xref: /openbmc/qemu/include/exec/memory.h (revision 80adf54e)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51 
52 struct MemoryRegionMmio {
53     CPUReadMemoryFunc *read[3];
54     CPUWriteMemoryFunc *write[3];
55 };
56 
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58 
59 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
60 typedef enum {
61     IOMMU_NONE = 0,
62     IOMMU_RO   = 1,
63     IOMMU_WO   = 2,
64     IOMMU_RW   = 3,
65 } IOMMUAccessFlags;
66 
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68 
69 struct IOMMUTLBEntry {
70     AddressSpace    *target_as;
71     hwaddr           iova;
72     hwaddr           translated_addr;
73     hwaddr           addr_mask;  /* 0xfff = 4k translation */
74     IOMMUAccessFlags perm;
75 };
76 
77 /*
78  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79  * register with one or multiple IOMMU Notifier capability bit(s).
80  */
81 typedef enum {
82     IOMMU_NOTIFIER_NONE = 0,
83     /* Notify cache invalidations */
84     IOMMU_NOTIFIER_UNMAP = 0x1,
85     /* Notify entry changes (newly created entries) */
86     IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88 
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90 
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93                             IOMMUTLBEntry *data);
94 
95 struct IOMMUNotifier {
96     IOMMUNotify notify;
97     IOMMUNotifierFlag notifier_flags;
98     /* Notify for address space range start <= addr <= end */
99     hwaddr start;
100     hwaddr end;
101     QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104 
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106                                        IOMMUNotifierFlag flags,
107                                        hwaddr start, hwaddr end)
108 {
109     n->notify = fn;
110     n->notifier_flags = flags;
111     n->start = start;
112     n->end = end;
113 }
114 
115 /* New-style MMIO accessors can indicate that the transaction failed.
116  * A zero (MEMTX_OK) response means success; anything else is a failure
117  * of some kind. The memory subsystem will bitwise-OR together results
118  * if it is synthesizing an operation from multiple smaller accesses.
119  */
120 #define MEMTX_OK 0
121 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
122 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
123 typedef uint32_t MemTxResult;
124 
125 /*
126  * Memory region callbacks
127  */
128 struct MemoryRegionOps {
129     /* Read from the memory region. @addr is relative to @mr; @size is
130      * in bytes. */
131     uint64_t (*read)(void *opaque,
132                      hwaddr addr,
133                      unsigned size);
134     /* Write to the memory region. @addr is relative to @mr; @size is
135      * in bytes. */
136     void (*write)(void *opaque,
137                   hwaddr addr,
138                   uint64_t data,
139                   unsigned size);
140 
141     MemTxResult (*read_with_attrs)(void *opaque,
142                                    hwaddr addr,
143                                    uint64_t *data,
144                                    unsigned size,
145                                    MemTxAttrs attrs);
146     MemTxResult (*write_with_attrs)(void *opaque,
147                                     hwaddr addr,
148                                     uint64_t data,
149                                     unsigned size,
150                                     MemTxAttrs attrs);
151     /* Instruction execution pre-callback:
152      * @addr is the address of the access relative to the @mr.
153      * @size is the size of the area returned by the callback.
154      * @offset is the location of the pointer inside @mr.
155      *
156      * Returns a pointer to a location which contains guest code.
157      */
158     void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
159                          unsigned *offset);
160 
161     enum device_endian endianness;
162     /* Guest-visible constraints: */
163     struct {
164         /* If nonzero, specify bounds on access sizes beyond which a machine
165          * check is thrown.
166          */
167         unsigned min_access_size;
168         unsigned max_access_size;
169         /* If true, unaligned accesses are supported.  Otherwise unaligned
170          * accesses throw machine checks.
171          */
172          bool unaligned;
173         /*
174          * If present, and returns #false, the transaction is not accepted
175          * by the device (and results in machine dependent behaviour such
176          * as a machine check exception).
177          */
178         bool (*accepts)(void *opaque, hwaddr addr,
179                         unsigned size, bool is_write);
180     } valid;
181     /* Internal implementation constraints: */
182     struct {
183         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
184          * will be rounded upwards and a partial result will be returned.
185          */
186         unsigned min_access_size;
187         /* If nonzero, specifies the maximum size implemented.  Larger sizes
188          * will be done as a series of accesses with smaller sizes.
189          */
190         unsigned max_access_size;
191         /* If true, unaligned accesses are supported.  Otherwise all accesses
192          * are converted to (possibly multiple) naturally aligned accesses.
193          */
194         bool unaligned;
195     } impl;
196 
197     /* If .read and .write are not present, old_mmio may be used for
198      * backwards compatibility with old mmio registration
199      */
200     const MemoryRegionMmio old_mmio;
201 };
202 
203 typedef struct IOMMUMemoryRegionClass {
204     /* private */
205     struct DeviceClass parent_class;
206 
207     /*
208      * Return a TLB entry that contains a given address. Flag should
209      * be the access permission of this translation operation. We can
210      * set flag to IOMMU_NONE to mean that we don't need any
211      * read/write permission checks, like, when for region replay.
212      */
213     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
214                                IOMMUAccessFlags flag);
215     /* Returns minimum supported page size */
216     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
217     /* Called when IOMMU Notifier flag changed */
218     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
219                                 IOMMUNotifierFlag old_flags,
220                                 IOMMUNotifierFlag new_flags);
221     /* Set this up to provide customized IOMMU replay function */
222     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
223 } IOMMUMemoryRegionClass;
224 
225 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
226 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
227 
228 struct MemoryRegion {
229     Object parent_obj;
230 
231     /* All fields are private - violators will be prosecuted */
232 
233     /* The following fields should fit in a cache line */
234     bool romd_mode;
235     bool ram;
236     bool subpage;
237     bool readonly; /* For RAM regions */
238     bool rom_device;
239     bool flush_coalesced_mmio;
240     bool global_locking;
241     uint8_t dirty_log_mask;
242     bool is_iommu;
243     RAMBlock *ram_block;
244     Object *owner;
245 
246     const MemoryRegionOps *ops;
247     void *opaque;
248     MemoryRegion *container;
249     Int128 size;
250     hwaddr addr;
251     void (*destructor)(MemoryRegion *mr);
252     uint64_t align;
253     bool terminates;
254     bool ram_device;
255     bool enabled;
256     bool warning_printed; /* For reservations */
257     uint8_t vga_logging_count;
258     MemoryRegion *alias;
259     hwaddr alias_offset;
260     int32_t priority;
261     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
262     QTAILQ_ENTRY(MemoryRegion) subregions_link;
263     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
264     const char *name;
265     unsigned ioeventfd_nb;
266     MemoryRegionIoeventfd *ioeventfds;
267 };
268 
269 struct IOMMUMemoryRegion {
270     MemoryRegion parent_obj;
271 
272     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
273     IOMMUNotifierFlag iommu_notify_flags;
274 };
275 
276 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
277     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
278 
279 /**
280  * MemoryListener: callbacks structure for updates to the physical memory map
281  *
282  * Allows a component to adjust to changes in the guest-visible memory map.
