xref: /openbmc/qemu/include/exec/memory.h (revision 88f62c2b)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include <stdint.h>
20 #include <stdbool.h>
21 #include "qemu-common.h"
22 #include "exec/cpu-common.h"
23 #include "exec/hwaddr.h"
24 #include "qemu/queue.h"
25 #include "exec/iorange.h"
26 #include "exec/ioport.h"
27 #include "qemu/int128.h"
28 
29 #define MAX_PHYS_ADDR_SPACE_BITS 62
30 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
31 
32 typedef struct MemoryRegionOps MemoryRegionOps;
33 typedef struct MemoryRegionPortio MemoryRegionPortio;
34 typedef struct MemoryRegionMmio MemoryRegionMmio;
35 
36 /* Must match *_DIRTY_FLAGS in cpu-all.h.  To be replaced with dynamic
37  * registration.
38  */
39 #define DIRTY_MEMORY_VGA       0
40 #define DIRTY_MEMORY_CODE      1
41 #define DIRTY_MEMORY_MIGRATION 3
42 
43 struct MemoryRegionMmio {
44     CPUReadMemoryFunc *read[3];
45     CPUWriteMemoryFunc *write[3];
46 };
47 
48 /* Internal use; thunks between old-style IORange and MemoryRegions. */
49 typedef struct MemoryRegionIORange MemoryRegionIORange;
50 struct MemoryRegionIORange {
51     IORange iorange;
52     MemoryRegion *mr;
53     hwaddr offset;
54 };
55 
56 /*
57  * Memory region callbacks
58  */
59 struct MemoryRegionOps {
60     /* Read from the memory region. @addr is relative to @mr; @size is
61      * in bytes. */
62     uint64_t (*read)(void *opaque,
63                      hwaddr addr,
64                      unsigned size);
65     /* Write to the memory region. @addr is relative to @mr; @size is
66      * in bytes. */
67     void (*write)(void *opaque,
68                   hwaddr addr,
69                   uint64_t data,
70                   unsigned size);
71 
72     enum device_endian endianness;
73     /* Guest-visible constraints: */
74     struct {
75         /* If nonzero, specify bounds on access sizes beyond which a machine
76          * check is thrown.
77          */
78         unsigned min_access_size;
79         unsigned max_access_size;
80         /* If true, unaligned accesses are supported.  Otherwise unaligned
81          * accesses throw machine checks.
82          */
83          bool unaligned;
84         /*
85          * If present, and returns #false, the transaction is not accepted
86          * by the device (and results in machine dependent behaviour such
87          * as a machine check exception).
88          */
89         bool (*accepts)(void *opaque, hwaddr addr,
90                         unsigned size, bool is_write);
91     } valid;
92     /* Internal implementation constraints: */
93     struct {
94         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
95          * will be rounded upwards and a partial result will be returned.
96          */
97         unsigned min_access_size;
98         /* If nonzero, specifies the maximum size implemented.  Larger sizes
99          * will be done as a series of accesses with smaller sizes.
100          */
101         unsigned max_access_size;
102         /* If true, unaligned accesses are supported.  Otherwise all accesses
103          * are converted to (possibly multiple) naturally aligned accesses.
