xref: /openbmc/qemu/include/exec/memory.h (revision 9af23989)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51 
52 struct MemoryRegionMmio {
53     CPUReadMemoryFunc *read[3];
54     CPUWriteMemoryFunc *write[3];
55 };
56 
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58 
59 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
60 typedef enum {
61     IOMMU_NONE = 0,
62     IOMMU_RO   = 1,
63     IOMMU_WO   = 2,
64     IOMMU_RW   = 3,
65 } IOMMUAccessFlags;
66 
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68 
69 struct IOMMUTLBEntry {
70     AddressSpace    *target_as;
71     hwaddr           iova;
72     hwaddr           translated_addr;
73     hwaddr           addr_mask;  /* 0xfff = 4k translation */
74     IOMMUAccessFlags perm;
75 };
76 
77 /*
78  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79  * register with one or multiple IOMMU Notifier capability bit(s).
80  */
81 typedef enum {
82     IOMMU_NOTIFIER_NONE = 0,
83     /* Notify cache invalidations */
84     IOMMU_NOTIFIER_UNMAP = 0x1,
85     /* Notify entry changes (newly created entries) */
86     IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88 
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90 
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93                             IOMMUTLBEntry *data);
94 
95 struct IOMMUNotifier {
96     IOMMUNotify notify;
97     IOMMUNotifierFlag notifier_flags;
98     /* Notify for address space range start <= addr <= end */
99     hwaddr start;
100     hwaddr end;
101     QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104 
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106                                        IOMMUNotifierFlag flags,
107                                        hwaddr start, hwaddr end)
108 {
109     n->notify = fn;
110     n->notifier_flags = flags;
111     n->start = start;
112     n->end = end;
113 }
114 
115 /*
116  * Memory region callbacks
117  */
118 struct MemoryRegionOps {
119     /* Read from the memory region. @addr is relative to @mr; @size is
120      * in bytes. */
121     uint64_t (*read)(void *opaque,
122                      hwaddr addr,
123                      unsigned size);
124     /* Write to the memory region. @addr is relative to @mr; @size is
125      * in bytes. */
126     void (*write)(void *opaque,
127                   hwaddr addr,
128                   uint64_t data,
129                   unsigned size);
130 
131     MemTxResult (*read_with_attrs)(void *opaque,
132                                    hwaddr addr,
133                                    uint64_t *data,
134                                    unsigned size,
135                                    MemTxAttrs attrs);
136     MemTxResult (*write_with_attrs)(void *opaque,
137                                     hwaddr addr,
138                                     uint64_t data,
139                                     unsigned size,
140                                     MemTxAttrs attrs);
141     /* Instruction execution pre-callback:
142      * @addr is the address of the access relative to the @mr.
143      * @size is the size of the area returned by the callback.
144      * @offset is the location of the pointer inside @mr.
145      *
146      * Returns a pointer to a location which contains guest code.
147      */
148     void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149                          unsigned *offset);
150 
151     enum device_endian endianness;
152     /* Guest-visible constraints: */
153     struct {
154         /* If nonzero, specify bounds on access sizes beyond which a machine
155          * check is thrown.
156          */
157         unsigned min_access_size;
158         unsigned max_access_size;
159         /* If true, unaligned accesses are supported.  Otherwise unaligned
160          * accesses throw machine checks.
161          */
162          bool unaligned;
163         /*
164          * If present, and returns #false, the transaction is not accepted
165          * by the device (and results in machine dependent behaviour such
166          * as a machine check exception).
167          */
168         bool (*accepts)(void *opaque, hwaddr addr,
169                         unsigned size, bool is_write);
170     } valid;
171     /* Internal implementation constraints: */
172     struct {
173         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
174          * will be rounded upwards and a partial result will be returned.
175          */
176         unsigned min_access_size;
177         /* If nonzero, specifies the maximum size implemented.  Larger sizes
178          * will be done as a series of accesses with smaller sizes.
179          */
180         unsigned max_access_size;
181         /* If true, unaligned accesses are supported.  Otherwise all accesses
182          * are converted to (possibly multiple) naturally aligned accesses.
183          */
184         bool unaligned;
185     } impl;
186 
187     /* If .read and .write are not present, old_mmio may be used for
188      * backwards compatibility with old mmio registration
189      */
190     const MemoryRegionMmio old_mmio;
191 };
192 
193 enum IOMMUMemoryRegionAttr {
194     IOMMU_ATTR_SPAPR_TCE_FD
195 };
196 
197 typedef struct IOMMUMemoryRegionClass {
198     /* private */
199     struct DeviceClass parent_class;
200 
201     /*
202      * Return a TLB entry that contains a given address. Flag should
203      * be the access permission of this translation operation. We can
204      * set flag to IOMMU_NONE to mean that we don't need any
205      * read/write permission checks, like, when for region replay.
206      */
207     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
208                                IOMMUAccessFlags flag);
209     /* Returns minimum supported page size */
210     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
211     /* Called when IOMMU Notifier flag changed */
212     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
213                                 IOMMUNotifierFlag old_flags,
214                                 IOMMUNotifierFlag new_flags);
215     /* Set this up to provide customized IOMMU replay function */
216     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
217 
218     /* Get IOMMU misc attributes */
219     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr,
220                     void *data);
221 } IOMMUMemoryRegionClass;
222 
223 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
224 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
225 
226 struct MemoryRegion {
227     Object parent_obj;
228 
229     /* All fields are private - violators will be prosecuted */
230 
231     /* The following fields should fit in a cache line */
232     bool romd_mode;
233     bool ram;
234     bool subpage;
235     bool readonly; /* For RAM regions */
236     bool rom_device;
237     bool flush_coalesced_mmio;
238     bool global_locking;
239     uint8_t dirty_log_mask;
240     bool is_iommu;
241     RAMBlock *ram_block;
242     Object *owner;
243 
244     const MemoryRegionOps *ops;
245     void *opaque;
246     MemoryRegion *container;
247     Int128 size;
248     hwaddr addr;
249     void (*destructor)(MemoryRegion *mr);
250     uint64_t align;
251     bool terminates;
252     bool ram_device;
253     bool enabled;
254     bool warning_printed; /* For reservations */
255     uint8_t vga_logging_count;
256     MemoryRegion *alias;
257     hwaddr alias_offset;
258     int32_t priority;
259     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
260     QTAILQ_ENTRY(MemoryRegion) subregions_link;
261     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
262     const char *name;
263     unsigned ioeventfd_nb;
264     MemoryRegionIoeventfd *ioeventfds;
265 };
266 
267 struct IOMMUMemoryRegion {
268     MemoryRegion parent_obj;
269 
270     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
271     IOMMUNotifierFlag iommu_notify_flags;
272 };
273 
274 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
275     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
276 
277 /**
278  * MemoryListener: callbacks structure for updates to the physical memory map
279  *
280  * Allows a component to adjust to changes in the guest-visible memory map.
281  * Use with memory_listener_register() and memory_listener_unregister().
