1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #ifndef CONFIG_USER_ONLY 21 #include "exec/hwaddr.h" 22 #endif 23 #include "exec/memattrs.h" 24 #include "exec/ramlist.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 #define MEMORY_REGION(obj) \ 38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 39 40 typedef struct MemoryRegionOps MemoryRegionOps; 41 typedef struct MemoryRegionMmio MemoryRegionMmio; 42 43 struct MemoryRegionMmio { 44 CPUReadMemoryFunc *read[3]; 45 CPUWriteMemoryFunc *write[3]; 46 }; 47 48 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 49 50 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 51 typedef enum { 52 IOMMU_NONE = 0, 53 IOMMU_RO = 1, 54 IOMMU_WO = 2, 55 IOMMU_RW = 3, 56 } IOMMUAccessFlags; 57 58 struct IOMMUTLBEntry { 59 AddressSpace *target_as; 60 hwaddr iova; 61 hwaddr translated_addr; 62 hwaddr addr_mask; /* 0xfff = 4k translation */ 63 IOMMUAccessFlags perm; 64 }; 65 66 /* 67 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 68 * register with one or multiple IOMMU Notifier capability bit(s). 69 */ 70 typedef enum { 71 IOMMU_NOTIFIER_NONE = 0, 72 /* Notify cache invalidations */ 73 IOMMU_NOTIFIER_UNMAP = 0x1, 74 /* Notify entry changes (newly created entries) */ 75 IOMMU_NOTIFIER_MAP = 0x2, 76 } IOMMUNotifierFlag; 77 78 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 79 80 struct IOMMUNotifier { 81 void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data); 82 IOMMUNotifierFlag notifier_flags; 83 QLIST_ENTRY(IOMMUNotifier) node; 84 }; 85 typedef struct IOMMUNotifier IOMMUNotifier; 86 87 /* New-style MMIO accessors can indicate that the transaction failed. 88 * A zero (MEMTX_OK) response means success; anything else is a failure 89 * of some kind. The memory subsystem will bitwise-OR together results 90 * if it is synthesizing an operation from multiple smaller accesses. 91 */ 92 #define MEMTX_OK 0 93 #define MEMTX_ERROR (1U << 0) /* device returned an error */ 94 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ 95 typedef uint32_t MemTxResult; 96 97 /* 98 * Memory region callbacks 99 */ 100 struct MemoryRegionOps { 101 /* Read from the memory region. @addr is relative to @mr; @size is 102 * in bytes. */ 103 uint64_t (*read)(void *opaque, 104 hwaddr addr, 105 unsigned size); 106 /* Write to the memory region. @addr is relative to @mr; @size is 107 * in bytes. */ 108 void (*write)(void *opaque, 109 hwaddr addr, 110 uint64_t data, 111 unsigned size); 112 113 MemTxResult (*read_with_attrs)(void *opaque, 114 hwaddr addr, 115 uint64_t *data, 116 unsigned size, 117 MemTxAttrs attrs); 118 MemTxResult (*write_with_attrs)(void *opaque, 119 hwaddr addr, 120 uint64_t data, 121 unsigned size, 122 MemTxAttrs attrs); 123 124 enum device_endian endianness; 125 /* Guest-visible constraints: */ 126 struct { 127 /* If nonzero, specify bounds on access sizes beyond which a machine 128 * check is thrown. 129 */ 130 unsigned min_access_size; 131 unsigned max_access_size; 132 /* If true, unaligned accesses are supported. Otherwise unaligned 133 * accesses throw machine checks. 134 */ 135 bool unaligned; 136 /* 137 * If present, and returns #false, the transaction is not accepted 138 * by the device (and results in machine dependent behaviour such 139 * as a machine check exception). 140 */ 141 bool (*accepts)(void *opaque, hwaddr addr, 142 unsigned size, bool is_write); 143 } valid; 144 /* Internal implementation constraints: */ 145 struct { 146 /* If nonzero, specifies the minimum size implemented. Smaller sizes 147 * will be rounded upwards and a partial result will be returned. 148 */ 149 unsigned min_access_size; 150 /* If nonzero, specifies the maximum size implemented. Larger sizes 151 * will be done as a series of accesses with smaller sizes. 152 */ 153 unsigned max_access_size; 154 /* If true, unaligned accesses are supported. Otherwise all accesses 155 * are converted to (possibly multiple) naturally aligned accesses. 156 */ 157 bool unaligned; 158 } impl; 159 160 /* If .read and .write are not present, old_mmio may be used for 161 * backwards compatibility with old mmio registration 162 */ 163 const MemoryRegionMmio old_mmio; 164 }; 165 166 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 167 168 struct MemoryRegionIOMMUOps { 169 /* Return a TLB entry that contains a given address. */ 170 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); 171 /* Returns minimum supported page size */ 172 uint64_t (*get_min_page_size)(MemoryRegion *iommu); 173 /* Called when IOMMU Notifier flag changed */ 174 void (*notify_flag_changed)(MemoryRegion *iommu, 175 IOMMUNotifierFlag old_flags, 176 IOMMUNotifierFlag new_flags); 177 }; 178 179 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 180 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 181 182 struct MemoryRegion { 183 Object parent_obj; 184 185 /* All fields are private - violators will be prosecuted */ 186 187 /* The following fields should fit in a cache line */ 188 bool romd_mode; 189 bool ram; 190 bool subpage; 191 bool readonly; /* For RAM regions */ 192 bool rom_device; 193 bool flush_coalesced_mmio; 194 bool global_locking; 195 uint8_t dirty_log_mask; 196 RAMBlock *ram_block; 197 Object *owner; 198 const MemoryRegionIOMMUOps *iommu_ops; 199 200 const MemoryRegionOps *ops; 201 void *opaque; 202 MemoryRegion *container; 203 Int128 size; 204 hwaddr addr; 205 void (*destructor)(MemoryRegion *mr); 206 uint64_t align; 207 bool terminates; 208 bool ram_device; 209 bool enabled; 210 bool warning_printed; /* For reservations */ 211 uint8_t vga_logging_count; 212 MemoryRegion *alias; 213 hwaddr alias_offset; 214 int32_t priority; 215 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 216 QTAILQ_ENTRY(MemoryRegion) subregions_link; 217 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 218 const char *name; 219 unsigned ioeventfd_nb; 220 MemoryRegionIoeventfd *ioeventfds; 221 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 222 IOMMUNotifierFlag iommu_notify_flags; 223 }; 224 225 /** 226 * MemoryListener: callbacks structure for updates to the physical memory map 227 * 228 * Allows a component to adjust to changes in the guest-visible memory map. 229 * Use with memory_listener_register() and memory_listener_unregister(). 230 */ 231 struct MemoryListener { 232 void (*begin)(MemoryListener *listener); 233 void (*commit)(MemoryListener *listener); 234 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 235 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 236 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 237 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 238 int old, int new); 239 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 240 int old, int new); 241 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 242 void (*log_global_start)(MemoryListener *listener); 243 void (*log_global_stop)(MemoryListener *listener); 244 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 245 bool match_data, uint64_t data, EventNotifier *e); 246 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 247 bool match_data, uint64_t data, EventNotifier *e); 248 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 249 hwaddr addr, hwaddr len); 250 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 251 hwaddr addr, hwaddr len); 252 /* Lower = earlier (during add), later (during del) */ 253 unsigned priority; 254 AddressSpace *address_space; 255 QTAILQ_ENTRY(MemoryListener) link; 256 QTAILQ_ENTRY(MemoryListener) link_as; 257 }; 258 259 /** 260 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 261 */ 262 struct AddressSpace { 263 /* All fields are private. */ 264 struct rcu_head rcu; 265 char *name; 266 MemoryRegion *root; 267 int ref_count; 268 bool malloced; 269 270 /* Accessed via RCU. */ 271 struct FlatView *current_map; 272 273 int ioeventfd_nb; 274 struct MemoryRegionIoeventfd *ioeventfds; 275 struct AddressSpaceDispatch *dispatch; 276 struct AddressSpaceDispatch *next_dispatch; 277 MemoryListener dispatch_listener; 278 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 279 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 280 }; 281 282 /** 283 * MemoryRegionSection: describes a fragment of a #MemoryRegion 284 * 285 * @mr: the region, or %NULL if empty 286 * @address_space: the address space the region is mapped in 287 * @offset_within_region: the beginning of the section, relative to @mr's start 288 * @size: the size of the section; will not exceed @mr's boundaries 289 * @offset_within_address_space: the address of the first byte of the section 290 * relative to the region's address space 291 * @readonly: writes to this section are ignored 292 */ 293 struct MemoryRegionSection { 294 MemoryRegion *mr; 295 AddressSpace *address_space; 296 hwaddr offset_within_region; 297 Int128 size; 298 hwaddr offset_within_address_space; 299 bool readonly; 300 }; 301 302 /** 303 * memory_region_init: Initialize a memory region 304 * 305 * The region typically acts as a container for other memory regions. Use 306 * memory_region_add_subregion() to add subregions. 307 * 308 * @mr: the #MemoryRegion to be initialized 309 * @owner: the object that tracks the region's reference count 310 * @name: used for debugging; not visible to the user or ABI 311 * @size: size of the region; any subregions beyond this size will be clipped 312 */ 313 void memory_region_init(MemoryRegion *mr, 314 struct Object *owner, 315 const char *name, 316 uint64_t size); 317 318 /** 319 * memory_region_ref: Add 1 to a memory region's reference count 320 * 321 * Whenever memory regions are accessed outside the BQL, they need to be 322 * preserved against hot-unplug. MemoryRegions actually do not have their 323 * own reference count; they piggyback on a QOM object, their "owner". 324 * This function adds a reference to the owner. 325 * 326 * All MemoryRegions must have an owner if they can disappear, even if the 327 * device they belong to operates exclusively under the BQL. This is because 328 * the region could be returned at any time by memory_region_find, and this 329 * is usually under guest control. 330 * 331 * @mr: the #MemoryRegion 332 */ 333 void memory_region_ref(MemoryRegion *mr); 334 335 /** 336 * memory_region_unref: Remove 1 to a memory region's reference count 337 * 338 * Whenever memory regions are accessed outside the BQL, they need to be 339 * preserved against hot-unplug. MemoryRegions actually do not have their 340 * own reference count; they piggyback on a QOM object, their "owner". 341 * This function removes a reference to the owner and possibly destroys it. 342 * 343 * @mr: the #MemoryRegion 344 */ 345 void memory_region_unref(MemoryRegion *mr); 346 347 /** 348 * memory_region_init_io: Initialize an I/O memory region. 349 * 350 * Accesses into the region will cause the callbacks in @ops to be called. 351 * if @size is nonzero, subregions will be clipped to @size. 352 * 353 * @mr: the #MemoryRegion to be initialized. 354 * @owner: the object that tracks the region's reference count 355 * @ops: a structure containing read and write callbacks to be used when 356 * I/O is performed on the region. 357 * @opaque: passed to the read and write callbacks of the @ops structure. 358 * @name: used for debugging; not visible to the user or ABI 359 * @size: size of the region. 360 */ 361 void memory_region_init_io(MemoryRegion *mr, 362 struct Object *owner, 363 const MemoryRegionOps *ops, 364 void *opaque, 365 const char *name, 366 uint64_t size); 367 368 /** 369 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 370 * region will modify memory directly. 371 * 372 * @mr: the #MemoryRegion to be initialized. 373 * @owner: the object that tracks the region's reference count 374 * @name: the name of the region. 375 * @size: size of the region. 376 * @errp: pointer to Error*, to store an error if it happens. 377 */ 378 void memory_region_init_ram(MemoryRegion *mr, 379 struct Object *owner, 380 const char *name, 381 uint64_t size, 382 Error **errp); 383 384 /** 385 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 386 * RAM. Accesses into the region will 387 * modify memory directly. Only an initial 388 * portion of this RAM is actually used. 389 * The used size can change across reboots. 390 * 391 * @mr: the #MemoryRegion to be initialized. 392 * @owner: the object that tracks the region's reference count 393 * @name: the name of the region. 394 * @size: used size of the region. 395 * @max_size: max size of the region. 396 * @resized: callback to notify owner about used size change. 397 * @errp: pointer to Error*, to store an error if it happens. 398 */ 399 void memory_region_init_resizeable_ram(MemoryRegion *mr, 400 struct Object *owner, 401 const char *name, 402 uint64_t size, 403 uint64_t max_size, 404 void (*resized)(const char*, 405 uint64_t length, 406 void *host), 407 Error **errp); 408 #ifdef __linux__ 409 /** 410 * memory_region_init_ram_from_file: Initialize RAM memory region with a 411 * mmap-ed backend. 412 * 413 * @mr: the #MemoryRegion to be initialized. 414 * @owner: the object that tracks the region's reference count 415 * @name: the name of the region. 416 * @size: size of the region. 417 * @share: %true if memory must be mmaped with the MAP_SHARED flag 418 * @path: the path in which to allocate the RAM. 419 * @errp: pointer to Error*, to store an error if it happens. 420 */ 421 void memory_region_init_ram_from_file(MemoryRegion *mr, 422 struct Object *owner, 423 const char *name, 424 uint64_t size, 425 bool share, 426 const char *path, 427 Error **errp); 428 #endif 429 430 /** 431 * memory_region_init_ram_ptr: Initialize RAM memory region from a 432 * user-provided pointer. Accesses into the 433 * region will modify memory directly. 434 * 435 * @mr: the #MemoryRegion to be initialized. 436 * @owner: the object that tracks the region's reference count 437 * @name: the name of the region. 438 * @size: size of the region. 439 * @ptr: memory to be mapped; must contain at least @size bytes. 440 */ 441 void memory_region_init_ram_ptr(MemoryRegion *mr, 442 struct Object *owner, 443 const char *name, 444 uint64_t size, 445 void *ptr); 446 447 /** 448 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 449 * a user-provided pointer. 450 * 451 * A RAM device represents a mapping to a physical device, such as to a PCI 452 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 453 * into the VM address space and access to the region will modify memory 454 * directly. However, the memory region should not be included in a memory 455 * dump (device may not be enabled/mapped at the time of the dump), and 456 * operations incompatible with manipulating MMIO should be avoided. Replaces 457 * skip_dump flag. 458 * 459 * @mr: the #MemoryRegion to be initialized. 460 * @owner: the object that tracks the region's reference count 461 * @name: the name of the region. 462 * @size: size of the region. 463 * @ptr: memory to be mapped; must contain at least @size bytes. 464 */ 465 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 466 struct Object *owner, 467 const char *name, 468 uint64_t size, 469 void *ptr); 470 471 /** 472 * memory_region_init_alias: Initialize a memory region that aliases all or a 473 * part of another memory region. 