory
515  * directly.  However, the memory region should not be included in a memory
516  * dump (device may not be enabled/mapped at the time of the dump), and
517  * operations incompatible with manipulating MMIO should be avoided.  Replaces
518  * skip_dump flag.
519  *
520  * @mr: the #MemoryRegion to be initialized.
521  * @owner: the object that tracks the region's reference count
522  * @name: the name of the region.
523  * @size: size of the region.
524  * @ptr: memory to be mapped; must contain at least @size bytes.
525  */
526 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
527                                        struct Object *owner,
528                                        const char *name,
529                                        uint64_t size,
530                                        void *ptr);
531 
532 /**
533  * memory_region_init_alias: Initialize a memory region that aliases all or a
534  *                           part of another memory region.
535  *
536  * @mr: the #MemoryRegion to be initialized.
537  * @owner: the object that tracks the region's reference count
538  * @name: used for debugging; not visible to the user or ABI
539  * @orig: the region to be referenced; @mr will be equivalent to
540  *        @orig between @offset and @offset + @size - 1.
541  * @offset: start of the section in @orig to be referenced.
542  * @size: size of the region.
543  */
544 void memory_region_init_alias(MemoryRegion *mr,
545                               struct Object *owner,
546                               const char *name,
547                               MemoryRegion *orig,
548                               hwaddr offset,
549                               uint64_t size);
550 
551 /**
552  * memory_region_init_rom: Initialize a ROM memory region.
553  *
554  * This has the same effect as calling memory_region_init_ram()
555  * and then marking the resulting region read-only with
556  * memory_region_set_readonly().
557  *
558  * @mr: the #MemoryRegion to be initialized.
559  * @owner: the object that tracks the region's reference count
560  * @name: Region name, becomes part of RAMBlock name used in migration stream
561  *        must be unique within any device
562  * @size: size of the region.
563  * @errp: pointer to Error*, to store an error if it happens.
564  */
565 void memory_region_init_rom(MemoryRegion *mr,
566                             struct Object *owner,
567                             const char *name,
568                             uint64_t size,
569                             Error **errp);
570 
571 /**
572  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
573  *                                 handled via callbacks.
574  *
575  * @mr: the #MemoryRegion to be initialized.
576  * @owner: the object that tracks the region's reference count
577  * @ops: callbacks for write access handling (must not be NULL).
578  * @name: Region name, becomes part of RAMBlock name used in migration stream
579  *        must be unique within any device
580  * @size: size of the region.
581  * @errp: pointer to Error*, to store an error if it happens.
582  */
583 void memory_region_init_rom_device(MemoryRegion *mr,
584                                    struct Object *owner,
585                                    const MemoryRegionOps *ops,
586                                    void *opaque,
587                                    const char *name,
588                                    uint64_t size,
589                                    Error **errp);
590 
591 /**
592  * memory_region_init_reservation: Initialize a memory region that reserves
593  *                                 I/O space.
594  *
595  * A reservation region primariy serves debugging purposes.  It claims I/O
596  * space that is not supposed to be handled by QEMU itself.  Any access via
597  * the memory API will cause an abort().
598  * This function is deprecated. Use memory_region_init_io() with NULL
599  * callbacks instead.
600  *
601  * @mr: the #MemoryRegion to be initialized
602  * @owner: the object that tracks the region's reference count
603  * @name: used for debugging; not visible to the user or ABI
604  * @size: size of the region.
605  */
606 static inline void memory_region_init_reservation(MemoryRegion *mr,
607                                     Object *owner,
608                                     const char *name,
609                                     uint64_t size)
610 {
611     memory_region_init_io(mr, owner, NULL, mr, name, size);
612 }
613 
614 /**
615  * memory_region_init_iommu: Initialize a memory region that translates
616  * addresses
617  *
618  * An IOMMU region translates addresses and forwards accesses to a target
619  * memory region.
620  *
621  * @mr: the #MemoryRegion to be initialized
622  * @owner: the object that tracks the region's reference count
623  * @ops: a function that translates addresses into the @target region
624  * @name: used for debugging; not visible to the user or ABI
625  * @size: size of the region.
626  */
627 void memory_region_init_iommu(MemoryRegion *mr,
628                               struct Object *owner,
629                               const MemoryRegionIOMMUOps *ops,
630                               const char *name,
631                               uint64_t size);
632 
633 /**
634  * memory_region_owner: get a memory region's owner.
635  *
636  * @mr: the memory region being queried.
637  */
638 struct Object *memory_region_owner(MemoryRegion *mr);
639 
640 /**
641  * memory_region_size: get a memory region's size.
642  *
643  * @mr: the memory region being queried.
644  */
645 uint64_t memory_region_size(MemoryRegion *mr);
646 
647 /**
648  * memory_region_is_ram: check whether a memory region is random access
649  *
650  * Returns %true is a memory region is random access.
651  *
652  * @mr: the memory region being queried
653  */
654 static inline bool memory_region_is_ram(MemoryRegion *mr)
655 {
656     return mr->ram;
657 }
658 
659 /**
660  * memory_region_is_ram_device: check whether a memory region is a ram device
661  *
662  * Returns %true is a memory region is a device backed ram region
663  *
664  * @mr: the memory region being queried
665  */
666 bool memory_region_is_ram_device(MemoryRegion *mr);
667 
668 /**
669  * memory_region_is_romd: check whether a memory region is in ROMD mode
670  *
671  * Returns %true if a memory region is a ROM device and currently set to allow
672  * direct reads.
