xref: /openbmc/qemu/include/exec/memory.h (revision 9b773746)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31 
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39                          TYPE_MEMORY_REGION)
40 
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 
46 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54                       size_t len,
55                       MemoryRegion *mr);
56 #else
57 static inline void fuzz_dma_read_cb(size_t addr,
58                                     size_t len,
59                                     MemoryRegion *mr)
60 {
61     /* Do Nothing */
62 }
63 #endif
64 
65 /* Possible bits for global_dirty_log_{start|stop} */
66 
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
69 
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
75 
76 #define GLOBAL_DIRTY_MASK  (0x7)
77 
78 extern unsigned int global_dirty_tracking;
79 
80 typedef struct MemoryRegionOps MemoryRegionOps;
81 
82 struct ReservedRegion {
83     Range range;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  * @unmergeable: this section should not get merged with adjacent sections
99  */
100 struct MemoryRegionSection {
101     Int128 size;
102     MemoryRegion *mr;
103     FlatView *fv;
104     hwaddr offset_within_region;
105     hwaddr offset_within_address_space;
106     bool readonly;
107     bool nonvolatile;
108     bool unmergeable;
109 };
110 
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112 
113 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
114 typedef enum {
115     IOMMU_NONE = 0,
116     IOMMU_RO   = 1,
117     IOMMU_WO   = 2,
118     IOMMU_RW   = 3,
119 } IOMMUAccessFlags;
120 
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122 
123 struct IOMMUTLBEntry {
124     AddressSpace    *target_as;
125     hwaddr           iova;
126     hwaddr           translated_addr;
127     hwaddr           addr_mask;  /* 0xfff = 4k translation */
128     IOMMUAccessFlags perm;
129 };
130 
131 /*
132  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133  * register with one or multiple IOMMU Notifier capability bit(s).
134  *
135  * Normally there're two use cases for the notifiers:
136  *
137  *   (1) When the device needs accurate synchronizations of the vIOMMU page
138  *       tables, it needs to register with both MAP|UNMAP notifies (which
139  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140  *
141  *       Regarding to accurate synchronization, it's when the notified
142  *       device maintains a shadow page table and must be notified on each
143  *       guest MAP (page table entry creation) and UNMAP (invalidation)
144  *       events (e.g. VFIO). Both notifications must be accurate so that
145  *       the shadow page table is fully in sync with the guest view.
146  *
147  *   (2) When the device doesn't need accurate synchronizations of the
148  *       vIOMMU page tables, it needs to register only with UNMAP or
149  *       DEVIOTLB_UNMAP notifies.
150  *
151  *       It's when the device maintains a cache of IOMMU translations
152  *       (IOTLB) and is able to fill that cache by requesting translations
153  *       from the vIOMMU through a protocol similar to ATS (Address
154  *       Translation Service).
155  *
156  *       Note that in this mode the vIOMMU will not maintain a shadowed
157  *       page table for the address space, and the UNMAP messages can cover
158  *       more than the pages that used to get mapped.  The IOMMU notifiee
159  *       should be able to take care of over-sized invalidations.
160  */
161 typedef enum {
162     IOMMU_NOTIFIER_NONE = 0,
163     /* Notify cache invalidations */
164     IOMMU_NOTIFIER_UNMAP = 0x1,
165     /* Notify entry changes (newly created entries) */
166     IOMMU_NOTIFIER_MAP = 0x2,
167     /* Notify changes on device IOTLB entries */
168     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170 
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175 
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178                             IOMMUTLBEntry *data);
179 
180 struct IOMMUNotifier {
181     IOMMUNotify notify;
182     IOMMUNotifierFlag notifier_flags;
183     /* Notify for address space range start <= addr <= end */
184     hwaddr start;
185     hwaddr end;
186     int iommu_idx;
187     QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190 
191 typedef struct IOMMUTLBEvent {
192     IOMMUNotifierFlag type;
193     IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195 
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC   (1 << 0)
198 
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED     (1 << 1)
201 
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203  * Resizing RAM while migrating can result in the migration being canceled.
204  */
205 #define RAM_RESIZEABLE (1 << 2)
206 
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208  * zero the page and wake waiting processes.
209  * (Set during postcopy)
210  */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212 
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215 
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218 
219 
220 /*
221  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222  * support 'write-tracking' migration type.
223  * Implies ram_state->ram_wt_enabled.
224  */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226 
227 /*
228  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229  * pages if applicable) is skipped: will bail out if not supported. When not
230  * set, the OS will do the reservation, if supported for the memory type.
231  */
232 #define RAM_NORESERVE (1 << 7)
233 
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236 
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239 
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242 
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245 
246 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
247                                        IOMMUNotifierFlag flags,
248                                        hwaddr start, hwaddr end,
249                                        int iommu_idx)
250 {
251     n->notify = fn;
252     n->notifier_flags = flags;
253     n->start = start;
254     n->end = end;
255     n->iommu_idx = iommu_idx;
256 }
257 
258 /*
259  * Memory region callbacks
260  */
261 struct MemoryRegionOps {
262     /* Read from the memory region. @addr is relative to @mr; @size is
263      * in bytes. */
264     uint64_t (*read)(void *opaque,
265                      hwaddr addr,
266                      unsigned size);
267     /* Write to the memory region. @addr is relative to @mr; @size is
268      * in bytes. */
269     void (*write)(void *opaque,
270                   hwaddr addr,
271                   uint64_t data,
272                   unsigned size);
273 
274     MemTxResult (*read_with_attrs)(void *opaque,
275                                    hwaddr addr,
276                                    uint64_t *data,
277                                    unsigned size,
278                                    MemTxAttrs attrs);
279     MemTxResult (*write_with_attrs)(void *opaque,
280                                     hwaddr addr,
281                                     uint64_t data,
282                                     unsigned size,
283                                     MemTxAttrs attrs);
284 
285     enum device_endian endianness;
286     /* Guest-visible constraints: */
287     struct {
288         /* If nonzero, specify bounds on access sizes beyond which a machine
289          * check is thrown.
290          */
291         unsigned min_access_size;
292         unsigned max_access_size;
293         /* If true, unaligned accesses are supported.  Otherwise unaligned
294          * accesses throw machine checks.
295          */
296          bool unaligned;
297         /*
298          * If present, and returns #false, the transaction is not accepted
299          * by the device (and results in machine dependent behaviour such
300          * as a machine check exception).
301          */
302         bool (*accepts)(void *opaque, hwaddr addr,
303                         unsigned size, bool is_write,
304                         MemTxAttrs attrs);
305     } valid;
306     /* Internal implementation constraints: */
307     struct {
308         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
309          * will be rounded upwards and a partial result will be returned.
310          */
311         unsigned min_access_size;
312         /* If nonzero, specifies the maximum size implemented.  Larger sizes
313          * will be done as a series of accesses with smaller sizes.
314          */
315         unsigned max_access_size;
316         /* If true, unaligned accesses are supported.  Otherwise all accesses
317          * are converted to (possibly multiple) naturally aligned accesses.
318          */
319         bool unaligned;
320     } impl;
321 };
322 
323 typedef struct MemoryRegionClass {
324     /* private */
325     ObjectClass parent_class;
326 } MemoryRegionClass;
327 
328 
329 enum IOMMUMemoryRegionAttr {
330     IOMMU_ATTR_SPAPR_TCE_FD
331 };
332 
333 /*
334  * IOMMUMemoryRegionClass:
335  *
336  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
337  * and provide an implementation of at least the @translate method here
338  * to handle requests to the memory region. Other methods are optional.
339  *
340  * The IOMMU implementation must use the IOMMU notifier infrastructure
341  * to report whenever mappings are changed, by calling
342  * memory_region_notify_iommu() (or, if necessary, by calling
343  * memory_region_notify_iommu_one() for each registered notifier).
344  *
345  * Conceptually an IOMMU provides a mapping from input address
346  * to an output TLB entry. If the IOMMU is aware of memory transaction
347  * attributes and the output TLB entry depends on the transaction
348  * attributes, we represent this using IOMMU indexes. Each index
349  * selects a particular translation table that the IOMMU has:
350  *
351  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
352  *
353  *   @translate takes an input address and an IOMMU index
354  *
355  * and the mapping returned can only depend on the input address and the
356  * IOMMU index.
357  *
358  * Most IOMMUs don't care about the transaction attributes and support
359  * only a single IOMMU index. A more complex IOMMU might have one index
360  * for secure transactions and one for non-secure transactions.
361  */
362 struct IOMMUMemoryRegionClass {
363     /* private: */
364     MemoryRegionClass parent_class;
365 
366     /* public: */
367     /**
368      * @translate:
369      *
370      * Return a TLB entry that contains a given address.
371      *
372      * The IOMMUAccessFlags indicated via @flag are optional and may
373      * be specified as IOMMU_NONE to indicate that the caller needs
374      * the full translation information for both reads and writes. If
375      * the access flags are specified then the IOMMU implementation
376      * may use this as an optimization, to stop doing a page table
377      * walk as soon as it knows that the requested permissions are not
378      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
379      * full page table walk and report the permissions in the returned
380      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
381      * return different mappings for reads and writes.)
382      *
383      * The returned information remains valid while the caller is
384      * holding the big QEMU lock or is inside an RCU critical section;
385      * if the caller wishes to cache the mapping beyond that it must
386      * register an IOMMU notifier so it can invalidate its cached
387      * information when the IOMMU mapping changes.
388      *
389      * @iommu: the IOMMUMemoryRegion
390      *
391      * @hwaddr: address to be translated within the memory region
392      *
393      * @flag: requested access permission
394      *
395      * @iommu_idx: IOMMU index for the translation
396      */
397     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
398                                IOMMUAccessFlags flag, int iommu_idx);
399     /**
400      * @get_min_page_size:
401      *
402      * Returns minimum supported page size in bytes.
403      *
404      * If this method is not provided then the minimum is assumed to
405      * be TARGET_PAGE_SIZE.
406      *
407      * @iommu: the IOMMUMemoryRegion
408      */
409     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
410     /**
411      * @notify_flag_changed:
412      *
413      * Called when IOMMU Notifier flag changes (ie when the set of
414      * events which IOMMU users are requesting notification for changes).
415      * Optional method -- need not be provided if the IOMMU does not
416      * need to know exactly which events must be notified.
417      *
418      * @iommu: the IOMMUMemoryRegion
419      *
420      * @old_flags: events which previously needed to be notified
421      *
422      * @new_flags: events which now need to be notified
423      *
424      * Returns 0 on success, or a negative errno; in particular
425      * returns -EINVAL if the new flag bitmap is not supported by the
426      * IOMMU memory region. In case of failure, the error object
427      * must be created
428      */
429     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
430                                IOMMUNotifierFlag old_flags,
431                                IOMMUNotifierFlag new_flags,
432                                Error **errp);
433     /**
434      * @replay:
435      *
436      * Called to handle memory_region_iommu_replay().
437      *
438      * The default implementation of memory_region_iommu_replay() is to
439      * call the IOMMU translate method for every page in the address space
440      * with flag == IOMMU_NONE and then call the notifier if translate
441      * returns a valid mapping. If this method is implemented then it
442      * overrides the default behaviour, and must provide the full semantics
443      * of memory_region_iommu_replay(), by calling @notifier for every
444      * translation present in the IOMMU.
445      *
446      * Optional method -- an IOMMU only needs to provide this method
447      * if the default is inefficient or produces undesirable side effects.
448      *
449      * Note: this is not related to record-and-replay functionality.
450      */
451     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
452 
453     /**
454      * @get_attr:
455      *
456      * Get IOMMU misc attributes. This is an optional method that
457      * can be used to allow users of the IOMMU to get implementation-specific
458      * information. The IOMMU implements this method to handle calls
459      * by IOMMU users to memory_region_iommu_get_attr() by filling in
460      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
461      * the IOMMU supports. If the method is unimplemented then
462      * memory_region_iommu_get_attr() will always return -EINVAL.
463      *
464      * @iommu: the IOMMUMemoryRegion
465      *
466      * @attr: attribute being queried
467      *
468      * @data: memory to fill in with the attribute data
469      *
470      * Returns 0 on success, or a negative errno; in particular
471      * returns -EINVAL for unrecognized or unimplemented attribute types.
472      */
473     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
474                     void *data);
475 
476     /**
477      * @attrs_to_index:
478      *
479      * Return the IOMMU index to use for a given set of transaction attributes.