474 * 475 * @mr: the #MemoryRegion to be initialized. 476 * @owner: the object that tracks the region's reference count 477 * @name: used for debugging; not visible to the user or ABI 478 * @orig: the region to be referenced; @mr will be equivalent to 479 * @orig between @offset and @offset + @size - 1. 480 * @offset: start of the section in @orig to be referenced. 481 * @size: size of the region. 482 */ 483 void memory_region_init_alias(MemoryRegion *mr, 484 struct Object *owner, 485 const char *name, 486 MemoryRegion *orig, 487 hwaddr offset, 488 uint64_t size); 489 490 /** 491 * memory_region_init_rom: Initialize a ROM memory region. 492 * 493 * This has the same effect as calling memory_region_init_ram() 494 * and then marking the resulting region read-only with 495 * memory_region_set_readonly(). 496 * 497 * @mr: the #MemoryRegion to be initialized. 498 * @owner: the object that tracks the region's reference count 499 * @name: the name of the region. 500 * @size: size of the region. 501 * @errp: pointer to Error*, to store an error if it happens. 502 */ 503 void memory_region_init_rom(MemoryRegion *mr, 504 struct Object *owner, 505 const char *name, 506 uint64_t size, 507 Error **errp); 508 509 /** 510 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 511 * handled via callbacks. 512 * 513 * @mr: the #MemoryRegion to be initialized. 514 * @owner: the object that tracks the region's reference count 515 * @ops: callbacks for write access handling (must not be NULL). 516 * @name: the name of the region. 517 * @size: size of the region. 518 * @errp: pointer to Error*, to store an error if it happens. 519 */ 520 void memory_region_init_rom_device(MemoryRegion *mr, 521 struct Object *owner, 522 const MemoryRegionOps *ops, 523 void *opaque, 524 const char *name, 525 uint64_t size, 526 Error **errp); 527 528 /** 529 * memory_region_init_reservation: Initialize a memory region that reserves 530 * I/O space. 531 * 532 * A reservation region primariy serves debugging purposes. It claims I/O 533 * space that is not supposed to be handled by QEMU itself. Any access via 534 * the memory API will cause an abort(). 535 * This function is deprecated. Use memory_region_init_io() with NULL 536 * callbacks instead. 537 * 538 * @mr: the #MemoryRegion to be initialized 539 * @owner: the object that tracks the region's reference count 540 * @name: used for debugging; not visible to the user or ABI 541 * @size: size of the region. 542 */ 543 static inline void memory_region_init_reservation(MemoryRegion *mr, 544 Object *owner, 545 const char *name, 546 uint64_t size) 547 { 548 memory_region_init_io(mr, owner, NULL, mr, name, size); 549 } 550 551 /** 552 * memory_region_init_iommu: Initialize a memory region that translates 553 * addresses 554 * 555 * An IOMMU region translates addresses and forwards accesses to a target 556 * memory region. 557 * 558 * @mr: the #MemoryRegion to be initialized 559 * @owner: the object that tracks the region's reference count 560 * @ops: a function that translates addresses into the @target region 561 * @name: used for debugging; not visible to the user or ABI 562 * @size: size of the region. 563 */ 564 void memory_region_init_iommu(MemoryRegion *mr, 565 struct Object *owner, 566 const MemoryRegionIOMMUOps *ops, 567 const char *name, 568 uint64_t size); 569 570 /** 571 * memory_region_owner: get a memory region's owner. 572 * 573 * @mr: the memory region being queried. 574 */ 575 struct Object *memory_region_owner(MemoryRegion *mr); 576 577 /** 578 * memory_region_size: get a memory region's size. 579 * 580 * @mr: the memory region being queried. 581 */ 582 uint64_t memory_region_size(MemoryRegion *mr); 583 584 /** 585 * memory_region_is_ram: check whether a memory region is random access 586 * 587 * Returns %true is a memory region is random access. 588 * 589 * @mr: the memory region being queried 590 */ 591 static inline bool memory_region_is_ram(MemoryRegion *mr) 592 { 593 return mr->ram; 594 } 595 596 /** 597 * memory_region_is_ram_device: check whether a memory region is a ram device 598 * 599 * Returns %true is a memory region is a device backed ram region 600 * 601 * @mr: the memory region being queried 602 */ 603 bool memory_region_is_ram_device(MemoryRegion *mr); 604 605 /** 606 * memory_region_is_romd: check whether a memory region is in ROMD mode 607 * 608 * Returns %true if a memory region is a ROM device and currently set to allow 609 * direct reads. 610 * 611 * @mr: the memory region being queried 612 */ 613 static inline bool memory_region_is_romd(MemoryRegion *mr) 614 { 615 return mr->rom_device && mr->romd_mode; 616 } 617 618 /** 619 * memory_region_is_iommu: check whether a memory region is an iommu 620 * 621 * Returns %true is a memory region is an iommu. 622 * 623 * @mr: the memory region being queried 624 */ 625 static inline bool memory_region_is_iommu(MemoryRegion *mr) 626 { 627 if (mr->alias) { 628 return memory_region_is_iommu(mr->alias); 629 } 630 return mr->iommu_ops; 631 } 632 633 634 /** 635 * memory_region_iommu_get_min_page_size: get minimum supported page size 636 * for an iommu 637 * 638 * Returns minimum supported page size for an iommu. 639 * 640 * @mr: the memory region being queried 641 */ 642 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr); 643 644 /** 645 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 646 * 647 * The notification type will be decided by entry.perm bits: 648 * 649 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 650 * - For MAP (newly added entry) notifies: set entry.perm to the 651 * permission of the page (which is definitely !IOMMU_NONE). 652 * 653 * Note: for any IOMMU implementation, an in-place mapping change 654 * should be notified with an UNMAP followed by a MAP. 655 * 656 * @mr: the memory region that was changed 657 * @entry: the new entry in the IOMMU translation table. The entry 658 * replaces all old entries for the same virtual I/O address range. 659 * Deleted entries have .@perm == 0. 660 */ 661 void memory_region_notify_iommu(MemoryRegion *mr, 662 IOMMUTLBEntry entry); 663 664 /** 665 * memory_region_register_iommu_notifier: register a notifier for changes to 666 * IOMMU translation entries. 667 * 668 * @mr: the memory region to observe 669 * @n: the IOMMUNotifier to be added; the notify callback receives a 670 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 671 * ceases to be valid on exit from the notifier. 672 */ 673 void memory_region_register_iommu_notifier(MemoryRegion *mr, 674 IOMMUNotifier *n); 675 676 /** 677 * memory_region_iommu_replay: replay existing IOMMU translations to 678 * a notifier with the minimum page granularity returned by 679 * mr->iommu_ops->get_page_size(). 680 * 681 * @mr: the memory region to observe 682 * @n: the notifier to which to replay iommu mappings 683 * @is_write: Whether to treat the replay as a translate "write" 684 * through the iommu 685 */ 686 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n, 687 bool is_write); 688 689 /** 690 * memory_region_unregister_iommu_notifier: unregister a notifier for 691 * changes to IOMMU translation entries. 692 * 693 * @mr: the memory region which was observed and for which notity_stopped() 694 * needs to be called 695 * @n: the notifier to be removed. 696 */ 697 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 698 IOMMUNotifier *n); 699 700 /** 701 * memory_region_name: get a memory region's name 702 * 703 * Returns the string that was used to initialize the memory region. 