104          */
105          bool unaligned;
106     } impl;
107 
108     /* If .read and .write are not present, old_portio may be used for
109      * backwards compatibility with old portio registration
110      */
111     const MemoryRegionPortio *old_portio;
112     /* If .read and .write are not present, old_mmio may be used for
113      * backwards compatibility with old mmio registration
114      */
115     const MemoryRegionMmio old_mmio;
116 };
117 
118 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
119 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
120 
121 struct MemoryRegion {
122     /* All fields are private - violators will be prosecuted */
123     const MemoryRegionOps *ops;
124     void *opaque;
125     MemoryRegion *parent;
126     Int128 size;
127     hwaddr addr;
128     void (*destructor)(MemoryRegion *mr);
129     ram_addr_t ram_addr;
130     bool subpage;
131     bool terminates;
132     bool romd_mode;
133     bool ram;
134     bool readonly; /* For RAM regions */
135     bool enabled;
136     bool rom_device;
137     bool warning_printed; /* For reservations */
138     bool flush_coalesced_mmio;
139     MemoryRegion *alias;
140     hwaddr alias_offset;
141     unsigned priority;
142     bool may_overlap;
143     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
144     QTAILQ_ENTRY(MemoryRegion) subregions_link;
145     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
146     const char *name;
147     uint8_t dirty_log_mask;
148     unsigned ioeventfd_nb;
149     MemoryRegionIoeventfd *ioeventfds;
150 };
151 
152 struct MemoryRegionPortio {
153     uint32_t offset;
154     uint32_t len;
155     unsigned size;
156     IOPortReadFunc *read;
157     IOPortWriteFunc *write;
158 };
159 
160 #define PORTIO_END_OF_LIST() { }
161 
162 /**
163  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
164  */
165 struct AddressSpace {
166     /* All fields are private. */
167     const char *name;
168     MemoryRegion *root;
169     struct FlatView *current_map;
170     int ioeventfd_nb;
171     struct MemoryRegionIoeventfd *ioeventfds;
172     struct AddressSpaceDispatch *dispatch;
173     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
174 };
175 
176 /**
177  * MemoryRegionSection: describes a fragment of a #MemoryRegion
178  *
179  * @mr: the region, or %NULL if empty
180  * @address_space: the address space the region is mapped in
181  * @offset_within_region: the beginning of the section, relative to @mr's start
182  * @size: the size of the section; will not exceed @mr's boundaries
183  * @offset_within_address_space: the address of the first byte of the section
184  *     relative to the region's address space
185  * @readonly: writes to this section are ignored
186  */
187 struct MemoryRegionSection {
188     MemoryRegion *mr;
189     AddressSpace *address_space;
190     hwaddr offset_within_region;
191     uint64_t size;
192     hwaddr offset_within_address_space;
193     bool readonly;
194 };
195 
196 typedef struct MemoryListener MemoryListener;
197 
198 /**
199  * MemoryListener: callbacks structure for updates to the physical memory map
200  *
201  * Allows a component to adjust to changes in the guest-visible memory map.
202  * Use with memory_listener_register() and memory_listener_unregister().
203  */
204 struct MemoryListener {
205     void (*begin)(MemoryListener *listener);
206     void (*commit)(MemoryListener *listener);
207     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
208     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
209     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
210     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
211     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
212     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
213     void (*log_global_start)(MemoryListener *listener);
214     void (*log_global_stop)(MemoryListener *listener);
215     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
216                         bool match_data, uint64_t data, EventNotifier *e);
217     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
218                         bool match_data, uint64_t data, EventNotifier *e);
219     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
220                                hwaddr addr, hwaddr len);
221     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
222                                hwaddr addr, hwaddr len);
223     /* Lower = earlier (during add), later (during del) */
224     unsigned priority;
225     AddressSpace *address_space_filter;
226     QTAILQ_ENTRY(MemoryListener) link;
227 };
228 
229 /**
230  * memory_region_init: Initialize a memory region
231  *
232  * The region typically acts as a container for other memory regions.  Use
233  * memory_region_add_subregion() to add subregions.
234  *
235  * @mr: the #MemoryRegion to be initialized
236  * @name: used for debugging; not visible to the user or ABI
237  * @size: size of the region; any subregions beyond this size will be clipped
238  */
239 void memory_region_init(MemoryRegion *mr,
240                         const char *name,
241                         uint64_t size);
242 /**
243  * memory_region_init_io: Initialize an I/O memory region.
244  *
245  * Accesses into the region will cause the callbacks in @ops to be called.
246  * if @size is nonzero, subregions will be clipped to @size.
247  *
248  * @mr: the #MemoryRegion to be initialized.
249  * @ops: a structure containing read and write callbacks to be used when
250  *       I/O is performed on the region.
251  * @opaque: passed to to the read and write callbacks of the @ops structure.
252  * @name: used for debugging; not visible to the user or ABI
253  * @size: size of the region.
254  */
255 void memory_region_init_io(MemoryRegion *mr,
256                            const MemoryRegionOps *ops,
257                            void *opaque,
258                            const char *name,
259                            uint64_t size);
260 
261 /**
262  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
263  *                          region will modify memory directly.
264  *
265  * @mr: the #MemoryRegion to be initialized.
266  * @name: the name of the region.
267  * @size: size of the region.