480      *
481      * Optional method: if an IOMMU only supports a single IOMMU index then
482      * the default implementation of memory_region_iommu_attrs_to_index()
483      * will return 0.
484      *
485      * The indexes supported by an IOMMU must be contiguous, starting at 0.
486      *
487      * @iommu: the IOMMUMemoryRegion
488      * @attrs: memory transaction attributes
489      */
490     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
491 
492     /**
493      * @num_indexes:
494      *
495      * Return the number of IOMMU indexes this IOMMU supports.
496      *
497      * Optional method: if this method is not provided, then
498      * memory_region_iommu_num_indexes() will return 1, indicating that
499      * only a single IOMMU index is supported.
500      *
501      * @iommu: the IOMMUMemoryRegion
502      */
503     int (*num_indexes)(IOMMUMemoryRegion *iommu);
504 
505     /**
506      * @iommu_set_page_size_mask:
507      *
508      * Restrict the page size mask that can be supported with a given IOMMU
509      * memory region. Used for example to propagate host physical IOMMU page
510      * size mask limitations to the virtual IOMMU.
511      *
512      * Optional method: if this method is not provided, then the default global
513      * page mask is used.
514      *
515      * @iommu: the IOMMUMemoryRegion
516      *
517      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
518      * representing the smallest page size, must be set. Additional set bits
519      * represent supported block sizes. For example a host physical IOMMU that
520      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
521      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
522      * block sizes is specified with mask 0xfffffffffffff000.
523      *
524      * Returns 0 on success, or a negative error. In case of failure, the error
525      * object must be created.
526      */
527      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
528                                      uint64_t page_size_mask,
529                                      Error **errp);
530     /**
531      * @iommu_set_iova_ranges:
532      *
533      * Propagate information about the usable IOVA ranges for a given IOMMU
534      * memory region. Used for example to propagate host physical device
535      * reserved memory region constraints to the virtual IOMMU.
536      *
537      * Optional method: if this method is not provided, then the default IOVA
538      * aperture is used.
539      *
540      * @iommu: the IOMMUMemoryRegion
541      *
542      * @iova_ranges: list of ordered IOVA ranges (at least one range)
543      *
544      * Returns 0 on success, or a negative error. In case of failure, the error
545      * object must be created.
546      */
547      int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu,
548                                   GList *iova_ranges,
549                                   Error **errp);
550 };
551 
552 typedef struct RamDiscardListener RamDiscardListener;
553 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
554                                  MemoryRegionSection *section);
555 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
556                                  MemoryRegionSection *section);
557 
558 struct RamDiscardListener {
559     /*
560      * @notify_populate:
561      *
562      * Notification that previously discarded memory is about to get populated.
563      * Listeners are able to object. If any listener objects, already
564      * successfully notified listeners are notified about a discard again.
565      *
566      * @rdl: the #RamDiscardListener getting notified
567      * @section: the #MemoryRegionSection to get populated. The section
568      *           is aligned within the memory region to the minimum granularity
569      *           unless it would exceed the registered section.
570      *
571      * Returns 0 on success. If the notification is rejected by the listener,
572      * an error is returned.
573      */
574     NotifyRamPopulate notify_populate;
575 
576     /*
577      * @notify_discard:
578      *
579      * Notification that previously populated memory was discarded successfully
580      * and listeners should drop all references to such memory and prevent
581      * new population (e.g., unmap).
582      *
583      * @rdl: the #RamDiscardListener getting notified
584      * @section: the #MemoryRegionSection to get populated. The section
585      *           is aligned within the memory region to the minimum granularity
586      *           unless it would exceed the registered section.
587      */
588     NotifyRamDiscard notify_discard;
589 
590     /*
591      * @double_discard_supported:
592      *
593      * The listener suppors getting @notify_discard notifications that span
594      * already discarded parts.
595      */
596     bool double_discard_supported;
597 
598     MemoryRegionSection *section;
599     QLIST_ENTRY(RamDiscardListener) next;
600 };
601 
602 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
603                                              NotifyRamPopulate populate_fn,
604                                              NotifyRamDiscard discard_fn,
605                                              bool double_discard_supported)
606 {
607     rdl->notify_populate = populate_fn;
608     rdl->notify_discard = discard_fn;
609     rdl->double_discard_supported = double_discard_supported;
610 }
611 
612 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
613 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
614 
615 /*
616  * RamDiscardManagerClass:
617  *
618  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
619  * regions are currently populated to be used/accessed by the VM, notifying
620  * after parts were discarded (freeing up memory) and before parts will be
621  * populated (consuming memory), to be used/accessed by the VM.
622  *
623  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
624  * #MemoryRegion isn't mapped into an address space yet (either directly
625  * or via an alias); it cannot change while the #MemoryRegion is
626  * mapped into an address space.
627  *
628  * The #RamDiscardManager is intended to be used by technologies that are
629  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
630  * memory inside a #MemoryRegion), and require proper coordination to only
631  * map the currently populated parts, to hinder parts that are expected to
632  * remain discarded from silently getting populated and consuming memory.
633  * Technologies that support discarding of RAM don't have to bother and can
634  * simply map the whole #MemoryRegion.
635  *
636  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
637  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
638  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
639  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
640  * properly coordinate with listeners before memory is plugged (populated),
641  * and after memory is unplugged (discarded).
642  *
643  * Listeners are called in multiples of the minimum granularity (unless it
644  * would exceed the registered range) and changes are aligned to the minimum
645  * granularity within the #MemoryRegion. Listeners have to prepare for memory
646  * becoming discarded in a different granularity than it was populated and the
647  * other way around.
648  */
649 struct RamDiscardManagerClass {
650     /* private */
651     InterfaceClass parent_class;
652 
653     /* public */
654 
655     /**
656      * @get_min_granularity:
657      *
658      * Get the minimum granularity in which listeners will get notified
659      * about changes within the #MemoryRegion via the #RamDiscardManager.
660      *
661      * @rdm: the #RamDiscardManager
662      * @mr: the #MemoryRegion
663      *
664      * Returns the minimum granularity.
665      */
666     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
667                                     const MemoryRegion *mr);
668 
669     /**
670      * @is_populated:
671      *
672      * Check whether the given #MemoryRegionSection is completely populated
673      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
674      * There are no alignment requirements.
675      *
676      * @rdm: the #RamDiscardManager
677      * @section: the #MemoryRegionSection
678      *
679      * Returns whether the given range is completely populated.
680      */
681     bool (*is_populated)(const RamDiscardManager *rdm,
682                          const MemoryRegionSection *section);
683 
684     /**
685      * @replay_populated:
686      *
687      * Call the #ReplayRamPopulate callback for all populated parts within the
688      * #MemoryRegionSection via the #RamDiscardManager.
689      *
690      * In case any call fails, no further calls are made.
691      *
692      * @rdm: the #RamDiscardManager
693      * @section: the #MemoryRegionSection
694      * @replay_fn: the #ReplayRamPopulate callback
695      * @opaque: pointer to forward to the callback
696      *
697      * Returns 0 on success, or a negative error if any notification failed.
698      */
699     int (*replay_populated)(const RamDiscardManager *rdm,
700                             MemoryRegionSection *section,
701                             ReplayRamPopulate replay_fn, void *opaque);
702 
703     /**
704      * @replay_discarded:
705      *
706      * Call the #ReplayRamDiscard callback for all discarded parts within the
707      * #MemoryRegionSection via the #RamDiscardManager.
708      *
709      * @rdm: the #RamDiscardManager
710      * @section: the #MemoryRegionSection
711      * @replay_fn: the #ReplayRamDiscard callback
712      * @opaque: pointer to forward to the callback
713      */
714     void (*replay_discarded)(const RamDiscardManager *rdm,
715                              MemoryRegionSection *section,
716                              ReplayRamDiscard replay_fn, void *opaque);
717 
718     /**
719      * @register_listener:
720      *
721      * Register a #RamDiscardListener for the given #MemoryRegionSection and
722      * immediately notify the #RamDiscardListener about all populated parts
723      * within the #MemoryRegionSection via the #RamDiscardManager.
724      *
725      * In case any notification fails, no further notifications are triggered
726      * and an error is logged.
727      *
728      * @rdm: the #RamDiscardManager
729      * @rdl: the #RamDiscardListener
730      * @section: the #MemoryRegionSection
731      */
732     void (*register_listener)(RamDiscardManager *rdm,
733                               RamDiscardListener *rdl,
734                               MemoryRegionSection *section);
735 
736     /**
737      * @unregister_listener:
738      *
739      * Unregister a previously registered #RamDiscardListener via the
740      * #RamDiscardManager after notifying the #RamDiscardListener about all
741      * populated parts becoming unpopulated within the registered
742      * #MemoryRegionSection.
743      *
744      * @rdm: the #RamDiscardManager
745      * @rdl: the #RamDiscardListener
746      */
747     void (*unregister_listener)(RamDiscardManager *rdm,
748                                 RamDiscardListener *rdl);
749 };
750 
751 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
752                                                  const MemoryRegion *mr);
753 
754 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
755                                       const MemoryRegionSection *section);
756 
757 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
758                                          MemoryRegionSection *section,
759                                          ReplayRamPopulate replay_fn,
760                                          void *opaque);
761 
762 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
763                                           MemoryRegionSection *section,
764                                           ReplayRamDiscard replay_fn,
765                                           void *opaque);
766 
767 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
768                                            RamDiscardListener *rdl,
769                                            MemoryRegionSection *section);
770 
771 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
772                                              RamDiscardListener *rdl);
773 
774 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
775                           ram_addr_t *ram_addr, bool *read_only,
776                           bool *mr_has_discard_manager);
777 
778 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
779 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
780 
781 /** MemoryRegion:
782  *
783  * A struct representing a memory region.
784  */
785 struct MemoryRegion {
786     Object parent_obj;
787 
788     /* private: */
789 
790     /* The following fields should fit in a cache line */
791     bool romd_mode;
792     bool ram;
793     bool subpage;
794     bool readonly; /* For RAM regions */
795     bool nonvolatile;
796     bool rom_device;
797     bool flush_coalesced_mmio;
798     bool unmergeable;
799     uint8_t dirty_log_mask;
800     bool is_iommu;
801     RAMBlock *ram_block;
802     Object *owner;
803     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
804     DeviceState *dev;
805 
806     const MemoryRegionOps *ops;
807     void *opaque;
808     MemoryRegion *container;
809     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
810     Int128 size;
811     hwaddr addr;
812     void (*destructor)(MemoryRegion *mr);
813     uint64_t align;
814     bool terminates;
815     bool ram_device;
816     bool enabled;
817     bool warning_printed; /* For reservations */
818     uint8_t vga_logging_count;
819     MemoryRegion *alias;
820     hwaddr alias_offset;
821     int32_t priority;
822     QTAILQ_HEAD(, MemoryRegion) subregions;
823     QTAILQ_ENTRY(MemoryRegion) subregions_link;
824     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
825     const char *name;
826     unsigned ioeventfd_nb;
827     MemoryRegionIoeventfd *ioeventfds;
828     RamDiscardManager *rdm; /* Only for RAM */
829 
830     /* For devices designed to perform re-entrant IO into their own IO MRs */
831     bool disable_reentrancy_guard;
832 };
833 
834 struct IOMMUMemoryRegion {
835     MemoryRegion parent_obj;
836 
837     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
838     IOMMUNotifierFlag iommu_notify_flags;
839 };
840 
841 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
842     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
843 
844 #define MEMORY_LISTENER_PRIORITY_MIN            0
845 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
846 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
847 
848 /**
849  * struct MemoryListener: callbacks structure for updates to the physical memory map
850  *
851  * Allows a component to adjust to changes in the guest-visible memory map.
852  * Use with memory_listener_register() and memory_listener_unregister().
853  */
854 struct MemoryListener {
855     /**
856      * @begin:
857      *
858      * Called at the beginning of an address space update transaction.
859      * Followed by calls to #MemoryListener.region_add(),
860      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
861      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
862      * increasing address order.
863      *
864      * @listener: The #MemoryListener.
865      */
866     void (*begin)(MemoryListener *listener);
867 
868     /**
869      * @commit:
870      *
871      * Called at the end of an address space update transaction,
872      * after the last call to #MemoryListener.region_add(),
873      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
874      * #MemoryListener.log_start() and #MemoryListener.log_stop().
875      *
876      * @listener: The #MemoryListener.
877      */
878     void (*commit)(MemoryListener *listener);
879 
880     /**
881      * @region_add:
882      *
883      * Called during an address space update transaction,
884      * for a section of the address space that is new in this address space
885      * space since the last transaction.