283  * Use with memory_listener_register() and memory_listener_unregister().
284  */
285 struct MemoryListener {
286     void (*begin)(MemoryListener *listener);
287     void (*commit)(MemoryListener *listener);
288     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
289     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
290     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
291     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
292                       int old, int new);
293     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
294                      int old, int new);
295     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
296     void (*log_global_start)(MemoryListener *listener);
297     void (*log_global_stop)(MemoryListener *listener);
298     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
299                         bool match_data, uint64_t data, EventNotifier *e);
300     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
301                         bool match_data, uint64_t data, EventNotifier *e);
302     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
303                                hwaddr addr, hwaddr len);
304     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
305                                hwaddr addr, hwaddr len);
306     /* Lower = earlier (during add), later (during del) */
307     unsigned priority;
308     AddressSpace *address_space;
309     QTAILQ_ENTRY(MemoryListener) link;
310     QTAILQ_ENTRY(MemoryListener) link_as;
311 };
312 
313 /**
314  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
315  */
316 struct AddressSpace {
317     /* All fields are private. */
318     struct rcu_head rcu;
319     char *name;
320     MemoryRegion *root;
321     int ref_count;
322     bool malloced;
323 
324     /* Accessed via RCU.  */
325     struct FlatView *current_map;
326 
327     int ioeventfd_nb;
328     struct MemoryRegionIoeventfd *ioeventfds;
329     struct AddressSpaceDispatch *dispatch;
330     struct AddressSpaceDispatch *next_dispatch;
331     MemoryListener dispatch_listener;
332     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
333     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
334 };
335 
336 /**
337  * MemoryRegionSection: describes a fragment of a #MemoryRegion
338  *
339  * @mr: the region, or %NULL if empty
340  * @address_space: the address space the region is mapped in
341  * @offset_within_region: the beginning of the section, relative to @mr's start
342  * @size: the size of the section; will not exceed @mr's boundaries
343  * @offset_within_address_space: the address of the first byte of the section
344  *     relative to the region's address space
345  * @readonly: writes to this section are ignored
346  */
347 struct MemoryRegionSection {
348     MemoryRegion *mr;
349     AddressSpace *address_space;
350     hwaddr offset_within_region;
351     Int128 size;
352     hwaddr offset_within_address_space;
353     bool readonly;
354 };
355 
356 /**
357  * memory_region_init: Initialize a memory region
358  *
359  * The region typically acts as a container for other memory regions.  Use
360  * memory_region_add_subregion() to add subregions.
361  *
362  * @mr: the #MemoryRegion to be initialized
363  * @owner: the object that tracks the region's reference count
364  * @name: used for debugging; not visible to the user or ABI
365  * @size: size of the region; any subregions beyond this size will be clipped
366  */
367 void memory_region_init(MemoryRegion *mr,
368                         struct Object *owner,
369                         const char *name,
370                         uint64_t size);
371 
372 /**
373  * memory_region_ref: Add 1 to a memory region's reference count
374  *
375  * Whenever memory regions are accessed outside the BQL, they need to be
376  * preserved against hot-unplug.  MemoryRegions actually do not have their
377  * own reference count; they piggyback on a QOM object, their "owner".
378  * This function adds a reference to the owner.
379  *
380  * All MemoryRegions must have an owner if they can disappear, even if the
381  * device they belong to operates exclusively under the BQL.  This is because
382  * the region could be returned at any time by memory_region_find, and this
383  * is usually under guest control.
384  *
385  * @mr: the #MemoryRegion
386  */
387 void memory_region_ref(MemoryRegion *mr);
388 
389 /**
390  * memory_region_unref: Remove 1 to a memory region's reference count
391  *
392  * Whenever memory regions are accessed outside the BQL, they need to be
393  * preserved against hot-unplug.  MemoryRegions actually do not have their
394  * own reference count; they piggyback on a QOM object, their "owner".
395  * This function removes a reference to the owner and possibly destroys it.
396  *
397  * @mr: the #MemoryRegion
398  */
399 void memory_region_unref(MemoryRegion *mr);
400 
401 /**
402  * memory_region_init_io: Initialize an I/O memory region.
403  *
404  * Accesses into the region will cause the callbacks in @ops to be called.
405  * if @size is nonzero, subregions will be clipped to @size.
406  *
407  * @mr: the #MemoryRegion to be initialized.
408  * @owner: the object that tracks the region's reference count
409  * @ops: a structure containing read and write callbacks to be used when
410  *       I/O is performed on the region.
411  * @opaque: passed to the read and write callbacks of the @ops structure.
412  * @name: used for debugging; not visible to the user or ABI
413  * @size: size of the region.
414  */
415 void memory_region_init_io(MemoryRegion *mr,
416                            struct Object *owner,
417                            const MemoryRegionOps *ops,
418                            void *opaque,
419                            const char *name,
420                            uint64_t size);
421 
422 /**
423  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
424  *                                    into the region will modify memory
425  *                                    directly.
426  *
427  * @mr: the #MemoryRegion to be initialized.
428  * @owner: the object that tracks the region's reference count
429  * @name: Region name, becomes part of RAMBlock name used in migration stream
430  *        must be unique within any device
431  * @size: size of the region.
432  * @errp: pointer to Error*, to store an error if it happens.
433  *
434  * Note that this function does not do anything to cause the data in the
435  * RAM memory region to be migrated; that is the responsibility of the caller.
436  */
437 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
438                                       struct Object *owner,
439                                       const char *name,
440                                       uint64_t size,
441                                       Error **errp);
442 
443 /**
444  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
445  *                                     RAM.  Accesses into the region will
446  *                                     modify memory directly.  Only an initial
447  *                                     portion of this RAM is actually used.
448  *                                     The used size can change across reboots.
449  *
450  * @mr: the #MemoryRegion to be initialized.
451  * @owner: the object that tracks the region's reference count
452  * @name: Region name, becomes part of RAMBlock name used in migration stream
453  *        must be unique within any device
454  * @size: used size of the region.
455  * @max_size: max size of the region.
456  * @resized: callback to notify owner about used size change.
457  * @errp: pointer to Error*, to store an error if it happens.
458  *
459  * Note that this function does not do anything to cause the data in the
460  * RAM memory region to be migrated; that is the responsibility of the caller.
461  */
462 void memory_region_init_resizeable_ram(MemoryRegion *mr,
463                                        struct Object *owner,
464                                        const char *name,
465                                        uint64_t size,
466                                        uint64_t max_size,
467                                        void (*resized)(const char*,
468                                                        uint64_t length,
469                                                        void *host),
470                                        Error **errp);
471 #ifdef __linux__
472 /**
473  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
474  *                                    mmap-ed backend.
475  *
476  * @mr: the #MemoryRegion to be initialized.