268  */
269 void memory_region_init_ram(MemoryRegion *mr,
270                             const char *name,
271                             uint64_t size);
272 
273 /**
274  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
275  *                              user-provided pointer.  Accesses into the
276  *                              region will modify memory directly.
277  *
278  * @mr: the #MemoryRegion to be initialized.
279  * @name: the name of the region.
280  * @size: size of the region.
281  * @ptr: memory to be mapped; must contain at least @size bytes.
282  */
283 void memory_region_init_ram_ptr(MemoryRegion *mr,
284                                 const char *name,
285                                 uint64_t size,
286                                 void *ptr);
287 
288 /**
289  * memory_region_init_alias: Initialize a memory region that aliases all or a
290  *                           part of another memory region.
291  *
292  * @mr: the #MemoryRegion to be initialized.
293  * @name: used for debugging; not visible to the user or ABI
294  * @orig: the region to be referenced; @mr will be equivalent to
295  *        @orig between @offset and @offset + @size - 1.
296  * @offset: start of the section in @orig to be referenced.
297  * @size: size of the region.
298  */
299 void memory_region_init_alias(MemoryRegion *mr,
300                               const char *name,
301                               MemoryRegion *orig,
302                               hwaddr offset,
303                               uint64_t size);
304 
305 /**
306  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
307  *                                 handled via callbacks.
308  *
309  * @mr: the #MemoryRegion to be initialized.
310  * @ops: callbacks for write access handling.
311  * @name: the name of the region.
312  * @size: size of the region.
313  */
314 void memory_region_init_rom_device(MemoryRegion *mr,
315                                    const MemoryRegionOps *ops,
316                                    void *opaque,
317                                    const char *name,
318                                    uint64_t size);
319 
320 /**
321  * memory_region_init_reservation: Initialize a memory region that reserves
322  *                                 I/O space.
323  *
324  * A reservation region primariy serves debugging purposes.  It claims I/O
325  * space that is not supposed to be handled by QEMU itself.  Any access via
326  * the memory API will cause an abort().
327  *
328  * @mr: the #MemoryRegion to be initialized
329  * @name: used for debugging; not visible to the user or ABI
330  * @size: size of the region.
331  */
332 void memory_region_init_reservation(MemoryRegion *mr,
333                                     const char *name,
334                                     uint64_t size);
335 /**
336  * memory_region_destroy: Destroy a memory region and reclaim all resources.
337  *
338  * @mr: the region to be destroyed.  May not currently be a subregion
339  *      (see memory_region_add_subregion()) or referenced in an alias
340  *      (see memory_region_init_alias()).
341  */
342 void memory_region_destroy(MemoryRegion *mr);
343 
344 /**
345  * memory_region_size: get a memory region's size.
346  *
347  * @mr: the memory region being queried.
348  */
349 uint64_t memory_region_size(MemoryRegion *mr);
350 
351 /**
352  * memory_region_is_ram: check whether a memory region is random access
353  *
354  * Returns %true is a memory region is random access.
355  *
356  * @mr: the memory region being queried
357  */
358 bool memory_region_is_ram(MemoryRegion *mr);
359 
360 /**
361  * memory_region_is_romd: check whether a memory region is in ROMD mode
362  *
363  * Returns %true if a memory region is a ROM device and currently set to allow
364  * direct reads.
365  *
366  * @mr: the memory region being queried
367  */
368 static inline bool memory_region_is_romd(MemoryRegion *mr)
369 {
370     return mr->rom_device && mr->romd_mode;
371 }
372 
373 /**
374  * memory_region_name: get a memory region's name
375  *
376  * Returns the string that was used to initialize the memory region.
377  *
378  * @mr: the memory region being queried
379  */
380 const char *memory_region_name(MemoryRegion *mr);
381 
382 /**
383  * memory_region_is_logging: return whether a memory region is logging writes
384  *
385  * Returns %true if the memory region is logging writes
386  *
387  * @mr: the memory region being queried
388  */
389 bool memory_region_is_logging(MemoryRegion *mr);
390 
391 /**
392  * memory_region_is_rom: check whether a memory region is ROM
393  *
394  * Returns %true is a memory region is read-only memory.