886      *
887      * @listener: The #MemoryListener.
888      * @section: The new #MemoryRegionSection.
889      */
890     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
891 
892     /**
893      * @region_del:
894      *
895      * Called during an address space update transaction,
896      * for a section of the address space that has disappeared in the address
897      * space since the last transaction.
898      *
899      * @listener: The #MemoryListener.
900      * @section: The old #MemoryRegionSection.
901      */
902     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
903 
904     /**
905      * @region_nop:
906      *
907      * Called during an address space update transaction,
908      * for a section of the address space that is in the same place in the address
909      * space as in the last transaction.
910      *
911      * @listener: The #MemoryListener.
912      * @section: The #MemoryRegionSection.
913      */
914     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
915 
916     /**
917      * @log_start:
918      *
919      * Called during an address space update transaction, after
920      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
921      * #MemoryListener.region_nop(), if dirty memory logging clients have
922      * become active since the last transaction.
923      *
924      * @listener: The #MemoryListener.
925      * @section: The #MemoryRegionSection.
926      * @old: A bitmap of dirty memory logging clients that were active in
927      * the previous transaction.
928      * @new: A bitmap of dirty memory logging clients that are active in
929      * the current transaction.
930      */
931     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
932                       int old, int new);
933 
934     /**
935      * @log_stop:
936      *
937      * Called during an address space update transaction, after
938      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
939      * #MemoryListener.region_nop() and possibly after
940      * #MemoryListener.log_start(), if dirty memory logging clients have
941      * become inactive since the last transaction.
942      *
943      * @listener: The #MemoryListener.
944      * @section: The #MemoryRegionSection.
945      * @old: A bitmap of dirty memory logging clients that were active in
946      * the previous transaction.
947      * @new: A bitmap of dirty memory logging clients that are active in
948      * the current transaction.
949      */
950     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
951                      int old, int new);
952 
953     /**
954      * @log_sync:
955      *
956      * Called by memory_region_snapshot_and_clear_dirty() and
957      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
958      * copy of the dirty memory bitmap for a #MemoryRegionSection.
959      *
960      * @listener: The #MemoryListener.
961      * @section: The #MemoryRegionSection.
962      */
963     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
964 
965     /**
966      * @log_sync_global:
967      *
968      * This is the global version of @log_sync when the listener does
969      * not have a way to synchronize the log with finer granularity.
970      * When the listener registers with @log_sync_global defined, then
971      * its @log_sync must be NULL.  Vice versa.
972      *
973      * @listener: The #MemoryListener.
974      * @last_stage: The last stage to synchronize the log during migration.
975      * The caller should guarantee that the synchronization with true for
976      * @last_stage is triggered for once after all VCPUs have been stopped.
977      */
978     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
979 
980     /**
981      * @log_clear:
982      *
983      * Called before reading the dirty memory bitmap for a
984      * #MemoryRegionSection.
985      *
986      * @listener: The #MemoryListener.
987      * @section: The #MemoryRegionSection.
988      */
989     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
990 
991     /**
992      * @log_global_start:
993      *
994      * Called by memory_global_dirty_log_start(), which
995      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
996      * the address space.  #MemoryListener.log_global_start() is also
997      * called when a #MemoryListener is added, if global dirty logging is
998      * active at that time.
999      *
1000      * @listener: The #MemoryListener.
1001      */
1002     void (*log_global_start)(MemoryListener *listener);
1003 
1004     /**
1005      * @log_global_stop:
1006      *
1007      * Called by memory_global_dirty_log_stop(), which
1008      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1009      * the address space.
1010      *
1011      * @listener: The #MemoryListener.
1012      */
1013     void (*log_global_stop)(MemoryListener *listener);
1014 
1015     /**
1016      * @log_global_after_sync:
1017      *
1018      * Called after reading the dirty memory bitmap
1019      * for any #MemoryRegionSection.
1020      *
1021      * @listener: The #MemoryListener.
1022      */
1023     void (*log_global_after_sync)(MemoryListener *listener);
1024 
1025     /**
1026      * @eventfd_add:
1027      *
1028      * Called during an address space update transaction,
1029      * for a section of the address space that has had a new ioeventfd
1030      * registration since the last transaction.
1031      *
1032      * @listener: The #MemoryListener.
1033      * @section: The new #MemoryRegionSection.
1034      * @match_data: The @match_data parameter for the new ioeventfd.
1035      * @data: The @data parameter for the new ioeventfd.
1036      * @e: The #EventNotifier parameter for the new ioeventfd.
1037      */
1038     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1039                         bool match_data, uint64_t data, EventNotifier *e);
1040 
1041     /**
1042      * @eventfd_del:
1043      *
1044      * Called during an address space update transaction,
1045      * for a section of the address space that has dropped an ioeventfd
1046      * registration since the last transaction.
1047      *
1048      * @listener: The #MemoryListener.
1049      * @section: The new #MemoryRegionSection.
1050      * @match_data: The @match_data parameter for the dropped ioeventfd.
1051      * @data: The @data parameter for the dropped ioeventfd.
1052      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1053      */
1054     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1055                         bool match_data, uint64_t data, EventNotifier *e);
1056 
1057     /**
1058      * @coalesced_io_add:
1059      *
1060      * Called during an address space update transaction,
1061      * for a section of the address space that has had a new coalesced
1062      * MMIO range registration since the last transaction.
1063      *
1064      * @listener: The #MemoryListener.
1065      * @section: The new #MemoryRegionSection.
1066      * @addr: The starting address for the coalesced MMIO range.
1067      * @len: The length of the coalesced MMIO range.
1068      */
1069     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1070                                hwaddr addr, hwaddr len);
1071 
1072     /**
1073      * @coalesced_io_del:
1074      *
1075      * Called during an address space update transaction,
1076      * for a section of the address space that has dropped a coalesced
1077      * MMIO range since the last transaction.
1078      *
1079      * @listener: The #MemoryListener.
1080      * @section: The new #MemoryRegionSection.
1081      * @addr: The starting address for the coalesced MMIO range.
1082      * @len: The length of the coalesced MMIO range.
1083      */
1084     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1085                                hwaddr addr, hwaddr len);
1086     /**
1087      * @priority:
1088      *
1089      * Govern the order in which memory listeners are invoked. Lower priorities
1090      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1091      * or "stop" callbacks.
1092      */
1093     unsigned priority;
1094 
1095     /**
1096      * @name:
1097      *
1098      * Name of the listener.  It can be used in contexts where we'd like to
1099      * identify one memory listener with the rest.
1100      */
1101     const char *name;
1102 
1103     /* private: */
1104     AddressSpace *address_space;
1105     QTAILQ_ENTRY(MemoryListener) link;
1106     QTAILQ_ENTRY(MemoryListener) link_as;
1107 };
1108 
1109 /**
1110  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1111  */
1112 struct AddressSpace {
1113     /* private: */
1114     struct rcu_head rcu;
1115     char *name;
1116     MemoryRegion *root;
1117 
1118     /* Accessed via RCU.  */
1119     struct FlatView *current_map;
1120 
1121     int ioeventfd_nb;
1122     int ioeventfd_notifiers;
1123     struct MemoryRegionIoeventfd *ioeventfds;
1124     QTAILQ_HEAD(, MemoryListener) listeners;
1125     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1126 };
1127 
1128 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1129 typedef struct FlatRange FlatRange;
1130 
1131 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1132  * order.
1133  */
1134 struct FlatView {
1135     struct rcu_head rcu;
1136     unsigned ref;
1137     FlatRange *ranges;
1138     unsigned nr;
1139     unsigned nr_allocated;
1140     struct AddressSpaceDispatch *dispatch;
1141     MemoryRegion *root;
1142 };
1143 
1144 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1145 {
1146     return qatomic_rcu_read(&as->current_map);
1147 }
1148 
1149 /**
1150  * typedef flatview_cb: callback for flatview_for_each_range()
1151  *
1152  * @start: start address of the range within the FlatView
1153  * @len: length of the range in bytes
1154  * @mr: MemoryRegion covering this range
1155  * @offset_in_region: offset of the first byte of the range within @mr
1156  * @opaque: data pointer passed to flatview_for_each_range()
1157  *
1158  * Returns: true to stop the iteration, false to keep going.
1159  */
1160 typedef bool (*flatview_cb)(Int128 start,
1161                             Int128 len,
1162                             const MemoryRegion *mr,
1163                             hwaddr offset_in_region,
1164                             void *opaque);
1165 
1166 /**
1167  * flatview_for_each_range: Iterate through a FlatView
1168  * @fv: the FlatView to iterate through
1169  * @cb: function to call for each range
1170  * @opaque: opaque data pointer to pass to @cb
1171  *
1172  * A FlatView is made up of a list of non-overlapping ranges, each of
1173  * which is a slice of a MemoryRegion. This function iterates through
1174  * each range in @fv, calling @cb. The callback function can terminate
1175  * iteration early by returning 'true'.
1176  */
1177 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1178 
1179 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1180                                           MemoryRegionSection *b)
1181 {
1182     return a->mr == b->mr &&
1183            a->fv == b->fv &&
1184            a->offset_within_region == b->offset_within_region &&
1185            a->offset_within_address_space == b->offset_within_address_space &&
1186            int128_eq(a->size, b->size) &&
1187            a->readonly == b->readonly &&
1188            a->nonvolatile == b->nonvolatile;
1189 }
1190 
1191 /**
1192  * memory_region_section_new_copy: Copy a memory region section
1193  *
1194  * Allocate memory for a new copy, copy the memory region section, and
1195  * properly take a reference on all relevant members.
1196  *
1197  * @s: the #MemoryRegionSection to copy
1198  */
1199 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1200 
1201 /**
1202  * memory_region_section_new_copy: Free a copied memory region section
1203  *
1204  * Free a copy of a memory section created via memory_region_section_new_copy().
1205  * properly dropping references on all relevant members.
1206  *
1207  * @s: the #MemoryRegionSection to copy
1208  */
1209 void memory_region_section_free_copy(MemoryRegionSection *s);
1210 
1211 /**
1212  * memory_region_init: Initialize a memory region
1213  *
1214  * The region typically acts as a container for other memory regions.  Use
1215  * memory_region_add_subregion() to add subregions.
1216  *
1217  * @mr: the #MemoryRegion to be initialized
1218  * @owner: the object that tracks the region's reference count
1219  * @name: used for debugging; not visible to the user or ABI
1220  * @size: size of the region; any subregions beyond this size will be clipped
1221  */
1222 void memory_region_init(MemoryRegion *mr,
1223                         Object *owner,
1224                         const char *name,
1225                         uint64_t size);
1226 
1227 /**
1228  * memory_region_ref: Add 1 to a memory region's reference count
1229  *
1230  * Whenever memory regions are accessed outside the BQL, they need to be
1231  * preserved against hot-unplug.  MemoryRegions actually do not have their
1232  * own reference count; they piggyback on a QOM object, their "owner".
1233  * This function adds a reference to the owner.
1234  *
1235  * All MemoryRegions must have an owner if they can disappear, even if the
1236  * device they belong to operates exclusively under the BQL.  This is because
1237  * the region could be returned at any time by memory_region_find, and this
1238  * is usually under guest control.
1239  *
1240  * @mr: the #MemoryRegion
1241  */
1242 void memory_region_ref(MemoryRegion *mr);
1243 
1244 /**
1245  * memory_region_unref: Remove 1 to a memory region's reference count
1246  *
1247  * Whenever memory regions are accessed outside the BQL, they need to be
1248  * preserved against hot-unplug.  MemoryRegions actually do not have their
1249  * own reference count; they piggyback on a QOM object, their "owner".
1250  * This function removes a reference to the owner and possibly destroys it.
1251  *
1252  * @mr: the #MemoryRegion
1253  */
1254 void memory_region_unref(MemoryRegion *mr);
1255 
1256 /**
1257  * memory_region_init_io: Initialize an I/O memory region.
1258  *
1259  * Accesses into the region will cause the callbacks in @ops to be called.
1260  * if @size is nonzero, subregions will be clipped to @size.
1261  *
1262  * @mr: the #MemoryRegion to be initialized.
1263  * @owner: the object that tracks the region's reference count
1264  * @ops: a structure containing read and write callbacks to be used when
1265  *       I/O is performed on the region.
1266  * @opaque: passed to the read and write callbacks of the @ops structure.
1267  * @name: used for debugging; not visible to the user or ABI
1268  * @size: size of the region.