477  * @owner: the object that tracks the region's reference count
478  * @name: Region name, becomes part of RAMBlock name used in migration stream
479  *        must be unique within any device
480  * @size: size of the region.
481  * @share: %true if memory must be mmaped with the MAP_SHARED flag
482  * @path: the path in which to allocate the RAM.
483  * @errp: pointer to Error*, to store an error if it happens.
484  *
485  * Note that this function does not do anything to cause the data in the
486  * RAM memory region to be migrated; that is the responsibility of the caller.
487  */
488 void memory_region_init_ram_from_file(MemoryRegion *mr,
489                                       struct Object *owner,
490                                       const char *name,
491                                       uint64_t size,
492                                       bool share,
493                                       const char *path,
494                                       Error **errp);
495 
496 /**
497  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
498  *                                  mmap-ed backend.
499  *
500  * @mr: the #MemoryRegion to be initialized.
501  * @owner: the object that tracks the region's reference count
502  * @name: the name of the region.
503  * @size: size of the region.
504  * @share: %true if memory must be mmaped with the MAP_SHARED flag
505  * @fd: the fd to mmap.
506  * @errp: pointer to Error*, to store an error if it happens.
507  *
508  * Note that this function does not do anything to cause the data in the
509  * RAM memory region to be migrated; that is the responsibility of the caller.
510  */
511 void memory_region_init_ram_from_fd(MemoryRegion *mr,
512                                     struct Object *owner,
513                                     const char *name,
514                                     uint64_t size,
515                                     bool share,
516                                     int fd,
517                                     Error **errp);
518 #endif
519 
520 /**
521  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
522  *                              user-provided pointer.  Accesses into the
523  *                              region will modify memory directly.
524  *
525  * @mr: the #MemoryRegion to be initialized.
526  * @owner: the object that tracks the region's reference count
527  * @name: Region name, becomes part of RAMBlock name used in migration stream
528  *        must be unique within any device
529  * @size: size of the region.
530  * @ptr: memory to be mapped; must contain at least @size bytes.
531  *
532  * Note that this function does not do anything to cause the data in the
533  * RAM memory region to be migrated; that is the responsibility of the caller.
534  */
535 void memory_region_init_ram_ptr(MemoryRegion *mr,
536                                 struct Object *owner,
537                                 const char *name,
538                                 uint64_t size,
539                                 void *ptr);
540 
541 /**
542  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
543  *                                     a user-provided pointer.
544  *
545  * A RAM device represents a mapping to a physical device, such as to a PCI
546  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
547  * into the VM address space and access to the region will modify memory
548  * directly.  However, the memory region should not be included in a memory
549  * dump (device may not be enabled/mapped at the time of the dump), and
550  * operations incompatible with manipulating MMIO should be avoided.  Replaces
551  * skip_dump flag.
552  *
553  * @mr: the #MemoryRegion to be initialized.
554  * @owner: the object that tracks the region's reference count
555  * @name: the name of the region.
556  * @size: size of the region.
557  * @ptr: memory to be mapped; must contain at least @size bytes.
558  *
559  * Note that this function does not do anything to cause the data in the
560  * RAM memory region to be migrated; that is the responsibility of the caller.
561  * (For RAM device memory regions, migrating the contents rarely makes sense.)
562  */
563 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
564                                        struct Object *owner,
565                                        const char *name,
566                                        uint64_t size,
567                                        void *ptr);
568 
569 /**
570  * memory_region_init_alias: Initialize a memory region that aliases all or a
571  *                           part of another memory region.
572  *
573  * @mr: the #MemoryRegion to be initialized.
574  * @owner: the object that tracks the region's reference count
575  * @name: used for debugging; not visible to the user or ABI
576  * @orig: the region to be referenced; @mr will be equivalent to
577  *        @orig between @offset and @offset + @size - 1.
578  * @offset: start of the section in @orig to be referenced.
579  * @size: size of the region.
580  */
581 void memory_region_init_alias(MemoryRegion *mr,
582                               struct Object *owner,
583                               const char *name,
584                               MemoryRegion *orig,
585                               hwaddr offset,
586                               uint64_t size);
587 
588 /**
589  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
590  *
591  * This has the same effect as calling memory_region_init_ram_nomigrate()
592  * and then marking the resulting region read-only with
593  * memory_region_set_readonly().
594  *
595  * Note that this function does not do anything to cause the data in the
596  * RAM side of the memory region to be migrated; that is the responsibility
597  * of the caller.
598  *
599  * @mr: the #MemoryRegion to be initialized.
600  * @owner: the object that tracks the region's reference count
601  * @name: Region name, becomes part of RAMBlock name used in migration stream
602  *        must be unique within any device
603  * @size: size of the region.
604  * @errp: pointer to Error*, to store an error if it happens.
605  */
606 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
607                                       struct Object *owner,
608                                       const char *name,
609                                       uint64_t size,
610                                       Error **errp);
611 
612 /**
613  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
614  *                                 Writes are handled via callbacks.
615  *
616  * Note that this function does not do anything to cause the data in the
617  * RAM side of the memory region to be migrated; that is the responsibility
618  * of the caller.
619  *
620  * @mr: the #MemoryRegion to be initialized.
621  * @owner: the object that tracks the region's reference count
622  * @ops: callbacks for write access handling (must not be NULL).
623  * @name: Region name, becomes part of RAMBlock name used in migration stream
624  *        must be unique within any device
625  * @size: size of the region.
626  * @errp: pointer to Error*, to store an error if it happens.
627  */
628 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
629                                              struct Object *owner,
630                                              const MemoryRegionOps *ops,
631                                              void *opaque,
632                                              const char *name,
633                                              uint64_t size,
634                                              Error **errp);
635 
636 /**
637  * memory_region_init_reservation: Initialize a memory region that reserves
638  *                                 I/O space.
639  *
640  * A reservation region primariy serves debugging purposes.  It claims I/O
641  * space that is not supposed to be handled by QEMU itself.  Any access via
642  * the memory API will cause an abort().
643  * This function is deprecated. Use memory_region_init_io() with NULL
644  * callbacks instead.
645  *
646  * @mr: the #MemoryRegion to be initialized
647  * @owner: the object that tracks the region's reference count
648  * @name: used for debugging; not visible to the user or ABI
649  * @size: size of the region.
650  */
651 static inline void memory_region_init_reservation(MemoryRegion *mr,
652                                     Object *owner,
653                                     const char *name,
654                                     uint64_t size)
655 {
656     memory_region_init_io(mr, owner, NULL, mr, name, size);
657 }
658 
659 /**
660  * memory_region_init_iommu: Initialize a memory region of a custom type
661  * that translates addresses
662  *
663  * An IOMMU region translates addresses and forwards accesses to a target
664  * memory region.
665  *
666  * @typename: QOM class name
667  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
668  * @instance_size: the IOMMUMemoryRegion subclass instance size
669  * @owner: the object that tracks the region's reference count
670  * @ops: a function that translates addresses into the @target region
671  * @name: used for debugging; not visible to the user or ABI
672  * @size: size of the region.