282  */
283 struct MemoryListener {
284     void (*begin)(MemoryListener *listener);
285     void (*commit)(MemoryListener *listener);
286     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
287     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
288     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
289     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
290                       int old, int new);
291     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
292                      int old, int new);
293     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
294     void (*log_global_start)(MemoryListener *listener);
295     void (*log_global_stop)(MemoryListener *listener);
296     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
297                         bool match_data, uint64_t data, EventNotifier *e);
298     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
299                         bool match_data, uint64_t data, EventNotifier *e);
300     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
301                                hwaddr addr, hwaddr len);
302     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
303                                hwaddr addr, hwaddr len);
304     /* Lower = earlier (during add), later (during del) */
305     unsigned priority;
306     AddressSpace *address_space;
307     QTAILQ_ENTRY(MemoryListener) link;
308     QTAILQ_ENTRY(MemoryListener) link_as;
309 };
310 
311 /**
312  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
313  */
314 struct AddressSpace {
315     /* All fields are private. */
316     struct rcu_head rcu;
317     char *name;
318     MemoryRegion *root;
319 
320     /* Accessed via RCU.  */
321     struct FlatView *current_map;
322 
323     int ioeventfd_nb;
324     struct MemoryRegionIoeventfd *ioeventfds;
325     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
326     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
327 };
328 
329 FlatView *address_space_to_flatview(AddressSpace *as);
330 
331 /**
332  * MemoryRegionSection: describes a fragment of a #MemoryRegion
333  *
334  * @mr: the region, or %NULL if empty
335  * @fv: the flat view of the address space the region is mapped in
336  * @offset_within_region: the beginning of the section, relative to @mr's start
337  * @size: the size of the section; will not exceed @mr's boundaries
338  * @offset_within_address_space: the address of the first byte of the section
339  *     relative to the region's address space
340  * @readonly: writes to this section are ignored
341  */
342 struct MemoryRegionSection {
343     MemoryRegion *mr;
344     FlatView *fv;
345     hwaddr offset_within_region;
346     Int128 size;
347     hwaddr offset_within_address_space;
348     bool readonly;
349 };
350 
351 /**
352  * memory_region_init: Initialize a memory region
353  *
354  * The region typically acts as a container for other memory regions.  Use
355  * memory_region_add_subregion() to add subregions.
356  *
357  * @mr: the #MemoryRegion to be initialized
358  * @owner: the object that tracks the region's reference count
359  * @name: used for debugging; not visible to the user or ABI
360  * @size: size of the region; any subregions beyond this size will be clipped
361  */
362 void memory_region_init(MemoryRegion *mr,
363                         struct Object *owner,
364                         const char *name,
365                         uint64_t size);
366 
367 /**
368  * memory_region_ref: Add 1 to a memory region's reference count
369  *
370  * Whenever memory regions are accessed outside the BQL, they need to be
371  * preserved against hot-unplug.  MemoryRegions actually do not have their
372  * own reference count; they piggyback on a QOM object, their "owner".
373  * This function adds a reference to the owner.
374  *
375  * All MemoryRegions must have an owner if they can disappear, even if the
376  * device they belong to operates exclusively under the BQL.  This is because
377  * the region could be returned at any time by memory_region_find, and this
378  * is usually under guest control.
379  *
380  * @mr: the #MemoryRegion
381  */
382 void memory_region_ref(MemoryRegion *mr);
383 
384 /**
385  * memory_region_unref: Remove 1 to a memory region's reference count
386  *
387  * Whenever memory regions are accessed outside the BQL, they need to be
388  * preserved against hot-unplug.  MemoryRegions actually do not have their
389  * own reference count; they piggyback on a QOM object, their "owner".
390  * This function removes a reference to the owner and possibly destroys it.
391  *
392  * @mr: the #MemoryRegion
393  */
394 void memory_region_unref(MemoryRegion *mr);
395 
396 /**
397  * memory_region_init_io: Initialize an I/O memory region.
398  *
399  * Accesses into the region will cause the callbacks in @ops to be called.
400  * if @size is nonzero, subregions will be clipped to @size.
401  *
402  * @mr: the #MemoryRegion to be initialized.
403  * @owner: the object that tracks the region's reference count
404  * @ops: a structure containing read and write callbacks to be used when
405  *       I/O is performed on the region.
406  * @opaque: passed to the read and write callbacks of the @ops structure.
407  * @name: used for debugging; not visible to the user or ABI
408  * @size: size of the region.
409  */
410 void memory_region_init_io(MemoryRegion *mr,
411                            struct Object *owner,
412                            const MemoryRegionOps *ops,
413                            void *opaque,
414                            const char *name,
415                            uint64_t size);
416 
417 /**
418  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
419  *                                    into the region will modify memory
420  *                                    directly.
421  *
422  * @mr: the #MemoryRegion to be initialized.
423  * @owner: the object that tracks the region's reference count
424  * @name: Region name, becomes part of RAMBlock name used in migration stream
425  *        must be unique within any device
426  * @size: size of the region.
427  * @errp: pointer to Error*, to store an error if it happens.
428  *
429  * Note that this function does not do anything to cause the data in the
430  * RAM memory region to be migrated; that is the responsibility of the caller.
431  */
432 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
433                                       struct Object *owner,
434                                       const char *name,
435                                       uint64_t size,
436                                       Error **errp);
437 
438 /**
439  * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
440  *                                           Accesses into the region will
441  *                                           modify memory directly.
442  *
443  * @mr: the #MemoryRegion to be initialized.
444  * @owner: the object that tracks the region's reference count
445  * @name: Region name, becomes part of RAMBlock name used in migration stream
446  *        must be unique within any device
447  * @size: size of the region.
448  * @share: allow remapping RAM to different addresses
449  * @errp: pointer to Error*, to store an error if it happens.
450  *
451  * Note that this function is similar to memory_region_init_ram_nomigrate.
452  * The only difference is part of the RAM region can be remapped.
453  */
454 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
455                                              struct Object *owner,
456                                              const char *name,
457                                              uint64_t size,
458                                              bool share,
459                                              Error **errp);
460 
461 /**
462  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
463  *                                     RAM.  Accesses into the region will
464  *                                     modify memory directly.  Only an initial
465  *                                     portion of this RAM is actually used.
466  *                                     The used size can change across reboots.
467  *
468  * @mr: the #MemoryRegion to be initialized.
469  * @owner: the object that tracks the region's reference count
470  * @name: Region name, becomes part of RAMBlock name used in migration stream
471  *        must be unique within any device
472  * @size: used size of the region.
473  * @max_size: max size of the region.
474  * @resized: callback to notify owner about used size change.
475  * @errp: pointer to Error*, to store an error if it happens.
476  *
477  * Note that this function does not do anything to cause the data in the
478  * RAM memory region to be migrated; that is the responsibility of the caller.
479  */
480 void memory_region_init_resizeable_ram(MemoryRegion *mr,
481                                        struct Object *owner,
482                                        const char *name,
483                                        uint64_t size,
484                                        uint64_t max_size,
485                                        void (*resized)(const char*,
486                                                        uint64_t length,
487                                                        void *host),
488                                        Error **errp);
489 #ifdef __linux__
490 /**
491  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
492  *                                    mmap-ed backend.
493  *
494  * @mr: the #MemoryRegion to be initialized.
495  * @owner: the object that tracks the region's reference count
496  * @name: Region name, becomes part of RAMBlock name used in migration stream
497  *        must be unique within any device
498  * @size: size of the region.
499  * @align: alignment of the region base address; if 0, the default alignment
500  *         (getpagesize()) will be used.
501  * @share: %true if memory must be mmaped with the MAP_SHARED flag
502  * @path: the path in which to allocate the RAM.
503  * @errp: pointer to Error*, to store an error if it happens.
504  *
505  * Note that this function does not do anything to cause the data in the
506  * RAM memory region to be migrated; that is the responsibility of the caller.
507  */
508 void memory_region_init_ram_from_file(MemoryRegion *mr,
509                                       struct Object *owner,
510                                       const char *name,
511                                       uint64_t size,
512                                       uint64_t align,
513                                       bool share,
514                                       const char *path,
515                                       Error **errp);
516 
517 /**
518  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
519  *                                  mmap-ed backend.
520  *
521  * @mr: the #MemoryRegion to be initialized.
522  * @owner: the object that tracks the region's reference count
523  * @name: the name of the region.
524  * @size: size of the region.
525  * @share: %true if memory must be mmaped with the MAP_SHARED flag
526  * @fd: the fd to mmap.
527  * @errp: pointer to Error*, to store an error if it happens.
528  *
529  * Note that this function does not do anything to cause the data in the
530  * RAM memory region to be migrated; that is the responsibility of the caller.
531  */
532 void memory_region_init_ram_from_fd(MemoryRegion *mr,
533                                     struct Object *owner,
534                                     const char *name,
535                                     uint64_t size,
536                                     bool share,
537                                     int fd,
538                                     Error **errp);
539 #endif
540 
541 /**
542  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
543  *                              user-provided pointer.  Accesses into the
544  *                              region will modify memory directly.