395  *
396  * @mr: the memory region being queried
397  */
398 bool memory_region_is_rom(MemoryRegion *mr);
399 
400 /**
401  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
402  *
403  * Returns a host pointer to a RAM memory region (created with
404  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
405  * care.
406  *
407  * @mr: the memory region being queried.
408  */
409 void *memory_region_get_ram_ptr(MemoryRegion *mr);
410 
411 /**
412  * memory_region_set_log: Turn dirty logging on or off for a region.
413  *
414  * Turns dirty logging on or off for a specified client (display, migration).
415  * Only meaningful for RAM regions.
416  *
417  * @mr: the memory region being updated.
418  * @log: whether dirty logging is to be enabled or disabled.
419  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
420  *          %DIRTY_MEMORY_VGA.
421  */
422 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
423 
424 /**
425  * memory_region_get_dirty: Check whether a range of bytes is dirty
426  *                          for a specified client.
427  *
428  * Checks whether a range of bytes has been written to since the last
429  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
430  * must be enabled.
431  *
432  * @mr: the memory region being queried.
433  * @addr: the address (relative to the start of the region) being queried.
434  * @size: the size of the range being queried.
435  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
436  *          %DIRTY_MEMORY_VGA.
437  */
438 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
439                              hwaddr size, unsigned client);
440 
441 /**
442  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
443  *
444  * Marks a range of bytes as dirty, after it has been dirtied outside
445  * guest code.
446  *
447  * @mr: the memory region being dirtied.
448  * @addr: the address (relative to the start of the region) being dirtied.
449  * @size: size of the range being dirtied.
450  */
451 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
452                              hwaddr size);
453 
454 /**
455  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
456  *                                     for a specified client. It clears them.
457  *
458  * Checks whether a range of bytes has been written to since the last
459  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
460  * must be enabled.
461  *
462  * @mr: the memory region being queried.
463  * @addr: the address (relative to the start of the region) being queried.
464  * @size: the size of the range being queried.
465  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
466  *          %DIRTY_MEMORY_VGA.
467  */
468 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
469                                         hwaddr size, unsigned client);
470 /**
471  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
472  *                                  any external TLBs (e.g. kvm)
473  *
474  * Flushes dirty information from accelerators such as kvm and vhost-net
475  * and makes it available to users of the memory API.
476  *
477  * @mr: the region being flushed.
478  */
479 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
480 
481 /**
482  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
483  *                            client.
484  *
485  * Marks a range of pages as no longer dirty.
486  *
487  * @mr: the region being updated.
488  * @addr: the start of the subrange being cleaned.
489  * @size: the size of the subrange being cleaned.
490  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
491  *          %DIRTY_MEMORY_VGA.
492  */
493 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
494                                hwaddr size, unsigned client);
495 
496 /**
497  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
498  *
499  * Allows a memory region to be marked as read-only (turning it into a ROM).
500  * only useful on RAM regions.
501  *
502  * @mr: the region being updated.
503  * @readonly: whether rhe region is to be ROM or RAM.
504  */
505 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
506 
507 /**
508  * memory_region_rom_device_set_romd: enable/disable ROMD mode
509  *
510  * Allows a ROM device (initialized with memory_region_init_rom_device() to
511  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
512  * device is mapped to guest memory and satisfies read access directly.
513  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
514  * Writes are always handled by the #MemoryRegion.write function.
515  *
516  * @mr: the memory region to be updated
517  * @romd_mode: %true to put the region into ROMD mode
518  */
519 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
520 
521 /**
522  * memory_region_set_coalescing: Enable memory coalescing for the region.
523  *
524  * Enabled writes to a region to be queued for later processing. MMIO ->write
525  * callbacks may be delayed until a non-coalesced MMIO is issued.
526  * Only useful for IO regions.  Roughly similar to write-combining hardware.
527  *
528  * @mr: the memory region to be write coalesced
529  */
530 void memory_region_set_coalescing(MemoryRegion *mr);
531 
532 /**
533  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
534  *                               a region.
535  *
536  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
537  * Multiple calls can be issued coalesced disjoint ranges.
538  *
539  * @mr: the memory region to be updated.
540  * @offset: the start of the range within the region to be coalesced.
541  * @size: the size of the subrange to be coalesced.