673  */
674 void memory_region_init_iommu(void *_iommu_mr,
675                               size_t instance_size,
676                               const char *mrtypename,
677                               Object *owner,
678                               const char *name,
679                               uint64_t size);
680 
681 /**
682  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
683  *                          region will modify memory directly.
684  *
685  * @mr: the #MemoryRegion to be initialized
686  * @owner: the object that tracks the region's reference count (must be
687  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
688  * @name: name of the memory region
689  * @size: size of the region in bytes
690  * @errp: pointer to Error*, to store an error if it happens.
691  *
692  * This function allocates RAM for a board model or device, and
693  * arranges for it to be migrated (by calling vmstate_register_ram()
694  * if @owner is a DeviceState, or vmstate_register_ram_global() if
695  * @owner is NULL).
696  *
697  * TODO: Currently we restrict @owner to being either NULL (for
698  * global RAM regions with no owner) or devices, so that we can
699  * give the RAM block a unique name for migration purposes.
700  * We should lift this restriction and allow arbitrary Objects.
701  * If you pass a non-NULL non-device @owner then we will assert.
702  */
703 void memory_region_init_ram(MemoryRegion *mr,
704                             struct Object *owner,
705                             const char *name,
706                             uint64_t size,
707                             Error **errp);
708 
709 /**
710  * memory_region_init_rom: Initialize a ROM memory region.
711  *
712  * This has the same effect as calling memory_region_init_ram()
713  * and then marking the resulting region read-only with
714  * memory_region_set_readonly(). This includes arranging for the
715  * contents to be migrated.
716  *
717  * TODO: Currently we restrict @owner to being either NULL (for
718  * global RAM regions with no owner) or devices, so that we can
719  * give the RAM block a unique name for migration purposes.
720  * We should lift this restriction and allow arbitrary Objects.
721  * If you pass a non-NULL non-device @owner then we will assert.
722  *
723  * @mr: the #MemoryRegion to be initialized.
724  * @owner: the object that tracks the region's reference count
725  * @name: Region name, becomes part of RAMBlock name used in migration stream
726  *        must be unique within any device
727  * @size: size of the region.
728  * @errp: pointer to Error*, to store an error if it happens.
729  */
730 void memory_region_init_rom(MemoryRegion *mr,
731                             struct Object *owner,
732                             const char *name,
733                             uint64_t size,
734                             Error **errp);
735 
736 /**
737  * memory_region_init_rom_device:  Initialize a ROM memory region.
738  *                                 Writes are handled via callbacks.
739  *
740  * This function initializes a memory region backed by RAM for reads
741  * and callbacks for writes, and arranges for the RAM backing to
742  * be migrated (by calling vmstate_register_ram()
743  * if @owner is a DeviceState, or vmstate_register_ram_global() if
744  * @owner is NULL).
745  *
746  * TODO: Currently we restrict @owner to being either NULL (for
747  * global RAM regions with no owner) or devices, so that we can
748  * give the RAM block a unique name for migration purposes.
749  * We should lift this restriction and allow arbitrary Objects.
750  * If you pass a non-NULL non-device @owner then we will assert.
751  *
752  * @mr: the #MemoryRegion to be initialized.
753  * @owner: the object that tracks the region's reference count
754  * @ops: callbacks for write access handling (must not be NULL).
755  * @name: Region name, becomes part of RAMBlock name used in migration stream
756  *        must be unique within any device
757  * @size: size of the region.
758  * @errp: pointer to Error*, to store an error if it happens.
759  */
760 void memory_region_init_rom_device(MemoryRegion *mr,
761                                    struct Object *owner,
762                                    const MemoryRegionOps *ops,
763                                    void *opaque,
764                                    const char *name,
765                                    uint64_t size,
766                                    Error **errp);
767 
768 
769 /**
770  * memory_region_owner: get a memory region's owner.
771  *
772  * @mr: the memory region being queried.
773  */
774 struct Object *memory_region_owner(MemoryRegion *mr);
775 
776 /**
777  * memory_region_size: get a memory region's size.
778  *
779  * @mr: the memory region being queried.
780  */
781 uint64_t memory_region_size(MemoryRegion *mr);
782 
783 /**
784  * memory_region_is_ram: check whether a memory region is random access
785  *
786  * Returns %true is a memory region is random access.
787  *
788  * @mr: the memory region being queried
789  */
790 static inline bool memory_region_is_ram(MemoryRegion *mr)
791 {
792     return mr->ram;
793 }
794 
795 /**
796  * memory_region_is_ram_device: check whether a memory region is a ram device
797  *
798  * Returns %true is a memory region is a device backed ram region
799  *
800  * @mr: the memory region being queried
801  */
802 bool memory_region_is_ram_device(MemoryRegion *mr);
803 
804 /**
805  * memory_region_is_romd: check whether a memory region is in ROMD mode
806  *
807  * Returns %true if a memory region is a ROM device and currently set to allow
808  * direct reads.
809  *
810  * @mr: the memory region being queried
811  */
812 static inline bool memory_region_is_romd(MemoryRegion *mr)
813 {
814     return mr->rom_device && mr->romd_mode;
815 }
816 
817 /**
818  * memory_region_get_iommu: check whether a memory region is an iommu
819  *
820  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
821  * otherwise NULL.
822  *
823  * @mr: the memory region being queried
824  */
825 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
826 {
827     if (mr->alias) {
828         return memory_region_get_iommu(mr->alias);
829     }
830     if (mr->is_iommu) {
831         return (IOMMUMemoryRegion *) mr;
832     }
833     return NULL;
834 }
835 
836 /**
837  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
838  *   if an iommu or NULL if not
839  *
840  * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
841  * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
842  *
843  * @mr: the memory region being queried
844  */
845 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
846         IOMMUMemoryRegion *iommu_mr)
847 {
848     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
849 }
850 
851 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
852 
853 /**
854  * memory_region_iommu_get_min_page_size: get minimum supported page size
855  * for an iommu
856  *
857  * Returns minimum supported page size for an iommu.
858  *
859  * @iommu_mr: the memory region being queried
860  */
861 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
862 
863 /**
864  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
865  *
866  * The notification type will be decided by entry.perm bits:
867  *
868  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
869  * - For MAP (newly added entry) notifies: set entry.perm to the
870  *   permission of the page (which is definitely !IOMMU_NONE).
871  *
872  * Note: for any IOMMU implementation, an in-place mapping change
873  * should be notified with an UNMAP followed by a MAP.
874  *
875  * @iommu_mr: the memory region that was changed
876  * @entry: the new entry in the IOMMU translation table.  The entry
877  *         replaces all old entries for the same virtual I/O address range.
878  *         Deleted entries have .@perm == 0.