1269  */
1270 void memory_region_init_io(MemoryRegion *mr,
1271                            Object *owner,
1272                            const MemoryRegionOps *ops,
1273                            void *opaque,
1274                            const char *name,
1275                            uint64_t size);
1276 
1277 /**
1278  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1279  *                                    into the region will modify memory
1280  *                                    directly.
1281  *
1282  * @mr: the #MemoryRegion to be initialized.
1283  * @owner: the object that tracks the region's reference count
1284  * @name: Region name, becomes part of RAMBlock name used in migration stream
1285  *        must be unique within any device
1286  * @size: size of the region.
1287  * @errp: pointer to Error*, to store an error if it happens.
1288  *
1289  * Note that this function does not do anything to cause the data in the
1290  * RAM memory region to be migrated; that is the responsibility of the caller.
1291  */
1292 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1293                                       Object *owner,
1294                                       const char *name,
1295                                       uint64_t size,
1296                                       Error **errp);
1297 
1298 /**
1299  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1300  *                                          Accesses into the region will
1301  *                                          modify memory directly.
1302  *
1303  * @mr: the #MemoryRegion to be initialized.
1304  * @owner: the object that tracks the region's reference count
1305  * @name: Region name, becomes part of RAMBlock name used in migration stream
1306  *        must be unique within any device
1307  * @size: size of the region.
1308  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1309  * @errp: pointer to Error*, to store an error if it happens.
1310  *
1311  * Note that this function does not do anything to cause the data in the
1312  * RAM memory region to be migrated; that is the responsibility of the caller.
1313  */
1314 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1315                                             Object *owner,
1316                                             const char *name,
1317                                             uint64_t size,
1318                                             uint32_t ram_flags,
1319                                             Error **errp);
1320 
1321 /**
1322  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1323  *                                     RAM.  Accesses into the region will
1324  *                                     modify memory directly.  Only an initial
1325  *                                     portion of this RAM is actually used.
1326  *                                     Changing the size while migrating
1327  *                                     can result in the migration being
1328  *                                     canceled.
1329  *
1330  * @mr: the #MemoryRegion to be initialized.
1331  * @owner: the object that tracks the region's reference count
1332  * @name: Region name, becomes part of RAMBlock name used in migration stream
1333  *        must be unique within any device
1334  * @size: used size of the region.
1335  * @max_size: max size of the region.
1336  * @resized: callback to notify owner about used size change.
1337  * @errp: pointer to Error*, to store an error if it happens.
1338  *
1339  * Note that this function does not do anything to cause the data in the
1340  * RAM memory region to be migrated; that is the responsibility of the caller.
1341  */
1342 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1343                                        Object *owner,
1344                                        const char *name,
1345                                        uint64_t size,
1346                                        uint64_t max_size,
1347                                        void (*resized)(const char*,
1348                                                        uint64_t length,
1349                                                        void *host),
1350                                        Error **errp);
1351 #ifdef CONFIG_POSIX
1352 
1353 /**
1354  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1355  *                                    mmap-ed backend.
1356  *
1357  * @mr: the #MemoryRegion to be initialized.
1358  * @owner: the object that tracks the region's reference count
1359  * @name: Region name, becomes part of RAMBlock name used in migration stream
1360  *        must be unique within any device
1361  * @size: size of the region.
1362  * @align: alignment of the region base address; if 0, the default alignment
1363  *         (getpagesize()) will be used.
1364  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1365  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1366  *             RAM_READONLY_FD
1367  * @path: the path in which to allocate the RAM.
1368  * @offset: offset within the file referenced by path
1369  * @errp: pointer to Error*, to store an error if it happens.
1370  *
1371  * Note that this function does not do anything to cause the data in the
1372  * RAM memory region to be migrated; that is the responsibility of the caller.
1373  */
1374 void memory_region_init_ram_from_file(MemoryRegion *mr,
1375                                       Object *owner,
1376                                       const char *name,
1377                                       uint64_t size,
1378                                       uint64_t align,
1379                                       uint32_t ram_flags,
1380                                       const char *path,
1381                                       ram_addr_t offset,
1382                                       Error **errp);
1383 
1384 /**
1385  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1386  *                                  mmap-ed backend.
1387  *
1388  * @mr: the #MemoryRegion to be initialized.
1389  * @owner: the object that tracks the region's reference count
1390  * @name: the name of the region.
1391  * @size: size of the region.
1392  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1393  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1394  *             RAM_READONLY_FD
1395  * @fd: the fd to mmap.
1396  * @offset: offset within the file referenced by fd
1397  * @errp: pointer to Error*, to store an error if it happens.
1398  *
1399  * Note that this function does not do anything to cause the data in the
1400  * RAM memory region to be migrated; that is the responsibility of the caller.
1401  */
1402 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1403                                     Object *owner,
1404                                     const char *name,
1405                                     uint64_t size,
1406                                     uint32_t ram_flags,
1407                                     int fd,
1408                                     ram_addr_t offset,
1409                                     Error **errp);
1410 #endif
1411 
1412 /**
1413  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1414  *                              user-provided pointer.  Accesses into the
1415  *                              region will modify memory directly.
1416  *
1417  * @mr: the #MemoryRegion to be initialized.
1418  * @owner: the object that tracks the region's reference count
1419  * @name: Region name, becomes part of RAMBlock name used in migration stream
1420  *        must be unique within any device
1421  * @size: size of the region.
1422  * @ptr: memory to be mapped; must contain at least @size bytes.
1423  *
1424  * Note that this function does not do anything to cause the data in the
1425  * RAM memory region to be migrated; that is the responsibility of the caller.
1426  */
1427 void memory_region_init_ram_ptr(MemoryRegion *mr,
1428                                 Object *owner,
1429                                 const char *name,
1430                                 uint64_t size,
1431                                 void *ptr);
1432 
1433 /**
1434  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1435  *                                     a user-provided pointer.
1436  *
1437  * A RAM device represents a mapping to a physical device, such as to a PCI
1438  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1439  * into the VM address space and access to the region will modify memory
1440  * directly.  However, the memory region should not be included in a memory
1441  * dump (device may not be enabled/mapped at the time of the dump), and
1442  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1443  * skip_dump flag.
1444  *
1445  * @mr: the #MemoryRegion to be initialized.
1446  * @owner: the object that tracks the region's reference count
1447  * @name: the name of the region.
1448  * @size: size of the region.
1449  * @ptr: memory to be mapped; must contain at least @size bytes.
1450  *
1451  * Note that this function does not do anything to cause the data in the
1452  * RAM memory region to be migrated; that is the responsibility of the caller.
1453  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1454  */
1455 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1456                                        Object *owner,
1457                                        const char *name,
1458                                        uint64_t size,
1459                                        void *ptr);
1460 
1461 /**
1462  * memory_region_init_alias: Initialize a memory region that aliases all or a
1463  *                           part of another memory region.
1464  *
1465  * @mr: the #MemoryRegion to be initialized.
1466  * @owner: the object that tracks the region's reference count
1467  * @name: used for debugging; not visible to the user or ABI
1468  * @orig: the region to be referenced; @mr will be equivalent to
1469  *        @orig between @offset and @offset + @size - 1.
1470  * @offset: start of the section in @orig to be referenced.
1471  * @size: size of the region.
1472  */
1473 void memory_region_init_alias(MemoryRegion *mr,
1474                               Object *owner,
1475                               const char *name,
1476                               MemoryRegion *orig,
1477                               hwaddr offset,
1478                               uint64_t size);
1479 
1480 /**
1481  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1482  *
1483  * This has the same effect as calling memory_region_init_ram_nomigrate()
1484  * and then marking the resulting region read-only with
1485  * memory_region_set_readonly().
1486  *
1487  * Note that this function does not do anything to cause the data in the
1488  * RAM side of the memory region to be migrated; that is the responsibility
1489  * of the caller.
1490  *
1491  * @mr: the #MemoryRegion to be initialized.
1492  * @owner: the object that tracks the region's reference count
1493  * @name: Region name, becomes part of RAMBlock name used in migration stream
1494  *        must be unique within any device
1495  * @size: size of the region.
1496  * @errp: pointer to Error*, to store an error if it happens.
1497  */
1498 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1499                                       Object *owner,
1500                                       const char *name,
1501                                       uint64_t size,
1502                                       Error **errp);
1503 
1504 /**
1505  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1506  *                                 Writes are handled via callbacks.
1507  *
1508  * Note that this function does not do anything to cause the data in the
1509  * RAM side of the memory region to be migrated; that is the responsibility
1510  * of the caller.
1511  *
1512  * @mr: the #MemoryRegion to be initialized.
1513  * @owner: the object that tracks the region's reference count
1514  * @ops: callbacks for write access handling (must not be NULL).
1515  * @opaque: passed to the read and write callbacks of the @ops structure.
1516  * @name: Region name, becomes part of RAMBlock name used in migration stream
1517  *        must be unique within any device
1518  * @size: size of the region.
1519  * @errp: pointer to Error*, to store an error if it happens.
1520  */
1521 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1522                                              Object *owner,
1523                                              const MemoryRegionOps *ops,
1524                                              void *opaque,
1525                                              const char *name,
1526                                              uint64_t size,
1527                                              Error **errp);
1528 
1529 /**
1530  * memory_region_init_iommu: Initialize a memory region of a custom type
1531  * that translates addresses
1532  *
1533  * An IOMMU region translates addresses and forwards accesses to a target
1534  * memory region.
1535  *
1536  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1537  * @_iommu_mr should be a pointer to enough memory for an instance of
1538  * that subclass, @instance_size is the size of that subclass, and
1539  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1540  * instance of the subclass, and its methods will then be called to handle
1541  * accesses to the memory region. See the documentation of
1542  * #IOMMUMemoryRegionClass for further details.
1543  *
1544  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1545  * @instance_size: the IOMMUMemoryRegion subclass instance size
1546  * @mrtypename: the type name of the #IOMMUMemoryRegion
1547  * @owner: the object that tracks the region's reference count
1548  * @name: used for debugging; not visible to the user or ABI
1549  * @size: size of the region.
1550  */
1551 void memory_region_init_iommu(void *_iommu_mr,
1552                               size_t instance_size,
1553                               const char *mrtypename,
1554                               Object *owner,
1555                               const char *name,
1556                               uint64_t size);
1557 
1558 /**
1559  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1560  *                          region will modify memory directly.
1561  *
1562  * @mr: the #MemoryRegion to be initialized
1563  * @owner: the object that tracks the region's reference count (must be
1564  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1565  * @name: name of the memory region
1566  * @size: size of the region in bytes
1567  * @errp: pointer to Error*, to store an error if it happens.
1568  *
1569  * This function allocates RAM for a board model or device, and
1570  * arranges for it to be migrated (by calling vmstate_register_ram()
1571  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1572  * @owner is NULL).
1573  *
1574  * TODO: Currently we restrict @owner to being either NULL (for
1575  * global RAM regions with no owner) or devices, so that we can
1576  * give the RAM block a unique name for migration purposes.
1577  * We should lift this restriction and allow arbitrary Objects.
1578  * If you pass a non-NULL non-device @owner then we will assert.
1579  */
1580 void memory_region_init_ram(MemoryRegion *mr,
1581                             Object *owner,
1582                             const char *name,
1583                             uint64_t size,
1584                             Error **errp);
1585 
1586 /**
1587  * memory_region_init_rom: Initialize a ROM memory region.
1588  *
1589  * This has the same effect as calling memory_region_init_ram()
1590  * and then marking the resulting region read-only with
1591  * memory_region_set_readonly(). This includes arranging for the
1592  * contents to be migrated.
1593  *
1594  * TODO: Currently we restrict @owner to being either NULL (for
1595  * global RAM regions with no owner) or devices, so that we can
1596  * give the RAM block a unique name for migration purposes.
1597  * We should lift this restriction and allow arbitrary Objects.
1598  * If you pass a non-NULL non-device @owner then we will assert.
1599  *
1600  * @mr: the #MemoryRegion to be initialized.
1601  * @owner: the object that tracks the region's reference count
1602  * @name: Region name, becomes part of RAMBlock name used in migration stream
1603  *        must be unique within any device
1604  * @size: size of the region.
1605  * @errp: pointer to Error*, to store an error if it happens.
1606  */
1607 void memory_region_init_rom(MemoryRegion *mr,
1608                             Object *owner,
1609                             const char *name,
1610                             uint64_t size,
1611                             Error **errp);
1612 
1613 /**
1614  * memory_region_init_rom_device:  Initialize a ROM memory region.