542  */
543 void memory_region_add_coalescing(MemoryRegion *mr,
544                                   hwaddr offset,
545                                   uint64_t size);
546 
547 /**
548  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
549  *
550  * Disables any coalescing caused by memory_region_set_coalescing() or
551  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
552  * hardware.
553  *
554  * @mr: the memory region to be updated.
555  */
556 void memory_region_clear_coalescing(MemoryRegion *mr);
557 
558 /**
559  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
560  *                                    accesses.
561  *
562  * Ensure that pending coalesced MMIO request are flushed before the memory
563  * region is accessed. This property is automatically enabled for all regions
564  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
565  *
566  * @mr: the memory region to be updated.
567  */
568 void memory_region_set_flush_coalesced(MemoryRegion *mr);
569 
570 /**
571  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
572  *                                      accesses.
573  *
574  * Clear the automatic coalesced MMIO flushing enabled via
575  * memory_region_set_flush_coalesced. Note that this service has no effect on
576  * memory regions that have MMIO coalescing enabled for themselves. For them,
577  * automatic flushing will stop once coalescing is disabled.
578  *
579  * @mr: the memory region to be updated.
580  */
581 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
582 
583 /**
584  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
585  *                            is written to a location.
586  *
587  * Marks a word in an IO region (initialized with memory_region_init_io())
588  * as a trigger for an eventfd event.  The I/O callback will not be called.
589  * The caller must be prepared to handle failure (that is, take the required
590  * action if the callback _is_ called).
591  *
592  * @mr: the memory region being updated.
593  * @addr: the address within @mr that is to be monitored
594  * @size: the size of the access to trigger the eventfd
595  * @match_data: whether to match against @data, instead of just @addr
596  * @data: the data to match against the guest write
597  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
598  **/
599 void memory_region_add_eventfd(MemoryRegion *mr,
600                                hwaddr addr,
601                                unsigned size,
602                                bool match_data,
603                                uint64_t data,
604                                EventNotifier *e);
605 
606 /**
607  * memory_region_del_eventfd: Cancel an eventfd.
608  *
609  * Cancels an eventfd trigger requested by a previous
610  * memory_region_add_eventfd() call.
611  *
612  * @mr: the memory region being updated.
613  * @addr: the address within @mr that is to be monitored
614  * @size: the size of the access to trigger the eventfd
615  * @match_data: whether to match against @data, instead of just @addr
616  * @data: the data to match against the guest write
617  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
618  */
619 void memory_region_del_eventfd(MemoryRegion *mr,
620                                hwaddr addr,
621                                unsigned size,
622                                bool match_data,
623                                uint64_t data,
624                                EventNotifier *e);
625 
626 /**
627  * memory_region_add_subregion: Add a subregion to a container.
628  *
629  * Adds a subregion at @offset.  The subregion may not overlap with other
630  * subregions (except for those explicitly marked as overlapping).  A region
631  * may only be added once as a subregion (unless removed with
632  * memory_region_del_subregion()); use memory_region_init_alias() if you
633  * want a region to be a subregion in multiple locations.
634  *
635  * @mr: the region to contain the new subregion; must be a container
636  *      initialized with memory_region_init().
637  * @offset: the offset relative to @mr where @subregion is added.
638  * @subregion: the subregion to be added.
639  */
640 void memory_region_add_subregion(MemoryRegion *mr,
641                                  hwaddr offset,
642                                  MemoryRegion *subregion);
643 /**
644  * memory_region_add_subregion_overlap: Add a subregion to a container
645  *                                      with overlap.
646  *
647  * Adds a subregion at @offset.  The subregion may overlap with other
648  * subregions.  Conflicts are resolved by having a higher @priority hide a
649  * lower @priority. Subregions without priority are taken as @priority 0.
650  * A region may only be added once as a subregion (unless removed with
651  * memory_region_del_subregion()); use memory_region_init_alias() if you
652  * want a region to be a subregion in multiple locations.
653  *
654  * @mr: the region to contain the new subregion; must be a container
655  *      initialized with memory_region_init().
656  * @offset: the offset relative to @mr where @subregion is added.
657  * @subregion: the subregion to be added.
658  * @priority: used for resolving overlaps; highest priority wins.