545  *
546  * @mr: the #MemoryRegion to be initialized.
547  * @owner: the object that tracks the region's reference count
548  * @name: Region name, becomes part of RAMBlock name used in migration stream
549  *        must be unique within any device
550  * @size: size of the region.
551  * @ptr: memory to be mapped; must contain at least @size bytes.
552  *
553  * Note that this function does not do anything to cause the data in the
554  * RAM memory region to be migrated; that is the responsibility of the caller.
555  */
556 void memory_region_init_ram_ptr(MemoryRegion *mr,
557                                 struct Object *owner,
558                                 const char *name,
559                                 uint64_t size,
560                                 void *ptr);
561 
562 /**
563  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
564  *                                     a user-provided pointer.
565  *
566  * A RAM device represents a mapping to a physical device, such as to a PCI
567  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
568  * into the VM address space and access to the region will modify memory
569  * directly.  However, the memory region should not be included in a memory
570  * dump (device may not be enabled/mapped at the time of the dump), and
571  * operations incompatible with manipulating MMIO should be avoided.  Replaces
572  * skip_dump flag.
573  *
574  * @mr: the #MemoryRegion to be initialized.
575  * @owner: the object that tracks the region's reference count
576  * @name: the name of the region.
577  * @size: size of the region.
578  * @ptr: memory to be mapped; must contain at least @size bytes.
579  *
580  * Note that this function does not do anything to cause the data in the
581  * RAM memory region to be migrated; that is the responsibility of the caller.
582  * (For RAM device memory regions, migrating the contents rarely makes sense.)
583  */
584 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
585                                        struct Object *owner,
586                                        const char *name,
587                                        uint64_t size,
588                                        void *ptr);
589 
590 /**
591  * memory_region_init_alias: Initialize a memory region that aliases all or a
592  *                           part of another memory region.
593  *
594  * @mr: the #MemoryRegion to be initialized.
595  * @owner: the object that tracks the region's reference count
596  * @name: used for debugging; not visible to the user or ABI
597  * @orig: the region to be referenced; @mr will be equivalent to
598  *        @orig between @offset and @offset + @size - 1.
599  * @offset: start of the section in @orig to be referenced.
600  * @size: size of the region.
601  */
602 void memory_region_init_alias(MemoryRegion *mr,
603                               struct Object *owner,
604                               const char *name,
605                               MemoryRegion *orig,
606                               hwaddr offset,
607                               uint64_t size);
608 
609 /**
610  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
611  *
612  * This has the same effect as calling memory_region_init_ram_nomigrate()
613  * and then marking the resulting region read-only with
614  * memory_region_set_readonly().
615  *
616  * Note that this function does not do anything to cause the data in the
617  * RAM side of the memory region to be migrated; that is the responsibility
618  * of the caller.
619  *
620  * @mr: the #MemoryRegion to be initialized.
621  * @owner: the object that tracks the region's reference count
622  * @name: Region name, becomes part of RAMBlock name used in migration stream
623  *        must be unique within any device
624  * @size: size of the region.
625  * @errp: pointer to Error*, to store an error if it happens.
626  */
627 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
628                                       struct Object *owner,
629                                       const char *name,
630                                       uint64_t size,
631                                       Error **errp);
632 
633 /**
634  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
635  *                                 Writes are handled via callbacks.
636  *
637  * Note that this function does not do anything to cause the data in the
638  * RAM side of the memory region to be migrated; that is the responsibility
639  * of the caller.
640  *
641  * @mr: the #MemoryRegion to be initialized.
642  * @owner: the object that tracks the region's reference count
643  * @ops: callbacks for write access handling (must not be NULL).
644  * @opaque: passed to the read and write callbacks of the @ops structure.
645  * @name: Region name, becomes part of RAMBlock name used in migration stream
646  *        must be unique within any device
647  * @size: size of the region.
648  * @errp: pointer to Error*, to store an error if it happens.
649  */
650 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
651                                              struct Object *owner,
652                                              const MemoryRegionOps *ops,
653                                              void *opaque,
654                                              const char *name,
655                                              uint64_t size,
656                                              Error **errp);
657 
658 /**
659  * memory_region_init_reservation: Initialize a memory region that reserves
660  *                                 I/O space.
661  *
662  * A reservation region primariy serves debugging purposes.  It claims I/O
663  * space that is not supposed to be handled by QEMU itself.  Any access via
664  * the memory API will cause an abort().
665  * This function is deprecated. Use memory_region_init_io() with NULL
666  * callbacks instead.
667  *
668  * @mr: the #MemoryRegion to be initialized
669  * @owner: the object that tracks the region's reference count
670  * @name: used for debugging; not visible to the user or ABI
671  * @size: size of the region.
672  */
673 static inline void memory_region_init_reservation(MemoryRegion *mr,
674                                     Object *owner,
675                                     const char *name,
676                                     uint64_t size)
677 {
678     memory_region_init_io(mr, owner, NULL, mr, name, size);
679 }
680 
681 /**
682  * memory_region_init_iommu: Initialize a memory region of a custom type
683  * that translates addresses
684  *
685  * An IOMMU region translates addresses and forwards accesses to a target
686  * memory region.
687  *
688  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
689  * @instance_size: the IOMMUMemoryRegion subclass instance size
690  * @mrtypename: the type name of the #IOMMUMemoryRegion
691  * @owner: the object that tracks the region's reference count
692  * @name: used for debugging; not visible to the user or ABI
693  * @size: size of the region.
694  */
695 void memory_region_init_iommu(void *_iommu_mr,
696                               size_t instance_size,
697                               const char *mrtypename,
698                               Object *owner,
699                               const char *name,
700                               uint64_t size);
701 
702 /**
703  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
704  *                          region will modify memory directly.
705  *
706  * @mr: the #MemoryRegion to be initialized
707  * @owner: the object that tracks the region's reference count (must be
708  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
709  * @name: name of the memory region
710  * @size: size of the region in bytes
711  * @errp: pointer to Error*, to store an error if it happens.
712  *
713  * This function allocates RAM for a board model or device, and
714  * arranges for it to be migrated (by calling vmstate_register_ram()
715  * if @owner is a DeviceState, or vmstate_register_ram_global() if
716  * @owner is NULL).
717  *
718  * TODO: Currently we restrict @owner to being either NULL (for
719  * global RAM regions with no owner) or devices, so that we can
720  * give the RAM block a unique name for migration purposes.
721  * We should lift this restriction and allow arbitrary Objects.
722  * If you pass a non-NULL non-device @owner then we will assert.
723  */
724 void memory_region_init_ram(MemoryRegion *mr,
725                             struct Object *owner,
726                             const char *name,
727                             uint64_t size,
728                             Error **errp);
729 
730 /**
731  * memory_region_init_rom: Initialize a ROM memory region.
732  *
733  * This has the same effect as calling memory_region_init_ram()
734  * and then marking the resulting region read-only with
735  * memory_region_set_readonly(). This includes arranging for the
736  * contents to be migrated.
737  *
738  * TODO: Currently we restrict @owner to being either NULL (for
739  * global RAM regions with no owner) or devices, so that we can
740  * give the RAM block a unique name for migration purposes.
741  * We should lift this restriction and allow arbitrary Objects.
742  * If you pass a non-NULL non-device @owner then we will assert.
743  *
744  * @mr: the #MemoryRegion to be initialized.
745  * @owner: the object that tracks the region's reference count
746  * @name: Region name, becomes part of RAMBlock name used in migration stream
747  *        must be unique within any device
748  * @size: size of the region.
749  * @errp: pointer to Error*, to store an error if it happens.
750  */
751 void memory_region_init_rom(MemoryRegion *mr,
752                             struct Object *owner,
753                             const char *name,
754                             uint64_t size,
755                             Error **errp);
756 
757 /**
758  * memory_region_init_rom_device:  Initialize a ROM memory region.
759  *                                 Writes are handled via callbacks.