704 * 705 * @mr: the memory region being queried 706 */ 707 const char *memory_region_name(const MemoryRegion *mr); 708 709 /** 710 * memory_region_is_logging: return whether a memory region is logging writes 711 * 712 * Returns %true if the memory region is logging writes for the given client 713 * 714 * @mr: the memory region being queried 715 * @client: the client being queried 716 */ 717 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 718 719 /** 720 * memory_region_get_dirty_log_mask: return the clients for which a 721 * memory region is logging writes. 722 * 723 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 724 * are the bit indices. 725 * 726 * @mr: the memory region being queried 727 */ 728 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 729 730 /** 731 * memory_region_is_rom: check whether a memory region is ROM 732 * 733 * Returns %true is a memory region is read-only memory. 734 * 735 * @mr: the memory region being queried 736 */ 737 static inline bool memory_region_is_rom(MemoryRegion *mr) 738 { 739 return mr->ram && mr->readonly; 740 } 741 742 743 /** 744 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 745 * 746 * Returns a file descriptor backing a file-based RAM memory region, 747 * or -1 if the region is not a file-based RAM memory region. 748 * 749 * @mr: the RAM or alias memory region being queried. 750 */ 751 int memory_region_get_fd(MemoryRegion *mr); 752 753 /** 754 * memory_region_set_fd: Mark a RAM memory region as backed by a 755 * file descriptor. 756 * 757 * This function is typically used after memory_region_init_ram_ptr(). 758 * 759 * @mr: the memory region being queried. 760 * @fd: the file descriptor that backs @mr. 761 */ 762 void memory_region_set_fd(MemoryRegion *mr, int fd); 763 764 /** 765 * memory_region_from_host: Convert a pointer into a RAM memory region 766 * and an offset within it. 767 * 768 * Given a host pointer inside a RAM memory region (created with 769 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 770 * the MemoryRegion and the offset within it. 771 * 772 * Use with care; by the time this function returns, the returned pointer is 773 * not protected by RCU anymore. If the caller is not within an RCU critical 774 * section and does not hold the iothread lock, it must have other means of 775 * protecting the pointer, such as a reference to the region that includes 776 * the incoming ram_addr_t. 777 * 778 * @mr: the memory region being queried. 779 */ 780 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 781 782 /** 783 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 784 * 785 * Returns a host pointer to a RAM memory region (created with 786 * memory_region_init_ram() or memory_region_init_ram_ptr()). 787 * 788 * Use with care; by the time this function returns, the returned pointer is 789 * not protected by RCU anymore. If the caller is not within an RCU critical 790 * section and does not hold the iothread lock, it must have other means of 791 * protecting the pointer, such as a reference to the region that includes 792 * the incoming ram_addr_t. 793 * 794 * @mr: the memory region being queried. 795 */ 796 void *memory_region_get_ram_ptr(MemoryRegion *mr); 797 798 /* memory_region_ram_resize: Resize a RAM region. 799 * 800 * Only legal before guest might have detected the memory size: e.g. on 801 * incoming migration, or right after reset. 802 * 803 * @mr: a memory region created with @memory_region_init_resizeable_ram. 804 * @newsize: the new size the region 805 * @errp: pointer to Error*, to store an error if it happens. 806 */ 807 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 808 Error **errp); 809 810 /** 811 * memory_region_set_log: Turn dirty logging on or off for a region. 812 * 813 * Turns dirty logging on or off for a specified client (display, migration). 814 * Only meaningful for RAM regions. 815 * 816 * @mr: the memory region being updated. 817 * @log: whether dirty logging is to be enabled or disabled. 818 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 819 */ 820 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 821 822 /** 823 * memory_region_get_dirty: Check whether a range of bytes is dirty 824 * for a specified client. 825 * 826 * Checks whether a range of bytes has been written to since the last 827 * call to memory_region_reset_dirty() with the same @client. Dirty logging 828 * must be enabled. 829 * 830 * @mr: the memory region being queried. 831 * @addr: the address (relative to the start of the region) being queried. 832 * @size: the size of the range being queried. 833 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 834 * %DIRTY_MEMORY_VGA. 835 */ 836 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 837 hwaddr size, unsigned client); 838 839 /** 840 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 841 * 842 * Marks a range of bytes as dirty, after it has been dirtied outside 843 * guest code. 844 * 845 * @mr: the memory region being dirtied. 846 * @addr: the address (relative to the start of the region) being dirtied. 847 * @size: size of the range being dirtied. 848 */ 849 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 850 hwaddr size); 851 852 /** 853 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 854 * for a specified client. It clears them. 855 * 856 * Checks whether a range of bytes has been written to since the last 857 * call to memory_region_reset_dirty() with the same @client. Dirty logging 858 * must be enabled. 859 * 860 * @mr: the memory region being queried. 861 * @addr: the address (relative to the start of the region) being queried. 862 * @size: the size of the range being queried. 863 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 864 * %DIRTY_MEMORY_VGA. 865 */ 866 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 867 hwaddr size, unsigned client); 868 /** 869 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 870 * any external TLBs (e.g. kvm) 871 * 872 * Flushes dirty information from accelerators such as kvm and vhost-net 873 * and makes it available to users of the memory API. 874 * 875 * @mr: the region being flushed. 876 */ 877 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 878 879 /** 880 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 881 * client. 882 * 883 * Marks a range of pages as no longer dirty. 884 * 885 * @mr: the region being updated. 886 * @addr: the start of the subrange being cleaned. 887 * @size: the size of the subrange being cleaned. 888 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 889 * %DIRTY_MEMORY_VGA. 890 */ 891 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 892 hwaddr size, unsigned client); 893 894 /** 895 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 896 * 897 * Allows a memory region to be marked as read-only (turning it into a ROM). 898 * only useful on RAM regions. 899 * 900 * @mr: the region being updated. 901 * @readonly: whether rhe region is to be ROM or RAM. 902 */ 903 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 904 905 /** 906 * memory_region_rom_device_set_romd: enable/disable ROMD mode 907 * 908 * Allows a ROM device (initialized with memory_region_init_rom_device() to 909 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 910 * device is mapped to guest memory and satisfies read access directly. 911 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 912 * Writes are always handled by the #MemoryRegion.write function. 913 * 914 * @mr: the memory region to be updated 915 * @romd_mode: %true to put the region into ROMD mode 916 */ 917 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 918 919 /** 920 * memory_region_set_coalescing: Enable memory coalescing for the region. 