1615  *                                 Writes are handled via callbacks.
1616  *
1617  * This function initializes a memory region backed by RAM for reads
1618  * and callbacks for writes, and arranges for the RAM backing to
1619  * be migrated (by calling vmstate_register_ram()
1620  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1621  * @owner is NULL).
1622  *
1623  * TODO: Currently we restrict @owner to being either NULL (for
1624  * global RAM regions with no owner) or devices, so that we can
1625  * give the RAM block a unique name for migration purposes.
1626  * We should lift this restriction and allow arbitrary Objects.
1627  * If you pass a non-NULL non-device @owner then we will assert.
1628  *
1629  * @mr: the #MemoryRegion to be initialized.
1630  * @owner: the object that tracks the region's reference count
1631  * @ops: callbacks for write access handling (must not be NULL).
1632  * @opaque: passed to the read and write callbacks of the @ops structure.
1633  * @name: Region name, becomes part of RAMBlock name used in migration stream
1634  *        must be unique within any device
1635  * @size: size of the region.
1636  * @errp: pointer to Error*, to store an error if it happens.
1637  */
1638 void memory_region_init_rom_device(MemoryRegion *mr,
1639                                    Object *owner,
1640                                    const MemoryRegionOps *ops,
1641                                    void *opaque,
1642                                    const char *name,
1643                                    uint64_t size,
1644                                    Error **errp);
1645 
1646 
1647 /**
1648  * memory_region_owner: get a memory region's owner.
1649  *
1650  * @mr: the memory region being queried.
1651  */
1652 Object *memory_region_owner(MemoryRegion *mr);
1653 
1654 /**
1655  * memory_region_size: get a memory region's size.
1656  *
1657  * @mr: the memory region being queried.
1658  */
1659 uint64_t memory_region_size(MemoryRegion *mr);
1660 
1661 /**
1662  * memory_region_is_ram: check whether a memory region is random access
1663  *
1664  * Returns %true if a memory region is random access.
1665  *
1666  * @mr: the memory region being queried
1667  */
1668 static inline bool memory_region_is_ram(MemoryRegion *mr)
1669 {
1670     return mr->ram;
1671 }
1672 
1673 /**
1674  * memory_region_is_ram_device: check whether a memory region is a ram device
1675  *
1676  * Returns %true if a memory region is a device backed ram region
1677  *
1678  * @mr: the memory region being queried
1679  */
1680 bool memory_region_is_ram_device(MemoryRegion *mr);
1681 
1682 /**
1683  * memory_region_is_romd: check whether a memory region is in ROMD mode
1684  *
1685  * Returns %true if a memory region is a ROM device and currently set to allow
1686  * direct reads.
1687  *
1688  * @mr: the memory region being queried
1689  */
1690 static inline bool memory_region_is_romd(MemoryRegion *mr)
1691 {
1692     return mr->rom_device && mr->romd_mode;
1693 }
1694 
1695 /**
1696  * memory_region_is_protected: check whether a memory region is protected
1697  *
1698  * Returns %true if a memory region is protected RAM and cannot be accessed
1699  * via standard mechanisms, e.g. DMA.
1700  *
1701  * @mr: the memory region being queried
1702  */
1703 bool memory_region_is_protected(MemoryRegion *mr);
1704 
1705 /**
1706  * memory_region_get_iommu: check whether a memory region is an iommu
1707  *
1708  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1709  * otherwise NULL.
1710  *
1711  * @mr: the memory region being queried
1712  */
1713 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1714 {
1715     if (mr->alias) {
1716         return memory_region_get_iommu(mr->alias);
1717     }
1718     if (mr->is_iommu) {
1719         return (IOMMUMemoryRegion *) mr;
1720     }
1721     return NULL;
1722 }
1723 
1724 /**
1725  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1726  *   if an iommu or NULL if not
1727  *
1728  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1729  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1730  *
1731  * @iommu_mr: the memory region being queried
1732  */
1733 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1734         IOMMUMemoryRegion *iommu_mr)
1735 {
1736     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1737 }
1738 
1739 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1740 
1741 /**
1742  * memory_region_iommu_get_min_page_size: get minimum supported page size
1743  * for an iommu
1744  *
1745  * Returns minimum supported page size for an iommu.
1746  *
1747  * @iommu_mr: the memory region being queried
1748  */
1749 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1750 
1751 /**
1752  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1753  *
1754  * Note: for any IOMMU implementation, an in-place mapping change
1755  * should be notified with an UNMAP followed by a MAP.
1756  *
1757  * @iommu_mr: the memory region that was changed
1758  * @iommu_idx: the IOMMU index for the translation table which has changed
1759  * @event: TLB event with the new entry in the IOMMU translation table.
1760  *         The entry replaces all old entries for the same virtual I/O address
1761  *         range.
1762  */
1763 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1764                                 int iommu_idx,
1765                                 IOMMUTLBEvent event);
1766 
1767 /**
1768  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1769  *                           entry to a single notifier
1770  *
1771  * This works just like memory_region_notify_iommu(), but it only
1772  * notifies a specific notifier, not all of them.
1773  *
1774  * @notifier: the notifier to be notified
1775  * @event: TLB event with the new entry in the IOMMU translation table.
1776  *         The entry replaces all old entries for the same virtual I/O address
1777  *         range.
1778  */
1779 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1780                                     IOMMUTLBEvent *event);
1781 
1782 /**
1783  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1784  *                                           translation that covers the
1785  *                                           range of a notifier
1786  *
1787  * @notifier: the notifier to be notified
1788  */
1789 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1790 
1791 
1792 /**
1793  * memory_region_register_iommu_notifier: register a notifier for changes to
1794  * IOMMU translation entries.
1795  *
1796  * Returns 0 on success, or a negative errno otherwise. In particular,
1797  * -EINVAL indicates that at least one of the attributes of the notifier
1798  * is not supported (flag/range) by the IOMMU memory region. In case of error
1799  * the error object must be created.
1800  *
1801  * @mr: the memory region to observe
1802  * @n: the IOMMUNotifier to be added; the notify callback receives a
1803  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1804  *     ceases to be valid on exit from the notifier.
1805  * @errp: pointer to Error*, to store an error if it happens.
1806  */
1807 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1808                                           IOMMUNotifier *n, Error **errp);
1809 
1810 /**
1811  * memory_region_iommu_replay: replay existing IOMMU translations to
1812  * a notifier with the minimum page granularity returned by
1813  * mr->iommu_ops->get_page_size().
1814  *
1815  * Note: this is not related to record-and-replay functionality.
1816  *
1817  * @iommu_mr: the memory region to observe
1818  * @n: the notifier to which to replay iommu mappings
1819  */
1820 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1821 
1822 /**
1823  * memory_region_unregister_iommu_notifier: unregister a notifier for
1824  * changes to IOMMU translation entries.
1825  *
1826  * @mr: the memory region which was observed and for which notity_stopped()
1827  *      needs to be called
1828  * @n: the notifier to be removed.
1829  */
1830 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1831                                              IOMMUNotifier *n);
1832 
1833 /**
1834  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1835  * defined on the IOMMU.
1836  *
1837  * Returns 0 on success, or a negative errno otherwise. In particular,
1838  * -EINVAL indicates that the IOMMU does not support the requested
1839  * attribute.
1840  *
1841  * @iommu_mr: the memory region
1842  * @attr: the requested attribute
1843  * @data: a pointer to the requested attribute data
1844  */
1845 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1846                                  enum IOMMUMemoryRegionAttr attr,
1847                                  void *data);
1848 
1849 /**
1850  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1851  * use for translations with the given memory transaction attributes.
1852  *
1853  * @iommu_mr: the memory region
1854  * @attrs: the memory transaction attributes
1855  */
1856 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1857                                        MemTxAttrs attrs);
1858 
1859 /**
1860  * memory_region_iommu_num_indexes: return the total number of IOMMU
1861  * indexes that this IOMMU supports.
1862  *
1863  * @iommu_mr: the memory region
1864  */
1865 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1866 
1867 /**
1868  * memory_region_iommu_set_page_size_mask: set the supported page
1869  * sizes for a given IOMMU memory region
1870  *
1871  * @iommu_mr: IOMMU memory region
1872  * @page_size_mask: supported page size mask
1873  * @errp: pointer to Error*, to store an error if it happens.
1874  */
1875 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1876                                            uint64_t page_size_mask,
1877                                            Error **errp);
1878 
1879 /**
1880  * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges
1881  * for a given IOMMU MR region
1882  *
1883  * @iommu: IOMMU memory region
1884  * @iova_ranges: list of ordered IOVA ranges (at least one range)
1885  * @errp: pointer to Error*, to store an error if it happens.
1886  */
1887 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu,
1888                                         GList *iova_ranges,
1889                                         Error **errp);
1890 
1891 /**
1892  * memory_region_name: get a memory region's name
1893  *
1894  * Returns the string that was used to initialize the memory region.
1895  *
1896  * @mr: the memory region being queried
1897  */
1898 const char *memory_region_name(const MemoryRegion *mr);
1899 
1900 /**
1901  * memory_region_is_logging: return whether a memory region is logging writes
1902  *
1903  * Returns %true if the memory region is logging writes for the given client
1904  *
1905  * @mr: the memory region being queried
1906  * @client: the client being queried
1907  */
1908 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1909 
1910 /**
1911  * memory_region_get_dirty_log_mask: return the clients for which a
1912  * memory region is logging writes.
1913  *
1914  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1915  * are the bit indices.
1916  *
1917  * @mr: the memory region being queried
1918  */
1919 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1920 
1921 /**
1922  * memory_region_is_rom: check whether a memory region is ROM
1923  *
1924  * Returns %true if a memory region is read-only memory.
1925  *
1926  * @mr: the memory region being queried
1927  */
1928 static inline bool memory_region_is_rom(MemoryRegion *mr)
1929 {
1930     return mr->ram && mr->readonly;
1931 }
1932 
1933 /**
1934  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1935  *
1936  * Returns %true is a memory region is non-volatile memory.
1937  *
1938  * @mr: the memory region being queried
1939  */
1940 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1941 {
1942     return mr->nonvolatile;
1943 }
1944 
1945 /**
1946  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1947  *
1948  * Returns a file descriptor backing a file-based RAM memory region,
1949  * or -1 if the region is not a file-based RAM memory region.
1950  *
1951  * @mr: the RAM or alias memory region being queried.
1952  */
1953 int memory_region_get_fd(MemoryRegion *mr);
1954 
1955 /**
1956  * memory_region_from_host: Convert a pointer into a RAM memory region
1957  * and an offset within it.
1958  *
1959  * Given a host pointer inside a RAM memory region (created with
1960  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1961  * the MemoryRegion and the offset within it.
1962  *
1963  * Use with care; by the time this function returns, the returned pointer is
1964  * not protected by RCU anymore.  If the caller is not within an RCU critical
1965  * section and does not hold the iothread lock, it must have other means of
1966  * protecting the pointer, such as a reference to the region that includes
1967  * the incoming ram_addr_t.
1968  *
1969  * @ptr: the host pointer to be converted
1970  * @offset: the offset within memory region
1971  */
1972 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1973 
1974 /**
1975  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1976  *
1977  * Returns a host pointer to a RAM memory region (created with
1978  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1979  *
1980  * Use with care; by the time this function returns, the returned pointer is
1981  * not protected by RCU anymore.  If the caller is not within an RCU critical
1982  * section and does not hold the iothread lock, it must have other means of
1983  * protecting the pointer, such as a reference to the region that includes
1984  * the incoming ram_addr_t.
1985  *
1986  * @mr: the memory region being queried.
1987  */
1988 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1989 
1990 /* memory_region_ram_resize: Resize a RAM region.
1991  *
1992  * Resizing RAM while migrating can result in the migration being canceled.
1993  * Care has to be taken if the guest might have already detected the memory.
1994  *
1995  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1996  * @newsize: the new size the region
1997  * @errp: pointer to Error*, to store an error if it happens.
1998  */
1999 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2000                               Error **errp);
2001 
2002 /**
2003  * memory_region_msync: Synchronize selected address range of
2004  * a memory mapped region
2005  *
2006  * @mr: the memory region to be msync
2007  * @addr: the initial address of the range to be sync
2008  * @size: the size of the range to be sync
2009  */
2010 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2011 
2012 /**
2013  * memory_region_writeback: Trigger cache writeback for
2014  * selected address range
2015  *
2016  * @mr: the memory region to be updated
2017  * @addr: the initial address of the range to be written back
2018  * @size: the size of the range to be written back
2019  */
2020 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2021 
2022 /**
2023  * memory_region_set_log: Turn dirty logging on or off for a region.