760  *
761  * This function initializes a memory region backed by RAM for reads
762  * and callbacks for writes, and arranges for the RAM backing to
763  * be migrated (by calling vmstate_register_ram()
764  * if @owner is a DeviceState, or vmstate_register_ram_global() if
765  * @owner is NULL).
766  *
767  * TODO: Currently we restrict @owner to being either NULL (for
768  * global RAM regions with no owner) or devices, so that we can
769  * give the RAM block a unique name for migration purposes.
770  * We should lift this restriction and allow arbitrary Objects.
771  * If you pass a non-NULL non-device @owner then we will assert.
772  *
773  * @mr: the #MemoryRegion to be initialized.
774  * @owner: the object that tracks the region's reference count
775  * @ops: callbacks for write access handling (must not be NULL).
776  * @name: Region name, becomes part of RAMBlock name used in migration stream
777  *        must be unique within any device
778  * @size: size of the region.
779  * @errp: pointer to Error*, to store an error if it happens.
780  */
781 void memory_region_init_rom_device(MemoryRegion *mr,
782                                    struct Object *owner,
783                                    const MemoryRegionOps *ops,
784                                    void *opaque,
785                                    const char *name,
786                                    uint64_t size,
787                                    Error **errp);
788 
789 
790 /**
791  * memory_region_owner: get a memory region's owner.
792  *
793  * @mr: the memory region being queried.
794  */
795 struct Object *memory_region_owner(MemoryRegion *mr);
796 
797 /**
798  * memory_region_size: get a memory region's size.
799  *
800  * @mr: the memory region being queried.
801  */
802 uint64_t memory_region_size(MemoryRegion *mr);
803 
804 /**
805  * memory_region_is_ram: check whether a memory region is random access
806  *
807  * Returns %true is a memory region is random access.
808  *
809  * @mr: the memory region being queried
810  */
811 static inline bool memory_region_is_ram(MemoryRegion *mr)
812 {
813     return mr->ram;
814 }
815 
816 /**
817  * memory_region_is_ram_device: check whether a memory region is a ram device
818  *
819  * Returns %true is a memory region is a device backed ram region
820  *
821  * @mr: the memory region being queried
822  */
823 bool memory_region_is_ram_device(MemoryRegion *mr);
824 
825 /**
826  * memory_region_is_romd: check whether a memory region is in ROMD mode
827  *
828  * Returns %true if a memory region is a ROM device and currently set to allow
829  * direct reads.
830  *
831  * @mr: the memory region being queried
832  */
833 static inline bool memory_region_is_romd(MemoryRegion *mr)
834 {
835     return mr->rom_device && mr->romd_mode;
836 }
837 
838 /**
839  * memory_region_get_iommu: check whether a memory region is an iommu
840  *
841  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
842  * otherwise NULL.
843  *
844  * @mr: the memory region being queried
845  */
846 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
847 {
848     if (mr->alias) {
849         return memory_region_get_iommu(mr->alias);
850     }
851     if (mr->is_iommu) {
852         return (IOMMUMemoryRegion *) mr;
853     }
854     return NULL;
855 }
856 
857 /**
858  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
859  *   if an iommu or NULL if not
860  *
861  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
862  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
863  *
864  * @mr: the memory region being queried
865  */
866 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
867         IOMMUMemoryRegion *iommu_mr)
868 {
869     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
870 }
871 
872 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
873 
874 /**
875  * memory_region_iommu_get_min_page_size: get minimum supported page size
876  * for an iommu
877  *
878  * Returns minimum supported page size for an iommu.
879  *
880  * @iommu_mr: the memory region being queried
881  */
882 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
883 
884 /**
885  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
886  *
887  * The notification type will be decided by entry.perm bits:
888  *
889  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
890  * - For MAP (newly added entry) notifies: set entry.perm to the
891  *   permission of the page (which is definitely !IOMMU_NONE).
892  *
893  * Note: for any IOMMU implementation, an in-place mapping change
894  * should be notified with an UNMAP followed by a MAP.
895  *
896  * @iommu_mr: the memory region that was changed
897  * @entry: the new entry in the IOMMU translation table.  The entry
898  *         replaces all old entries for the same virtual I/O address range.
899  *         Deleted entries have .@perm == 0.
900  */
901 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
902                                 IOMMUTLBEntry entry);
903 
904 /**
905  * memory_region_notify_one: notify a change in an IOMMU translation
906  *                           entry to a single notifier
907  *
908  * This works just like memory_region_notify_iommu(), but it only
909  * notifies a specific notifier, not all of them.
910  *
911  * @notifier: the notifier to be notified
912  * @entry: the new entry in the IOMMU translation table.  The entry
913  *         replaces all old entries for the same virtual I/O address range.
914  *         Deleted entries have .@perm == 0.
915  */
916 void memory_region_notify_one(IOMMUNotifier *notifier,
917                               IOMMUTLBEntry *entry);
918 
919 /**
920  * memory_region_register_iommu_notifier: register a notifier for changes to
921  * IOMMU translation entries.
922  *
923  * @mr: the memory region to observe
924  * @n: the IOMMUNotifier to be added; the notify callback receives a
925  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
926  *     ceases to be valid on exit from the notifier.
927  */
928 void memory_region_register_iommu_notifier(MemoryRegion *mr,
929                                            IOMMUNotifier *n);
930 
931 /**
932  * memory_region_iommu_replay: replay existing IOMMU translations to
933  * a notifier with the minimum page granularity returned by
934  * mr->iommu_ops->get_page_size().
935  *
936  * @iommu_mr: the memory region to observe
937  * @n: the notifier to which to replay iommu mappings
938  */
939 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
940 
941 /**
942  * memory_region_iommu_replay_all: replay existing IOMMU translations
943  * to all the notifiers registered.
944  *
945  * @iommu_mr: the memory region to observe
946  */
947 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
948 
949 /**
950  * memory_region_unregister_iommu_notifier: unregister a notifier for
951  * changes to IOMMU translation entries.
952  *
953  * @mr: the memory region which was observed and for which notity_stopped()
954  *      needs to be called
955  * @n: the notifier to be removed.
956  */
957 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
958                                              IOMMUNotifier *n);
959 
960 /**
961  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
962  * defined on the IOMMU.
963  *
964  * Returns 0 if succeded, error code otherwise.
965  *
966  * @iommu_mr: the memory region
967  * @attr: the requested attribute
968  * @data: a pointer to the requested attribute data
969  */
970 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
971                                  enum IOMMUMemoryRegionAttr attr,
972                                  void *data);
973 
974 /**
975  * memory_region_name: get a memory region's name
976  *
977  * Returns the string that was used to initialize the memory region.
978  *
979  * @mr: the memory region being queried
980  */
981 const char *memory_region_name(const MemoryRegion *mr);
982 
983 /**
984  * memory_region_is_logging: return whether a memory region is logging writes
985  *
986  * Returns %true if the memory region is logging writes for the given client
987  *
988  * @mr: the memory region being queried
989  * @client: the client being queried
990  */
991 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
992 
993 /**
994  * memory_region_get_dirty_log_mask: return the clients for which a
995  * memory region is logging writes.
996  *
997  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
998  * are the bit indices.
999  *
1000  * @mr: the memory region being queried
1001  */
1002 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1003 
1004 /**
1005  * memory_region_is_rom: check whether a memory region is ROM
1006  *
1007  * Returns %true is a memory region is read-only memory.
1008  *
1009  * @mr: the memory region being queried
1010  */
1011 static inline bool memory_region_is_rom(MemoryRegion *mr)
1012 {
1013     return mr->ram && mr->readonly;
1014 }
1015 
1016 
1017 /**
1018  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1019  *
1020  * Returns a file descriptor backing a file-based RAM memory region,
1021  * or -1 if the region is not a file-based RAM memory region.
1022  *
1023  * @mr: the RAM or alias memory region being queried.
1024  */
1025 int memory_region_get_fd(MemoryRegion *mr);
1026 
1027 /**
1028  * memory_region_from_host: Convert a pointer into a RAM memory region
1029  * and an offset within it.
1030  *
1031  * Given a host pointer inside a RAM memory region (created with
1032  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1033  * the MemoryRegion and the offset within it.