921 * 922 * Enabled writes to a region to be queued for later processing. MMIO ->write 923 * callbacks may be delayed until a non-coalesced MMIO is issued. 924 * Only useful for IO regions. Roughly similar to write-combining hardware. 925 * 926 * @mr: the memory region to be write coalesced 927 */ 928 void memory_region_set_coalescing(MemoryRegion *mr); 929 930 /** 931 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 932 * a region. 933 * 934 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 935 * Multiple calls can be issued coalesced disjoint ranges. 936 * 937 * @mr: the memory region to be updated. 938 * @offset: the start of the range within the region to be coalesced. 939 * @size: the size of the subrange to be coalesced. 940 */ 941 void memory_region_add_coalescing(MemoryRegion *mr, 942 hwaddr offset, 943 uint64_t size); 944 945 /** 946 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 947 * 948 * Disables any coalescing caused by memory_region_set_coalescing() or 949 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 950 * hardware. 951 * 952 * @mr: the memory region to be updated. 953 */ 954 void memory_region_clear_coalescing(MemoryRegion *mr); 955 956 /** 957 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 958 * accesses. 959 * 960 * Ensure that pending coalesced MMIO request are flushed before the memory 961 * region is accessed. This property is automatically enabled for all regions 962 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 963 * 964 * @mr: the memory region to be updated. 965 */ 966 void memory_region_set_flush_coalesced(MemoryRegion *mr); 967 968 /** 969 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 970 * accesses. 971 * 972 * Clear the automatic coalesced MMIO flushing enabled via 973 * memory_region_set_flush_coalesced. Note that this service has no effect on 974 * memory regions that have MMIO coalescing enabled for themselves. For them, 975 * automatic flushing will stop once coalescing is disabled. 976 * 977 * @mr: the memory region to be updated. 978 */ 979 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 980 981 /** 982 * memory_region_set_global_locking: Declares the access processing requires 983 * QEMU's global lock. 984 * 985 * When this is invoked, accesses to the memory region will be processed while 986 * holding the global lock of QEMU. This is the default behavior of memory 987 * regions. 988 * 989 * @mr: the memory region to be updated. 990 */ 991 void memory_region_set_global_locking(MemoryRegion *mr); 992 993 /** 994 * memory_region_clear_global_locking: Declares that access processing does 995 * not depend on the QEMU global lock. 996 * 997 * By clearing this property, accesses to the memory region will be processed 998 * outside of QEMU's global lock (unless the lock is held on when issuing the 999 * access request). In this case, the device model implementing the access 1000 * handlers is responsible for synchronization of concurrency. 1001 * 1002 * @mr: the memory region to be updated. 1003 */ 1004 void memory_region_clear_global_locking(MemoryRegion *mr); 1005 1006 /** 1007 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1008 * is written to a location. 1009 * 1010 * Marks a word in an IO region (initialized with memory_region_init_io()) 1011 * as a trigger for an eventfd event. The I/O callback will not be called. 1012 * The caller must be prepared to handle failure (that is, take the required 1013 * action if the callback _is_ called). 1014 * 1015 * @mr: the memory region being updated. 1016 * @addr: the address within @mr that is to be monitored 1017 * @size: the size of the access to trigger the eventfd 1018 * @match_data: whether to match against @data, instead of just @addr 1019 * @data: the data to match against the guest write 1020 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1021 **/ 1022 void memory_region_add_eventfd(MemoryRegion *mr, 1023 hwaddr addr, 1024 unsigned size, 1025 bool match_data, 1026 uint64_t data, 1027 EventNotifier *e); 1028 1029 /** 1030 * memory_region_del_eventfd: Cancel an eventfd. 1031 * 1032 * Cancels an eventfd trigger requested by a previous 1033 * memory_region_add_eventfd() call. 1034 * 1035 * @mr: the memory region being updated. 1036 * @addr: the address within @mr that is to be monitored 1037 * @size: the size of the access to trigger the eventfd 1038 * @match_data: whether to match against @data, instead of just @addr 1039 * @data: the data to match against the guest write 1040 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1041 */ 1042 void memory_region_del_eventfd(MemoryRegion *mr, 1043 hwaddr addr, 1044 unsigned size, 1045 bool match_data, 1046 uint64_t data, 1047 EventNotifier *e); 1048 1049 /** 1050 * memory_region_add_subregion: Add a subregion to a container. 1051 * 1052 * Adds a subregion at @offset. The subregion may not overlap with other 1053 * subregions (except for those explicitly marked as overlapping). A region 1054 * may only be added once as a subregion (unless removed with 1055 * memory_region_del_subregion()); use memory_region_init_alias() if you 1056 * want a region to be a subregion in multiple locations. 1057 * 1058 * @mr: the region to contain the new subregion; must be a container 1059 * initialized with memory_region_init(). 1060 * @offset: the offset relative to @mr where @subregion is added. 1061 * @subregion: the subregion to be added. 1062 */ 1063 void memory_region_add_subregion(MemoryRegion *mr, 1064 hwaddr offset, 1065 MemoryRegion *subregion); 1066 /** 1067 * memory_region_add_subregion_overlap: Add a subregion to a container 1068 * with overlap. 1069 * 1070 * Adds a subregion at @offset. The subregion may overlap with other 1071 * subregions. Conflicts are resolved by having a higher @priority hide a 1072 * lower @priority. Subregions without priority are taken as @priority 0. 1073 * A region may only be added once as a subregion (unless removed with 1074 * memory_region_del_subregion()); use memory_region_init_alias() if you 1075 * want a region to be a subregion in multiple locations. 1076 * 1077 * @mr: the region to contain the new subregion; must be a container 1078 * initialized with memory_region_init(). 1079 * @offset: the offset relative to @mr where @subregion is added. 1080 * @subregion: the subregion to be added. 1081 * @priority: used for resolving overlaps; highest priority wins. 1082 */ 1083 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1084 hwaddr offset, 1085 MemoryRegion *subregion, 1086 int priority); 1087 1088 /** 1089 * memory_region_get_ram_addr: Get the ram address associated with a memory 1090 * region 1091 */ 1092 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1093 1094 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1095 /** 1096 * memory_region_del_subregion: Remove a subregion. 1097 * 1098 * Removes a subregion from its container. 1099 * 1100 * @mr: the container to be updated. 1101 * @subregion: the region being removed; must be a current subregion of @mr. 1102 */ 1103 void memory_region_del_subregion(MemoryRegion *mr, 1104 MemoryRegion *subregion); 1105 1106 /* 1107 * memory_region_set_enabled: dynamically enable or disable a region 1108 * 1109 * Enables or disables a memory region. A disabled memory region 1110 * ignores all accesses to itself and its subregions. It does not 1111 * obscure sibling subregions with lower priority - it simply behaves as 1112 * if it was removed from the hierarchy. 1113 * 1114 * Regions default to being enabled. 