879  */
880 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
881                                 IOMMUTLBEntry entry);
882 
883 /**
884  * memory_region_notify_one: notify a change in an IOMMU translation
885  *                           entry to a single notifier
886  *
887  * This works just like memory_region_notify_iommu(), but it only
888  * notifies a specific notifier, not all of them.
889  *
890  * @notifier: the notifier to be notified
891  * @entry: the new entry in the IOMMU translation table.  The entry
892  *         replaces all old entries for the same virtual I/O address range.
893  *         Deleted entries have .@perm == 0.
894  */
895 void memory_region_notify_one(IOMMUNotifier *notifier,
896                               IOMMUTLBEntry *entry);
897 
898 /**
899  * memory_region_register_iommu_notifier: register a notifier for changes to
900  * IOMMU translation entries.
901  *
902  * @mr: the memory region to observe
903  * @n: the IOMMUNotifier to be added; the notify callback receives a
904  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
905  *     ceases to be valid on exit from the notifier.
906  */
907 void memory_region_register_iommu_notifier(MemoryRegion *mr,
908                                            IOMMUNotifier *n);
909 
910 /**
911  * memory_region_iommu_replay: replay existing IOMMU translations to
912  * a notifier with the minimum page granularity returned by
913  * mr->iommu_ops->get_page_size().
914  *
915  * @iommu_mr: the memory region to observe
916  * @n: the notifier to which to replay iommu mappings
917  */
918 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
919 
920 /**
921  * memory_region_iommu_replay_all: replay existing IOMMU translations
922  * to all the notifiers registered.
923  *
924  * @iommu_mr: the memory region to observe
925  */
926 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
927 
928 /**
929  * memory_region_unregister_iommu_notifier: unregister a notifier for
930  * changes to IOMMU translation entries.
931  *
932  * @mr: the memory region which was observed and for which notity_stopped()
933  *      needs to be called
934  * @n: the notifier to be removed.
935  */
936 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
937                                              IOMMUNotifier *n);
938 
939 /**
940  * memory_region_name: get a memory region's name
941  *
942  * Returns the string that was used to initialize the memory region.
943  *
944  * @mr: the memory region being queried
945  */
946 const char *memory_region_name(const MemoryRegion *mr);
947 
948 /**
949  * memory_region_is_logging: return whether a memory region is logging writes
950  *
951  * Returns %true if the memory region is logging writes for the given client
952  *
953  * @mr: the memory region being queried
954  * @client: the client being queried
955  */
956 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
957 
958 /**
959  * memory_region_get_dirty_log_mask: return the clients for which a
960  * memory region is logging writes.
961  *
962  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
963  * are the bit indices.
964  *
965  * @mr: the memory region being queried
966  */
967 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
968 
969 /**
970  * memory_region_is_rom: check whether a memory region is ROM
971  *
972  * Returns %true is a memory region is read-only memory.
973  *
974  * @mr: the memory region being queried
975  */
976 static inline bool memory_region_is_rom(MemoryRegion *mr)
977 {
978     return mr->ram && mr->readonly;
979 }
980 
981 
982 /**
983  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
984  *
985  * Returns a file descriptor backing a file-based RAM memory region,
986  * or -1 if the region is not a file-based RAM memory region.
987  *
988  * @mr: the RAM or alias memory region being queried.
989  */
990 int memory_region_get_fd(MemoryRegion *mr);
991 
992 /**
993  * memory_region_from_host: Convert a pointer into a RAM memory region
994  * and an offset within it.
995  *
996  * Given a host pointer inside a RAM memory region (created with
997  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
998  * the MemoryRegion and the offset within it.
999  *
1000  * Use with care; by the time this function returns, the returned pointer is
1001  * not protected by RCU anymore.  If the caller is not within an RCU critical
1002  * section and does not hold the iothread lock, it must have other means of
1003  * protecting the pointer, such as a reference to the region that includes
1004  * the incoming ram_addr_t.
1005  *
1006  * @mr: the memory region being queried.
1007  */
1008 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1009 
1010 /**
1011  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1012  *
1013  * Returns a host pointer to a RAM memory region (created with
1014  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1015  *
1016  * Use with care; by the time this function returns, the returned pointer is
1017  * not protected by RCU anymore.  If the caller is not within an RCU critical
1018  * section and does not hold the iothread lock, it must have other means of
1019  * protecting the pointer, such as a reference to the region that includes
1020  * the incoming ram_addr_t.
1021  *
1022  * @mr: the memory region being queried.
1023  */
1024 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1025 
1026 /* memory_region_ram_resize: Resize a RAM region.
1027  *
1028  * Only legal before guest might have detected the memory size: e.g. on
1029  * incoming migration, or right after reset.
1030  *
1031  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1032  * @newsize: the new size the region
1033  * @errp: pointer to Error*, to store an error if it happens.
1034  */
1035 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1036                               Error **errp);
1037 
1038 /**
1039  * memory_region_set_log: Turn dirty logging on or off for a region.
1040  *
1041  * Turns dirty logging on or off for a specified client (display, migration).
1042  * Only meaningful for RAM regions.
1043  *
1044  * @mr: the memory region being updated.
1045  * @log: whether dirty logging is to be enabled or disabled.
1046  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1047  */
1048 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1049 
1050 /**
1051  * memory_region_get_dirty: Check whether a range of bytes is dirty
1052  *                          for a specified client.
1053  *
1054  * Checks whether a range of bytes has been written to since the last
1055  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1056  * must be enabled.
1057  *
1058  * @mr: the memory region being queried.
1059  * @addr: the address (relative to the start of the region) being queried.
1060  * @size: the size of the range being queried.
1061  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1062  *          %DIRTY_MEMORY_VGA.
1063  */
1064 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1065                              hwaddr size, unsigned client);
1066 
1067 /**
1068  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1069  *
1070  * Marks a range of bytes as dirty, after it has been dirtied outside
1071  * guest code.
1072  *
1073  * @mr: the memory region being dirtied.
1074  * @addr: the address (relative to the start of the region) being dirtied.
1075  * @size: size of the range being dirtied.
1076  */
1077 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1078                              hwaddr size);
1079 
1080 /**
1081  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1082  *                                     for a specified client. It clears them.
1083  *
1084  * Checks whether a range of bytes has been written to since the last
1085  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1086  * must be enabled.
1087  *
1088  * @mr: the memory region being queried.
1089  * @addr: the address (relative to the start of the region) being queried.
1090  * @size: the size of the range being queried.
1091  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1092  *          %DIRTY_MEMORY_VGA.
1093  */
1094 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1095                                         hwaddr size, unsigned client);
1096 
1097 /**
1098  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1099  *                                         bitmap and clear it.
1100  *
1101  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1102  * returns the snapshot.  The snapshot can then be used to query dirty
1103  * status, using memory_region_snapshot_get_dirty.  Unlike
1104  * memory_region_test_and_clear_dirty this allows to query the same
1105  * page multiple times, which is especially useful for display updates
1106  * where the scanlines often are not page aligned.
