1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/ramlist.h" 23 #include "qemu/queue.h" 24 #include "qemu/int128.h" 25 #include "qemu/notify.h" 26 #include "qom/object.h" 27 #include "qemu/rcu.h" 28 #include "hw/qdev-core.h" 29 30 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 31 32 #define MAX_PHYS_ADDR_SPACE_BITS 62 33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 34 35 #define TYPE_MEMORY_REGION "qemu:memory-region" 36 #define MEMORY_REGION(obj) \ 37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 38 39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 40 #define IOMMU_MEMORY_REGION(obj) \ 41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 42 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 44 TYPE_IOMMU_MEMORY_REGION) 45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 47 TYPE_IOMMU_MEMORY_REGION) 48 49 typedef struct MemoryRegionOps MemoryRegionOps; 50 typedef struct MemoryRegionMmio MemoryRegionMmio; 51 52 struct MemoryRegionMmio { 53 CPUReadMemoryFunc *read[3]; 54 CPUWriteMemoryFunc *write[3]; 55 }; 56 57 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 58 59 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 60 typedef enum { 61 IOMMU_NONE = 0, 62 IOMMU_RO = 1, 63 IOMMU_WO = 2, 64 IOMMU_RW = 3, 65 } IOMMUAccessFlags; 66 67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 68 69 struct IOMMUTLBEntry { 70 AddressSpace *target_as; 71 hwaddr iova; 72 hwaddr translated_addr; 73 hwaddr addr_mask; /* 0xfff = 4k translation */ 74 IOMMUAccessFlags perm; 75 }; 76 77 /* 78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 79 * register with one or multiple IOMMU Notifier capability bit(s). 80 */ 81 typedef enum { 82 IOMMU_NOTIFIER_NONE = 0, 83 /* Notify cache invalidations */ 84 IOMMU_NOTIFIER_UNMAP = 0x1, 85 /* Notify entry changes (newly created entries) */ 86 IOMMU_NOTIFIER_MAP = 0x2, 87 } IOMMUNotifierFlag; 88 89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 90 91 struct IOMMUNotifier; 92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 93 IOMMUTLBEntry *data); 94 95 struct IOMMUNotifier { 96 IOMMUNotify notify; 97 IOMMUNotifierFlag notifier_flags; 98 /* Notify for address space range start <= addr <= end */ 99 hwaddr start; 100 hwaddr end; 101 QLIST_ENTRY(IOMMUNotifier) node; 102 }; 103 typedef struct IOMMUNotifier IOMMUNotifier; 104 105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 106 IOMMUNotifierFlag flags, 107 hwaddr start, hwaddr end) 108 { 109 n->notify = fn; 110 n->notifier_flags = flags; 111 n->start = start; 112 n->end = end; 113 } 114 115 /* 116 * Memory region callbacks 117 */ 118 struct MemoryRegionOps { 119 /* Read from the memory region. @addr is relative to @mr; @size is 120 * in bytes. */ 121 uint64_t (*read)(void *opaque, 122 hwaddr addr, 123 unsigned size); 124 /* Write to the memory region. @addr is relative to @mr; @size is 125 * in bytes. */ 126 void (*write)(void *opaque, 127 hwaddr addr, 128 uint64_t data, 129 unsigned size); 130 131 MemTxResult (*read_with_attrs)(void *opaque, 132 hwaddr addr, 133 uint64_t *data, 134 unsigned size, 135 MemTxAttrs attrs); 136 MemTxResult (*write_with_attrs)(void *opaque, 137 hwaddr addr, 138 uint64_t data, 139 unsigned size, 140 MemTxAttrs attrs); 141 /* Instruction execution pre-callback: 142 * @addr is the address of the access relative to the @mr. 143 * @size is the size of the area returned by the callback. 144 * @offset is the location of the pointer inside @mr. 145 * 146 * Returns a pointer to a location which contains guest code. 147 */ 148 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size, 149 unsigned *offset); 150 151 enum device_endian endianness; 152 /* Guest-visible constraints: */ 153 struct { 154 /* If nonzero, specify bounds on access sizes beyond which a machine 155 * check is thrown. 156 */ 157 unsigned min_access_size; 158 unsigned max_access_size; 159 /* If true, unaligned accesses are supported. Otherwise unaligned 160 * accesses throw machine checks. 161 */ 162 bool unaligned; 163 /* 164 * If present, and returns #false, the transaction is not accepted 165 * by the device (and results in machine dependent behaviour such 166 * as a machine check exception). 167 */ 168 bool (*accepts)(void *opaque, hwaddr addr, 169 unsigned size, bool is_write); 170 } valid; 171 /* Internal implementation constraints: */ 172 struct { 173 /* If nonzero, specifies the minimum size implemented. Smaller sizes 174 * will be rounded upwards and a partial result will be returned. 175 */ 176 unsigned min_access_size; 177 /* If nonzero, specifies the maximum size implemented. Larger sizes 178 * will be done as a series of accesses with smaller sizes. 179 */ 180 unsigned max_access_size; 181 /* If true, unaligned accesses are supported. Otherwise all accesses 182 * are converted to (possibly multiple) naturally aligned accesses. 183 */ 184 bool unaligned; 185 } impl; 186 187 /* If .read and .write are not present, old_mmio may be used for 188 * backwards compatibility with old mmio registration 189 */ 190 const MemoryRegionMmio old_mmio; 191 }; 192 193 typedef struct IOMMUMemoryRegionClass { 194 /* private */ 195 struct DeviceClass parent_class; 196 197 /* 198 * Return a TLB entry that contains a given address. Flag should 199 * be the access permission of this translation operation. We can 200 * set flag to IOMMU_NONE to mean that we don't need any 201 * read/write permission checks, like, when for region replay. 202 */ 203 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 204 IOMMUAccessFlags flag); 205 /* Returns minimum supported page size */ 206 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 207 /* Called when IOMMU Notifier flag changed */ 208 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 209 IOMMUNotifierFlag old_flags, 210 IOMMUNotifierFlag new_flags); 211 /* Set this up to provide customized IOMMU replay function */ 212 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 213 } IOMMUMemoryRegionClass; 214 215 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 216 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 217 218 struct MemoryRegion { 219 Object parent_obj; 220 221 /* All fields are private - violators will be prosecuted */ 222 223 /* The following fields should fit in a cache line */ 224 bool romd_mode; 225 bool ram; 226 bool subpage; 227 bool readonly; /* For RAM regions */ 228 bool rom_device; 229 bool flush_coalesced_mmio; 230 bool global_locking; 231 uint8_t dirty_log_mask; 232 bool is_iommu; 233 RAMBlock *ram_block; 234 Object *owner; 235 236 const MemoryRegionOps *ops; 237 void *opaque; 238 MemoryRegion *container; 239 Int128 size; 240 hwaddr addr; 241 void (*destructor)(MemoryRegion *mr); 242 uint64_t align; 243 bool terminates; 244 bool ram_device; 245 bool enabled; 246 bool warning_printed; /* For reservations */ 247 uint8_t vga_logging_count; 248 MemoryRegion *alias; 249 hwaddr alias_offset; 250 int32_t priority; 251 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 252 QTAILQ_ENTRY(MemoryRegion) subregions_link; 253 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 254 const char *name; 255 unsigned ioeventfd_nb; 256 MemoryRegionIoeventfd *ioeventfds; 257 }; 258 259 struct IOMMUMemoryRegion { 260 MemoryRegion parent_obj; 261 262 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 263 IOMMUNotifierFlag iommu_notify_flags; 264 }; 265 266 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 267 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 268 269 /** 270 * MemoryListener: callbacks structure for updates to the physical memory map 271 * 272 * Allows a component to adjust to changes in the guest-visible memory map. 273 * Use with memory_listener_register() and memory_listener_unregister(). 