1034  *
1035  * Use with care; by the time this function returns, the returned pointer is
1036  * not protected by RCU anymore.  If the caller is not within an RCU critical
1037  * section and does not hold the iothread lock, it must have other means of
1038  * protecting the pointer, such as a reference to the region that includes
1039  * the incoming ram_addr_t.
1040  *
1041  * @ptr: the host pointer to be converted
1042  * @offset: the offset within memory region
1043  */
1044 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1045 
1046 /**
1047  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1048  *
1049  * Returns a host pointer to a RAM memory region (created with
1050  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1051  *
1052  * Use with care; by the time this function returns, the returned pointer is
1053  * not protected by RCU anymore.  If the caller is not within an RCU critical
1054  * section and does not hold the iothread lock, it must have other means of
1055  * protecting the pointer, such as a reference to the region that includes
1056  * the incoming ram_addr_t.
1057  *
1058  * @mr: the memory region being queried.
1059  */
1060 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1061 
1062 /* memory_region_ram_resize: Resize a RAM region.
1063  *
1064  * Only legal before guest might have detected the memory size: e.g. on
1065  * incoming migration, or right after reset.
1066  *
1067  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1068  * @newsize: the new size the region
1069  * @errp: pointer to Error*, to store an error if it happens.
1070  */
1071 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1072                               Error **errp);
1073 
1074 /**
1075  * memory_region_set_log: Turn dirty logging on or off for a region.
1076  *
1077  * Turns dirty logging on or off for a specified client (display, migration).
1078  * Only meaningful for RAM regions.
1079  *
1080  * @mr: the memory region being updated.
1081  * @log: whether dirty logging is to be enabled or disabled.
1082  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1083  */
1084 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1085 
1086 /**
1087  * memory_region_get_dirty: Check whether a range of bytes is dirty
1088  *                          for a specified client.
1089  *
1090  * Checks whether a range of bytes has been written to since the last
1091  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1092  * must be enabled.
1093  *
1094  * @mr: the memory region being queried.
1095  * @addr: the address (relative to the start of the region) being queried.
1096  * @size: the size of the range being queried.
1097  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1098  *          %DIRTY_MEMORY_VGA.
1099  */
1100 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1101                              hwaddr size, unsigned client);
1102 
1103 /**
1104  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1105  *
1106  * Marks a range of bytes as dirty, after it has been dirtied outside
1107  * guest code.
1108  *
1109  * @mr: the memory region being dirtied.
1110  * @addr: the address (relative to the start of the region) being dirtied.
1111  * @size: size of the range being dirtied.
1112  */
1113 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1114                              hwaddr size);
1115 
1116 /**
1117  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1118  *                                         bitmap and clear it.
1119  *
1120  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1121  * returns the snapshot.  The snapshot can then be used to query dirty
1122  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1123  * querying the same page multiple times, which is especially useful for
1124  * display updates where the scanlines often are not page aligned.
1125  *
1126  * The dirty bitmap region which gets copyed into the snapshot (and
1127  * cleared afterwards) can be larger than requested.  The boundaries
1128  * are rounded up/down so complete bitmap longs (covering 64 pages on
1129  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1130  * isn't a problem for display updates as the extra pages are outside
1131  * the visible area, and in case the visible area changes a full
1132  * display redraw is due anyway.  Should other use cases for this
1133  * function emerge we might have to revisit this implementation
1134  * detail.
1135  *
1136  * Use g_free to release DirtyBitmapSnapshot.
1137  *
1138  * @mr: the memory region being queried.
1139  * @addr: the address (relative to the start of the region) being queried.
1140  * @size: the size of the range being queried.
1141  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1142  */
1143 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1144                                                             hwaddr addr,
1145                                                             hwaddr size,
1146                                                             unsigned client);
1147 
1148 /**
1149  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1150  *                                   in the specified dirty bitmap snapshot.
1151  *
1152  * @mr: the memory region being queried.
1153  * @snap: the dirty bitmap snapshot
1154  * @addr: the address (relative to the start of the region) being queried.
1155  * @size: the size of the range being queried.
1156  */
1157 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1158                                       DirtyBitmapSnapshot *snap,
1159                                       hwaddr addr, hwaddr size);
1160 
1161 /**
1162  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1163  *                            client.
1164  *
1165  * Marks a range of pages as no longer dirty.
1166  *
1167  * @mr: the region being updated.
1168  * @addr: the start of the subrange being cleaned.
1169  * @size: the size of the subrange being cleaned.
1170  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1171  *          %DIRTY_MEMORY_VGA.
1172  */
1173 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1174                                hwaddr size, unsigned client);
1175 
1176 /**
1177  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1178  *
1179  * Allows a memory region to be marked as read-only (turning it into a ROM).
1180  * only useful on RAM regions.
1181  *
1182  * @mr: the region being updated.
1183  * @readonly: whether rhe region is to be ROM or RAM.
1184  */
1185 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1186 
1187 /**
1188  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1189  *
1190  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1191  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1192  * device is mapped to guest memory and satisfies read access directly.
1193  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1194  * Writes are always handled by the #MemoryRegion.write function.
1195  *
1196  * @mr: the memory region to be updated
1197  * @romd_mode: %true to put the region into ROMD mode
1198  */
1199 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1200 
1201 /**
1202  * memory_region_set_coalescing: Enable memory coalescing for the region.
1203  *
1204  * Enabled writes to a region to be queued for later processing. MMIO ->write
1205  * callbacks may be delayed until a non-coalesced MMIO is issued.
1206  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1207  *
1208  * @mr: the memory region to be write coalesced
1209  */
1210 void memory_region_set_coalescing(MemoryRegion *mr);
1211 
1212 /**
1213  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1214  *                               a region.
1215  *
1216  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1217  * Multiple calls can be issued coalesced disjoint ranges.
1218  *
1219  * @mr: the memory region to be updated.
1220  * @offset: the start of the range within the region to be coalesced.
1221  * @size: the size of the subrange to be coalesced.
1222  */
1223 void memory_region_add_coalescing(MemoryRegion *mr,
1224                                   hwaddr offset,
1225                                   uint64_t size);
1226 
1227 /**
1228  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1229  *
1230  * Disables any coalescing caused by memory_region_set_coalescing() or
1231  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1232  * hardware.
1233  *
1234  * @mr: the memory region to be updated.
1235  */
1236 void memory_region_clear_coalescing(MemoryRegion *mr);
1237 
1238 /**
1239  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1240  *                                    accesses.
1241  *
1242  * Ensure that pending coalesced MMIO request are flushed before the memory
1243  * region is accessed. This property is automatically enabled for all regions
1244  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1245  *
1246  * @mr: the memory region to be updated.
1247  */
1248 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1249 
1250 /**
1251  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1252  *                                      accesses.
1253  *
1254  * Clear the automatic coalesced MMIO flushing enabled via
1255  * memory_region_set_flush_coalesced. Note that this service has no effect on
1256  * memory regions that have MMIO coalescing enabled for themselves. For them,
1257  * automatic flushing will stop once coalescing is disabled.
1258  *
1259  * @mr: the memory region to be updated.
1260  */
1261 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1262 
1263 /**
1264  * memory_region_clear_global_locking: Declares that access processing does
1265  *                                     not depend on the QEMU global lock.
1266  *
1267  * By clearing this property, accesses to the memory region will be processed
1268  * outside of QEMU's global lock (unless the lock is held on when issuing the
1269  * access request). In this case, the device model implementing the access
1270  * handlers is responsible for synchronization of concurrency.
1271  *
1272  * @mr: the memory region to be updated.
1273  */
1274 void memory_region_clear_global_locking(MemoryRegion *mr);
1275 
1276 /**
1277  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1278  *                            is written to a location.
1279  *
1280  * Marks a word in an IO region (initialized with memory_region_init_io())
1281  * as a trigger for an eventfd event.  The I/O callback will not be called.
1282  * The caller must be prepared to handle failure (that is, take the required
1283  * action if the callback _is_ called).