1115 * 1116 * @mr: the region to be updated 1117 * @enabled: whether to enable or disable the region 1118 */ 1119 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1120 1121 /* 1122 * memory_region_set_address: dynamically update the address of a region 1123 * 1124 * Dynamically updates the address of a region, relative to its container. 1125 * May be used on regions are currently part of a memory hierarchy. 1126 * 1127 * @mr: the region to be updated 1128 * @addr: new address, relative to container region 1129 */ 1130 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1131 1132 /* 1133 * memory_region_set_size: dynamically update the size of a region. 1134 * 1135 * Dynamically updates the size of a region. 1136 * 1137 * @mr: the region to be updated 1138 * @size: used size of the region. 1139 */ 1140 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1141 1142 /* 1143 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1144 * 1145 * Dynamically updates the offset into the target region that an alias points 1146 * to, as if the fourth argument to memory_region_init_alias() has changed. 1147 * 1148 * @mr: the #MemoryRegion to be updated; should be an alias. 1149 * @offset: the new offset into the target memory region 1150 */ 1151 void memory_region_set_alias_offset(MemoryRegion *mr, 1152 hwaddr offset); 1153 1154 /** 1155 * memory_region_present: checks if an address relative to a @container 1156 * translates into #MemoryRegion within @container 1157 * 1158 * Answer whether a #MemoryRegion within @container covers the address 1159 * @addr. 1160 * 1161 * @container: a #MemoryRegion within which @addr is a relative address 1162 * @addr: the area within @container to be searched 1163 */ 1164 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1165 1166 /** 1167 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1168 * into any address space. 1169 * 1170 * @mr: a #MemoryRegion which should be checked if it's mapped 1171 */ 1172 bool memory_region_is_mapped(MemoryRegion *mr); 1173 1174 /** 1175 * memory_region_find: translate an address/size relative to a 1176 * MemoryRegion into a #MemoryRegionSection. 1177 * 1178 * Locates the first #MemoryRegion within @mr that overlaps the range 1179 * given by @addr and @size. 1180 * 1181 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1182 * It will have the following characteristics: 1183 * .@size = 0 iff no overlap was found 1184 * .@mr is non-%NULL iff an overlap was found 1185 * 1186 * Remember that in the return value the @offset_within_region is 1187 * relative to the returned region (in the .@mr field), not to the 1188 * @mr argument. 1189 * 1190 * Similarly, the .@offset_within_address_space is relative to the 1191 * address space that contains both regions, the passed and the 1192 * returned one. However, in the special case where the @mr argument 1193 * has no container (and thus is the root of the address space), the 1194 * following will hold: 1195 * .@offset_within_address_space >= @addr 1196 * .@offset_within_address_space + .@size <= @addr + @size 1197 * 1198 * @mr: a MemoryRegion within which @addr is a relative address 1199 * @addr: start of the area within @as to be searched 1200 * @size: size of the area to be searched 1201 */ 1202 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1203 hwaddr addr, uint64_t size); 1204 1205 /** 1206 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1207 * 1208 * Synchronizes the dirty page log for all address spaces. 1209 */ 1210 void memory_global_dirty_log_sync(void); 1211 1212 /** 1213 * memory_region_transaction_begin: Start a transaction. 1214 * 1215 * During a transaction, changes will be accumulated and made visible 1216 * only when the transaction ends (is committed). 1217 */ 1218 void memory_region_transaction_begin(void); 1219 1220 /** 1221 * memory_region_transaction_commit: Commit a transaction and make changes 1222 * visible to the guest. 1223 */ 1224 void memory_region_transaction_commit(void); 1225 1226 /** 1227 * memory_listener_register: register callbacks to be called when memory 1228 * sections are mapped or unmapped into an address 1229 * space 1230 * 1231 * @listener: an object containing the callbacks to be called 1232 * @filter: if non-%NULL, only regions in this address space will be observed 1233 */ 1234 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1235 1236 /** 1237 * memory_listener_unregister: undo the effect of memory_listener_register() 1238 * 1239 * @listener: an object containing the callbacks to be removed 1240 */ 1241 void memory_listener_unregister(MemoryListener *listener); 1242 1243 /** 1244 * memory_global_dirty_log_start: begin dirty logging for all regions 1245 */ 1246 void memory_global_dirty_log_start(void); 1247 1248 /** 1249 * memory_global_dirty_log_stop: end dirty logging for all regions 1250 */ 1251 void memory_global_dirty_log_stop(void); 1252 1253 void mtree_info(fprintf_function mon_printf, void *f); 1254 1255 /** 1256 * memory_region_dispatch_read: perform a read directly to the specified 1257 * MemoryRegion. 1258 * 1259 * @mr: #MemoryRegion to access 1260 * @addr: address within that region 1261 * @pval: pointer to uint64_t which the data is written to 1262 * @size: size of the access in bytes 1263 * @attrs: memory transaction attributes to use for the access 1264 */ 1265 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1266 hwaddr addr, 1267 uint64_t *pval, 1268 unsigned size, 1269 MemTxAttrs attrs); 1270 /** 1271 * memory_region_dispatch_write: perform a write directly to the specified 1272 * MemoryRegion. 1273 * 1274 * @mr: #MemoryRegion to access 1275 * @addr: address within that region 1276 * @data: data to write 1277 * @size: size of the access in bytes 1278 * @attrs: memory transaction attributes to use for the access 1279 */ 1280 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1281 hwaddr addr, 1282 uint64_t data, 1283 unsigned size, 1284 MemTxAttrs attrs); 1285 1286 /** 1287 * address_space_init: initializes an address space 1288 * 1289 * @as: an uninitialized #AddressSpace 1290 * @root: a #MemoryRegion that routes addresses for the address space 1291 * @name: an address space name. The name is only used for debugging 1292 * output. 1293 */ 1294 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1295 1296 /** 1297 * address_space_init_shareable: return an address space for a memory region, 1298 * creating it if it does not already exist 1299 * 1300 * @root: a #MemoryRegion that routes addresses for the address space 1301 * @name: an address space name. The name is only used for debugging 1302 * output. 1303 * 1304 * This function will return a pointer to an existing AddressSpace 1305 * which was initialized with the specified MemoryRegion, or it will 1306 * create and initialize one if it does not already exist. The ASes 1307 * are reference-counted, so the memory will be freed automatically 1308 * when the AddressSpace is destroyed via address_space_destroy. 1309 */ 1310 AddressSpace *address_space_init_shareable(MemoryRegion *root, 1311 const char *name); 1312 1313 /** 1314 * address_space_destroy: destroy an address space 1315 * 1316 * Releases all resources associated with an address space. After an address space 1317 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1318 * as well. 1319 * 1320 * @as: address space to be destroyed 1321 */ 1322 void address_space_destroy(AddressSpace *as); 1323 1324 /** 1325 * address_space_rw: read from or write to an address space. 1326 * 1327 * Return a MemTxResult indicating whether the operation succeeded 1328 * or failed (eg unassigned memory, device rejected the transaction, 1329 * IOMMU fault). 