274 */ 275 struct MemoryListener { 276 void (*begin)(MemoryListener *listener); 277 void (*commit)(MemoryListener *listener); 278 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 279 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 280 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 281 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 282 int old, int new); 283 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 284 int old, int new); 285 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 286 void (*log_global_start)(MemoryListener *listener); 287 void (*log_global_stop)(MemoryListener *listener); 288 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 289 bool match_data, uint64_t data, EventNotifier *e); 290 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 291 bool match_data, uint64_t data, EventNotifier *e); 292 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 293 hwaddr addr, hwaddr len); 294 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 295 hwaddr addr, hwaddr len); 296 /* Lower = earlier (during add), later (during del) */ 297 unsigned priority; 298 AddressSpace *address_space; 299 QTAILQ_ENTRY(MemoryListener) link; 300 QTAILQ_ENTRY(MemoryListener) link_as; 301 }; 302 303 /** 304 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 305 */ 306 struct AddressSpace { 307 /* All fields are private. */ 308 struct rcu_head rcu; 309 char *name; 310 MemoryRegion *root; 311 312 /* Accessed via RCU. */ 313 struct FlatView *current_map; 314 315 int ioeventfd_nb; 316 struct MemoryRegionIoeventfd *ioeventfds; 317 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 318 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 319 }; 320 321 FlatView *address_space_to_flatview(AddressSpace *as); 322 323 /** 324 * MemoryRegionSection: describes a fragment of a #MemoryRegion 325 * 326 * @mr: the region, or %NULL if empty 327 * @address_space: the address space the region is mapped in 328 * @offset_within_region: the beginning of the section, relative to @mr's start 329 * @size: the size of the section; will not exceed @mr's boundaries 330 * @offset_within_address_space: the address of the first byte of the section 331 * relative to the region's address space 332 * @readonly: writes to this section are ignored 333 */ 334 struct MemoryRegionSection { 335 MemoryRegion *mr; 336 FlatView *fv; 337 hwaddr offset_within_region; 338 Int128 size; 339 hwaddr offset_within_address_space; 340 bool readonly; 341 }; 342 343 /** 344 * memory_region_init: Initialize a memory region 345 * 346 * The region typically acts as a container for other memory regions. Use 347 * memory_region_add_subregion() to add subregions. 348 * 349 * @mr: the #MemoryRegion to be initialized 350 * @owner: the object that tracks the region's reference count 351 * @name: used for debugging; not visible to the user or ABI 352 * @size: size of the region; any subregions beyond this size will be clipped 353 */ 354 void memory_region_init(MemoryRegion *mr, 355 struct Object *owner, 356 const char *name, 357 uint64_t size); 358 359 /** 360 * memory_region_ref: Add 1 to a memory region's reference count 361 * 362 * Whenever memory regions are accessed outside the BQL, they need to be 363 * preserved against hot-unplug. MemoryRegions actually do not have their 364 * own reference count; they piggyback on a QOM object, their "owner". 365 * This function adds a reference to the owner. 366 * 367 * All MemoryRegions must have an owner if they can disappear, even if the 368 * device they belong to operates exclusively under the BQL. This is because 369 * the region could be returned at any time by memory_region_find, and this 370 * is usually under guest control. 371 * 372 * @mr: the #MemoryRegion 373 */ 374 void memory_region_ref(MemoryRegion *mr); 375 376 /** 377 * memory_region_unref: Remove 1 to a memory region's reference count 378 * 379 * Whenever memory regions are accessed outside the BQL, they need to be 380 * preserved against hot-unplug. MemoryRegions actually do not have their 381 * own reference count; they piggyback on a QOM object, their "owner". 382 * This function removes a reference to the owner and possibly destroys it. 383 * 384 * @mr: the #MemoryRegion 385 */ 386 void memory_region_unref(MemoryRegion *mr); 387 388 /** 389 * memory_region_init_io: Initialize an I/O memory region. 390 * 391 * Accesses into the region will cause the callbacks in @ops to be called. 392 * if @size is nonzero, subregions will be clipped to @size. 393 * 394 * @mr: the #MemoryRegion to be initialized. 395 * @owner: the object that tracks the region's reference count 396 * @ops: a structure containing read and write callbacks to be used when 397 * I/O is performed on the region. 398 * @opaque: passed to the read and write callbacks of the @ops structure. 399 * @name: used for debugging; not visible to the user or ABI 400 * @size: size of the region. 401 */ 402 void memory_region_init_io(MemoryRegion *mr, 403 struct Object *owner, 404 const MemoryRegionOps *ops, 405 void *opaque, 406 const char *name, 407 uint64_t size); 408 409 /** 410 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 411 * into the region will modify memory 412 * directly. 413 * 414 * @mr: the #MemoryRegion to be initialized. 415 * @owner: the object that tracks the region's reference count 416 * @name: Region name, becomes part of RAMBlock name used in migration stream 417 * must be unique within any device 418 * @size: size of the region. 419 * @errp: pointer to Error*, to store an error if it happens. 420 * 421 * Note that this function does not do anything to cause the data in the 422 * RAM memory region to be migrated; that is the responsibility of the caller. 423 */ 424 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 425 struct Object *owner, 426 const char *name, 427 uint64_t size, 428 Error **errp); 429 430 /** 431 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 432 * RAM. Accesses into the region will 433 * modify memory directly. Only an initial 434 * portion of this RAM is actually used. 435 * The used size can change across reboots. 436 * 437 * @mr: the #MemoryRegion to be initialized. 438 * @owner: the object that tracks the region's reference count 439 * @name: Region name, becomes part of RAMBlock name used in migration stream 440 * must be unique within any device 441 * @size: used size of the region. 442 * @max_size: max size of the region. 443 * @resized: callback to notify owner about used size change. 444 * @errp: pointer to Error*, to store an error if it happens. 445 * 446 * Note that this function does not do anything to cause the data in the 447 * RAM memory region to be migrated; that is the responsibility of the caller. 448 */ 449 void memory_region_init_resizeable_ram(MemoryRegion *mr, 450 struct Object *owner, 451 const char *name, 452 uint64_t size, 453 uint64_t max_size, 454 void (*resized)(const char*, 455 uint64_t length, 456 void *host), 457 Error **errp); 458 #ifdef __linux__ 459 /** 460 * memory_region_init_ram_from_file: Initialize RAM memory region with a 461 * mmap-ed backend. 462 * 463 * @mr: the #MemoryRegion to be initialized. 464 * @owner: the object that tracks the region's reference count 465 * @name: Region name, becomes part of RAMBlock name used in migration stream 466 * must be unique within any device 467 * @size: size of the region. 468 * @share: %true if memory must be mmaped with the MAP_SHARED flag 469 * @path: the path in which to allocate the RAM. 470 * @errp: pointer to Error*, to store an error if it happens. 471 * 472 * Note that this function does not do anything to cause the data in the 473 * RAM memory region to be migrated; that is the responsibility of the caller. 474 */ 475 void memory_region_init_ram_from_file(MemoryRegion *mr, 476 struct Object *owner, 477 const char *name, 478 uint64_t size, 479 bool share, 480 const char *path, 481 Error **errp); 482 483 /** 484 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 485 * mmap-ed backend. 486 * 487 * @mr: the #MemoryRegion to be initialized. 488 * @owner: the object that tracks the region's reference count 489 * @name: the name of the region. 490 * @size: size of the region. 491 * @share: %true if memory must be mmaped with the MAP_SHARED flag 492 * @fd: the fd to mmap. 493 * @errp: pointer to Error*, to store an error if it happens. 494 * 495 * Note that this function does not do anything to cause the data in the 496 * RAM memory region to be migrated; that is the responsibility of the caller. 497 */ 498 void memory_region_init_ram_from_fd(MemoryRegion *mr, 499 struct Object *owner, 500 const char *name, 501 uint64_t size, 502 bool share, 503 int fd, 504 Error **errp); 505 #endif 506 507 /** 508 * memory_region_init_ram_ptr: Initialize RAM memory region from a 509 * user-provided pointer. Accesses into the 510 * region will modify memory directly. 511 * 512 * @mr: the #MemoryRegion to be initialized. 513 * @owner: the object that tracks the region's reference count 514 * @name: Region name, becomes part of RAMBlock name used in migration stream 515 * must be unique within any device 516 * @size: size of the region. 517 * @ptr: memory to be mapped; must contain at least @size bytes. 518 * 519 * Note that this function does not do anything to cause the data in the 520 * RAM memory region to be migrated; that is the responsibility of the caller. 521 */ 522 void memory_region_init_ram_ptr(MemoryRegion *mr, 523 struct Object *owner, 524 const char *name, 525 uint64_t size, 526 void *ptr); 527 528 /** 529 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 530 * a user-provided pointer. 531 * 532 * A RAM device represents a mapping to a physical device, such as to a PCI 533 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 534 * into the VM address space and access to the region will modify memory 535 * directly. However, the memory region should not be included in a memory 536 * dump (device may not be enabled/mapped at the time of the dump), and 537 * operations incompatible with manipulating MMIO should be avoided. Replaces 538 * skip_dump flag. 539 * 540 * @mr: the #MemoryRegion to be initialized. 541 * @owner: the object that tracks the region's reference count 542 * @name: the name of the region. 543 * @size: size of the region. 544 * @ptr: memory to be mapped; must contain at least @size bytes. 