673  *
674  * @mr: the memory region being queried
675  */
676 static inline bool memory_region_is_romd(MemoryRegion *mr)
677 {
678     return mr->rom_device && mr->romd_mode;
679 }
680 
681 /**
682  * memory_region_is_iommu: check whether a memory region is an iommu
683  *
684  * Returns %true is a memory region is an iommu.
685  *
686  * @mr: the memory region being queried
687  */
688 static inline bool memory_region_is_iommu(MemoryRegion *mr)
689 {
690     if (mr->alias) {
691         return memory_region_is_iommu(mr->alias);
692     }
693     return mr->iommu_ops;
694 }
695 
696 
697 /**
698  * memory_region_iommu_get_min_page_size: get minimum supported page size
699  * for an iommu
700  *
701  * Returns minimum supported page size for an iommu.
702  *
703  * @mr: the memory region being queried
704  */
705 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
706 
707 /**
708  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
709  *
710  * The notification type will be decided by entry.perm bits:
711  *
712  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
713  * - For MAP (newly added entry) notifies: set entry.perm to the
714  *   permission of the page (which is definitely !IOMMU_NONE).
715  *
716  * Note: for any IOMMU implementation, an in-place mapping change
717  * should be notified with an UNMAP followed by a MAP.
718  *
719  * @mr: the memory region that was changed
720  * @entry: the new entry in the IOMMU translation table.  The entry
721  *         replaces all old entries for the same virtual I/O address range.
722  *         Deleted entries have .@perm == 0.
723  */
724 void memory_region_notify_iommu(MemoryRegion *mr,
725                                 IOMMUTLBEntry entry);
726 
727 /**
728  * memory_region_notify_one: notify a change in an IOMMU translation
729  *                           entry to a single notifier
730  *
731  * This works just like memory_region_notify_iommu(), but it only
732  * notifies a specific notifier, not all of them.
733  *
734  * @notifier: the notifier to be notified
735  * @entry: the new entry in the IOMMU translation table.  The entry
736  *         replaces all old entries for the same virtual I/O address range.
737  *         Deleted entries have .@perm == 0.
738  */
739 void memory_region_notify_one(IOMMUNotifier *notifier,
740                               IOMMUTLBEntry *entry);
741 
742 /**
743  * memory_region_register_iommu_notifier: register a notifier for changes to
744  * IOMMU translation entries.
745  *
746  * @mr: the memory region to observe
747  * @n: the IOMMUNotifier to be added; the notify callback receives a
748  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
749  *     ceases to be valid on exit from the notifier.
750  */
751 void memory_region_register_iommu_notifier(MemoryRegion *mr,
752                                            IOMMUNotifier *n);
753 
754 /**
755  * memory_region_iommu_replay: replay existing IOMMU translations to
756  * a notifier with the minimum page granularity returned by
757  * mr->iommu_ops->get_page_size().
758  *
759  * @mr: the memory region to observe
760  * @n: the notifier to which to replay iommu mappings
761  */
762 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n);
763 
764 /**
765  * memory_region_iommu_replay_all: replay existing IOMMU translations
766  * to all the notifiers registered.
767  *
768  * @mr: the memory region to observe
769  */
770 void memory_region_iommu_replay_all(MemoryRegion *mr);
771 
772 /**
773  * memory_region_unregister_iommu_notifier: unregister a notifier for
774  * changes to IOMMU translation entries.
775  *
776  * @mr: the memory region which was observed and for which notity_stopped()
777  *      needs to be called
778  * @n: the notifier to be removed.
779  */
780 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
781                                              IOMMUNotifier *n);
782 
783 /**
784  * memory_region_name: get a memory region's name
785  *
786  * Returns the string that was used to initialize the memory region.
787  *
788  * @mr: the memory region being queried
789  */
790 const char *memory_region_name(const MemoryRegion *mr);
791 
792 /**
793  * memory_region_is_logging: return whether a memory region is logging writes
794  *
795  * Returns %true if the memory region is logging writes for the given client
796  *
797  * @mr: the memory region being queried
798  * @client: the client being queried
799  */
800 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
801 
802 /**
803  * memory_region_get_dirty_log_mask: return the clients for which a
804  * memory region is logging writes.
805  *
806  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
807  * are the bit indices.
808  *
809  * @mr: the memory region being queried
810  */
811 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
812 
813 /**
814  * memory_region_is_rom: check whether a memory region is ROM
815  *
816  * Returns %true is a memory region is read-only memory.
817  *
818  * @mr: the memory region being queried
819  */
820 static inline bool memory_region_is_rom(MemoryRegion *mr)
821 {
822     return mr->ram && mr->readonly;
823 }
824 
825 
826 /**
827  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
828  *
829  * Returns a file descriptor backing a file-based RAM memory region,
830  * or -1 if the region is not a file-based RAM memory region.
831  *
832  * @mr: the RAM or alias memory region being queried.
833  */
834 int memory_region_get_fd(MemoryRegion *mr);
835 
836 /**
837  * memory_region_from_host: Convert a pointer into a RAM memory region
838  * and an offset within it.
839  *
840  * Given a host pointer inside a RAM memory region (created with
841  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
842  * the MemoryRegion and the offset within it.
843  *
844  * Use with care; by the time this function returns, the returned pointer is
845  * not protected by RCU anymore.  If the caller is not within an RCU critical
846  * section and does not hold the iothread lock, it must have other means of
847  * protecting the pointer, such as a reference to the region that includes
848  * the incoming ram_addr_t.
849  *
850  * @mr: the memory region being queried.