1330 * 1331 * @as: #AddressSpace to be accessed 1332 * @addr: address within that address space 1333 * @attrs: memory transaction attributes 1334 * @buf: buffer with the data transferred 1335 * @is_write: indicates the transfer direction 1336 */ 1337 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1338 MemTxAttrs attrs, uint8_t *buf, 1339 int len, bool is_write); 1340 1341 /** 1342 * address_space_write: write to address space. 1343 * 1344 * Return a MemTxResult indicating whether the operation succeeded 1345 * or failed (eg unassigned memory, device rejected the transaction, 1346 * IOMMU fault). 1347 * 1348 * @as: #AddressSpace to be accessed 1349 * @addr: address within that address space 1350 * @attrs: memory transaction attributes 1351 * @buf: buffer with the data transferred 1352 */ 1353 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1354 MemTxAttrs attrs, 1355 const uint8_t *buf, int len); 1356 1357 /* address_space_ld*: load from an address space 1358 * address_space_st*: store to an address space 1359 * 1360 * These functions perform a load or store of the byte, word, 1361 * longword or quad to the specified address within the AddressSpace. 1362 * The _le suffixed functions treat the data as little endian; 1363 * _be indicates big endian; no suffix indicates "same endianness 1364 * as guest CPU". 1365 * 1366 * The "guest CPU endianness" accessors are deprecated for use outside 1367 * target-* code; devices should be CPU-agnostic and use either the LE 1368 * or the BE accessors. 1369 * 1370 * @as #AddressSpace to be accessed 1371 * @addr: address within that address space 1372 * @val: data value, for stores 1373 * @attrs: memory transaction attributes 1374 * @result: location to write the success/failure of the transaction; 1375 * if NULL, this information is discarded 1376 */ 1377 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1378 MemTxAttrs attrs, MemTxResult *result); 1379 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1380 MemTxAttrs attrs, MemTxResult *result); 1381 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1382 MemTxAttrs attrs, MemTxResult *result); 1383 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1384 MemTxAttrs attrs, MemTxResult *result); 1385 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1386 MemTxAttrs attrs, MemTxResult *result); 1387 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1388 MemTxAttrs attrs, MemTxResult *result); 1389 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1390 MemTxAttrs attrs, MemTxResult *result); 1391 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1392 MemTxAttrs attrs, MemTxResult *result); 1393 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1394 MemTxAttrs attrs, MemTxResult *result); 1395 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1396 MemTxAttrs attrs, MemTxResult *result); 1397 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1398 MemTxAttrs attrs, MemTxResult *result); 1399 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1400 MemTxAttrs attrs, MemTxResult *result); 1401 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1402 MemTxAttrs attrs, MemTxResult *result); 1403 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1404 MemTxAttrs attrs, MemTxResult *result); 1405 1406 uint32_t ldub_phys(AddressSpace *as, hwaddr addr); 1407 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr); 1408 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr); 1409 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr); 1410 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr); 1411 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr); 1412 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr); 1413 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1414 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1415 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1416 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1417 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1418 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1419 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1420 1421 struct MemoryRegionCache { 1422 hwaddr xlat; 1423 void *ptr; 1424 hwaddr len; 1425 MemoryRegion *mr; 1426 bool is_write; 1427 }; 1428 1429 /* address_space_cache_init: prepare for repeated access to a physical 1430 * memory region 1431 * 1432 * @cache: #MemoryRegionCache to be filled 1433 * @as: #AddressSpace to be accessed 1434 * @addr: address within that address space 1435 * @len: length of buffer 1436 * @is_write: indicates the transfer direction 1437 * 1438 * Will only work with RAM, and may map a subset of the requested range by 1439 * returning a value that is less than @len. On failure, return a negative 1440 * errno value. 1441 * 1442 * Because it only works with RAM, this function can be used for 1443 * read-modify-write operations. In this case, is_write should be %true. 1444 * 1445 * Note that addresses passed to the address_space_*_cached functions 1446 * are relative to @addr. 1447 */ 1448 int64_t address_space_cache_init(MemoryRegionCache *cache, 1449 AddressSpace *as, 1450 hwaddr addr, 1451 hwaddr len, 1452 bool is_write); 1453 1454 /** 1455 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1456 * 1457 * @cache: The #MemoryRegionCache to operate on. 1458 * @addr: The first physical address that was written, relative to the 1459 * address that was passed to @address_space_cache_init. 1460 * @access_len: The number of bytes that were written starting at @addr. 1461 */ 1462 void address_space_cache_invalidate(MemoryRegionCache *cache, 1463 hwaddr addr, 1464 hwaddr access_len); 1465 1466 /** 1467 * address_space_cache_destroy: free a #MemoryRegionCache 1468 * 1469 * @cache: The #MemoryRegionCache whose memory should be released. 1470 */ 1471 void address_space_cache_destroy(MemoryRegionCache *cache); 1472 1473 /* address_space_ld*_cached: load from a cached #MemoryRegion 1474 * address_space_st*_cached: store into a cached #MemoryRegion 1475 * 1476 * These functions perform a load or store of the byte, word, 1477 * longword or quad to the specified address. The address is 1478 * a physical address in the AddressSpace, but it must lie within 1479 * a #MemoryRegion that was mapped with address_space_cache_init. 1480 * 1481 * The _le suffixed functions treat the data as little endian; 1482 * _be indicates big endian; no suffix indicates "same endianness 1483 * as guest CPU". 1484 * 1485 * The "guest CPU endianness" accessors are deprecated for use outside 1486 * target-* code; devices should be CPU-agnostic and use either the LE 1487 * or the BE accessors. 