545 * 546 * Note that this function does not do anything to cause the data in the 547 * RAM memory region to be migrated; that is the responsibility of the caller. 548 * (For RAM device memory regions, migrating the contents rarely makes sense.) 549 */ 550 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 551 struct Object *owner, 552 const char *name, 553 uint64_t size, 554 void *ptr); 555 556 /** 557 * memory_region_init_alias: Initialize a memory region that aliases all or a 558 * part of another memory region. 559 * 560 * @mr: the #MemoryRegion to be initialized. 561 * @owner: the object that tracks the region's reference count 562 * @name: used for debugging; not visible to the user or ABI 563 * @orig: the region to be referenced; @mr will be equivalent to 564 * @orig between @offset and @offset + @size - 1. 565 * @offset: start of the section in @orig to be referenced. 566 * @size: size of the region. 567 */ 568 void memory_region_init_alias(MemoryRegion *mr, 569 struct Object *owner, 570 const char *name, 571 MemoryRegion *orig, 572 hwaddr offset, 573 uint64_t size); 574 575 /** 576 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 577 * 578 * This has the same effect as calling memory_region_init_ram_nomigrate() 579 * and then marking the resulting region read-only with 580 * memory_region_set_readonly(). 581 * 582 * Note that this function does not do anything to cause the data in the 583 * RAM side of the memory region to be migrated; that is the responsibility 584 * of the caller. 585 * 586 * @mr: the #MemoryRegion to be initialized. 587 * @owner: the object that tracks the region's reference count 588 * @name: Region name, becomes part of RAMBlock name used in migration stream 589 * must be unique within any device 590 * @size: size of the region. 591 * @errp: pointer to Error*, to store an error if it happens. 592 */ 593 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 594 struct Object *owner, 595 const char *name, 596 uint64_t size, 597 Error **errp); 598 599 /** 600 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 601 * Writes are handled via callbacks. 602 * 603 * Note that this function does not do anything to cause the data in the 604 * RAM side of the memory region to be migrated; that is the responsibility 605 * of the caller. 606 * 607 * @mr: the #MemoryRegion to be initialized. 608 * @owner: the object that tracks the region's reference count 609 * @ops: callbacks for write access handling (must not be NULL). 610 * @name: Region name, becomes part of RAMBlock name used in migration stream 611 * must be unique within any device 612 * @size: size of the region. 613 * @errp: pointer to Error*, to store an error if it happens. 614 */ 615 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 616 struct Object *owner, 617 const MemoryRegionOps *ops, 618 void *opaque, 619 const char *name, 620 uint64_t size, 621 Error **errp); 622 623 /** 624 * memory_region_init_reservation: Initialize a memory region that reserves 625 * I/O space. 626 * 627 * A reservation region primariy serves debugging purposes. It claims I/O 628 * space that is not supposed to be handled by QEMU itself. Any access via 629 * the memory API will cause an abort(). 630 * This function is deprecated. Use memory_region_init_io() with NULL 631 * callbacks instead. 632 * 633 * @mr: the #MemoryRegion to be initialized 634 * @owner: the object that tracks the region's reference count 635 * @name: used for debugging; not visible to the user or ABI 636 * @size: size of the region. 637 */ 638 static inline void memory_region_init_reservation(MemoryRegion *mr, 639 Object *owner, 640 const char *name, 641 uint64_t size) 642 { 643 memory_region_init_io(mr, owner, NULL, mr, name, size); 644 } 645 646 /** 647 * memory_region_init_iommu: Initialize a memory region of a custom type 648 * that translates addresses 649 * 650 * An IOMMU region translates addresses and forwards accesses to a target 651 * memory region. 652 * 653 * @typename: QOM class name 654 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 655 * @instance_size: the IOMMUMemoryRegion subclass instance size 656 * @owner: the object that tracks the region's reference count 657 * @ops: a function that translates addresses into the @target region 658 * @name: used for debugging; not visible to the user or ABI 659 * @size: size of the region. 660 */ 661 void memory_region_init_iommu(void *_iommu_mr, 662 size_t instance_size, 663 const char *mrtypename, 664 Object *owner, 665 const char *name, 666 uint64_t size); 667 668 /** 669 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 670 * region will modify memory directly. 671 * 672 * @mr: the #MemoryRegion to be initialized 673 * @owner: the object that tracks the region's reference count (must be 674 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 675 * @name: name of the memory region 676 * @size: size of the region in bytes 677 * @errp: pointer to Error*, to store an error if it happens. 678 * 679 * This function allocates RAM for a board model or device, and 680 * arranges for it to be migrated (by calling vmstate_register_ram() 681 * if @owner is a DeviceState, or vmstate_register_ram_global() if 682 * @owner is NULL). 683 * 684 * TODO: Currently we restrict @owner to being either NULL (for 685 * global RAM regions with no owner) or devices, so that we can 686 * give the RAM block a unique name for migration purposes. 687 * We should lift this restriction and allow arbitrary Objects. 688 * If you pass a non-NULL non-device @owner then we will assert. 689 */ 690 void memory_region_init_ram(MemoryRegion *mr, 691 struct Object *owner, 692 const char *name, 693 uint64_t size, 694 Error **errp); 695 696 /** 697 * memory_region_init_rom: Initialize a ROM memory region. 698 * 699 * This has the same effect as calling memory_region_init_ram() 700 * and then marking the resulting region read-only with 701 * memory_region_set_readonly(). This includes arranging for the 702 * contents to be migrated. 703 * 704 * TODO: Currently we restrict @owner to being either NULL (for 705 * global RAM regions with no owner) or devices, so that we can 706 * give the RAM block a unique name for migration purposes. 707 * We should lift this restriction and allow arbitrary Objects. 708 * If you pass a non-NULL non-device @owner then we will assert. 709 * 710 * @mr: the #MemoryRegion to be initialized. 711 * @owner: the object that tracks the region's reference count 712 * @name: Region name, becomes part of RAMBlock name used in migration stream 713 * must be unique within any device 714 * @size: size of the region. 715 * @errp: pointer to Error*, to store an error if it happens. 716 */ 717 void memory_region_init_rom(MemoryRegion *mr, 718 struct Object *owner, 719 const char *name, 720 uint64_t size, 721 Error **errp); 722 723 /** 724 * memory_region_init_rom_device: Initialize a ROM memory region. 725 * Writes are handled via callbacks. 726 * 727 * This function initializes a memory region backed by RAM for reads 728 * and callbacks for writes, and arranges for the RAM backing to 729 * be migrated (by calling vmstate_register_ram() 730 * if @owner is a DeviceState, or vmstate_register_ram_global() if 731 * @owner is NULL). 732 * 733 * TODO: Currently we restrict @owner to being either NULL (for 734 * global RAM regions with no owner) or devices, so that we can 735 * give the RAM block a unique name for migration purposes. 736 * We should lift this restriction and allow arbitrary Objects. 737 * If you pass a non-NULL non-device @owner then we will assert. 738 * 739 * @mr: the #MemoryRegion to be initialized. 740 * @owner: the object that tracks the region's reference count 741 * @ops: callbacks for write access handling (must not be NULL). 742 * @name: Region name, becomes part of RAMBlock name used in migration stream 743 * must be unique within any device 744 * @size: size of the region. 745 * @errp: pointer to Error*, to store an error if it happens. 746 */ 747 void memory_region_init_rom_device(MemoryRegion *mr, 748 struct Object *owner, 749 const MemoryRegionOps *ops, 750 void *opaque, 751 const char *name, 752 uint64_t size, 753 Error **errp); 754 755 756 /** 757 * memory_region_owner: get a memory region's owner. 758 * 759 * @mr: the memory region being queried. 760 */ 761 struct Object *memory_region_owner(MemoryRegion *mr); 762 763 /** 764 * memory_region_size: get a memory region's size. 765 * 766 * @mr: the memory region being queried. 767 */ 768 uint64_t memory_region_size(MemoryRegion *mr); 769 770 /** 771 * memory_region_is_ram: check whether a memory region is random access 772 * 773 * Returns %true is a memory region is random access. 