1284  *
1285  * @mr: the memory region being updated.
1286  * @addr: the address within @mr that is to be monitored
1287  * @size: the size of the access to trigger the eventfd
1288  * @match_data: whether to match against @data, instead of just @addr
1289  * @data: the data to match against the guest write
1290  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1291  **/
1292 void memory_region_add_eventfd(MemoryRegion *mr,
1293                                hwaddr addr,
1294                                unsigned size,
1295                                bool match_data,
1296                                uint64_t data,
1297                                EventNotifier *e);
1298 
1299 /**
1300  * memory_region_del_eventfd: Cancel an eventfd.
1301  *
1302  * Cancels an eventfd trigger requested by a previous
1303  * memory_region_add_eventfd() call.
1304  *
1305  * @mr: the memory region being updated.
1306  * @addr: the address within @mr that is to be monitored
1307  * @size: the size of the access to trigger the eventfd
1308  * @match_data: whether to match against @data, instead of just @addr
1309  * @data: the data to match against the guest write
1310  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1311  */
1312 void memory_region_del_eventfd(MemoryRegion *mr,
1313                                hwaddr addr,
1314                                unsigned size,
1315                                bool match_data,
1316                                uint64_t data,
1317                                EventNotifier *e);
1318 
1319 /**
1320  * memory_region_add_subregion: Add a subregion to a container.
1321  *
1322  * Adds a subregion at @offset.  The subregion may not overlap with other
1323  * subregions (except for those explicitly marked as overlapping).  A region
1324  * may only be added once as a subregion (unless removed with
1325  * memory_region_del_subregion()); use memory_region_init_alias() if you
1326  * want a region to be a subregion in multiple locations.
1327  *
1328  * @mr: the region to contain the new subregion; must be a container
1329  *      initialized with memory_region_init().
1330  * @offset: the offset relative to @mr where @subregion is added.
1331  * @subregion: the subregion to be added.
1332  */
1333 void memory_region_add_subregion(MemoryRegion *mr,
1334                                  hwaddr offset,
1335                                  MemoryRegion *subregion);
1336 /**
1337  * memory_region_add_subregion_overlap: Add a subregion to a container
1338  *                                      with overlap.
1339  *
1340  * Adds a subregion at @offset.  The subregion may overlap with other
1341  * subregions.  Conflicts are resolved by having a higher @priority hide a
1342  * lower @priority. Subregions without priority are taken as @priority 0.
1343  * A region may only be added once as a subregion (unless removed with
1344  * memory_region_del_subregion()); use memory_region_init_alias() if you
1345  * want a region to be a subregion in multiple locations.
1346  *
1347  * @mr: the region to contain the new subregion; must be a container
1348  *      initialized with memory_region_init().
1349  * @offset: the offset relative to @mr where @subregion is added.
1350  * @subregion: the subregion to be added.
1351  * @priority: used for resolving overlaps; highest priority wins.
1352  */
1353 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1354                                          hwaddr offset,
1355                                          MemoryRegion *subregion,
1356                                          int priority);
1357 
1358 /**
1359  * memory_region_get_ram_addr: Get the ram address associated with a memory
1360  *                             region
1361  */
1362 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1363 
1364 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1365 /**
1366  * memory_region_del_subregion: Remove a subregion.
1367  *
1368  * Removes a subregion from its container.
1369  *
1370  * @mr: the container to be updated.
1371  * @subregion: the region being removed; must be a current subregion of @mr.
1372  */
1373 void memory_region_del_subregion(MemoryRegion *mr,
1374                                  MemoryRegion *subregion);
1375 
1376 /*
1377  * memory_region_set_enabled: dynamically enable or disable a region
1378  *
1379  * Enables or disables a memory region.  A disabled memory region
1380  * ignores all accesses to itself and its subregions.  It does not
1381  * obscure sibling subregions with lower priority - it simply behaves as
1382  * if it was removed from the hierarchy.
1383  *
1384  * Regions default to being enabled.
1385  *
1386  * @mr: the region to be updated
1387  * @enabled: whether to enable or disable the region
1388  */
1389 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1390 
1391 /*
1392  * memory_region_set_address: dynamically update the address of a region
1393  *
1394  * Dynamically updates the address of a region, relative to its container.
1395  * May be used on regions are currently part of a memory hierarchy.
1396  *
1397  * @mr: the region to be updated
1398  * @addr: new address, relative to container region
1399  */
1400 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1401 
1402 /*
1403  * memory_region_set_size: dynamically update the size of a region.
1404  *
1405  * Dynamically updates the size of a region.
1406  *
1407  * @mr: the region to be updated
1408  * @size: used size of the region.
1409  */
1410 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1411 
1412 /*
1413  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1414  *
1415  * Dynamically updates the offset into the target region that an alias points
1416  * to, as if the fourth argument to memory_region_init_alias() has changed.
1417  *
1418  * @mr: the #MemoryRegion to be updated; should be an alias.
1419  * @offset: the new offset into the target memory region
1420  */
1421 void memory_region_set_alias_offset(MemoryRegion *mr,
1422                                     hwaddr offset);
1423 
1424 /**
1425  * memory_region_present: checks if an address relative to a @container
1426  * translates into #MemoryRegion within @container
1427  *
1428  * Answer whether a #MemoryRegion within @container covers the address
1429  * @addr.
1430  *
1431  * @container: a #MemoryRegion within which @addr is a relative address
1432  * @addr: the area within @container to be searched
1433  */
1434 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1435 
1436 /**
1437  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1438  * into any address space.
1439  *
1440  * @mr: a #MemoryRegion which should be checked if it's mapped
1441  */
1442 bool memory_region_is_mapped(MemoryRegion *mr);
1443 
1444 /**
1445  * memory_region_find: translate an address/size relative to a
1446  * MemoryRegion into a #MemoryRegionSection.
1447  *
1448  * Locates the first #MemoryRegion within @mr that overlaps the range
1449  * given by @addr and @size.
1450  *
1451  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1452  * It will have the following characteristics:
1453  *    .@size = 0 iff no overlap was found
1454  *    .@mr is non-%NULL iff an overlap was found
1455  *
1456  * Remember that in the return value the @offset_within_region is
1457  * relative to the returned region (in the .@mr field), not to the
1458  * @mr argument.
1459  *
1460  * Similarly, the .@offset_within_address_space is relative to the
1461  * address space that contains both regions, the passed and the
1462  * returned one.  However, in the special case where the @mr argument
1463  * has no container (and thus is the root of the address space), the
1464  * following will hold:
1465  *    .@offset_within_address_space >= @addr
1466  *    .@offset_within_address_space + .@size <= @addr + @size
1467  *
1468  * @mr: a MemoryRegion within which @addr is a relative address
1469  * @addr: start of the area within @as to be searched
1470  * @size: size of the area to be searched
1471  */
1472 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1473                                        hwaddr addr, uint64_t size);
1474 
1475 /**
1476  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1477  *
1478  * Synchronizes the dirty page log for all address spaces.
1479  */
1480 void memory_global_dirty_log_sync(void);
1481 
1482 /**
1483  * memory_region_transaction_begin: Start a transaction.
1484  *
1485  * During a transaction, changes will be accumulated and made visible
1486  * only when the transaction ends (is committed).
1487  */
1488 void memory_region_transaction_begin(void);
1489 
1490 /**
1491  * memory_region_transaction_commit: Commit a transaction and make changes
1492  *                                   visible to the guest.