1107  *
1108  * The dirty bitmap region which gets copyed into the snapshot (and
1109  * cleared afterwards) can be larger than requested.  The boundaries
1110  * are rounded up/down so complete bitmap longs (covering 64 pages on
1111  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1112  * isn't a problem for display updates as the extra pages are outside
1113  * the visible area, and in case the visible area changes a full
1114  * display redraw is due anyway.  Should other use cases for this
1115  * function emerge we might have to revisit this implementation
1116  * detail.
1117  *
1118  * Use g_free to release DirtyBitmapSnapshot.
1119  *
1120  * @mr: the memory region being queried.
1121  * @addr: the address (relative to the start of the region) being queried.
1122  * @size: the size of the range being queried.
1123  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1124  */
1125 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1126                                                             hwaddr addr,
1127                                                             hwaddr size,
1128                                                             unsigned client);
1129 
1130 /**
1131  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1132  *                                   in the specified dirty bitmap snapshot.
1133  *
1134  * @mr: the memory region being queried.
1135  * @snap: the dirty bitmap snapshot
1136  * @addr: the address (relative to the start of the region) being queried.
1137  * @size: the size of the range being queried.
1138  */
1139 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1140                                       DirtyBitmapSnapshot *snap,
1141                                       hwaddr addr, hwaddr size);
1142 
1143 /**
1144  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1145  *                                  any external TLBs (e.g. kvm)
1146  *
1147  * Flushes dirty information from accelerators such as kvm and vhost-net
1148  * and makes it available to users of the memory API.
1149  *
1150  * @mr: the region being flushed.
1151  */
1152 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1153 
1154 /**
1155  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1156  *                            client.
1157  *
1158  * Marks a range of pages as no longer dirty.
1159  *
1160  * @mr: the region being updated.
1161  * @addr: the start of the subrange being cleaned.
1162  * @size: the size of the subrange being cleaned.
1163  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1164  *          %DIRTY_MEMORY_VGA.
1165  */
1166 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1167                                hwaddr size, unsigned client);
1168 
1169 /**
1170  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1171  *
1172  * Allows a memory region to be marked as read-only (turning it into a ROM).
1173  * only useful on RAM regions.
1174  *
1175  * @mr: the region being updated.
1176  * @readonly: whether rhe region is to be ROM or RAM.
1177  */
1178 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1179 
1180 /**
1181  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1182  *
1183  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1184  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1185  * device is mapped to guest memory and satisfies read access directly.
1186  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1187  * Writes are always handled by the #MemoryRegion.write function.
1188  *
1189  * @mr: the memory region to be updated
1190  * @romd_mode: %true to put the region into ROMD mode
1191  */
1192 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1193 
1194 /**
1195  * memory_region_set_coalescing: Enable memory coalescing for the region.
1196  *
1197  * Enabled writes to a region to be queued for later processing. MMIO ->write
1198  * callbacks may be delayed until a non-coalesced MMIO is issued.
1199  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1200  *
1201  * @mr: the memory region to be write coalesced
1202  */
1203 void memory_region_set_coalescing(MemoryRegion *mr);
1204 
1205 /**
1206  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1207  *                               a region.
1208  *
1209  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1210  * Multiple calls can be issued coalesced disjoint ranges.
1211  *
1212  * @mr: the memory region to be updated.
1213  * @offset: the start of the range within the region to be coalesced.
1214  * @size: the size of the subrange to be coalesced.
1215  */
1216 void memory_region_add_coalescing(MemoryRegion *mr,
1217                                   hwaddr offset,
1218                                   uint64_t size);
1219 
1220 /**
1221  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1222  *
1223  * Disables any coalescing caused by memory_region_set_coalescing() or
1224  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1225  * hardware.
1226  *
1227  * @mr: the memory region to be updated.
1228  */
1229 void memory_region_clear_coalescing(MemoryRegion *mr);
1230 
1231 /**
1232  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1233  *                                    accesses.
1234  *
1235  * Ensure that pending coalesced MMIO request are flushed before the memory
1236  * region is accessed. This property is automatically enabled for all regions
1237  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1238  *
1239  * @mr: the memory region to be updated.
1240  */
1241 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1242 
1243 /**
1244  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1245  *                                      accesses.
1246  *
1247  * Clear the automatic coalesced MMIO flushing enabled via
1248  * memory_region_set_flush_coalesced. Note that this service has no effect on
1249  * memory regions that have MMIO coalescing enabled for themselves. For them,
1250  * automatic flushing will stop once coalescing is disabled.
1251  *
1252  * @mr: the memory region to be updated.
1253  */
1254 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1255 
1256 /**
1257  * memory_region_set_global_locking: Declares the access processing requires
1258  *                                   QEMU's global lock.
1259  *
1260  * When this is invoked, accesses to the memory region will be processed while
1261  * holding the global lock of QEMU. This is the default behavior of memory
1262  * regions.
1263  *
1264  * @mr: the memory region to be updated.
1265  */
1266 void memory_region_set_global_locking(MemoryRegion *mr);
1267 
1268 /**
1269  * memory_region_clear_global_locking: Declares that access processing does
1270  *                                     not depend on the QEMU global lock.
1271  *
1272  * By clearing this property, accesses to the memory region will be processed
1273  * outside of QEMU's global lock (unless the lock is held on when issuing the
1274  * access request). In this case, the device model implementing the access
1275  * handlers is responsible for synchronization of concurrency.
1276  *
1277  * @mr: the memory region to be updated.
1278  */
1279 void memory_region_clear_global_locking(MemoryRegion *mr);
1280 
1281 /**
1282  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1283  *                            is written to a location.
1284  *
1285  * Marks a word in an IO region (initialized with memory_region_init_io())
1286  * as a trigger for an eventfd event.  The I/O callback will not be called.
1287  * The caller must be prepared to handle failure (that is, take the required
1288  * action if the callback _is_ called).
1289  *
1290  * @mr: the memory region being updated.
1291  * @addr: the address within @mr that is to be monitored
1292  * @size: the size of the access to trigger the eventfd
1293  * @match_data: whether to match against @data, instead of just @addr
1294  * @data: the data to match against the guest write
1295  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1296  **/
1297 void memory_region_add_eventfd(MemoryRegion *mr,
1298                                hwaddr addr,
1299                                unsigned size,
1300                                bool match_data,
1301                                uint64_t data,
1302                                EventNotifier *e);
1303 
1304 /**
1305  * memory_region_del_eventfd: Cancel an eventfd.
1306  *
1307  * Cancels an eventfd trigger requested by a previous
1308  * memory_region_add_eventfd() call.
1309  *
1310  * @mr: the memory region being updated.
1311  * @addr: the address within @mr that is to be monitored
1312  * @size: the size of the access to trigger the eventfd
1313  * @match_data: whether to match against @data, instead of just @addr
1314  * @data: the data to match against the guest write
1315  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1316  */
1317 void memory_region_del_eventfd(MemoryRegion *mr,
1318                                hwaddr addr,
1319                                unsigned size,
1320                                bool match_data,
1321                                uint64_t data,
1322                                EventNotifier *e);
1323 
1324 /**
1325  * memory_region_add_subregion: Add a subregion to a container.