774 * 775 * @mr: the memory region being queried 776 */ 777 static inline bool memory_region_is_ram(MemoryRegion *mr) 778 { 779 return mr->ram; 780 } 781 782 /** 783 * memory_region_is_ram_device: check whether a memory region is a ram device 784 * 785 * Returns %true is a memory region is a device backed ram region 786 * 787 * @mr: the memory region being queried 788 */ 789 bool memory_region_is_ram_device(MemoryRegion *mr); 790 791 /** 792 * memory_region_is_romd: check whether a memory region is in ROMD mode 793 * 794 * Returns %true if a memory region is a ROM device and currently set to allow 795 * direct reads. 796 * 797 * @mr: the memory region being queried 798 */ 799 static inline bool memory_region_is_romd(MemoryRegion *mr) 800 { 801 return mr->rom_device && mr->romd_mode; 802 } 803 804 /** 805 * memory_region_get_iommu: check whether a memory region is an iommu 806 * 807 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 808 * otherwise NULL. 809 * 810 * @mr: the memory region being queried 811 */ 812 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 813 { 814 if (mr->alias) { 815 return memory_region_get_iommu(mr->alias); 816 } 817 if (mr->is_iommu) { 818 return (IOMMUMemoryRegion *) mr; 819 } 820 return NULL; 821 } 822 823 /** 824 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 825 * if an iommu or NULL if not 826 * 827 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu, 828 * otherwise NULL. This is fast path avoinding QOM checking, use with caution. 829 * 830 * @mr: the memory region being queried 831 */ 832 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 833 IOMMUMemoryRegion *iommu_mr) 834 { 835 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 836 } 837 838 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 839 840 /** 841 * memory_region_iommu_get_min_page_size: get minimum supported page size 842 * for an iommu 843 * 844 * Returns minimum supported page size for an iommu. 845 * 846 * @iommu_mr: the memory region being queried 847 */ 848 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 849 850 /** 851 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 852 * 853 * The notification type will be decided by entry.perm bits: 854 * 855 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 856 * - For MAP (newly added entry) notifies: set entry.perm to the 857 * permission of the page (which is definitely !IOMMU_NONE). 858 * 859 * Note: for any IOMMU implementation, an in-place mapping change 860 * should be notified with an UNMAP followed by a MAP. 861 * 862 * @iommu_mr: the memory region that was changed 863 * @entry: the new entry in the IOMMU translation table. The entry 864 * replaces all old entries for the same virtual I/O address range. 865 * Deleted entries have .@perm == 0. 866 */ 867 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 868 IOMMUTLBEntry entry); 869 870 /** 871 * memory_region_notify_one: notify a change in an IOMMU translation 872 * entry to a single notifier 873 * 874 * This works just like memory_region_notify_iommu(), but it only 875 * notifies a specific notifier, not all of them. 876 * 877 * @notifier: the notifier to be notified 878 * @entry: the new entry in the IOMMU translation table. The entry 879 * replaces all old entries for the same virtual I/O address range. 880 * Deleted entries have .@perm == 0. 881 */ 882 void memory_region_notify_one(IOMMUNotifier *notifier, 883 IOMMUTLBEntry *entry); 884 885 /** 886 * memory_region_register_iommu_notifier: register a notifier for changes to 887 * IOMMU translation entries. 888 * 889 * @mr: the memory region to observe 890 * @n: the IOMMUNotifier to be added; the notify callback receives a 891 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 892 * ceases to be valid on exit from the notifier. 893 */ 894 void memory_region_register_iommu_notifier(MemoryRegion *mr, 895 IOMMUNotifier *n); 896 897 /** 898 * memory_region_iommu_replay: replay existing IOMMU translations to 899 * a notifier with the minimum page granularity returned by 900 * mr->iommu_ops->get_page_size(). 901 * 902 * @iommu_mr: the memory region to observe 903 * @n: the notifier to which to replay iommu mappings 904 */ 905 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 906 907 /** 908 * memory_region_iommu_replay_all: replay existing IOMMU translations 909 * to all the notifiers registered. 910 * 911 * @iommu_mr: the memory region to observe 912 */ 913 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 914 915 /** 916 * memory_region_unregister_iommu_notifier: unregister a notifier for 917 * changes to IOMMU translation entries. 918 * 919 * @mr: the memory region which was observed and for which notity_stopped() 920 * needs to be called 921 * @n: the notifier to be removed. 922 */ 923 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 924 IOMMUNotifier *n); 925 926 /** 927 * memory_region_name: get a memory region's name 928 * 929 * Returns the string that was used to initialize the memory region. 930 * 931 * @mr: the memory region being queried 932 */ 933 const char *memory_region_name(const MemoryRegion *mr); 934 935 /** 936 * memory_region_is_logging: return whether a memory region is logging writes 937 * 938 * Returns %true if the memory region is logging writes for the given client 939 * 940 * @mr: the memory region being queried 941 * @client: the client being queried 942 */ 943 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 944 945 /** 946 * memory_region_get_dirty_log_mask: return the clients for which a 947 * memory region is logging writes. 948 * 949 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 950 * are the bit indices. 951 * 952 * @mr: the memory region being queried 953 */ 954 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 955 956 /** 957 * memory_region_is_rom: check whether a memory region is ROM 958 * 959 * Returns %true is a memory region is read-only memory. 960 * 961 * @mr: the memory region being queried 962 */ 963 static inline bool memory_region_is_rom(MemoryRegion *mr) 964 { 965 return mr->ram && mr->readonly; 966 } 967 968 969 /** 970 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 971 * 972 * Returns a file descriptor backing a file-based RAM memory region, 973 * or -1 if the region is not a file-based RAM memory region. 974 * 975 * @mr: the RAM or alias memory region being queried. 976 */ 977 int memory_region_get_fd(MemoryRegion *mr); 978 979 /** 980 * memory_region_from_host: Convert a pointer into a RAM memory region 981 * and an offset within it. 982 * 983 * Given a host pointer inside a RAM memory region (created with 984 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 985 * the MemoryRegion and the offset within it. 986 * 987 * Use with care; by the time this function returns, the returned pointer is 988 * not protected by RCU anymore. If the caller is not within an RCU critical 989 * section and does not hold the iothread lock, it must have other means of 990 * protecting the pointer, such as a reference to the region that includes 991 * the incoming ram_addr_t. 992 * 993 * @mr: the memory region being queried. 994 */ 995 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 996 997 /** 998 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 999 * 1000 * Returns a host pointer to a RAM memory region (created with 1001 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1002 * 1003 * Use with care; by the time this function returns, the returned pointer is 1004 * not protected by RCU anymore. If the caller is not within an RCU critical 1005 * section and does not hold the iothread lock, it must have other means of 1006 * protecting the pointer, such as a reference to the region that includes 1007 * the incoming ram_addr_t. 1008 * 1009 * @mr: the memory region being queried. 1010 */ 1011 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1012 1013 /* memory_region_ram_resize: Resize a RAM region. 1014 * 1015 * Only legal before guest might have detected the memory size: e.g. on 1016 * incoming migration, or right after reset. 1017 * 1018 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1019 * @newsize: the new size the region 1020 * @errp: pointer to Error*, to store an error if it happens. 1021 */ 1022 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1023 Error **errp); 1024 1025 /** 1026 * memory_region_set_log: Turn dirty logging on or off for a region. 1027 * 1028 * Turns dirty logging on or off for a specified client (display, migration). 1029 * Only meaningful for RAM regions. 1030 * 1031 * @mr: the memory region being updated. 1032 * @log: whether dirty logging is to be enabled or disabled. 1033 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1034 */ 1035 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1036 1037 /** 1038 * memory_region_get_dirty: Check whether a range of bytes is dirty 1039 * for a specified client. 1040 * 1041 * Checks whether a range of bytes has been written to since the last 1042 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1043 * must be enabled. 1044 * 1045 * @mr: the memory region being queried. 1046 * @addr: the address (relative to the start of the region) being queried. 1047 * @size: the size of the range being queried. 