2024  *
2025  * Turns dirty logging on or off for a specified client (display, migration).
2026  * Only meaningful for RAM regions.
2027  *
2028  * @mr: the memory region being updated.
2029  * @log: whether dirty logging is to be enabled or disabled.
2030  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2031  */
2032 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2033 
2034 /**
2035  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2036  *
2037  * Marks a range of bytes as dirty, after it has been dirtied outside
2038  * guest code.
2039  *
2040  * @mr: the memory region being dirtied.
2041  * @addr: the address (relative to the start of the region) being dirtied.
2042  * @size: size of the range being dirtied.
2043  */
2044 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2045                              hwaddr size);
2046 
2047 /**
2048  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2049  *
2050  * This function is called when the caller wants to clear the remote
2051  * dirty bitmap of a memory range within the memory region.  This can
2052  * be used by e.g. KVM to manually clear dirty log when
2053  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2054  * kernel.
2055  *
2056  * @mr:     the memory region to clear the dirty log upon
2057  * @start:  start address offset within the memory region
2058  * @len:    length of the memory region to clear dirty bitmap
2059  */
2060 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2061                                       hwaddr len);
2062 
2063 /**
2064  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2065  *                                         bitmap and clear it.
2066  *
2067  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2068  * returns the snapshot.  The snapshot can then be used to query dirty
2069  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2070  * querying the same page multiple times, which is especially useful for
2071  * display updates where the scanlines often are not page aligned.
2072  *
2073  * The dirty bitmap region which gets copied into the snapshot (and
2074  * cleared afterwards) can be larger than requested.  The boundaries
2075  * are rounded up/down so complete bitmap longs (covering 64 pages on
2076  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2077  * isn't a problem for display updates as the extra pages are outside
2078  * the visible area, and in case the visible area changes a full
2079  * display redraw is due anyway.  Should other use cases for this
2080  * function emerge we might have to revisit this implementation
2081  * detail.
2082  *
2083  * Use g_free to release DirtyBitmapSnapshot.
2084  *
2085  * @mr: the memory region being queried.
2086  * @addr: the address (relative to the start of the region) being queried.
2087  * @size: the size of the range being queried.
2088  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2089  */
2090 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2091                                                             hwaddr addr,
2092                                                             hwaddr size,
2093                                                             unsigned client);
2094 
2095 /**
2096  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2097  *                                   in the specified dirty bitmap snapshot.
2098  *
2099  * @mr: the memory region being queried.
2100  * @snap: the dirty bitmap snapshot
2101  * @addr: the address (relative to the start of the region) being queried.
2102  * @size: the size of the range being queried.
2103  */
2104 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2105                                       DirtyBitmapSnapshot *snap,
2106                                       hwaddr addr, hwaddr size);
2107 
2108 /**
2109  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2110  *                            client.
2111  *
2112  * Marks a range of pages as no longer dirty.
2113  *
2114  * @mr: the region being updated.
2115  * @addr: the start of the subrange being cleaned.
2116  * @size: the size of the subrange being cleaned.
2117  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2118  *          %DIRTY_MEMORY_VGA.
2119  */
2120 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2121                                hwaddr size, unsigned client);
2122 
2123 /**
2124  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2125  *                                 TBs (for self-modifying code).
2126  *
2127  * The MemoryRegionOps->write() callback of a ROM device must use this function
2128  * to mark byte ranges that have been modified internally, such as by directly
2129  * accessing the memory returned by memory_region_get_ram_ptr().
2130  *
2131  * This function marks the range dirty and invalidates TBs so that TCG can
2132  * detect self-modifying code.
2133  *
2134  * @mr: the region being flushed.
2135  * @addr: the start, relative to the start of the region, of the range being
2136  *        flushed.
2137  * @size: the size, in bytes, of the range being flushed.
2138  */
2139 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2140 
2141 /**
2142  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2143  *
2144  * Allows a memory region to be marked as read-only (turning it into a ROM).
2145  * only useful on RAM regions.
2146  *
2147  * @mr: the region being updated.
2148  * @readonly: whether rhe region is to be ROM or RAM.
2149  */
2150 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2151 
2152 /**
2153  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2154  *
2155  * Allows a memory region to be marked as non-volatile.
2156  * only useful on RAM regions.
2157  *
2158  * @mr: the region being updated.
2159  * @nonvolatile: whether rhe region is to be non-volatile.
2160  */
2161 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2162 
2163 /**
2164  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2165  *
2166  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2167  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2168  * device is mapped to guest memory and satisfies read access directly.
2169  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2170  * Writes are always handled by the #MemoryRegion.write function.
2171  *
2172  * @mr: the memory region to be updated
2173  * @romd_mode: %true to put the region into ROMD mode
2174  */
2175 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2176 
2177 /**
2178  * memory_region_set_coalescing: Enable memory coalescing for the region.
2179  *
2180  * Enabled writes to a region to be queued for later processing. MMIO ->write
2181  * callbacks may be delayed until a non-coalesced MMIO is issued.
2182  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2183  *
2184  * @mr: the memory region to be write coalesced
2185  */
2186 void memory_region_set_coalescing(MemoryRegion *mr);
2187 
2188 /**
2189  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2190  *                               a region.
2191  *
2192  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2193  * Multiple calls can be issued coalesced disjoint ranges.
2194  *
2195  * @mr: the memory region to be updated.
2196  * @offset: the start of the range within the region to be coalesced.
2197  * @size: the size of the subrange to be coalesced.
2198  */
2199 void memory_region_add_coalescing(MemoryRegion *mr,
2200                                   hwaddr offset,
2201                                   uint64_t size);
2202 
2203 /**
2204  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2205  *
2206  * Disables any coalescing caused by memory_region_set_coalescing() or
2207  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2208  * hardware.
2209  *
2210  * @mr: the memory region to be updated.
2211  */
2212 void memory_region_clear_coalescing(MemoryRegion *mr);
2213 
2214 /**
2215  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2216  *                                    accesses.
2217  *
2218  * Ensure that pending coalesced MMIO request are flushed before the memory
2219  * region is accessed. This property is automatically enabled for all regions
2220  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2221  *
2222  * @mr: the memory region to be updated.
2223  */
2224 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2225 
2226 /**
2227  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2228  *                                      accesses.
2229  *
2230  * Clear the automatic coalesced MMIO flushing enabled via
2231  * memory_region_set_flush_coalesced. Note that this service has no effect on
2232  * memory regions that have MMIO coalescing enabled for themselves. For them,
2233  * automatic flushing will stop once coalescing is disabled.
2234  *
2235  * @mr: the memory region to be updated.
2236  */
2237 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2238 
2239 /**
2240  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2241  *                            is written to a location.
2242  *
2243  * Marks a word in an IO region (initialized with memory_region_init_io())
2244  * as a trigger for an eventfd event.  The I/O callback will not be called.
2245  * The caller must be prepared to handle failure (that is, take the required
2246  * action if the callback _is_ called).
2247  *
2248  * @mr: the memory region being updated.
2249  * @addr: the address within @mr that is to be monitored
2250  * @size: the size of the access to trigger the eventfd
2251  * @match_data: whether to match against @data, instead of just @addr
2252  * @data: the data to match against the guest write
2253  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2254  **/
2255 void memory_region_add_eventfd(MemoryRegion *mr,
2256                                hwaddr addr,
2257                                unsigned size,
2258                                bool match_data,
2259                                uint64_t data,
2260                                EventNotifier *e);
2261 
2262 /**
2263  * memory_region_del_eventfd: Cancel an eventfd.
2264  *
2265  * Cancels an eventfd trigger requested by a previous
2266  * memory_region_add_eventfd() call.
2267  *
2268  * @mr: the memory region being updated.
2269  * @addr: the address within @mr that is to be monitored
2270  * @size: the size of the access to trigger the eventfd
2271  * @match_data: whether to match against @data, instead of just @addr
2272  * @data: the data to match against the guest write
2273  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2274  */
2275 void memory_region_del_eventfd(MemoryRegion *mr,
2276                                hwaddr addr,
2277                                unsigned size,
2278                                bool match_data,
2279                                uint64_t data,
2280                                EventNotifier *e);
2281 
2282 /**
2283  * memory_region_add_subregion: Add a subregion to a container.
2284  *
2285  * Adds a subregion at @offset.  The subregion may not overlap with other
2286  * subregions (except for those explicitly marked as overlapping).  A region
2287  * may only be added once as a subregion (unless removed with
2288  * memory_region_del_subregion()); use memory_region_init_alias() if you
2289  * want a region to be a subregion in multiple locations.
2290  *
2291  * @mr: the region to contain the new subregion; must be a container
2292  *      initialized with memory_region_init().
2293  * @offset: the offset relative to @mr where @subregion is added.
2294  * @subregion: the subregion to be added.
2295  */
2296 void memory_region_add_subregion(MemoryRegion *mr,
2297                                  hwaddr offset,
2298                                  MemoryRegion *subregion);
2299 /**
2300  * memory_region_add_subregion_overlap: Add a subregion to a container
2301  *                                      with overlap.
2302  *
2303  * Adds a subregion at @offset.  The subregion may overlap with other
2304  * subregions.  Conflicts are resolved by having a higher @priority hide a
2305  * lower @priority. Subregions without priority are taken as @priority 0.
2306  * A region may only be added once as a subregion (unless removed with
2307  * memory_region_del_subregion()); use memory_region_init_alias() if you
2308  * want a region to be a subregion in multiple locations.
2309  *
2310  * @mr: the region to contain the new subregion; must be a container
2311  *      initialized with memory_region_init().
2312  * @offset: the offset relative to @mr where @subregion is added.
2313  * @subregion: the subregion to be added.
2314  * @priority: used for resolving overlaps; highest priority wins.
2315  */
2316 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2317                                          hwaddr offset,
2318                                          MemoryRegion *subregion,
2319                                          int priority);
2320 
2321 /**
2322  * memory_region_get_ram_addr: Get the ram address associated with a memory
2323  *                             region
2324  *
2325  * @mr: the region to be queried
2326  */
2327 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2328 
2329 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2330 /**
2331  * memory_region_del_subregion: Remove a subregion.
2332  *
2333  * Removes a subregion from its container.
2334  *
2335  * @mr: the container to be updated.
2336  * @subregion: the region being removed; must be a current subregion of @mr.
2337  */
2338 void memory_region_del_subregion(MemoryRegion *mr,
2339                                  MemoryRegion *subregion);
2340 
2341 /*
2342  * memory_region_set_enabled: dynamically enable or disable a region
2343  *
2344  * Enables or disables a memory region.  A disabled memory region
2345  * ignores all accesses to itself and its subregions.  It does not
2346  * obscure sibling subregions with lower priority - it simply behaves as
2347  * if it was removed from the hierarchy.
2348  *
2349  * Regions default to being enabled.
2350  *
2351  * @mr: the region to be updated
2352  * @enabled: whether to enable or disable the region
2353  */
2354 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2355 
2356 /*
2357  * memory_region_set_address: dynamically update the address of a region
2358  *
2359  * Dynamically updates the address of a region, relative to its container.
2360  * May be used on regions are currently part of a memory hierarchy.
2361  *
2362  * @mr: the region to be updated
2363  * @addr: new address, relative to container region
2364  */
2365 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2366 
2367 /*
2368  * memory_region_set_size: dynamically update the size of a region.
2369  *
2370  * Dynamically updates the size of a region.
2371  *
2372  * @mr: the region to be updated
2373  * @size: used size of the region.
2374  */
2375 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2376 
2377 /*
2378  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2379  *
2380  * Dynamically updates the offset into the target region that an alias points
2381  * to, as if the fourth argument to memory_region_init_alias() has changed.
2382  *
2383  * @mr: the #MemoryRegion to be updated; should be an alias.
2384  * @offset: the new offset into the target memory region
2385  */
2386 void memory_region_set_alias_offset(MemoryRegion *mr,
2387                                     hwaddr offset);
2388 
2389 /*
2390  * memory_region_set_unmergeable: Set a memory region unmergeable
2391  *
2392  * Mark a memory region unmergeable, resulting in the memory region (or
2393  * everything contained in a memory region container) not getting merged when
2394  * simplifying the address space and notifying memory listeners. Consequently,
2395  * memory listeners will never get notified about ranges that are larger than
2396  * the original memory regions.