1326  *
1327  * Adds a subregion at @offset.  The subregion may not overlap with other
1328  * subregions (except for those explicitly marked as overlapping).  A region
1329  * may only be added once as a subregion (unless removed with
1330  * memory_region_del_subregion()); use memory_region_init_alias() if you
1331  * want a region to be a subregion in multiple locations.
1332  *
1333  * @mr: the region to contain the new subregion; must be a container
1334  *      initialized with memory_region_init().
1335  * @offset: the offset relative to @mr where @subregion is added.
1336  * @subregion: the subregion to be added.
1337  */
1338 void memory_region_add_subregion(MemoryRegion *mr,
1339                                  hwaddr offset,
1340                                  MemoryRegion *subregion);
1341 /**
1342  * memory_region_add_subregion_overlap: Add a subregion to a container
1343  *                                      with overlap.
1344  *
1345  * Adds a subregion at @offset.  The subregion may overlap with other
1346  * subregions.  Conflicts are resolved by having a higher @priority hide a
1347  * lower @priority. Subregions without priority are taken as @priority 0.
1348  * A region may only be added once as a subregion (unless removed with
1349  * memory_region_del_subregion()); use memory_region_init_alias() if you
1350  * want a region to be a subregion in multiple locations.
1351  *
1352  * @mr: the region to contain the new subregion; must be a container
1353  *      initialized with memory_region_init().
1354  * @offset: the offset relative to @mr where @subregion is added.
1355  * @subregion: the subregion to be added.
1356  * @priority: used for resolving overlaps; highest priority wins.
1357  */
1358 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1359                                          hwaddr offset,
1360                                          MemoryRegion *subregion,
1361                                          int priority);
1362 
1363 /**
1364  * memory_region_get_ram_addr: Get the ram address associated with a memory
1365  *                             region
1366  */
1367 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1368 
1369 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1370 /**
1371  * memory_region_del_subregion: Remove a subregion.
1372  *
1373  * Removes a subregion from its container.
1374  *
1375  * @mr: the container to be updated.
1376  * @subregion: the region being removed; must be a current subregion of @mr.
1377  */
1378 void memory_region_del_subregion(MemoryRegion *mr,
1379                                  MemoryRegion *subregion);
1380 
1381 /*
1382  * memory_region_set_enabled: dynamically enable or disable a region
1383  *
1384  * Enables or disables a memory region.  A disabled memory region
1385  * ignores all accesses to itself and its subregions.  It does not
1386  * obscure sibling subregions with lower priority - it simply behaves as
1387  * if it was removed from the hierarchy.
1388  *
1389  * Regions default to being enabled.
1390  *
1391  * @mr: the region to be updated
1392  * @enabled: whether to enable or disable the region
1393  */
1394 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1395 
1396 /*
1397  * memory_region_set_address: dynamically update the address of a region
1398  *
1399  * Dynamically updates the address of a region, relative to its container.
1400  * May be used on regions are currently part of a memory hierarchy.
1401  *
1402  * @mr: the region to be updated
1403  * @addr: new address, relative to container region
1404  */
1405 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1406 
1407 /*
1408  * memory_region_set_size: dynamically update the size of a region.
1409  *
1410  * Dynamically updates the size of a region.
1411  *
1412  * @mr: the region to be updated
1413  * @size: used size of the region.
1414  */
1415 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1416 
1417 /*
1418  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1419  *
1420  * Dynamically updates the offset into the target region that an alias points
1421  * to, as if the fourth argument to memory_region_init_alias() has changed.
1422  *
1423  * @mr: the #MemoryRegion to be updated; should be an alias.
1424  * @offset: the new offset into the target memory region
1425  */
1426 void memory_region_set_alias_offset(MemoryRegion *mr,
1427                                     hwaddr offset);
1428 
1429 /**
1430  * memory_region_present: checks if an address relative to a @container
1431  * translates into #MemoryRegion within @container
1432  *
1433  * Answer whether a #MemoryRegion within @container covers the address
1434  * @addr.
1435  *
1436  * @container: a #MemoryRegion within which @addr is a relative address
1437  * @addr: the area within @container to be searched
1438  */
1439 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1440 
1441 /**
1442  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1443  * into any address space.
1444  *
1445  * @mr: a #MemoryRegion which should be checked if it's mapped
1446  */
1447 bool memory_region_is_mapped(MemoryRegion *mr);
1448 
1449 /**
1450  * memory_region_find: translate an address/size relative to a
1451  * MemoryRegion into a #MemoryRegionSection.
1452  *
1453  * Locates the first #MemoryRegion within @mr that overlaps the range
1454  * given by @addr and @size.
1455  *
1456  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1457  * It will have the following characteristics:
1458  *    .@size = 0 iff no overlap was found
1459  *    .@mr is non-%NULL iff an overlap was found
1460  *
1461  * Remember that in the return value the @offset_within_region is
1462  * relative to the returned region (in the .@mr field), not to the
1463  * @mr argument.
1464  *
1465  * Similarly, the .@offset_within_address_space is relative to the
1466  * address space that contains both regions, the passed and the
1467  * returned one.  However, in the special case where the @mr argument
1468  * has no container (and thus is the root of the address space), the
1469  * following will hold:
1470  *    .@offset_within_address_space >= @addr
1471  *    .@offset_within_address_space + .@size <= @addr + @size
1472  *
1473  * @mr: a MemoryRegion within which @addr is a relative address
1474  * @addr: start of the area within @as to be searched
1475  * @size: size of the area to be searched
1476  */
1477 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1478                                        hwaddr addr, uint64_t size);
1479 
1480 /**
1481  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1482  *
1483  * Synchronizes the dirty page log for all address spaces.
1484  */
1485 void memory_global_dirty_log_sync(void);
1486 
1487 /**
1488  * memory_region_transaction_begin: Start a transaction.
1489  *
1490  * During a transaction, changes will be accumulated and made visible
1491  * only when the transaction ends (is committed).
1492  */
1493 void memory_region_transaction_begin(void);
1494 
1495 /**
1496  * memory_region_transaction_commit: Commit a transaction and make changes
1497  *                                   visible to the guest.