1048 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1049 * %DIRTY_MEMORY_VGA. 1050 */ 1051 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 1052 hwaddr size, unsigned client); 1053 1054 /** 1055 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1056 * 1057 * Marks a range of bytes as dirty, after it has been dirtied outside 1058 * guest code. 1059 * 1060 * @mr: the memory region being dirtied. 1061 * @addr: the address (relative to the start of the region) being dirtied. 1062 * @size: size of the range being dirtied. 1063 */ 1064 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1065 hwaddr size); 1066 1067 /** 1068 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 1069 * for a specified client. It clears them. 1070 * 1071 * Checks whether a range of bytes has been written to since the last 1072 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1073 * must be enabled. 1074 * 1075 * @mr: the memory region being queried. 1076 * @addr: the address (relative to the start of the region) being queried. 1077 * @size: the size of the range being queried. 1078 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1079 * %DIRTY_MEMORY_VGA. 1080 */ 1081 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 1082 hwaddr size, unsigned client); 1083 1084 /** 1085 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1086 * bitmap and clear it. 1087 * 1088 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1089 * returns the snapshot. The snapshot can then be used to query dirty 1090 * status, using memory_region_snapshot_get_dirty. Unlike 1091 * memory_region_test_and_clear_dirty this allows to query the same 1092 * page multiple times, which is especially useful for display updates 1093 * where the scanlines often are not page aligned. 1094 * 1095 * The dirty bitmap region which gets copyed into the snapshot (and 1096 * cleared afterwards) can be larger than requested. The boundaries 1097 * are rounded up/down so complete bitmap longs (covering 64 pages on 1098 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1099 * isn't a problem for display updates as the extra pages are outside 1100 * the visible area, and in case the visible area changes a full 1101 * display redraw is due anyway. Should other use cases for this 1102 * function emerge we might have to revisit this implementation 1103 * detail. 1104 * 1105 * Use g_free to release DirtyBitmapSnapshot. 1106 * 1107 * @mr: the memory region being queried. 1108 * @addr: the address (relative to the start of the region) being queried. 1109 * @size: the size of the range being queried. 1110 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1111 */ 1112 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1113 hwaddr addr, 1114 hwaddr size, 1115 unsigned client); 1116 1117 /** 1118 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1119 * in the specified dirty bitmap snapshot. 1120 * 1121 * @mr: the memory region being queried. 1122 * @snap: the dirty bitmap snapshot 1123 * @addr: the address (relative to the start of the region) being queried. 1124 * @size: the size of the range being queried. 1125 */ 1126 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1127 DirtyBitmapSnapshot *snap, 1128 hwaddr addr, hwaddr size); 1129 1130 /** 1131 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 1132 * any external TLBs (e.g. kvm) 1133 * 1134 * Flushes dirty information from accelerators such as kvm and vhost-net 1135 * and makes it available to users of the memory API. 1136 * 1137 * @mr: the region being flushed. 1138 */ 1139 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 1140 1141 /** 1142 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1143 * client. 1144 * 1145 * Marks a range of pages as no longer dirty. 1146 * 1147 * @mr: the region being updated. 1148 * @addr: the start of the subrange being cleaned. 1149 * @size: the size of the subrange being cleaned. 1150 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1151 * %DIRTY_MEMORY_VGA. 1152 */ 1153 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1154 hwaddr size, unsigned client); 1155 1156 /** 1157 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1158 * 1159 * Allows a memory region to be marked as read-only (turning it into a ROM). 1160 * only useful on RAM regions. 1161 * 1162 * @mr: the region being updated. 1163 * @readonly: whether rhe region is to be ROM or RAM. 1164 */ 1165 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1166 1167 /** 1168 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1169 * 1170 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1171 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1172 * device is mapped to guest memory and satisfies read access directly. 1173 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1174 * Writes are always handled by the #MemoryRegion.write function. 1175 * 1176 * @mr: the memory region to be updated 1177 * @romd_mode: %true to put the region into ROMD mode 1178 */ 1179 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1180 1181 /** 1182 * memory_region_set_coalescing: Enable memory coalescing for the region. 1183 * 1184 * Enabled writes to a region to be queued for later processing. MMIO ->write 1185 * callbacks may be delayed until a non-coalesced MMIO is issued. 1186 * Only useful for IO regions. Roughly similar to write-combining hardware. 1187 * 1188 * @mr: the memory region to be write coalesced 1189 */ 1190 void memory_region_set_coalescing(MemoryRegion *mr); 1191 1192 /** 1193 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1194 * a region. 1195 * 1196 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1197 * Multiple calls can be issued coalesced disjoint ranges. 1198 * 1199 * @mr: the memory region to be updated. 1200 * @offset: the start of the range within the region to be coalesced. 1201 * @size: the size of the subrange to be coalesced. 1202 */ 1203 void memory_region_add_coalescing(MemoryRegion *mr, 1204 hwaddr offset, 1205 uint64_t size); 1206 1207 /** 1208 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1209 * 1210 * Disables any coalescing caused by memory_region_set_coalescing() or 1211 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1212 * hardware. 1213 * 1214 * @mr: the memory region to be updated. 1215 */ 1216 void memory_region_clear_coalescing(MemoryRegion *mr); 1217 1218 /** 1219 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1220 * accesses. 1221 * 1222 * Ensure that pending coalesced MMIO request are flushed before the memory 1223 * region is accessed. This property is automatically enabled for all regions 1224 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1225 * 1226 * @mr: the memory region to be updated. 1227 */ 1228 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1229 1230 /** 1231 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1232 * accesses. 1233 * 1234 * Clear the automatic coalesced MMIO flushing enabled via 1235 * memory_region_set_flush_coalesced. Note that this service has no effect on 1236 * memory regions that have MMIO coalescing enabled for themselves. For them, 1237 * automatic flushing will stop once coalescing is disabled. 1238 * 1239 * @mr: the memory region to be updated. 1240 */ 1241 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1242 1243 /** 1244 * memory_region_set_global_locking: Declares the access processing requires 1245 * QEMU's global lock. 1246 * 1247 * When this is invoked, accesses to the memory region will be processed while 1248 * holding the global lock of QEMU. This is the default behavior of memory 1249 * regions. 1250 * 1251 * @mr: the memory region to be updated. 1252 */ 1253 void memory_region_set_global_locking(MemoryRegion *mr); 1254 1255 /** 1256 * memory_region_clear_global_locking: Declares that access processing does 1257 * not depend on the QEMU global lock. 1258 * 1259 * By clearing this property, accesses to the memory region will be processed 1260 * outside of QEMU's global lock (unless the lock is held on when issuing the 1261 * access request). In this case, the device model implementing the access 1262 * handlers is responsible for synchronization of concurrency. 1263 * 1264 * @mr: the memory region to be updated. 1265 */ 1266 void memory_region_clear_global_locking(MemoryRegion *mr); 1267 1268 /** 1269 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1270 * is written to a location. 1271 * 1272 * Marks a word in an IO region (initialized with memory_region_init_io()) 1273 * as a trigger for an eventfd event. The I/O callback will not be called. 1274 * The caller must be prepared to handle failure (that is, take the required 1275 * action if the callback _is_ called). 1276 * 1277 * @mr: the memory region being updated. 1278 * @addr: the address within @mr that is to be monitored 1279 * @size: the size of the access to trigger the eventfd 1280 * @match_data: whether to match against @data, instead of just @addr 1281 * @data: the data to match against the guest write 1282 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1283 **/ 1284 void memory_region_add_eventfd(MemoryRegion *mr, 1285 hwaddr addr, 1286 unsigned size, 1287 bool match_data, 1288 uint64_t data, 1289 EventNotifier *e); 1290 1291 /** 1292 * memory_region_del_eventfd: Cancel an eventfd. 