1493  */
1494 void memory_region_transaction_commit(void);
1495 
1496 /**
1497  * memory_listener_register: register callbacks to be called when memory
1498  *                           sections are mapped or unmapped into an address
1499  *                           space
1500  *
1501  * @listener: an object containing the callbacks to be called
1502  * @filter: if non-%NULL, only regions in this address space will be observed
1503  */
1504 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1505 
1506 /**
1507  * memory_listener_unregister: undo the effect of memory_listener_register()
1508  *
1509  * @listener: an object containing the callbacks to be removed
1510  */
1511 void memory_listener_unregister(MemoryListener *listener);
1512 
1513 /**
1514  * memory_global_dirty_log_start: begin dirty logging for all regions
1515  */
1516 void memory_global_dirty_log_start(void);
1517 
1518 /**
1519  * memory_global_dirty_log_stop: end dirty logging for all regions
1520  */
1521 void memory_global_dirty_log_stop(void);
1522 
1523 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1524                 bool dispatch_tree);
1525 
1526 /**
1527  * memory_region_request_mmio_ptr: request a pointer to an mmio
1528  * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1529  * When the device wants to invalidate the pointer it will call
1530  * memory_region_invalidate_mmio_ptr.
1531  *
1532  * @mr: #MemoryRegion to check
1533  * @addr: address within that region
1534  *
1535  * Returns true on success, false otherwise.
1536  */
1537 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1538 
1539 /**
1540  * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1541  * previously requested.
1542  * In the end that means that if something wants to execute from this area it
1543  * will need to request the pointer again.
1544  *
1545  * @mr: #MemoryRegion associated to the pointer.
1546  * @offset: offset within the memory region
1547  * @size: size of that area.
1548  */
1549 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1550                                        unsigned size);
1551 
1552 /**
1553  * memory_region_dispatch_read: perform a read directly to the specified
1554  * MemoryRegion.
1555  *
1556  * @mr: #MemoryRegion to access
1557  * @addr: address within that region
1558  * @pval: pointer to uint64_t which the data is written to
1559  * @size: size of the access in bytes
1560  * @attrs: memory transaction attributes to use for the access
1561  */
1562 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1563                                         hwaddr addr,
1564                                         uint64_t *pval,
1565                                         unsigned size,
1566                                         MemTxAttrs attrs);
1567 /**
1568  * memory_region_dispatch_write: perform a write directly to the specified
1569  * MemoryRegion.
1570  *
1571  * @mr: #MemoryRegion to access
1572  * @addr: address within that region
1573  * @data: data to write
1574  * @size: size of the access in bytes
1575  * @attrs: memory transaction attributes to use for the access
1576  */
1577 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1578                                          hwaddr addr,
1579                                          uint64_t data,
1580                                          unsigned size,
1581                                          MemTxAttrs attrs);
1582 
1583 /**
1584  * address_space_init: initializes an address space
1585  *
1586  * @as: an uninitialized #AddressSpace
1587  * @root: a #MemoryRegion that routes addresses for the address space
1588  * @name: an address space name.  The name is only used for debugging
1589  *        output.
1590  */
1591 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1592 
1593 /**
1594  * address_space_destroy: destroy an address space
1595  *
1596  * Releases all resources associated with an address space.  After an address space
1597  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1598  * as well.
1599  *
1600  * @as: address space to be destroyed
1601  */
1602 void address_space_destroy(AddressSpace *as);
1603 
1604 /**
1605  * address_space_rw: read from or write to an address space.
1606  *
1607  * Return a MemTxResult indicating whether the operation succeeded
1608  * or failed (eg unassigned memory, device rejected the transaction,
1609  * IOMMU fault).
1610  *
1611  * @as: #AddressSpace to be accessed
1612  * @addr: address within that address space
1613  * @attrs: memory transaction attributes
1614  * @buf: buffer with the data transferred
1615  * @len: the number of bytes to read or write
1616  * @is_write: indicates the transfer direction
1617  */
1618 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1619                              MemTxAttrs attrs, uint8_t *buf,
1620                              int len, bool is_write);
1621 
1622 /**
1623  * address_space_write: write to address space.
1624  *
1625  * Return a MemTxResult indicating whether the operation succeeded
1626  * or failed (eg unassigned memory, device rejected the transaction,
1627  * IOMMU fault).
1628  *
1629  * @as: #AddressSpace to be accessed
1630  * @addr: address within that address space
1631  * @attrs: memory transaction attributes
1632  * @buf: buffer with the data transferred
1633  * @len: the number of bytes to write
1634  */
1635 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1636                                 MemTxAttrs attrs,
1637                                 const uint8_t *buf, int len);
1638 
1639 /* address_space_ld*: load from an address space
1640  * address_space_st*: store to an address space
1641  *
1642  * These functions perform a load or store of the byte, word,
1643  * longword or quad to the specified address within the AddressSpace.
1644  * The _le suffixed functions treat the data as little endian;
1645  * _be indicates big endian; no suffix indicates "same endianness
1646  * as guest CPU".
1647  *
1648  * The "guest CPU endianness" accessors are deprecated for use outside
1649  * target-* code; devices should be CPU-agnostic and use either the LE
1650  * or the BE accessors.
1651  *
1652  * @as #AddressSpace to be accessed
1653  * @addr: address within that address space
1654  * @val: data value, for stores
1655  * @attrs: memory transaction attributes
1656  * @result: location to write the success/failure of the transaction;
1657  *   if NULL, this information is discarded
1658  */
1659 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1660                             MemTxAttrs attrs, MemTxResult *result);
1661 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1662                             MemTxAttrs attrs, MemTxResult *result);
1663 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1664                             MemTxAttrs attrs, MemTxResult *result);
1665 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1666                             MemTxAttrs attrs, MemTxResult *result);
1667 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1668                             MemTxAttrs attrs, MemTxResult *result);
1669 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1670                             MemTxAttrs attrs, MemTxResult *result);
1671 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1672                             MemTxAttrs attrs, MemTxResult *result);
1673 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1674                             MemTxAttrs attrs, MemTxResult *result);
1675 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1676                             MemTxAttrs attrs, MemTxResult *result);
1677 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1678                             MemTxAttrs attrs, MemTxResult *result);
1679 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1680                             MemTxAttrs attrs, MemTxResult *result);
1681 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1682                             MemTxAttrs attrs, MemTxResult *result);
1683 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1684                             MemTxAttrs attrs, MemTxResult *result);
1685 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1686                             MemTxAttrs attrs, MemTxResult *result);
1687 
1688 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1689 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1690 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1691 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1692 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1693 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1694 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1695 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1696 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1697 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1698 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1699 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1700 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1701 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1702 
1703 struct MemoryRegionCache {
1704     hwaddr xlat;
1705     hwaddr len;
1706     AddressSpace *as;
1707 };
1708 
1709 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1710 
1711 /* address_space_cache_init: prepare for repeated access to a physical
1712  * memory region
1713  *
1714  * @cache: #MemoryRegionCache to be filled
1715  * @as: #AddressSpace to be accessed
1716  * @addr: address within that address space
1717  * @len: length of buffer
1718  * @is_write: indicates the transfer direction
1719  *
1720  * Will only work with RAM, and may map a subset of the requested range by
1721  * returning a value that is less than @len.  On failure, return a negative
1722  * errno value.
1723  *
1724  * Because it only works with RAM, this function can be used for
1725  * read-modify-write operations.  In this case, is_write should be %true.
1726  *
1727  * Note that addresses passed to the address_space_*_cached functions
1728  * are relative to @addr.
1729  */
1730 int64_t address_space_cache_init(MemoryRegionCache *cache,
1731                                  AddressSpace *as,
1732                                  hwaddr addr,
1733                                  hwaddr len,
1734                                  bool is_write);
1735 
1736 /**
1737  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1738  *
1739  * @cache: The #MemoryRegionCache to operate on.
1740  * @addr: The first physical address that was written, relative to the
1741  * address that was passed to @address_space_cache_init.
1742  * @access_len: The number of bytes that were written starting at @addr.
1743  */
1744 void address_space_cache_invalidate(MemoryRegionCache *cache,
1745                                     hwaddr addr,
1746                                     hwaddr access_len);
1747 
1748 /**
1749  * address_space_cache_destroy: free a #MemoryRegionCache
1750  *
1751  * @cache: The #MemoryRegionCache whose memory should be released.