851  */
852 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
853 
854 /**
855  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
856  *
857  * Returns a host pointer to a RAM memory region (created with
858  * memory_region_init_ram() or memory_region_init_ram_ptr()).
859  *
860  * Use with care; by the time this function returns, the returned pointer is
861  * not protected by RCU anymore.  If the caller is not within an RCU critical
862  * section and does not hold the iothread lock, it must have other means of
863  * protecting the pointer, such as a reference to the region that includes
864  * the incoming ram_addr_t.
865  *
866  * @mr: the memory region being queried.
867  */
868 void *memory_region_get_ram_ptr(MemoryRegion *mr);
869 
870 /* memory_region_ram_resize: Resize a RAM region.
871  *
872  * Only legal before guest might have detected the memory size: e.g. on
873  * incoming migration, or right after reset.
874  *
875  * @mr: a memory region created with @memory_region_init_resizeable_ram.
876  * @newsize: the new size the region
877  * @errp: pointer to Error*, to store an error if it happens.
878  */
879 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
880                               Error **errp);
881 
882 /**
883  * memory_region_set_log: Turn dirty logging on or off for a region.
884  *
885  * Turns dirty logging on or off for a specified client (display, migration).
886  * Only meaningful for RAM regions.
887  *
888  * @mr: the memory region being updated.
889  * @log: whether dirty logging is to be enabled or disabled.
890  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
891  */
892 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
893 
894 /**
895  * memory_region_get_dirty: Check whether a range of bytes is dirty
896  *                          for a specified client.
897  *
898  * Checks whether a range of bytes has been written to since the last
899  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
900  * must be enabled.
901  *
902  * @mr: the memory region being queried.
903  * @addr: the address (relative to the start of the region) being queried.
904  * @size: the size of the range being queried.
905  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
906  *          %DIRTY_MEMORY_VGA.
907  */
908 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
909                              hwaddr size, unsigned client);
910 
911 /**
912  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
913  *
914  * Marks a range of bytes as dirty, after it has been dirtied outside
915  * guest code.
916  *
917  * @mr: the memory region being dirtied.
918  * @addr: the address (relative to the start of the region) being dirtied.
919  * @size: size of the range being dirtied.
920  */
921 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
922                              hwaddr size);
923 
924 /**
925  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
926  *                                     for a specified client. It clears them.
927  *
928  * Checks whether a range of bytes has been written to since the last
929  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
930  * must be enabled.
931  *
932  * @mr: the memory region being queried.
933  * @addr: the address (relative to the start of the region) being queried.
934  * @size: the size of the range being queried.
935  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
936  *          %DIRTY_MEMORY_VGA.
937  */
938 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
939                                         hwaddr size, unsigned client);
940 
941 /**
942  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
943  *                                         bitmap and clear it.
944  *
945  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
946  * returns the snapshot.  The snapshot can then be used to query dirty
947  * status, using memory_region_snapshot_get_dirty.  Unlike
948  * memory_region_test_and_clear_dirty this allows to query the same
949  * page multiple times, which is especially useful for display updates
950  * where the scanlines often are not page aligned.
951  *
952  * The dirty bitmap region which gets copyed into the snapshot (and
953  * cleared afterwards) can be larger than requested.  The boundaries
954  * are rounded up/down so complete bitmap longs (covering 64 pages on
955  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
956  * isn't a problem for display updates as the extra pages are outside
957  * the visible area, and in case the visible area changes a full
958  * display redraw is due anyway.  Should other use cases for this
959  * function emerge we might have to revisit this implementation
960  * detail.
961  *
962  * Use g_free to release DirtyBitmapSnapshot.
963  *
964  * @mr: the memory region being queried.
965  * @addr: the address (relative to the start of the region) being queried.
966  * @size: the size of the range being queried.
967  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
968  */
969 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
970                                                             hwaddr addr,
971                                                             hwaddr size,
972                                                             unsigned client);
973 
974 /**
975  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
976  *                                   in the specified dirty bitmap snapshot.
977  *
978  * @mr: the memory region being queried.
979  * @snap: the dirty bitmap snapshot
980  * @addr: the address (relative to the start of the region) being queried.
981  * @size: the size of the range being queried.
982  */
983 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
984                                       DirtyBitmapSnapshot *snap,
985                                       hwaddr addr, hwaddr size);
986 
987 /**
988  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
989  *                                  any external TLBs (e.g. kvm)
990  *
991  * Flushes dirty information from accelerators such as kvm and vhost-net
992  * and makes it available to users of the memory API.
993  *
994  * @mr: the region being flushed.
995  */
996 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
997 
998 /**
999  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1000  *                            client.
1001  *
1002  * Marks a range of pages as no longer dirty.
1003  *
1004  * @mr: the region being updated.
1005  * @addr: the start of the subrange being cleaned.
1006  * @size: the size of the subrange being cleaned.
1007  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1008  *          %DIRTY_MEMORY_VGA.
1009  */
1010 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1011                                hwaddr size, unsigned client);
1012 
1013 /**
1014  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1015  *
1016  * Allows a memory region to be marked as read-only (turning it into a ROM).
1017  * only useful on RAM regions.
1018  *
1019  * @mr: the region being updated.
1020  * @readonly: whether rhe region is to be ROM or RAM.
1021  */
1022 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1023 
1024 /**
1025  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1026  *
1027  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1028  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1029  * device is mapped to guest memory and satisfies read access directly.
1030  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1031  * Writes are always handled by the #MemoryRegion.write function.