1293 * 1294 * Cancels an eventfd trigger requested by a previous 1295 * memory_region_add_eventfd() call. 1296 * 1297 * @mr: the memory region being updated. 1298 * @addr: the address within @mr that is to be monitored 1299 * @size: the size of the access to trigger the eventfd 1300 * @match_data: whether to match against @data, instead of just @addr 1301 * @data: the data to match against the guest write 1302 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1303 */ 1304 void memory_region_del_eventfd(MemoryRegion *mr, 1305 hwaddr addr, 1306 unsigned size, 1307 bool match_data, 1308 uint64_t data, 1309 EventNotifier *e); 1310 1311 /** 1312 * memory_region_add_subregion: Add a subregion to a container. 1313 * 1314 * Adds a subregion at @offset. The subregion may not overlap with other 1315 * subregions (except for those explicitly marked as overlapping). A region 1316 * may only be added once as a subregion (unless removed with 1317 * memory_region_del_subregion()); use memory_region_init_alias() if you 1318 * want a region to be a subregion in multiple locations. 1319 * 1320 * @mr: the region to contain the new subregion; must be a container 1321 * initialized with memory_region_init(). 1322 * @offset: the offset relative to @mr where @subregion is added. 1323 * @subregion: the subregion to be added. 1324 */ 1325 void memory_region_add_subregion(MemoryRegion *mr, 1326 hwaddr offset, 1327 MemoryRegion *subregion); 1328 /** 1329 * memory_region_add_subregion_overlap: Add a subregion to a container 1330 * with overlap. 1331 * 1332 * Adds a subregion at @offset. The subregion may overlap with other 1333 * subregions. Conflicts are resolved by having a higher @priority hide a 1334 * lower @priority. Subregions without priority are taken as @priority 0. 1335 * A region may only be added once as a subregion (unless removed with 1336 * memory_region_del_subregion()); use memory_region_init_alias() if you 1337 * want a region to be a subregion in multiple locations. 1338 * 1339 * @mr: the region to contain the new subregion; must be a container 1340 * initialized with memory_region_init(). 1341 * @offset: the offset relative to @mr where @subregion is added. 1342 * @subregion: the subregion to be added. 1343 * @priority: used for resolving overlaps; highest priority wins. 1344 */ 1345 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1346 hwaddr offset, 1347 MemoryRegion *subregion, 1348 int priority); 1349 1350 /** 1351 * memory_region_get_ram_addr: Get the ram address associated with a memory 1352 * region 1353 */ 1354 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1355 1356 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1357 /** 1358 * memory_region_del_subregion: Remove a subregion. 1359 * 1360 * Removes a subregion from its container. 1361 * 1362 * @mr: the container to be updated. 1363 * @subregion: the region being removed; must be a current subregion of @mr. 1364 */ 1365 void memory_region_del_subregion(MemoryRegion *mr, 1366 MemoryRegion *subregion); 1367 1368 /* 1369 * memory_region_set_enabled: dynamically enable or disable a region 1370 * 1371 * Enables or disables a memory region. A disabled memory region 1372 * ignores all accesses to itself and its subregions. It does not 1373 * obscure sibling subregions with lower priority - it simply behaves as 1374 * if it was removed from the hierarchy. 1375 * 1376 * Regions default to being enabled. 1377 * 1378 * @mr: the region to be updated 1379 * @enabled: whether to enable or disable the region 1380 */ 1381 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1382 1383 /* 1384 * memory_region_set_address: dynamically update the address of a region 1385 * 1386 * Dynamically updates the address of a region, relative to its container. 1387 * May be used on regions are currently part of a memory hierarchy. 1388 * 1389 * @mr: the region to be updated 1390 * @addr: new address, relative to container region 1391 */ 1392 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1393 1394 /* 1395 * memory_region_set_size: dynamically update the size of a region. 1396 * 1397 * Dynamically updates the size of a region. 1398 * 1399 * @mr: the region to be updated 1400 * @size: used size of the region. 1401 */ 1402 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1403 1404 /* 1405 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1406 * 1407 * Dynamically updates the offset into the target region that an alias points 1408 * to, as if the fourth argument to memory_region_init_alias() has changed. 1409 * 1410 * @mr: the #MemoryRegion to be updated; should be an alias. 1411 * @offset: the new offset into the target memory region 1412 */ 1413 void memory_region_set_alias_offset(MemoryRegion *mr, 1414 hwaddr offset); 1415 1416 /** 1417 * memory_region_present: checks if an address relative to a @container 1418 * translates into #MemoryRegion within @container 1419 * 1420 * Answer whether a #MemoryRegion within @container covers the address 1421 * @addr. 1422 * 1423 * @container: a #MemoryRegion within which @addr is a relative address 1424 * @addr: the area within @container to be searched 1425 */ 1426 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1427 1428 /** 1429 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1430 * into any address space. 1431 * 1432 * @mr: a #MemoryRegion which should be checked if it's mapped 1433 */ 1434 bool memory_region_is_mapped(MemoryRegion *mr); 1435 1436 /** 1437 * memory_region_find: translate an address/size relative to a 1438 * MemoryRegion into a #MemoryRegionSection. 1439 * 1440 * Locates the first #MemoryRegion within @mr that overlaps the range 1441 * given by @addr and @size. 1442 * 1443 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1444 * It will have the following characteristics: 1445 * .@size = 0 iff no overlap was found 1446 * .@mr is non-%NULL iff an overlap was found 1447 * 1448 * Remember that in the return value the @offset_within_region is 1449 * relative to the returned region (in the .@mr field), not to the 1450 * @mr argument. 1451 * 1452 * Similarly, the .@offset_within_address_space is relative to the 1453 * address space that contains both regions, the passed and the 1454 * returned one. However, in the special case where the @mr argument 1455 * has no container (and thus is the root of the address space), the 1456 * following will hold: 1457 * .@offset_within_address_space >= @addr 1458 * .@offset_within_address_space + .@size <= @addr + @size 1459 * 1460 * @mr: a MemoryRegion within which @addr is a relative address 1461 * @addr: start of the area within @as to be searched 1462 * @size: size of the area to be searched 1463 */ 1464 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1465 hwaddr addr, uint64_t size); 1466 1467 /** 1468 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1469 * 1470 * Synchronizes the dirty page log for all address spaces. 1471 */ 1472 void memory_global_dirty_log_sync(void); 1473 1474 /** 1475 * memory_region_transaction_begin: Start a transaction. 1476 * 1477 * During a transaction, changes will be accumulated and made visible 1478 * only when the transaction ends (is committed). 1479 */ 1480 void memory_region_transaction_begin(void); 1481 1482 /** 1483 * memory_region_transaction_commit: Commit a transaction and make changes 1484 * visible to the guest. 1485 */ 1486 void memory_region_transaction_commit(void); 1487 1488 /** 1489 * memory_listener_register: register callbacks to be called when memory 1490 * sections are mapped or unmapped into an address 1491 * space 1492 * 1493 * @listener: an object containing the callbacks to be called 1494 * @filter: if non-%NULL, only regions in this address space will be observed 1495 */ 1496 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1497 1498 /** 1499 * memory_listener_unregister: undo the effect of memory_listener_register() 1500 * 1501 * @listener: an object containing the callbacks to be removed 1502 */ 1503 void memory_listener_unregister(MemoryListener *listener); 1504 1505 /** 1506 * memory_global_dirty_log_start: begin dirty logging for all regions 1507 */ 1508 void memory_global_dirty_log_start(void); 1509 1510 /** 1511 * memory_global_dirty_log_stop: end dirty logging for all regions 1512 */ 1513 void memory_global_dirty_log_stop(void); 1514 1515 void mtree_info(fprintf_function mon_printf, void *f, bool flatview, 1516 bool dispatch_tree); 1517 1518 /** 1519 * memory_region_request_mmio_ptr: request a pointer to an mmio 1520 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer. 1521 * When the device wants to invalidate the pointer it will call 1522 * memory_region_invalidate_mmio_ptr. 1523 * 1524 * @mr: #MemoryRegion to check 1525 * @addr: address within that region 1526 * 1527 * Returns true on success, false otherwise. 1528 */ 1529 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr); 1530 1531 /** 1532 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio 1533 * previously requested. 