659  */
660 void memory_region_add_subregion_overlap(MemoryRegion *mr,
661                                          hwaddr offset,
662                                          MemoryRegion *subregion,
663                                          unsigned priority);
664 
665 /**
666  * memory_region_get_ram_addr: Get the ram address associated with a memory
667  *                             region
668  *
669  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
670  * code is being reworked.
671  */
672 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
673 
674 /**
675  * memory_region_del_subregion: Remove a subregion.
676  *
677  * Removes a subregion from its container.
678  *
679  * @mr: the container to be updated.
680  * @subregion: the region being removed; must be a current subregion of @mr.
681  */
682 void memory_region_del_subregion(MemoryRegion *mr,
683                                  MemoryRegion *subregion);
684 
685 /*
686  * memory_region_set_enabled: dynamically enable or disable a region
687  *
688  * Enables or disables a memory region.  A disabled memory region
689  * ignores all accesses to itself and its subregions.  It does not
690  * obscure sibling subregions with lower priority - it simply behaves as
691  * if it was removed from the hierarchy.
692  *
693  * Regions default to being enabled.
694  *
695  * @mr: the region to be updated
696  * @enabled: whether to enable or disable the region
697  */
698 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
699 
700 /*
701  * memory_region_set_address: dynamically update the address of a region
702  *
703  * Dynamically updates the address of a region, relative to its parent.
704  * May be used on regions are currently part of a memory hierarchy.
705  *
706  * @mr: the region to be updated
707  * @addr: new address, relative to parent region
708  */
709 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
710 
711 /*
712  * memory_region_set_alias_offset: dynamically update a memory alias's offset
713  *
714  * Dynamically updates the offset into the target region that an alias points
715  * to, as if the fourth argument to memory_region_init_alias() has changed.
716  *
717  * @mr: the #MemoryRegion to be updated; should be an alias.
718  * @offset: the new offset into the target memory region
719  */
720 void memory_region_set_alias_offset(MemoryRegion *mr,
721                                     hwaddr offset);
722 
723 /**
724  * memory_region_find: translate an address/size relative to a
725  * MemoryRegion into a #MemoryRegionSection.
726  *
727  * Locates the first #MemoryRegion within @mr that overlaps the range
728  * given by @addr and @size.
729  *
730  * Returns a #MemoryRegionSection that describes a contiguous overlap.
731  * It will have the following characteristics:
732  *    .@size = 0 iff no overlap was found
733  *    .@mr is non-%NULL iff an overlap was found
734  *
735  * Remember that in the return value the @offset_within_region is
736  * relative to the returned region (in the .@mr field), not to the
737  * @mr argument.
738  *
739  * Similarly, the .@offset_within_address_space is relative to the
740  * address space that contains both regions, the passed and the
741  * returned one.  However, in the special case where the @mr argument
742  * has no parent (and thus is the root of the address space), the
743  * following will hold:
744  *    .@offset_within_address_space >= @addr
745  *    .@offset_within_address_space + .@size <= @addr + @size
746  *
747  * @mr: a MemoryRegion within which @addr is a relative address
748  * @addr: start of the area within @as to be searched
749  * @size: size of the area to be searched
750  */
751 MemoryRegionSection memory_region_find(MemoryRegion *mr,
752                                        hwaddr addr, uint64_t size);
753 
754 /**
755  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
756  *
757  * Synchronizes the dirty page log for an entire address space.
758  * @as: the address space that contains the memory being synchronized
759  */
760 void address_space_sync_dirty_bitmap(AddressSpace *as);
761 
762 /**
763  * memory_region_transaction_begin: Start a transaction.
764  *
765  * During a transaction, changes will be accumulated and made visible
766  * only when the transaction ends (is committed).
767  */
768 void memory_region_transaction_begin(void);
769 
770 /**
771  * memory_region_transaction_commit: Commit a transaction and make changes
772  *                                   visible to the guest.