1032  *
1033  * @mr: the memory region to be updated
1034  * @romd_mode: %true to put the region into ROMD mode
1035  */
1036 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1037 
1038 /**
1039  * memory_region_set_coalescing: Enable memory coalescing for the region.
1040  *
1041  * Enabled writes to a region to be queued for later processing. MMIO ->write
1042  * callbacks may be delayed until a non-coalesced MMIO is issued.
1043  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1044  *
1045  * @mr: the memory region to be write coalesced
1046  */
1047 void memory_region_set_coalescing(MemoryRegion *mr);
1048 
1049 /**
1050  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1051  *                               a region.
1052  *
1053  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1054  * Multiple calls can be issued coalesced disjoint ranges.
1055  *
1056  * @mr: the memory region to be updated.
1057  * @offset: the start of the range within the region to be coalesced.
1058  * @size: the size of the subrange to be coalesced.
1059  */
1060 void memory_region_add_coalescing(MemoryRegion *mr,
1061                                   hwaddr offset,
1062                                   uint64_t size);
1063 
1064 /**
1065  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1066  *
1067  * Disables any coalescing caused by memory_region_set_coalescing() or
1068  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1069  * hardware.
1070  *
1071  * @mr: the memory region to be updated.
1072  */
1073 void memory_region_clear_coalescing(MemoryRegion *mr);
1074 
1075 /**
1076  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1077  *                                    accesses.
1078  *
1079  * Ensure that pending coalesced MMIO request are flushed before the memory
1080  * region is accessed. This property is automatically enabled for all regions
1081  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1082  *
1083  * @mr: the memory region to be updated.
1084  */
1085 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1086 
1087 /**
1088  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1089  *                                      accesses.
1090  *
1091  * Clear the automatic coalesced MMIO flushing enabled via
1092  * memory_region_set_flush_coalesced. Note that this service has no effect on
1093  * memory regions that have MMIO coalescing enabled for themselves. For them,
1094  * automatic flushing will stop once coalescing is disabled.
1095  *
1096  * @mr: the memory region to be updated.
1097  */
1098 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1099 
1100 /**
1101  * memory_region_set_global_locking: Declares the access processing requires
1102  *                                   QEMU's global lock.
1103  *
1104  * When this is invoked, accesses to the memory region will be processed while
1105  * holding the global lock of QEMU. This is the default behavior of memory
1106  * regions.
1107  *
1108  * @mr: the memory region to be updated.
1109  */
1110 void memory_region_set_global_locking(MemoryRegion *mr);
1111 
1112 /**
1113  * memory_region_clear_global_locking: Declares that access processing does
1114  *                                     not depend on the QEMU global lock.
1115  *
1116  * By clearing this property, accesses to the memory region will be processed
1117  * outside of QEMU's global lock (unless the lock is held on when issuing the
1118  * access request). In this case, the device model implementing the access
1119  * handlers is responsible for synchronization of concurrency.
1120  *
1121  * @mr: the memory region to be updated.
1122  */
1123 void memory_region_clear_global_locking(MemoryRegion *mr);
1124 
1125 /**
1126  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1127  *                            is written to a location.
1128  *
1129  * Marks a word in an IO region (initialized with memory_region_init_io())
1130  * as a trigger for an eventfd event.  The I/O callback will not be called.
1131  * The caller must be prepared to handle failure (that is, take the required
1132  * action if the callback _is_ called).
1133  *
1134  * @mr: the memory region being updated.
1135  * @addr: the address within @mr that is to be monitored
1136  * @size: the size of the access to trigger the eventfd
1137  * @match_data: whether to match against @data, instead of just @addr
1138  * @data: the data to match against the guest write
1139  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1140  **/
1141 void memory_region_add_eventfd(MemoryRegion *mr,
1142                                hwaddr addr,
1143                                unsigned size,
1144                                bool match_data,
1145                                uint64_t data,
1146                                EventNotifier *e);
1147 
1148 /**
1149  * memory_region_del_eventfd: Cancel an eventfd.
1150  *
1151  * Cancels an eventfd trigger requested by a previous
1152  * memory_region_add_eventfd() call.
1153  *
1154  * @mr: the memory region being updated.
1155  * @addr: the address within @mr that is to be monitored
1156  * @size: the size of the access to trigger the eventfd
1157  * @match_data: whether to match against @data, instead of just @addr
1158  * @data: the data to match against the guest write
1159  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1160  */
1161 void memory_region_del_eventfd(MemoryRegion *mr,
1162                                hwaddr addr,
1163                                unsigned size,
1164                                bool match_data,
1165                                uint64_t data,
1166                                EventNotifier *e);
1167 
1168 /**
1169  * memory_region_add_subregion: Add a subregion to a container.
1170  *
1171  * Adds a subregion at @offset.  The subregion may not overlap with other
1172  * subregions (except for those explicitly marked as overlapping).  A region
1173  * may only be added once as a subregion (unless removed with
1174  * memory_region_del_subregion()); use memory_region_init_alias() if you
1175  * want a region to be a subregion in multiple locations.
1176  *
1177  * @mr: the region to contain the new subregion; must be a container
1178  *      initialized with memory_region_init().
1179  * @offset: the offset relative to @mr where @subregion is added.
1180  * @subregion: the subregion to be added.
1181  */
1182 void memory_region_add_subregion(MemoryRegion *mr,
1183                                  hwaddr offset,
1184                                  MemoryRegion *subregion);
1185 /**
1186  * memory_region_add_subregion_overlap: Add a subregion to a container
1187  *                                      with overlap.