1534 * In the end that means that if something wants to execute from this area it 1535 * will need to request the pointer again. 1536 * 1537 * @mr: #MemoryRegion associated to the pointer. 1538 * @addr: address within that region 1539 * @size: size of that area. 1540 */ 1541 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset, 1542 unsigned size); 1543 1544 /** 1545 * memory_region_dispatch_read: perform a read directly to the specified 1546 * MemoryRegion. 1547 * 1548 * @mr: #MemoryRegion to access 1549 * @addr: address within that region 1550 * @pval: pointer to uint64_t which the data is written to 1551 * @size: size of the access in bytes 1552 * @attrs: memory transaction attributes to use for the access 1553 */ 1554 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1555 hwaddr addr, 1556 uint64_t *pval, 1557 unsigned size, 1558 MemTxAttrs attrs); 1559 /** 1560 * memory_region_dispatch_write: perform a write directly to the specified 1561 * MemoryRegion. 1562 * 1563 * @mr: #MemoryRegion to access 1564 * @addr: address within that region 1565 * @data: data to write 1566 * @size: size of the access in bytes 1567 * @attrs: memory transaction attributes to use for the access 1568 */ 1569 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1570 hwaddr addr, 1571 uint64_t data, 1572 unsigned size, 1573 MemTxAttrs attrs); 1574 1575 /** 1576 * address_space_init: initializes an address space 1577 * 1578 * @as: an uninitialized #AddressSpace 1579 * @root: a #MemoryRegion that routes addresses for the address space 1580 * @name: an address space name. The name is only used for debugging 1581 * output. 1582 */ 1583 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1584 1585 /** 1586 * address_space_destroy: destroy an address space 1587 * 1588 * Releases all resources associated with an address space. After an address space 1589 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1590 * as well. 1591 * 1592 * @as: address space to be destroyed 1593 */ 1594 void address_space_destroy(AddressSpace *as); 1595 1596 /** 1597 * address_space_rw: read from or write to an address space. 1598 * 1599 * Return a MemTxResult indicating whether the operation succeeded 1600 * or failed (eg unassigned memory, device rejected the transaction, 1601 * IOMMU fault). 1602 * 1603 * @as: #AddressSpace to be accessed 1604 * @addr: address within that address space 1605 * @attrs: memory transaction attributes 1606 * @buf: buffer with the data transferred 1607 * @is_write: indicates the transfer direction 1608 */ 1609 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1610 MemTxAttrs attrs, uint8_t *buf, 1611 int len, bool is_write); 1612 1613 /** 1614 * address_space_write: write to address space. 1615 * 1616 * Return a MemTxResult indicating whether the operation succeeded 1617 * or failed (eg unassigned memory, device rejected the transaction, 1618 * IOMMU fault). 1619 * 1620 * @as: #AddressSpace to be accessed 1621 * @addr: address within that address space 1622 * @attrs: memory transaction attributes 1623 * @buf: buffer with the data transferred 1624 */ 1625 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1626 MemTxAttrs attrs, 1627 const uint8_t *buf, int len); 1628 1629 /* address_space_ld*: load from an address space 1630 * address_space_st*: store to an address space 1631 * 1632 * These functions perform a load or store of the byte, word, 1633 * longword or quad to the specified address within the AddressSpace. 1634 * The _le suffixed functions treat the data as little endian; 1635 * _be indicates big endian; no suffix indicates "same endianness 1636 * as guest CPU". 1637 * 1638 * The "guest CPU endianness" accessors are deprecated for use outside 1639 * target-* code; devices should be CPU-agnostic and use either the LE 1640 * or the BE accessors. 1641 * 1642 * @as #AddressSpace to be accessed 1643 * @addr: address within that address space 1644 * @val: data value, for stores 1645 * @attrs: memory transaction attributes 1646 * @result: location to write the success/failure of the transaction; 1647 * if NULL, this information is discarded 1648 */ 1649 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1650 MemTxAttrs attrs, MemTxResult *result); 1651 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1652 MemTxAttrs attrs, MemTxResult *result); 1653 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1654 MemTxAttrs attrs, MemTxResult *result); 1655 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1656 MemTxAttrs attrs, MemTxResult *result); 1657 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1658 MemTxAttrs attrs, MemTxResult *result); 1659 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1660 MemTxAttrs attrs, MemTxResult *result); 1661 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1662 MemTxAttrs attrs, MemTxResult *result); 1663 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1664 MemTxAttrs attrs, MemTxResult *result); 1665 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1666 MemTxAttrs attrs, MemTxResult *result); 1667 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1668 MemTxAttrs attrs, MemTxResult *result); 1669 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1670 MemTxAttrs attrs, MemTxResult *result); 1671 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1672 MemTxAttrs attrs, MemTxResult *result); 1673 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1674 MemTxAttrs attrs, MemTxResult *result); 1675 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1676 MemTxAttrs attrs, MemTxResult *result); 1677 1678 uint32_t ldub_phys(AddressSpace *as, hwaddr addr); 1679 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr); 1680 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr); 1681 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr); 1682 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr); 1683 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr); 1684 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr); 1685 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1686 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1687 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1688 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1689 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1690 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1691 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1692 1693 struct MemoryRegionCache { 1694 hwaddr xlat; 1695 hwaddr len; 1696 AddressSpace *as; 1697 }; 1698 1699 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL }) 1700 1701 /* address_space_cache_init: prepare for repeated access to a physical 1702 * memory region 1703 * 1704 * @cache: #MemoryRegionCache to be filled 1705 * @as: #AddressSpace to be accessed 1706 * @addr: address within that address space 1707 * @len: length of buffer 1708 * @is_write: indicates the transfer direction 1709 * 1710 * Will only work with RAM, and may map a subset of the requested range by 1711 * returning a value that is less than @len. On failure, return a negative 1712 * errno value. 1713 * 1714 * Because it only works with RAM, this function can be used for 1715 * read-modify-write operations. In this case, is_write should be %true. 1716 * 1717 * Note that addresses passed to the address_space_*_cached functions 1718 * are relative to @addr. 1719 */ 1720 int64_t address_space_cache_init(MemoryRegionCache *cache, 1721 AddressSpace *as, 1722 hwaddr addr, 1723 hwaddr len, 1724 bool is_write); 1725 1726 /** 1727 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1728 * 1729 * @cache: The #MemoryRegionCache to operate on. 1730 * @addr: The first physical address that was written, relative to the 1731 * address that was passed to @address_space_cache_init. 1732 * @access_len: The number of bytes that were written starting at @addr. 1733 */ 1734 void address_space_cache_invalidate(MemoryRegionCache *cache, 1735 hwaddr addr, 1736 hwaddr access_len); 1737 1738 /** 1739 * address_space_cache_destroy: free a #MemoryRegionCache 1740 * 1741 * @cache: The #MemoryRegionCache whose memory should be released. 1742 */ 1743 void address_space_cache_destroy(MemoryRegionCache *cache); 1744 1745 /* address_space_ld*_cached: load from a cached #MemoryRegion 1746 * address_space_st*_cached: store into a cached #MemoryRegion 1747 * 1748 * These functions perform a load or store of the byte, word, 1749 * longword or quad to the specified address. The address is 1750 * a physical address in the AddressSpace, but it must lie within 1751 * a #MemoryRegion that was mapped with address_space_cache_init. 1752 * 1753 * The _le suffixed functions treat the data as little endian; 1754 * _be indicates big endian; no suffix indicates "same endianness 1755 * as guest CPU". 1756 * 1757 * The "guest CPU endianness" accessors are deprecated for use outside 1758 * target-* code; devices should be CPU-agnostic and use either the LE 1759 * or the BE accessors. 