773  */
774 void memory_region_transaction_commit(void);
775 
776 /**
777  * memory_listener_register: register callbacks to be called when memory
778  *                           sections are mapped or unmapped into an address
779  *                           space
780  *
781  * @listener: an object containing the callbacks to be called
782  * @filter: if non-%NULL, only regions in this address space will be observed
783  */
784 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
785 
786 /**
787  * memory_listener_unregister: undo the effect of memory_listener_register()
788  *
789  * @listener: an object containing the callbacks to be removed
790  */
791 void memory_listener_unregister(MemoryListener *listener);
792 
793 /**
794  * memory_global_dirty_log_start: begin dirty logging for all regions
795  */
796 void memory_global_dirty_log_start(void);
797 
798 /**
799  * memory_global_dirty_log_stop: end dirty logging for all regions
800  */
801 void memory_global_dirty_log_stop(void);
802 
803 void mtree_info(fprintf_function mon_printf, void *f);
804 
805 /**
806  * address_space_init: initializes an address space
807  *
808  * @as: an uninitialized #AddressSpace
809  * @root: a #MemoryRegion that routes addesses for the address space
810  */
811 void address_space_init(AddressSpace *as, MemoryRegion *root);
812 
813 
814 /**
815  * address_space_destroy: destroy an address space
816  *
817  * Releases all resources associated with an address space.  After an address space
818  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
819  * as well.
820  *
821  * @as: address space to be destroyed
822  */
823 void address_space_destroy(AddressSpace *as);
824 
825 /**
826  * address_space_rw: read from or write to an address space.
827  *
828  * Return true if the operation hit any unassigned memory.
829  *
830  * @as: #AddressSpace to be accessed
831  * @addr: address within that address space
832  * @buf: buffer with the data transferred
833  * @is_write: indicates the transfer direction
834  */
835 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
836                       int len, bool is_write);
837 
838 /**
839  * address_space_write: write to address space.
840  *
841  * Return true if the operation hit any unassigned memory.
842  *
843  * @as: #AddressSpace to be accessed
844  * @addr: address within that address space
845  * @buf: buffer with the data transferred
846  */
847 bool address_space_write(AddressSpace *as, hwaddr addr,
848                          const uint8_t *buf, int len);
849 
850 /**
851  * address_space_read: read from an address space.
852  *
853  * Return true if the operation hit any unassigned memory.
854  *
855  * @as: #AddressSpace to be accessed
856  * @addr: address within that address space
857  * @buf: buffer with the data transferred
858  */
859 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
860 
861 /* address_space_translate: translate an address range into an address space
862  * into a MemoryRegionSection and an address range into that section
863  *
864  * @as: #AddressSpace to be accessed
865  * @addr: address within that address space
866  * @xlat: pointer to address within the returned memory region section's
867  * #MemoryRegion.
868  * @len: pointer to length
869  * @is_write: indicates the transfer direction
870  */
871 MemoryRegionSection *address_space_translate(AddressSpace *as, hwaddr addr,
872                                              hwaddr *xlat, hwaddr *len,
873                                              bool is_write);
874 
875 /* address_space_access_valid: check for validity of accessing an address
876  * space range
877  *
878  * Check whether memory is assigned to the given address space range.
879  *
880  * For now, addr and len should be aligned to a page size.  This limitation
881  * will be lifted in the future.
882  *
883  * @as: #AddressSpace to be accessed
884  * @addr: address within that address space
885  * @len: length of the area to be checked
886  * @is_write: indicates the transfer direction
887  */
888 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
889 
890 /* address_space_map: map a physical memory region into a host virtual address
891  *
892  * May map a subset of the requested range, given by and returned in @plen.
893  * May return %NULL if resources needed to perform the mapping are exhausted.
894  * Use only for reads OR writes - not for read-modify-write operations.
895  * Use cpu_register_map_client() to know when retrying the map operation is
896  * likely to succeed.
897  *
898  * @as: #AddressSpace to be accessed
899  * @addr: address within that address space
900  * @plen: pointer to length of buffer; updated on return
901  * @is_write: indicates the transfer direction
902  */
903 void *address_space_map(AddressSpace *as, hwaddr addr,
904                         hwaddr *plen, bool is_write);
905 
906 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
907  *
908  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
909  * the amount of memory that was actually read or written by the caller.
910  *
911  * @as: #AddressSpace used
912  * @addr: address within that address space
913  * @len: buffer length as returned by address_space_map()
914  * @access_len: amount of data actually transferred
915  * @is_write: indicates the transfer direction
916  */
917 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
918                          int is_write, hwaddr access_len);
919 
920 
921 #endif
922 
923 #endif
924