1188  *
1189  * Adds a subregion at @offset.  The subregion may overlap with other
1190  * subregions.  Conflicts are resolved by having a higher @priority hide a
1191  * lower @priority. Subregions without priority are taken as @priority 0.
1192  * A region may only be added once as a subregion (unless removed with
1193  * memory_region_del_subregion()); use memory_region_init_alias() if you
1194  * want a region to be a subregion in multiple locations.
1195  *
1196  * @mr: the region to contain the new subregion; must be a container
1197  *      initialized with memory_region_init().
1198  * @offset: the offset relative to @mr where @subregion is added.
1199  * @subregion: the subregion to be added.
1200  * @priority: used for resolving overlaps; highest priority wins.
1201  */
1202 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1203                                          hwaddr offset,
1204                                          MemoryRegion *subregion,
1205                                          int priority);
1206 
1207 /**
1208  * memory_region_get_ram_addr: Get the ram address associated with a memory
1209  *                             region
1210  */
1211 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1212 
1213 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1214 /**
1215  * memory_region_del_subregion: Remove a subregion.
1216  *
1217  * Removes a subregion from its container.
1218  *
1219  * @mr: the container to be updated.
1220  * @subregion: the region being removed; must be a current subregion of @mr.
1221  */
1222 void memory_region_del_subregion(MemoryRegion *mr,
1223                                  MemoryRegion *subregion);
1224 
1225 /*
1226  * memory_region_set_enabled: dynamically enable or disable a region
1227  *
1228  * Enables or disables a memory region.  A disabled memory region
1229  * ignores all accesses to itself and its subregions.  It does not
1230  * obscure sibling subregions with lower priority - it simply behaves as
1231  * if it was removed from the hierarchy.
1232  *
1233  * Regions default to being enabled.
1234  *
1235  * @mr: the region to be updated
1236  * @enabled: whether to enable or disable the region
1237  */
1238 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1239 
1240 /*
1241  * memory_region_set_address: dynamically update the address of a region
1242  *
1243  * Dynamically updates the address of a region, relative to its container.
1244  * May be used on regions are currently part of a memory hierarchy.
1245  *
1246  * @mr: the region to be updated
1247  * @addr: new address, relative to container region
1248  */
1249 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1250 
1251 /*
1252  * memory_region_set_size: dynamically update the size of a region.
1253  *
1254  * Dynamically updates the size of a region.
1255  *
1256  * @mr: the region to be updated
1257  * @size: used size of the region.
1258  */
1259 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1260 
1261 /*
1262  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1263  *
1264  * Dynamically updates the offset into the target region that an alias points
1265  * to, as if the fourth argument to memory_region_init_alias() has changed.
1266  *
1267  * @mr: the #MemoryRegion to be updated; should be an alias.
1268  * @offset: the new offset into the target memory region
1269  */
1270 void memory_region_set_alias_offset(MemoryRegion *mr,
1271                                     hwaddr offset);
1272 
1273 /**
1274  * memory_region_present: checks if an address relative to a @container
1275  * translates into #MemoryRegion within @container
1276  *
1277  * Answer whether a #MemoryRegion within @container covers the address
1278  * @addr.
1279  *
1280  * @container: a #MemoryRegion within which @addr is a relative address
1281  * @addr: the area within @container to be searched
1282  */
1283 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1284 
1285 /**
1286  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1287  * into any address space.
1288  *
1289  * @mr: a #MemoryRegion which should be checked if it's mapped
1290  */
1291 bool memory_region_is_mapped(MemoryRegion *mr);
1292 
1293 /**
1294  * memory_region_find: translate an address/size relative to a
1295  * MemoryRegion into a #MemoryRegionSection.
1296  *
1297  * Locates the first #MemoryRegion within @mr that overlaps the range
1298  * given by @addr and @size.
1299  *
1300  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1301  * It will have the following characteristics:
1302  *    .@size = 0 iff no overlap was found
1303  *    .@mr is non-%NULL iff an overlap was found
1304  *
1305  * Remember that in the return value the @offset_within_region is
1306  * relative to the returned region (in the .@mr field), not to the
1307  * @mr argument.
1308  *
1309  * Similarly, the .@offset_within_address_space is relative to the
1310  * address space that contains both regions, the passed and the
1311  * returned one.  However, in the special case where the @mr argument
1312  * has no container (and thus is the root of the address space), the
1313  * following will hold:
1314  *    .@offset_within_address_space >= @addr
1315  *    .@offset_within_address_space + .@size <= @addr + @size
1316  *
1317  * @mr: a MemoryRegion within which @addr is a relative address
1318  * @addr: start of the area within @as to be searched
1319  * @size: size of the area to be searched
1320  */
1321 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1322                                        hwaddr addr, uint64_t size);
1323 
1324 /**
1325  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1326  *
1327  * Synchronizes the dirty page log for all address spaces.
1328  */
1329 void memory_global_dirty_log_sync(void);
1330 
1331 /**
1332  * memory_region_transaction_begin: Start a transaction.
1333  *
1334  * During a transaction, changes will be accumulated and made visible
1335  * only when the transaction ends (is committed).
1336  */
1337 void memory_region_transaction_begin(void);
1338 
1339 /**
1340  * memory_region_transaction_commit: Commit a transaction and make changes
1341  *                                   visible to the guest.