1760 * 1761 * @cache: previously initialized #MemoryRegionCache to be accessed 1762 * @addr: address within the address space 1763 * @val: data value, for stores 1764 * @attrs: memory transaction attributes 1765 * @result: location to write the success/failure of the transaction; 1766 * if NULL, this information is discarded 1767 */ 1768 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr, 1769 MemTxAttrs attrs, MemTxResult *result); 1770 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr, 1771 MemTxAttrs attrs, MemTxResult *result); 1772 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr, 1773 MemTxAttrs attrs, MemTxResult *result); 1774 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr, 1775 MemTxAttrs attrs, MemTxResult *result); 1776 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr, 1777 MemTxAttrs attrs, MemTxResult *result); 1778 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr, 1779 MemTxAttrs attrs, MemTxResult *result); 1780 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr, 1781 MemTxAttrs attrs, MemTxResult *result); 1782 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1783 MemTxAttrs attrs, MemTxResult *result); 1784 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1785 MemTxAttrs attrs, MemTxResult *result); 1786 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1787 MemTxAttrs attrs, MemTxResult *result); 1788 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1789 MemTxAttrs attrs, MemTxResult *result); 1790 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1791 MemTxAttrs attrs, MemTxResult *result); 1792 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1793 MemTxAttrs attrs, MemTxResult *result); 1794 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1795 MemTxAttrs attrs, MemTxResult *result); 1796 1797 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1798 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1799 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1800 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1801 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1802 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1803 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1804 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1805 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1806 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1807 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1808 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1809 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1810 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1811 /* address_space_get_iotlb_entry: translate an address into an IOTLB 1812 * entry. Should be called from an RCU critical section. 1813 */ 1814 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1815 bool is_write); 1816 1817 /* address_space_translate: translate an address range into an address space 1818 * into a MemoryRegion and an address range into that section. Should be 1819 * called from an RCU critical section, to avoid that the last reference 1820 * to the returned region disappears after address_space_translate returns. 1821 * 1822 * @as: #AddressSpace to be accessed 1823 * @addr: address within that address space 1824 * @xlat: pointer to address within the returned memory region section's 1825 * #MemoryRegion. 1826 * @len: pointer to length 1827 * @is_write: indicates the transfer direction 1828 */ 1829 MemoryRegion *flatview_translate(FlatView *fv, 1830 hwaddr addr, hwaddr *xlat, 1831 hwaddr *len, bool is_write); 1832 1833 static inline MemoryRegion *address_space_translate(AddressSpace *as, 1834 hwaddr addr, hwaddr *xlat, 1835 hwaddr *len, bool is_write) 1836 { 1837 return flatview_translate(address_space_to_flatview(as), 1838 addr, xlat, len, is_write); 1839 } 1840 1841 /* address_space_access_valid: check for validity of accessing an address 1842 * space range 1843 * 1844 * Check whether memory is assigned to the given address space range, and 1845 * access is permitted by any IOMMU regions that are active for the address 1846 * space. 1847 * 1848 * For now, addr and len should be aligned to a page size. This limitation 1849 * will be lifted in the future. 1850 * 1851 * @as: #AddressSpace to be accessed 1852 * @addr: address within that address space 1853 * @len: length of the area to be checked 1854 * @is_write: indicates the transfer direction 1855 */ 1856 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1857 1858 /* address_space_map: map a physical memory region into a host virtual address 1859 * 1860 * May map a subset of the requested range, given by and returned in @plen. 1861 * May return %NULL if resources needed to perform the mapping are exhausted. 1862 * Use only for reads OR writes - not for read-modify-write operations. 1863 * Use cpu_register_map_client() to know when retrying the map operation is 1864 * likely to succeed. 1865 * 1866 * @as: #AddressSpace to be accessed 1867 * @addr: address within that address space 1868 * @plen: pointer to length of buffer; updated on return 1869 * @is_write: indicates the transfer direction 1870 */ 1871 void *address_space_map(AddressSpace *as, hwaddr addr, 1872 hwaddr *plen, bool is_write); 1873 1874 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1875 * 1876 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1877 * the amount of memory that was actually read or written by the caller. 1878 * 1879 * @as: #AddressSpace used 1880 * @addr: address within that address space 1881 * @len: buffer length as returned by address_space_map() 1882 * @access_len: amount of data actually transferred 1883 * @is_write: indicates the transfer direction 1884 */ 1885 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1886 int is_write, hwaddr access_len); 1887 1888 1889 /* Internal functions, part of the implementation of address_space_read. */ 1890 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 1891 MemTxAttrs attrs, uint8_t *buf, 1892 int len, hwaddr addr1, hwaddr l, 1893 MemoryRegion *mr); 1894 1895 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr, 1896 MemTxAttrs attrs, uint8_t *buf, int len); 1897 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 1898 1899 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1900 { 1901 if (is_write) { 1902 return memory_region_is_ram(mr) && 1903 !mr->readonly && !memory_region_is_ram_device(mr); 1904 } else { 1905 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 1906 memory_region_is_romd(mr); 1907 } 1908 } 1909 1910 /** 1911 * address_space_read: read from an address space. 1912 * 1913 * Return a MemTxResult indicating whether the operation succeeded 1914 * or failed (eg unassigned memory, device rejected the transaction, 1915 * IOMMU fault). 1916 * 1917 * @as: #AddressSpace to be accessed 1918 * @addr: address within that address space 1919 * @attrs: memory transaction attributes 1920 * @buf: buffer with the data transferred 1921 */ 1922 static inline __attribute__((__always_inline__)) 1923 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 1924 uint8_t *buf, int len) 1925 { 1926 MemTxResult result = MEMTX_OK; 1927 hwaddr l, addr1; 1928 void *ptr; 1929 MemoryRegion *mr; 1930 1931 if (__builtin_constant_p(len)) { 1932 if (len) { 1933 rcu_read_lock(); 1934 l = len; 1935 mr = flatview_translate(fv, addr, &addr1, &l, false); 1936 if (len == l && memory_access_is_direct(mr, false)) { 1937 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 1938 memcpy(buf, ptr, len); 1939 } else { 1940 result = flatview_read_continue(fv, addr, attrs, buf, len, 1941 addr1, l, mr); 1942 } 1943 rcu_read_unlock(); 1944 } 1945 } else { 1946 result = flatview_read_full(fv, addr, attrs, buf, len); 1947 } 1948 return result; 1949 } 1950 1951 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 1952 MemTxAttrs attrs, uint8_t *buf, 1953 int len) 1954 { 1955 return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len); 1956 } 1957 1958 /** 1959 * address_space_read_cached: read from a cached RAM region 1960 * 1961 * @cache: Cached region to be addressed 1962 * @addr: address relative to the base of the RAM region 1963 * @buf: buffer with the data transferred 1964 * @len: length of the data transferred 1965 */ 1966 static inline void 1967 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 1968 void *buf, int len) 1969 { 1970 assert(addr < cache->len && len <= cache->len - addr); 1971 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 1972 } 1973 1974 /** 1975 * address_space_write_cached: write to a cached RAM region 1976 * 1977 * @cache: Cached region to be addressed 1978 * @addr: address relative to the base of the RAM region 1979 * @buf: buffer with the data transferred 1980 * @len: length of the data transferred 1981 */ 1982 static inline void 1983 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 1984 void *buf, int len) 1985 { 1986 assert(addr < cache->len && len <= cache->len - addr); 1987 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 1988 } 1989 1990 #endif 1991 1992 #endif 1993