2397  *
2398  * This is primarily useful when multiple aliases to a RAM memory region are
2399  * mapped into a memory region container, and updates (e.g., enable/disable or
2400  * map/unmap) of individual memory region aliases are not supposed to affect
2401  * other memory regions in the same container.
2402  *
2403  * @mr: the #MemoryRegion to be updated
2404  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2405  */
2406 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2407 
2408 /**
2409  * memory_region_present: checks if an address relative to a @container
2410  * translates into #MemoryRegion within @container
2411  *
2412  * Answer whether a #MemoryRegion within @container covers the address
2413  * @addr.
2414  *
2415  * @container: a #MemoryRegion within which @addr is a relative address
2416  * @addr: the area within @container to be searched
2417  */
2418 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2419 
2420 /**
2421  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2422  * into another memory region, which does not necessarily imply that it is
2423  * mapped into an address space.
2424  *
2425  * @mr: a #MemoryRegion which should be checked if it's mapped
2426  */
2427 bool memory_region_is_mapped(MemoryRegion *mr);
2428 
2429 /**
2430  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2431  * #MemoryRegion
2432  *
2433  * The #RamDiscardManager cannot change while a memory region is mapped.
2434  *
2435  * @mr: the #MemoryRegion
2436  */
2437 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2438 
2439 /**
2440  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2441  * #RamDiscardManager assigned
2442  *
2443  * @mr: the #MemoryRegion
2444  */
2445 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2446 {
2447     return !!memory_region_get_ram_discard_manager(mr);
2448 }
2449 
2450 /**
2451  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2452  * #MemoryRegion
2453  *
2454  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2455  * that does not cover RAM, or a #MemoryRegion that already has a
2456  * #RamDiscardManager assigned.
2457  *
2458  * @mr: the #MemoryRegion
2459  * @rdm: #RamDiscardManager to set
2460  */
2461 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2462                                            RamDiscardManager *rdm);
2463 
2464 /**
2465  * memory_region_find: translate an address/size relative to a
2466  * MemoryRegion into a #MemoryRegionSection.
2467  *
2468  * Locates the first #MemoryRegion within @mr that overlaps the range
2469  * given by @addr and @size.
2470  *
2471  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2472  * It will have the following characteristics:
2473  * - @size = 0 iff no overlap was found
2474  * - @mr is non-%NULL iff an overlap was found
2475  *
2476  * Remember that in the return value the @offset_within_region is
2477  * relative to the returned region (in the .@mr field), not to the
2478  * @mr argument.
2479  *
2480  * Similarly, the .@offset_within_address_space is relative to the
2481  * address space that contains both regions, the passed and the
2482  * returned one.  However, in the special case where the @mr argument
2483  * has no container (and thus is the root of the address space), the
2484  * following will hold:
2485  * - @offset_within_address_space >= @addr
2486  * - @offset_within_address_space + .@size <= @addr + @size
2487  *
2488  * @mr: a MemoryRegion within which @addr is a relative address
2489  * @addr: start of the area within @as to be searched
2490  * @size: size of the area to be searched
2491  */
2492 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2493                                        hwaddr addr, uint64_t size);
2494 
2495 /**
2496  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2497  *
2498  * Synchronizes the dirty page log for all address spaces.
2499  *
2500  * @last_stage: whether this is the last stage of live migration
2501  */
2502 void memory_global_dirty_log_sync(bool last_stage);
2503 
2504 /**
2505  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2506  *
2507  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2508  * This function must be called after the dirty log bitmap is cleared, and
2509  * before dirty guest memory pages are read.  If you are using
2510  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2511  * care of doing this.
2512  */
2513 void memory_global_after_dirty_log_sync(void);
2514 
2515 /**
2516  * memory_region_transaction_begin: Start a transaction.
2517  *
2518  * During a transaction, changes will be accumulated and made visible
2519  * only when the transaction ends (is committed).
2520  */
2521 void memory_region_transaction_begin(void);
2522 
2523 /**
2524  * memory_region_transaction_commit: Commit a transaction and make changes
2525  *                                   visible to the guest.
2526  */
2527 void memory_region_transaction_commit(void);
2528 
2529 /**
2530  * memory_listener_register: register callbacks to be called when memory
2531  *                           sections are mapped or unmapped into an address
2532  *                           space
2533  *
2534  * @listener: an object containing the callbacks to be called
2535  * @filter: if non-%NULL, only regions in this address space will be observed
2536  */
2537 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2538 
2539 /**
2540  * memory_listener_unregister: undo the effect of memory_listener_register()
2541  *
2542  * @listener: an object containing the callbacks to be removed
2543  */
2544 void memory_listener_unregister(MemoryListener *listener);
2545 
2546 /**
2547  * memory_global_dirty_log_start: begin dirty logging for all regions
2548  *
2549  * @flags: purpose of starting dirty log, migration or dirty rate
2550  */
2551 void memory_global_dirty_log_start(unsigned int flags);
2552 
2553 /**
2554  * memory_global_dirty_log_stop: end dirty logging for all regions
2555  *
2556  * @flags: purpose of stopping dirty log, migration or dirty rate
2557  */
2558 void memory_global_dirty_log_stop(unsigned int flags);
2559 
2560 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2561 
2562 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2563                                 unsigned size, bool is_write,
2564                                 MemTxAttrs attrs);
2565 
2566 /**
2567  * memory_region_dispatch_read: perform a read directly to the specified
2568  * MemoryRegion.
2569  *
2570  * @mr: #MemoryRegion to access
2571  * @addr: address within that region
2572  * @pval: pointer to uint64_t which the data is written to
2573  * @op: size, sign, and endianness of the memory operation
2574  * @attrs: memory transaction attributes to use for the access
2575  */
2576 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2577                                         hwaddr addr,
2578                                         uint64_t *pval,
2579                                         MemOp op,
2580                                         MemTxAttrs attrs);
2581 /**
2582  * memory_region_dispatch_write: perform a write directly to the specified
2583  * MemoryRegion.
2584  *
2585  * @mr: #MemoryRegion to access
2586  * @addr: address within that region
2587  * @data: data to write
2588  * @op: size, sign, and endianness of the memory operation
2589  * @attrs: memory transaction attributes to use for the access
2590  */
2591 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2592                                          hwaddr addr,
2593                                          uint64_t data,
2594                                          MemOp op,
2595                                          MemTxAttrs attrs);
2596 
2597 /**
2598  * address_space_init: initializes an address space
2599  *
2600  * @as: an uninitialized #AddressSpace
2601  * @root: a #MemoryRegion that routes addresses for the address space
2602  * @name: an address space name.  The name is only used for debugging
2603  *        output.
2604  */
2605 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2606 
2607 /**
2608  * address_space_destroy: destroy an address space
2609  *
2610  * Releases all resources associated with an address space.  After an address space
2611  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2612  * as well.
2613  *
2614  * @as: address space to be destroyed
2615  */
2616 void address_space_destroy(AddressSpace *as);
2617 
2618 /**
2619  * address_space_remove_listeners: unregister all listeners of an address space
2620  *
2621  * Removes all callbacks previously registered with memory_listener_register()
2622  * for @as.
2623  *
2624  * @as: an initialized #AddressSpace
2625  */
2626 void address_space_remove_listeners(AddressSpace *as);
2627 
2628 /**
2629  * address_space_rw: read from or write to an address space.
2630  *
2631  * Return a MemTxResult indicating whether the operation succeeded
2632  * or failed (eg unassigned memory, device rejected the transaction,
2633  * IOMMU fault).
2634  *
2635  * @as: #AddressSpace to be accessed
2636  * @addr: address within that address space
2637  * @attrs: memory transaction attributes
2638  * @buf: buffer with the data transferred
2639  * @len: the number of bytes to read or write
2640  * @is_write: indicates the transfer direction
2641  */
2642 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2643                              MemTxAttrs attrs, void *buf,
2644                              hwaddr len, bool is_write);
2645 
2646 /**
2647  * address_space_write: write to address space.
2648  *
2649  * Return a MemTxResult indicating whether the operation succeeded
2650  * or failed (eg unassigned memory, device rejected the transaction,
2651  * IOMMU fault).
2652  *
2653  * @as: #AddressSpace to be accessed
2654  * @addr: address within that address space
2655  * @attrs: memory transaction attributes
2656  * @buf: buffer with the data transferred
2657  * @len: the number of bytes to write
2658  */
2659 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2660                                 MemTxAttrs attrs,
2661                                 const void *buf, hwaddr len);
2662 
2663 /**
2664  * address_space_write_rom: write to address space, including ROM.
2665  *
2666  * This function writes to the specified address space, but will
2667  * write data to both ROM and RAM. This is used for non-guest
2668  * writes like writes from the gdb debug stub or initial loading
2669  * of ROM contents.
2670  *
2671  * Note that portions of the write which attempt to write data to
2672  * a device will be silently ignored -- only real RAM and ROM will
2673  * be written to.
2674  *
2675  * Return a MemTxResult indicating whether the operation succeeded
2676  * or failed (eg unassigned memory, device rejected the transaction,
2677  * IOMMU fault).
2678  *
2679  * @as: #AddressSpace to be accessed
2680  * @addr: address within that address space
2681  * @attrs: memory transaction attributes
2682  * @buf: buffer with the data transferred
2683  * @len: the number of bytes to write
2684  */
2685 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2686                                     MemTxAttrs attrs,
2687                                     const void *buf, hwaddr len);
2688 
2689 /* address_space_ld*: load from an address space
2690  * address_space_st*: store to an address space
2691  *
2692  * These functions perform a load or store of the byte, word,
2693  * longword or quad to the specified address within the AddressSpace.
2694  * The _le suffixed functions treat the data as little endian;
2695  * _be indicates big endian; no suffix indicates "same endianness
2696  * as guest CPU".
2697  *
2698  * The "guest CPU endianness" accessors are deprecated for use outside
2699  * target-* code; devices should be CPU-agnostic and use either the LE
2700  * or the BE accessors.
2701  *
2702  * @as #AddressSpace to be accessed
2703  * @addr: address within that address space
2704  * @val: data value, for stores
2705  * @attrs: memory transaction attributes
2706  * @result: location to write the success/failure of the transaction;
2707  *   if NULL, this information is discarded
2708  */
2709 
2710 #define SUFFIX
2711 #define ARG1         as
2712 #define ARG1_DECL    AddressSpace *as
2713 #include "exec/memory_ldst.h.inc"
2714 
2715 #define SUFFIX
2716 #define ARG1         as
2717 #define ARG1_DECL    AddressSpace *as
2718 #include "exec/memory_ldst_phys.h.inc"
2719 
2720 struct MemoryRegionCache {
2721     void *ptr;
2722     hwaddr xlat;
2723     hwaddr len;
2724     FlatView *fv;
2725     MemoryRegionSection mrs;
2726     bool is_write;
2727 };
2728 
2729 /* address_space_ld*_cached: load from a cached #MemoryRegion
2730  * address_space_st*_cached: store into a cached #MemoryRegion
2731  *
2732  * These functions perform a load or store of the byte, word,
2733  * longword or quad to the specified address.  The address is
2734  * a physical address in the AddressSpace, but it must lie within
2735  * a #MemoryRegion that was mapped with address_space_cache_init.
2736  *
2737  * The _le suffixed functions treat the data as little endian;
2738  * _be indicates big endian; no suffix indicates "same endianness
2739  * as guest CPU".
2740  *
2741  * The "guest CPU endianness" accessors are deprecated for use outside
2742  * target-* code; devices should be CPU-agnostic and use either the LE
2743  * or the BE accessors.