1342  */
1343 void memory_region_transaction_commit(void);
1344 
1345 /**
1346  * memory_listener_register: register callbacks to be called when memory
1347  *                           sections are mapped or unmapped into an address
1348  *                           space
1349  *
1350  * @listener: an object containing the callbacks to be called
1351  * @filter: if non-%NULL, only regions in this address space will be observed
1352  */
1353 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1354 
1355 /**
1356  * memory_listener_unregister: undo the effect of memory_listener_register()
1357  *
1358  * @listener: an object containing the callbacks to be removed
1359  */
1360 void memory_listener_unregister(MemoryListener *listener);
1361 
1362 /**
1363  * memory_global_dirty_log_start: begin dirty logging for all regions
1364  */
1365 void memory_global_dirty_log_start(void);
1366 
1367 /**
1368  * memory_global_dirty_log_stop: end dirty logging for all regions
1369  */
1370 void memory_global_dirty_log_stop(void);
1371 
1372 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1373 
1374 /**
1375  * memory_region_request_mmio_ptr: request a pointer to an mmio
1376  * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1377  * When the device wants to invalidate the pointer it will call
1378  * memory_region_invalidate_mmio_ptr.
1379  *
1380  * @mr: #MemoryRegion to check
1381  * @addr: address within that region
1382  *
1383  * Returns true on success, false otherwise.
1384  */
1385 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1386 
1387 /**
1388  * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1389  * previously requested.
1390  * In the end that means that if something wants to execute from this area it
1391  * will need to request the pointer again.
1392  *
1393  * @mr: #MemoryRegion associated to the pointer.
1394  * @addr: address within that region
1395  * @size: size of that area.
1396  */
1397 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1398                                        unsigned size);
1399 
1400 /**
1401  * memory_region_dispatch_read: perform a read directly to the specified
1402  * MemoryRegion.
1403  *
1404  * @mr: #MemoryRegion to access
1405  * @addr: address within that region
1406  * @pval: pointer to uint64_t which the data is written to
1407  * @size: size of the access in bytes
1408  * @attrs: memory transaction attributes to use for the access
1409  */
1410 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1411                                         hwaddr addr,
1412                                         uint64_t *pval,
1413                                         unsigned size,
1414                                         MemTxAttrs attrs);
1415 /**
1416  * memory_region_dispatch_write: perform a write directly to the specified
1417  * MemoryRegion.
1418  *
1419  * @mr: #MemoryRegion to access
1420  * @addr: address within that region
1421  * @data: data to write
1422  * @size: size of the access in bytes
1423  * @attrs: memory transaction attributes to use for the access
1424  */
1425 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1426                                          hwaddr addr,
1427                                          uint64_t data,
1428                                          unsigned size,
1429                                          MemTxAttrs attrs);
1430 
1431 /**
1432  * address_space_init: initializes an address space
1433  *
1434  * @as: an uninitialized #AddressSpace
1435  * @root: a #MemoryRegion that routes addresses for the address space
1436  * @name: an address space name.  The name is only used for debugging
1437  *        output.
1438  */
1439 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1440 
1441 /**
1442  * address_space_init_shareable: return an address space for a memory region,
1443  *                               creating it if it does not already exist
1444  *
1445  * @root: a #MemoryRegion that routes addresses for the address space
1446  * @name: an address space name.  The name is only used for debugging
1447  *        output.
1448  *
1449  * This function will return a pointer to an existing AddressSpace
1450  * which was initialized with the specified MemoryRegion, or it will
1451  * create and initialize one if it does not already exist. The ASes
1452  * are reference-counted, so the memory will be freed automatically
1453  * when the AddressSpace is destroyed via address_space_destroy.
1454  */
1455 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1456                                            const char *name);
1457 
1458 /**
1459  * address_space_destroy: destroy an address space
1460  *
1461  * Releases all resources associated with an address space.  After an address space
1462  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1463  * as well.
1464  *
1465  * @as: address space to be destroyed
1466  */
1467 void address_space_destroy(AddressSpace *as);
1468 
1469 /**
1470  * address_space_rw: read from or write to an address space.
1471  *
1472  * Return a MemTxResult indicating whether the operation succeeded
1473  * or failed (eg unassigned memory, device rejected the transaction,
1474  * IOMMU fault).
1475  *
1476  * @as: #AddressSpace to be accessed
1477  * @addr: address within that address space
1478  * @attrs: memory transaction attributes
1479  * @buf: buffer with the data transferred
1480  * @is_write: indicates the transfer direction
1481  */
1482 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1483                              MemTxAttrs attrs, uint8_t *buf,
1484                              int len, bool is_write);
1485 
1486 /**
1487  * address_space_write: write to address space.
1488  *
1489  * Return a MemTxResult indicating whether the operation succeeded
1490  * or failed (eg unassigned memory, device rejected the transaction,
1491  * IOMMU fault).
1492  *
1493  * @as: #AddressSpace to be accessed
1494  * @addr: address within that address space
1495  * @attrs: memory transaction attributes
1496  * @buf: buffer with the data transferred
1497  */
1498 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1499                                 MemTxAttrs attrs,
1500                                 const uint8_t *buf, int len);
1501 
1502 /* address_space_ld*: load from an address space
1503  * address_space_st*: store to an address space
1504  *
1505  * These functions perform a load or store of the byte, word,
1506  * longword or quad to the specified address within the AddressSpace.
1507  * The _le suffixed functions treat the data as little endian;
1508  * _be indicates big endian; no suffix indicates "same endianness
1509  * as guest CPU".
1510  *
1511  * The "guest CPU endianness" accessors are deprecated for use outside
1512  * target-* code; devices should be CPU-agnostic and use either the LE
1513  * or the BE accessors.