1488 * 1489 * @cache: previously initialized #MemoryRegionCache to be accessed 1490 * @addr: address within the address space 1491 * @val: data value, for stores 1492 * @attrs: memory transaction attributes 1493 * @result: location to write the success/failure of the transaction; 1494 * if NULL, this information is discarded 1495 */ 1496 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr, 1497 MemTxAttrs attrs, MemTxResult *result); 1498 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr, 1499 MemTxAttrs attrs, MemTxResult *result); 1500 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr, 1501 MemTxAttrs attrs, MemTxResult *result); 1502 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr, 1503 MemTxAttrs attrs, MemTxResult *result); 1504 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr, 1505 MemTxAttrs attrs, MemTxResult *result); 1506 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr, 1507 MemTxAttrs attrs, MemTxResult *result); 1508 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr, 1509 MemTxAttrs attrs, MemTxResult *result); 1510 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1511 MemTxAttrs attrs, MemTxResult *result); 1512 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1513 MemTxAttrs attrs, MemTxResult *result); 1514 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1515 MemTxAttrs attrs, MemTxResult *result); 1516 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1517 MemTxAttrs attrs, MemTxResult *result); 1518 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1519 MemTxAttrs attrs, MemTxResult *result); 1520 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1521 MemTxAttrs attrs, MemTxResult *result); 1522 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1523 MemTxAttrs attrs, MemTxResult *result); 1524 1525 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1526 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1527 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1528 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1529 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1530 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1531 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1532 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1533 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1534 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1535 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1536 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1537 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1538 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1539 /* address_space_get_iotlb_entry: translate an address into an IOTLB 1540 * entry. Should be called from an RCU critical section. 1541 */ 1542 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1543 bool is_write); 1544 1545 /* address_space_translate: translate an address range into an address space 1546 * into a MemoryRegion and an address range into that section. Should be 1547 * called from an RCU critical section, to avoid that the last reference 1548 * to the returned region disappears after address_space_translate returns. 1549 * 1550 * @as: #AddressSpace to be accessed 1551 * @addr: address within that address space 1552 * @xlat: pointer to address within the returned memory region section's 1553 * #MemoryRegion. 1554 * @len: pointer to length 1555 * @is_write: indicates the transfer direction 1556 */ 1557 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1558 hwaddr *xlat, hwaddr *len, 1559 bool is_write); 1560 1561 /* address_space_access_valid: check for validity of accessing an address 1562 * space range 1563 * 1564 * Check whether memory is assigned to the given address space range, and 1565 * access is permitted by any IOMMU regions that are active for the address 1566 * space. 1567 * 1568 * For now, addr and len should be aligned to a page size. This limitation 1569 * will be lifted in the future. 1570 * 1571 * @as: #AddressSpace to be accessed 1572 * @addr: address within that address space 1573 * @len: length of the area to be checked 1574 * @is_write: indicates the transfer direction 1575 */ 1576 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1577 1578 /* address_space_map: map a physical memory region into a host virtual address 1579 * 1580 * May map a subset of the requested range, given by and returned in @plen. 1581 * May return %NULL if resources needed to perform the mapping are exhausted. 1582 * Use only for reads OR writes - not for read-modify-write operations. 1583 * Use cpu_register_map_client() to know when retrying the map operation is 1584 * likely to succeed. 1585 * 1586 * @as: #AddressSpace to be accessed 1587 * @addr: address within that address space 1588 * @plen: pointer to length of buffer; updated on return 1589 * @is_write: indicates the transfer direction 1590 */ 1591 void *address_space_map(AddressSpace *as, hwaddr addr, 1592 hwaddr *plen, bool is_write); 1593 1594 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1595 * 1596 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1597 * the amount of memory that was actually read or written by the caller. 1598 * 1599 * @as: #AddressSpace used 1600 * @addr: address within that address space 1601 * @len: buffer length as returned by address_space_map() 1602 * @access_len: amount of data actually transferred 1603 * @is_write: indicates the transfer direction 1604 */ 1605 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1606 int is_write, hwaddr access_len); 1607 1608 1609 /* Internal functions, part of the implementation of address_space_read. */ 1610 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, 1611 MemTxAttrs attrs, uint8_t *buf, 1612 int len, hwaddr addr1, hwaddr l, 1613 MemoryRegion *mr); 1614 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 1615 MemTxAttrs attrs, uint8_t *buf, int len); 1616 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 1617 1618 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1619 { 1620 if (is_write) { 1621 return memory_region_is_ram(mr) && 1622 !mr->readonly && !memory_region_is_ram_device(mr); 1623 } else { 1624 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 1625 memory_region_is_romd(mr); 1626 } 1627 } 1628 1629 /** 1630 * address_space_read: read from an address space. 1631 * 1632 * Return a MemTxResult indicating whether the operation succeeded 1633 * or failed (eg unassigned memory, device rejected the transaction, 1634 * IOMMU fault). 1635 * 1636 * @as: #AddressSpace to be accessed 1637 * @addr: address within that address space 1638 * @attrs: memory transaction attributes 1639 * @buf: buffer with the data transferred 1640 */ 1641 static inline __attribute__((__always_inline__)) 1642 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 1643 uint8_t *buf, int len) 1644 { 1645 MemTxResult result = MEMTX_OK; 1646 hwaddr l, addr1; 1647 void *ptr; 1648 MemoryRegion *mr; 1649 1650 if (__builtin_constant_p(len)) { 1651 if (len) { 1652 rcu_read_lock(); 1653 l = len; 1654 mr = address_space_translate(as, addr, &addr1, &l, false); 1655 if (len == l && memory_access_is_direct(mr, false)) { 1656 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 1657 memcpy(buf, ptr, len); 1658 } else { 1659 result = address_space_read_continue(as, addr, attrs, buf, len, 1660 addr1, l, mr); 1661 } 1662 rcu_read_unlock(); 1663 } 1664 } else { 1665 result = address_space_read_full(as, addr, attrs, buf, len); 1666 } 1667 return result; 1668 } 1669 1670 /** 1671 * address_space_read_cached: read from a cached RAM region 1672 * 1673 * @cache: Cached region to be addressed 1674 * @addr: address relative to the base of the RAM region 1675 * @buf: buffer with the data transferred 1676 * @len: length of the data transferred 1677 */ 1678 static inline void 1679 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 1680 void *buf, int len) 1681 { 1682 assert(addr < cache->len && len <= cache->len - addr); 1683 memcpy(buf, cache->ptr + addr, len); 1684 } 1685 1686 /** 1687 * address_space_write_cached: write to a cached RAM region 1688 * 1689 * @cache: Cached region to be addressed 1690 * @addr: address relative to the base of the RAM region 1691 * @buf: buffer with the data transferred 1692 * @len: length of the data transferred 1693 */ 1694 static inline void 1695 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 1696 void *buf, int len) 1697 { 1698 assert(addr < cache->len && len <= cache->len - addr); 1699 memcpy(cache->ptr + addr, buf, len); 1700 } 1701 1702 #endif 1703 1704 #endif 1705