1752  */
1753 void address_space_cache_destroy(MemoryRegionCache *cache);
1754 
1755 /* address_space_ld*_cached: load from a cached #MemoryRegion
1756  * address_space_st*_cached: store into a cached #MemoryRegion
1757  *
1758  * These functions perform a load or store of the byte, word,
1759  * longword or quad to the specified address.  The address is
1760  * a physical address in the AddressSpace, but it must lie within
1761  * a #MemoryRegion that was mapped with address_space_cache_init.
1762  *
1763  * The _le suffixed functions treat the data as little endian;
1764  * _be indicates big endian; no suffix indicates "same endianness
1765  * as guest CPU".
1766  *
1767  * The "guest CPU endianness" accessors are deprecated for use outside
1768  * target-* code; devices should be CPU-agnostic and use either the LE
1769  * or the BE accessors.
1770  *
1771  * @cache: previously initialized #MemoryRegionCache to be accessed
1772  * @addr: address within the address space
1773  * @val: data value, for stores
1774  * @attrs: memory transaction attributes
1775  * @result: location to write the success/failure of the transaction;
1776  *   if NULL, this information is discarded
1777  */
1778 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1779                             MemTxAttrs attrs, MemTxResult *result);
1780 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1781                             MemTxAttrs attrs, MemTxResult *result);
1782 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1783                             MemTxAttrs attrs, MemTxResult *result);
1784 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1785                             MemTxAttrs attrs, MemTxResult *result);
1786 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1787                             MemTxAttrs attrs, MemTxResult *result);
1788 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1789                             MemTxAttrs attrs, MemTxResult *result);
1790 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1791                             MemTxAttrs attrs, MemTxResult *result);
1792 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1793                             MemTxAttrs attrs, MemTxResult *result);
1794 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1795                             MemTxAttrs attrs, MemTxResult *result);
1796 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1797                             MemTxAttrs attrs, MemTxResult *result);
1798 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1799                             MemTxAttrs attrs, MemTxResult *result);
1800 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1801                             MemTxAttrs attrs, MemTxResult *result);
1802 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1803                             MemTxAttrs attrs, MemTxResult *result);
1804 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1805                             MemTxAttrs attrs, MemTxResult *result);
1806 
1807 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1808 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1809 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1810 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1811 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1812 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1813 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1814 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1815 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1816 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1817 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1818 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1819 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1820 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1821 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1822  * entry. Should be called from an RCU critical section.
1823  */
1824 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1825                                             bool is_write);
1826 
1827 /* address_space_translate: translate an address range into an address space
1828  * into a MemoryRegion and an address range into that section.  Should be
1829  * called from an RCU critical section, to avoid that the last reference
1830  * to the returned region disappears after address_space_translate returns.
1831  *
1832  * @fv: #FlatView to be accessed
1833  * @addr: address within that address space
1834  * @xlat: pointer to address within the returned memory region section's
1835  * #MemoryRegion.
1836  * @len: pointer to length
1837  * @is_write: indicates the transfer direction
1838  */
1839 MemoryRegion *flatview_translate(FlatView *fv,
1840                                  hwaddr addr, hwaddr *xlat,
1841                                  hwaddr *len, bool is_write);
1842 
1843 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1844                                                     hwaddr addr, hwaddr *xlat,
1845                                                     hwaddr *len, bool is_write)
1846 {
1847     return flatview_translate(address_space_to_flatview(as),
1848                               addr, xlat, len, is_write);
1849 }
1850 
1851 /* address_space_access_valid: check for validity of accessing an address
1852  * space range
1853  *
1854  * Check whether memory is assigned to the given address space range, and
1855  * access is permitted by any IOMMU regions that are active for the address
1856  * space.
1857  *
1858  * For now, addr and len should be aligned to a page size.  This limitation
1859  * will be lifted in the future.
1860  *
1861  * @as: #AddressSpace to be accessed
1862  * @addr: address within that address space
1863  * @len: length of the area to be checked
1864  * @is_write: indicates the transfer direction
1865  */
1866 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1867 
1868 /* address_space_map: map a physical memory region into a host virtual address
1869  *
1870  * May map a subset of the requested range, given by and returned in @plen.
1871  * May return %NULL if resources needed to perform the mapping are exhausted.
1872  * Use only for reads OR writes - not for read-modify-write operations.
1873  * Use cpu_register_map_client() to know when retrying the map operation is
1874  * likely to succeed.
1875  *
1876  * @as: #AddressSpace to be accessed
1877  * @addr: address within that address space
1878  * @plen: pointer to length of buffer; updated on return
1879  * @is_write: indicates the transfer direction
1880  */
1881 void *address_space_map(AddressSpace *as, hwaddr addr,
1882                         hwaddr *plen, bool is_write);
1883 
1884 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1885  *
1886  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1887  * the amount of memory that was actually read or written by the caller.
1888  *
1889  * @as: #AddressSpace used
1890  * @buffer: host pointer as returned by address_space_map()
1891  * @len: buffer length as returned by address_space_map()
1892  * @access_len: amount of data actually transferred
1893  * @is_write: indicates the transfer direction
1894  */
1895 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1896                          int is_write, hwaddr access_len);
1897 
1898 
1899 /* Internal functions, part of the implementation of address_space_read.  */
1900 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1901                                    MemTxAttrs attrs, uint8_t *buf,
1902                                    int len, hwaddr addr1, hwaddr l,
1903                                    MemoryRegion *mr);
1904 
1905 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
1906                                MemTxAttrs attrs, uint8_t *buf, int len);
1907 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1908 
1909 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1910 {
1911     if (is_write) {
1912         return memory_region_is_ram(mr) &&
1913                !mr->readonly && !memory_region_is_ram_device(mr);
1914     } else {
1915         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1916                memory_region_is_romd(mr);
1917     }
1918 }
1919 
1920 /**
1921  * address_space_read: read from an address space.
1922  *
1923  * Return a MemTxResult indicating whether the operation succeeded
1924  * or failed (eg unassigned memory, device rejected the transaction,
1925  * IOMMU fault).
1926  *
1927  * @fv: #FlatView to be accessed
1928  * @addr: address within that address space
1929  * @attrs: memory transaction attributes
1930  * @buf: buffer with the data transferred
1931  */
1932 static inline __attribute__((__always_inline__))
1933 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
1934                           uint8_t *buf, int len)
1935 {
1936     MemTxResult result = MEMTX_OK;
1937     hwaddr l, addr1;
1938     void *ptr;
1939     MemoryRegion *mr;
1940 
1941     if (__builtin_constant_p(len)) {
1942         if (len) {
1943             rcu_read_lock();
1944             l = len;
1945             mr = flatview_translate(fv, addr, &addr1, &l, false);
1946             if (len == l && memory_access_is_direct(mr, false)) {
1947                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1948                 memcpy(buf, ptr, len);
1949             } else {
1950                 result = flatview_read_continue(fv, addr, attrs, buf, len,
1951                                                 addr1, l, mr);
1952             }
1953             rcu_read_unlock();
1954         }
1955     } else {
1956         result = flatview_read_full(fv, addr, attrs, buf, len);
1957     }
1958     return result;
1959 }
1960 
1961 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1962                                              MemTxAttrs attrs, uint8_t *buf,
1963                                              int len)
1964 {
1965     return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
1966 }
1967 
1968 /**
1969  * address_space_read_cached: read from a cached RAM region
1970  *
1971  * @cache: Cached region to be addressed
1972  * @addr: address relative to the base of the RAM region
1973  * @buf: buffer with the data transferred
1974  * @len: length of the data transferred
1975  */
1976 static inline void
1977 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1978                           void *buf, int len)
1979 {
1980     assert(addr < cache->len && len <= cache->len - addr);
1981     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1982 }
1983 
1984 /**
1985  * address_space_write_cached: write to a cached RAM region
1986  *
1987  * @cache: Cached region to be addressed
1988  * @addr: address relative to the base of the RAM region
1989  * @buf: buffer with the data transferred
1990  * @len: length of the data transferred
1991  */
1992 static inline void
1993 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1994                            void *buf, int len)
1995 {
1996     assert(addr < cache->len && len <= cache->len - addr);
1997     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1998 }
1999 
2000 #endif
2001 
2002 #endif
2003