1514  *
1515  * @as #AddressSpace to be accessed
1516  * @addr: address within that address space
1517  * @val: data value, for stores
1518  * @attrs: memory transaction attributes
1519  * @result: location to write the success/failure of the transaction;
1520  *   if NULL, this information is discarded
1521  */
1522 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1523                             MemTxAttrs attrs, MemTxResult *result);
1524 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1525                             MemTxAttrs attrs, MemTxResult *result);
1526 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1527                             MemTxAttrs attrs, MemTxResult *result);
1528 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1529                             MemTxAttrs attrs, MemTxResult *result);
1530 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1531                             MemTxAttrs attrs, MemTxResult *result);
1532 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1533                             MemTxAttrs attrs, MemTxResult *result);
1534 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1535                             MemTxAttrs attrs, MemTxResult *result);
1536 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1537                             MemTxAttrs attrs, MemTxResult *result);
1538 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1539                             MemTxAttrs attrs, MemTxResult *result);
1540 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1541                             MemTxAttrs attrs, MemTxResult *result);
1542 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1543                             MemTxAttrs attrs, MemTxResult *result);
1544 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1545                             MemTxAttrs attrs, MemTxResult *result);
1546 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1547                             MemTxAttrs attrs, MemTxResult *result);
1548 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1549                             MemTxAttrs attrs, MemTxResult *result);
1550 
1551 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1552 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1553 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1554 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1555 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1556 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1557 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1558 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1559 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1560 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1561 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1562 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1563 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1564 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1565 
1566 struct MemoryRegionCache {
1567     hwaddr xlat;
1568     hwaddr len;
1569     AddressSpace *as;
1570 };
1571 
1572 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1573 
1574 /* address_space_cache_init: prepare for repeated access to a physical
1575  * memory region
1576  *
1577  * @cache: #MemoryRegionCache to be filled
1578  * @as: #AddressSpace to be accessed
1579  * @addr: address within that address space
1580  * @len: length of buffer
1581  * @is_write: indicates the transfer direction
1582  *
1583  * Will only work with RAM, and may map a subset of the requested range by
1584  * returning a value that is less than @len.  On failure, return a negative
1585  * errno value.
1586  *
1587  * Because it only works with RAM, this function can be used for
1588  * read-modify-write operations.  In this case, is_write should be %true.
1589  *
1590  * Note that addresses passed to the address_space_*_cached functions
1591  * are relative to @addr.
1592  */
1593 int64_t address_space_cache_init(MemoryRegionCache *cache,
1594                                  AddressSpace *as,
1595                                  hwaddr addr,
1596                                  hwaddr len,
1597                                  bool is_write);
1598 
1599 /**
1600  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1601  *
1602  * @cache: The #MemoryRegionCache to operate on.
1603  * @addr: The first physical address that was written, relative to the
1604  * address that was passed to @address_space_cache_init.
1605  * @access_len: The number of bytes that were written starting at @addr.
1606  */
1607 void address_space_cache_invalidate(MemoryRegionCache *cache,
1608                                     hwaddr addr,
1609                                     hwaddr access_len);
1610 
1611 /**
1612  * address_space_cache_destroy: free a #MemoryRegionCache
1613  *
1614  * @cache: The #MemoryRegionCache whose memory should be released.
1615  */
1616 void address_space_cache_destroy(MemoryRegionCache *cache);
1617 
1618 /* address_space_ld*_cached: load from a cached #MemoryRegion
1619  * address_space_st*_cached: store into a cached #MemoryRegion
1620  *
1621  * These functions perform a load or store of the byte, word,
1622  * longword or quad to the specified address.  The address is
1623  * a physical address in the AddressSpace, but it must lie within
1624  * a #MemoryRegion that was mapped with address_space_cache_init.
1625  *
1626  * The _le suffixed functions treat the data as little endian;
1627  * _be indicates big endian; no suffix indicates "same endianness
1628  * as guest CPU".
1629  *
1630  * The "guest CPU endianness" accessors are deprecated for use outside
1631  * target-* code; devices should be CPU-agnostic and use either the LE
1632  * or the BE accessors.
1633  *
1634  * @cache: previously initialized #MemoryRegionCache to be accessed
1635  * @addr: address within the address space
1636  * @val: data value, for stores
1637  * @attrs: memory transaction attributes
1638  * @result: location to write the success/failure of the transaction;
1639  *   if NULL, this information is discarded
1640  */
1641 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1642                             MemTxAttrs attrs, MemTxResult *result);
1643 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1644                             MemTxAttrs attrs, MemTxResult *result);
1645 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1646                             MemTxAttrs attrs, MemTxResult *result);
1647 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1648                             MemTxAttrs attrs, MemTxResult *result);
1649 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1650                             MemTxAttrs attrs, MemTxResult *result);
1651 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1652                             MemTxAttrs attrs, MemTxResult *result);
1653 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1654                             MemTxAttrs attrs, MemTxResult *result);
1655 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1656                             MemTxAttrs attrs, MemTxResult *result);
1657 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1658                             MemTxAttrs attrs, MemTxResult *result);
1659 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1660                             MemTxAttrs attrs, MemTxResult *result);
1661 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1662                             MemTxAttrs attrs, MemTxResult *result);
1663 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1664                             MemTxAttrs attrs, MemTxResult *result);
1665 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1666                             MemTxAttrs attrs, MemTxResult *result);
1667 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1668                             MemTxAttrs attrs, MemTxResult *result);
1669 
1670 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1671 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1672 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1673 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1674 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1675 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1676 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1677 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1678 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1679 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1680 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1681 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1682 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1683 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1684 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1685  * entry. Should be called from an RCU critical section.