2744  *
2745  * @cache: previously initialized #MemoryRegionCache to be accessed
2746  * @addr: address within the address space
2747  * @val: data value, for stores
2748  * @attrs: memory transaction attributes
2749  * @result: location to write the success/failure of the transaction;
2750  *   if NULL, this information is discarded
2751  */
2752 
2753 #define SUFFIX       _cached_slow
2754 #define ARG1         cache
2755 #define ARG1_DECL    MemoryRegionCache *cache
2756 #include "exec/memory_ldst.h.inc"
2757 
2758 /* Inline fast path for direct RAM access.  */
2759 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2760     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2761 {
2762     assert(addr < cache->len);
2763     if (likely(cache->ptr)) {
2764         return ldub_p(cache->ptr + addr);
2765     } else {
2766         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2767     }
2768 }
2769 
2770 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2771     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2772 {
2773     assert(addr < cache->len);
2774     if (likely(cache->ptr)) {
2775         stb_p(cache->ptr + addr, val);
2776     } else {
2777         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2778     }
2779 }
2780 
2781 #define ENDIANNESS   _le
2782 #include "exec/memory_ldst_cached.h.inc"
2783 
2784 #define ENDIANNESS   _be
2785 #include "exec/memory_ldst_cached.h.inc"
2786 
2787 #define SUFFIX       _cached
2788 #define ARG1         cache
2789 #define ARG1_DECL    MemoryRegionCache *cache
2790 #include "exec/memory_ldst_phys.h.inc"
2791 
2792 /* address_space_cache_init: prepare for repeated access to a physical
2793  * memory region
2794  *
2795  * @cache: #MemoryRegionCache to be filled
2796  * @as: #AddressSpace to be accessed
2797  * @addr: address within that address space
2798  * @len: length of buffer
2799  * @is_write: indicates the transfer direction
2800  *
2801  * Will only work with RAM, and may map a subset of the requested range by
2802  * returning a value that is less than @len.  On failure, return a negative
2803  * errno value.
2804  *
2805  * Because it only works with RAM, this function can be used for
2806  * read-modify-write operations.  In this case, is_write should be %true.
2807  *
2808  * Note that addresses passed to the address_space_*_cached functions
2809  * are relative to @addr.
2810  */
2811 int64_t address_space_cache_init(MemoryRegionCache *cache,
2812                                  AddressSpace *as,
2813                                  hwaddr addr,
2814                                  hwaddr len,
2815                                  bool is_write);
2816 
2817 /**
2818  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2819  *
2820  * @cache: The #MemoryRegionCache to operate on.
2821  *
2822  * Initializes #MemoryRegionCache structure without memory region attached.
2823  * Cache initialized this way can only be safely destroyed, but not used.
2824  */
2825 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2826 {
2827     cache->mrs.mr = NULL;
2828     /* There is no real need to initialize fv, but it makes Coverity happy. */
2829     cache->fv = NULL;
2830 }
2831 
2832 /**
2833  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2834  *
2835  * @cache: The #MemoryRegionCache to operate on.
2836  * @addr: The first physical address that was written, relative to the
2837  * address that was passed to @address_space_cache_init.
2838  * @access_len: The number of bytes that were written starting at @addr.
2839  */
2840 void address_space_cache_invalidate(MemoryRegionCache *cache,
2841                                     hwaddr addr,
2842                                     hwaddr access_len);
2843 
2844 /**
2845  * address_space_cache_destroy: free a #MemoryRegionCache
2846  *
2847  * @cache: The #MemoryRegionCache whose memory should be released.
2848  */
2849 void address_space_cache_destroy(MemoryRegionCache *cache);
2850 
2851 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2852  * entry. Should be called from an RCU critical section.
2853  */
2854 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2855                                             bool is_write, MemTxAttrs attrs);
2856 
2857 /* address_space_translate: translate an address range into an address space
2858  * into a MemoryRegion and an address range into that section.  Should be
2859  * called from an RCU critical section, to avoid that the last reference
2860  * to the returned region disappears after address_space_translate returns.
2861  *
2862  * @fv: #FlatView to be accessed
2863  * @addr: address within that address space
2864  * @xlat: pointer to address within the returned memory region section's
2865  * #MemoryRegion.
2866  * @len: pointer to length
2867  * @is_write: indicates the transfer direction
2868  * @attrs: memory attributes
2869  */
2870 MemoryRegion *flatview_translate(FlatView *fv,
2871                                  hwaddr addr, hwaddr *xlat,
2872                                  hwaddr *len, bool is_write,
2873                                  MemTxAttrs attrs);
2874 
2875 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2876                                                     hwaddr addr, hwaddr *xlat,
2877                                                     hwaddr *len, bool is_write,
2878                                                     MemTxAttrs attrs)
2879 {
2880     return flatview_translate(address_space_to_flatview(as),
2881                               addr, xlat, len, is_write, attrs);
2882 }
2883 
2884 /* address_space_access_valid: check for validity of accessing an address
2885  * space range
2886  *
2887  * Check whether memory is assigned to the given address space range, and
2888  * access is permitted by any IOMMU regions that are active for the address
2889  * space.
2890  *
2891  * For now, addr and len should be aligned to a page size.  This limitation
2892  * will be lifted in the future.
2893  *
2894  * @as: #AddressSpace to be accessed
2895  * @addr: address within that address space
2896  * @len: length of the area to be checked
2897  * @is_write: indicates the transfer direction
2898  * @attrs: memory attributes
2899  */
2900 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2901                                 bool is_write, MemTxAttrs attrs);
2902 
2903 /* address_space_map: map a physical memory region into a host virtual address
2904  *
2905  * May map a subset of the requested range, given by and returned in @plen.
2906  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2907  * the mapping are exhausted.
2908  * Use only for reads OR writes - not for read-modify-write operations.
2909  * Use cpu_register_map_client() to know when retrying the map operation is
2910  * likely to succeed.
2911  *
2912  * @as: #AddressSpace to be accessed
2913  * @addr: address within that address space
2914  * @plen: pointer to length of buffer; updated on return
2915  * @is_write: indicates the transfer direction
2916  * @attrs: memory attributes
2917  */
2918 void *address_space_map(AddressSpace *as, hwaddr addr,
2919                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2920 
2921 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2922  *
2923  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2924  * the amount of memory that was actually read or written by the caller.
2925  *
2926  * @as: #AddressSpace used
2927  * @buffer: host pointer as returned by address_space_map()
2928  * @len: buffer length as returned by address_space_map()
2929  * @access_len: amount of data actually transferred
2930  * @is_write: indicates the transfer direction
2931  */
2932 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2933                          bool is_write, hwaddr access_len);
2934 
2935 
2936 /* Internal functions, part of the implementation of address_space_read.  */
2937 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2938                                     MemTxAttrs attrs, void *buf, hwaddr len);
2939 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2940                                    MemTxAttrs attrs, void *buf,
2941                                    hwaddr len, hwaddr addr1, hwaddr l,
2942                                    MemoryRegion *mr);
2943 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2944 
2945 /* Internal functions, part of the implementation of address_space_read_cached
2946  * and address_space_write_cached.  */
2947 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2948                                            hwaddr addr, void *buf, hwaddr len);
2949 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2950                                             hwaddr addr, const void *buf,
2951                                             hwaddr len);
2952 
2953 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2954 bool prepare_mmio_access(MemoryRegion *mr);
2955 
2956 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2957 {
2958     if (is_write) {
2959         return memory_region_is_ram(mr) && !mr->readonly &&
2960                !mr->rom_device && !memory_region_is_ram_device(mr);
2961     } else {
2962         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2963                memory_region_is_romd(mr);
2964     }
2965 }
2966 
2967 /**
2968  * address_space_read: read from an address space.
2969  *
2970  * Return a MemTxResult indicating whether the operation succeeded
2971  * or failed (eg unassigned memory, device rejected the transaction,
2972  * IOMMU fault).  Called within RCU critical section.
2973  *
2974  * @as: #AddressSpace to be accessed
2975  * @addr: address within that address space
2976  * @attrs: memory transaction attributes
2977  * @buf: buffer with the data transferred
2978  * @len: length of the data transferred
2979  */
2980 static inline __attribute__((__always_inline__))
2981 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2982                                MemTxAttrs attrs, void *buf,
2983                                hwaddr len)
2984 {
2985     MemTxResult result = MEMTX_OK;
2986     hwaddr l, addr1;
2987     void *ptr;
2988     MemoryRegion *mr;
2989     FlatView *fv;
2990 
2991     if (__builtin_constant_p(len)) {
2992         if (len) {
2993             RCU_READ_LOCK_GUARD();
2994             fv = address_space_to_flatview(as);
2995             l = len;
2996             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2997             if (len == l && memory_access_is_direct(mr, false)) {
2998                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2999                 memcpy(buf, ptr, len);
3000             } else {
3001                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3002                                                 addr1, l, mr);
3003             }
3004         }
3005     } else {
3006         result = address_space_read_full(as, addr, attrs, buf, len);
3007     }
3008     return result;
3009 }
3010 
3011 /**
3012  * address_space_read_cached: read from a cached RAM region
3013  *
3014  * @cache: Cached region to be addressed
3015  * @addr: address relative to the base of the RAM region
3016  * @buf: buffer with the data transferred
3017  * @len: length of the data transferred
3018  */
3019 static inline MemTxResult
3020 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3021                           void *buf, hwaddr len)
3022 {
3023     assert(addr < cache->len && len <= cache->len - addr);
3024     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3025     if (likely(cache->ptr)) {
3026         memcpy(buf, cache->ptr + addr, len);
3027         return MEMTX_OK;
3028     } else {
3029         return address_space_read_cached_slow(cache, addr, buf, len);
3030     }
3031 }
3032 
3033 /**
3034  * address_space_write_cached: write to a cached RAM region
3035  *
3036  * @cache: Cached region to be addressed
3037  * @addr: address relative to the base of the RAM region
3038  * @buf: buffer with the data transferred
3039  * @len: length of the data transferred
3040  */
3041 static inline MemTxResult
3042 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3043                            const void *buf, hwaddr len)
3044 {
3045     assert(addr < cache->len && len <= cache->len - addr);
3046     if (likely(cache->ptr)) {
3047         memcpy(cache->ptr + addr, buf, len);
3048         return MEMTX_OK;
3049     } else {
3050         return address_space_write_cached_slow(cache, addr, buf, len);
3051     }
3052 }
3053 
3054 /**
3055  * address_space_set: Fill address space with a constant byte.
3056  *
3057  * Return a MemTxResult indicating whether the operation succeeded
3058  * or failed (eg unassigned memory, device rejected the transaction,
3059  * IOMMU fault).
3060  *
3061  * @as: #AddressSpace to be accessed
3062  * @addr: address within that address space
3063  * @c: constant byte to fill the memory
3064  * @len: the number of bytes to fill with the constant byte
3065  * @attrs: memory transaction attributes
3066  */
3067 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3068                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3069 
3070 #ifdef NEED_CPU_H
3071 /* enum device_endian to MemOp.  */
3072 static inline MemOp devend_memop(enum device_endian end)
3073 {
3074     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3075                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3076 
3077 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3078     /* Swap if non-host endianness or native (target) endianness */
3079     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3080 #else
3081     const int non_host_endianness =
3082         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3083 
3084     /* In this case, native (target) endianness needs no swap.  */
3085     return (end == non_host_endianness) ? MO_BSWAP : 0;
3086 #endif
3087 }
3088 #endif
3089 
3090 /*
3091  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3092  * to manage the actual amount of memory consumed by the VM (then, the memory
3093  * provided by RAM blocks might be bigger than the desired memory consumption).
3094  * This *must* be set if:
3095  * - Discarding parts of a RAM blocks does not result in the change being
3096  *   reflected in the VM and the pages getting freed.
3097  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3098  *   discards blindly.
3099  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3100  *   encrypted VMs).
3101  * Technologies that only temporarily pin the current working set of a
3102  * driver are fine, because we don't expect such pages to be discarded
3103  * (esp. based on guest action like balloon inflation).
3104  *
3105  * This is *not* to be used to protect from concurrent discards (esp.,
3106  * postcopy).
3107  *
3108  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3109  * discards to work reliably is active.
3110  */
3111 int ram_block_discard_disable(bool state);
3112 
3113 /*
3114  * See ram_block_discard_disable(): only disable uncoordinated discards,
3115  * keeping coordinated discards (via the RamDiscardManager) enabled.
3116  */
3117 int ram_block_uncoordinated_discard_disable(bool state);
3118 
3119 /*
3120  * Inhibit technologies that disable discarding of pages in RAM blocks.
3121  *
3122  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3123  * broken.
3124  */
3125 int ram_block_discard_require(bool state);
3126 
3127 /*
3128  * See ram_block_discard_require(): only inhibit technologies that disable
3129  * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3130  * technologies that only inhibit uncoordinated discards (via the
3131  * RamDiscardManager).
3132  */
3133 int ram_block_coordinated_discard_require(bool state);
3134 
3135 /*
3136  * Test if any discarding of memory in ram blocks is disabled.
3137  */
3138 bool ram_block_discard_is_disabled(void);
3139 
3140 /*
3141  * Test if any discarding of memory in ram blocks is required to work reliably.
3142  */
3143 bool ram_block_discard_is_required(void);
3144 
3145 #endif
3146 
3147 #endif
3148