1686  */
1687 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1688                                             bool is_write);
1689 
1690 /* address_space_translate: translate an address range into an address space
1691  * into a MemoryRegion and an address range into that section.  Should be
1692  * called from an RCU critical section, to avoid that the last reference
1693  * to the returned region disappears after address_space_translate returns.
1694  *
1695  * @as: #AddressSpace to be accessed
1696  * @addr: address within that address space
1697  * @xlat: pointer to address within the returned memory region section's
1698  * #MemoryRegion.
1699  * @len: pointer to length
1700  * @is_write: indicates the transfer direction
1701  */
1702 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1703                                       hwaddr *xlat, hwaddr *len,
1704                                       bool is_write);
1705 
1706 /* address_space_access_valid: check for validity of accessing an address
1707  * space range
1708  *
1709  * Check whether memory is assigned to the given address space range, and
1710  * access is permitted by any IOMMU regions that are active for the address
1711  * space.
1712  *
1713  * For now, addr and len should be aligned to a page size.  This limitation
1714  * will be lifted in the future.
1715  *
1716  * @as: #AddressSpace to be accessed
1717  * @addr: address within that address space
1718  * @len: length of the area to be checked
1719  * @is_write: indicates the transfer direction
1720  */
1721 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1722 
1723 /* address_space_map: map a physical memory region into a host virtual address
1724  *
1725  * May map a subset of the requested range, given by and returned in @plen.
1726  * May return %NULL if resources needed to perform the mapping are exhausted.
1727  * Use only for reads OR writes - not for read-modify-write operations.
1728  * Use cpu_register_map_client() to know when retrying the map operation is
1729  * likely to succeed.
1730  *
1731  * @as: #AddressSpace to be accessed
1732  * @addr: address within that address space
1733  * @plen: pointer to length of buffer; updated on return
1734  * @is_write: indicates the transfer direction
1735  */
1736 void *address_space_map(AddressSpace *as, hwaddr addr,
1737                         hwaddr *plen, bool is_write);
1738 
1739 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1740  *
1741  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1742  * the amount of memory that was actually read or written by the caller.
1743  *
1744  * @as: #AddressSpace used
1745  * @addr: address within that address space
1746  * @len: buffer length as returned by address_space_map()
1747  * @access_len: amount of data actually transferred
1748  * @is_write: indicates the transfer direction
1749  */
1750 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1751                          int is_write, hwaddr access_len);
1752 
1753 
1754 /* Internal functions, part of the implementation of address_space_read.  */
1755 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1756                                         MemTxAttrs attrs, uint8_t *buf,
1757                                         int len, hwaddr addr1, hwaddr l,
1758 					MemoryRegion *mr);
1759 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1760                                     MemTxAttrs attrs, uint8_t *buf, int len);
1761 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1762 
1763 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1764 {
1765     if (is_write) {
1766         return memory_region_is_ram(mr) &&
1767                !mr->readonly && !memory_region_is_ram_device(mr);
1768     } else {
1769         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1770                memory_region_is_romd(mr);
1771     }
1772 }
1773 
1774 /**
1775  * address_space_read: read from an address space.
1776  *
1777  * Return a MemTxResult indicating whether the operation succeeded
1778  * or failed (eg unassigned memory, device rejected the transaction,
1779  * IOMMU fault).
1780  *
1781  * @as: #AddressSpace to be accessed
1782  * @addr: address within that address space
1783  * @attrs: memory transaction attributes
1784  * @buf: buffer with the data transferred
1785  */
1786 static inline __attribute__((__always_inline__))
1787 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1788                                uint8_t *buf, int len)
1789 {
1790     MemTxResult result = MEMTX_OK;
1791     hwaddr l, addr1;
1792     void *ptr;
1793     MemoryRegion *mr;
1794 
1795     if (__builtin_constant_p(len)) {
1796         if (len) {
1797             rcu_read_lock();
1798             l = len;
1799             mr = address_space_translate(as, addr, &addr1, &l, false);
1800             if (len == l && memory_access_is_direct(mr, false)) {
1801                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1802                 memcpy(buf, ptr, len);
1803             } else {
1804                 result = address_space_read_continue(as, addr, attrs, buf, len,
1805                                                      addr1, l, mr);
1806             }
1807             rcu_read_unlock();
1808         }
1809     } else {
1810         result = address_space_read_full(as, addr, attrs, buf, len);
1811     }
1812     return result;
1813 }
1814 
1815 /**
1816  * address_space_read_cached: read from a cached RAM region
1817  *
1818  * @cache: Cached region to be addressed
1819  * @addr: address relative to the base of the RAM region
1820  * @buf: buffer with the data transferred
1821  * @len: length of the data transferred
1822  */
1823 static inline void
1824 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1825                           void *buf, int len)
1826 {
1827     assert(addr < cache->len && len <= cache->len - addr);
1828     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1829 }
1830 
1831 /**
1832  * address_space_write_cached: write to a cached RAM region
1833  *
1834  * @cache: Cached region to be addressed
1835  * @addr: address relative to the base of the RAM region
1836  * @buf: buffer with the data transferred
1837  * @len: length of the data transferred
1838  */
1839 static inline void
1840 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1841                            void *buf, int len)
1842 {
1843     assert(addr < cache->len && len <= cache->len - addr);
1844     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1845 }
1846 
1847 #endif
1848 
1849 #endif
1850