1498  */
1499 void memory_region_transaction_commit(void);
1500 
1501 /**
1502  * memory_listener_register: register callbacks to be called when memory
1503  *                           sections are mapped or unmapped into an address
1504  *                           space
1505  *
1506  * @listener: an object containing the callbacks to be called
1507  * @filter: if non-%NULL, only regions in this address space will be observed
1508  */
1509 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1510 
1511 /**
1512  * memory_listener_unregister: undo the effect of memory_listener_register()
1513  *
1514  * @listener: an object containing the callbacks to be removed
1515  */
1516 void memory_listener_unregister(MemoryListener *listener);
1517 
1518 /**
1519  * memory_global_dirty_log_start: begin dirty logging for all regions
1520  */
1521 void memory_global_dirty_log_start(void);
1522 
1523 /**
1524  * memory_global_dirty_log_stop: end dirty logging for all regions
1525  */
1526 void memory_global_dirty_log_stop(void);
1527 
1528 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1529 
1530 /**
1531  * memory_region_request_mmio_ptr: request a pointer to an mmio
1532  * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1533  * When the device wants to invalidate the pointer it will call
1534  * memory_region_invalidate_mmio_ptr.
1535  *
1536  * @mr: #MemoryRegion to check
1537  * @addr: address within that region
1538  *
1539  * Returns true on success, false otherwise.
1540  */
1541 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1542 
1543 /**
1544  * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1545  * previously requested.
1546  * In the end that means that if something wants to execute from this area it
1547  * will need to request the pointer again.
1548  *
1549  * @mr: #MemoryRegion associated to the pointer.
1550  * @addr: address within that region
1551  * @size: size of that area.
1552  */
1553 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1554                                        unsigned size);
1555 
1556 /**
1557  * memory_region_dispatch_read: perform a read directly to the specified
1558  * MemoryRegion.
1559  *
1560  * @mr: #MemoryRegion to access
1561  * @addr: address within that region
1562  * @pval: pointer to uint64_t which the data is written to
1563  * @size: size of the access in bytes
1564  * @attrs: memory transaction attributes to use for the access
1565  */
1566 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1567                                         hwaddr addr,
1568                                         uint64_t *pval,
1569                                         unsigned size,
1570                                         MemTxAttrs attrs);
1571 /**
1572  * memory_region_dispatch_write: perform a write directly to the specified
1573  * MemoryRegion.
1574  *
1575  * @mr: #MemoryRegion to access
1576  * @addr: address within that region
1577  * @data: data to write
1578  * @size: size of the access in bytes
1579  * @attrs: memory transaction attributes to use for the access
1580  */
1581 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1582                                          hwaddr addr,
1583                                          uint64_t data,
1584                                          unsigned size,
1585                                          MemTxAttrs attrs);
1586 
1587 /**
1588  * address_space_init: initializes an address space
1589  *
1590  * @as: an uninitialized #AddressSpace
1591  * @root: a #MemoryRegion that routes addresses for the address space
1592  * @name: an address space name.  The name is only used for debugging
1593  *        output.
1594  */
1595 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1596 
1597 /**
1598  * address_space_init_shareable: return an address space for a memory region,
1599  *                               creating it if it does not already exist
1600  *
1601  * @root: a #MemoryRegion that routes addresses for the address space
1602  * @name: an address space name.  The name is only used for debugging
1603  *        output.
1604  *
1605  * This function will return a pointer to an existing AddressSpace
1606  * which was initialized with the specified MemoryRegion, or it will
1607  * create and initialize one if it does not already exist. The ASes
1608  * are reference-counted, so the memory will be freed automatically
1609  * when the AddressSpace is destroyed via address_space_destroy.
1610  */
1611 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1612                                            const char *name);
1613 
1614 /**
1615  * address_space_destroy: destroy an address space
1616  *
1617  * Releases all resources associated with an address space.  After an address space
1618  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1619  * as well.
1620  *
1621  * @as: address space to be destroyed
1622  */
1623 void address_space_destroy(AddressSpace *as);
1624 
1625 /**
1626  * address_space_rw: read from or write to an address space.
1627  *
1628  * Return a MemTxResult indicating whether the operation succeeded
1629  * or failed (eg unassigned memory, device rejected the transaction,
1630  * IOMMU fault).
1631  *
1632  * @as: #AddressSpace to be accessed
1633  * @addr: address within that address space
1634  * @attrs: memory transaction attributes
1635  * @buf: buffer with the data transferred
1636  * @is_write: indicates the transfer direction
1637  */
1638 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1639                              MemTxAttrs attrs, uint8_t *buf,
1640                              int len, bool is_write);
1641 
1642 /**
1643  * address_space_write: write to address space.
1644  *
1645  * Return a MemTxResult indicating whether the operation succeeded
1646  * or failed (eg unassigned memory, device rejected the transaction,
1647  * IOMMU fault).
1648  *
1649  * @as: #AddressSpace to be accessed
1650  * @addr: address within that address space
1651  * @attrs: memory transaction attributes
1652  * @buf: buffer with the data transferred
1653  */
1654 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1655                                 MemTxAttrs attrs,
1656                                 const uint8_t *buf, int len);
1657 
1658 /* address_space_ld*: load from an address space
1659  * address_space_st*: store to an address space
1660  *
1661  * These functions perform a load or store of the byte, word,
1662  * longword or quad to the specified address within the AddressSpace.
1663  * The _le suffixed functions treat the data as little endian;
1664  * _be indicates big endian; no suffix indicates "same endianness
1665  * as guest CPU".
1666  *
1667  * The "guest CPU endianness" accessors are deprecated for use outside
1668  * target-* code; devices should be CPU-agnostic and use either the LE
1669  * or the BE accessors.
1670  *
1671  * @as #AddressSpace to be accessed
1672  * @addr: address within that address space
1673  * @val: data value, for stores
1674  * @attrs: memory transaction attributes
1675  * @result: location to write the success/failure of the transaction;
1676  *   if NULL, this information is discarded
1677  */
1678 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1679                             MemTxAttrs attrs, MemTxResult *result);
1680 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1681                             MemTxAttrs attrs, MemTxResult *result);
1682 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1683                             MemTxAttrs attrs, MemTxResult *result);
1684 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1685                             MemTxAttrs attrs, MemTxResult *result);
1686 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1687                             MemTxAttrs attrs, MemTxResult *result);
1688 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1689                             MemTxAttrs attrs, MemTxResult *result);
1690 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1691                             MemTxAttrs attrs, MemTxResult *result);
1692 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1693                             MemTxAttrs attrs, MemTxResult *result);
1694 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1695                             MemTxAttrs attrs, MemTxResult *result);
1696 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1697                             MemTxAttrs attrs, MemTxResult *result);
1698 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1699                             MemTxAttrs attrs, MemTxResult *result);
1700 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1701                             MemTxAttrs attrs, MemTxResult *result);
1702 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1703                             MemTxAttrs attrs, MemTxResult *result);
1704 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1705                             MemTxAttrs attrs, MemTxResult *result);
1706 
1707 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1708 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1709 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1710 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1711 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1712 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1713 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1714 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1715 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1716 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1717 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1718 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1719 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1720 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1721 
1722 struct MemoryRegionCache {
1723     hwaddr xlat;
1724     hwaddr len;
1725     AddressSpace *as;
1726 };
1727 
1728 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1729 
1730 /* address_space_cache_init: prepare for repeated access to a physical
1731  * memory region
1732  *
1733  * @cache: #MemoryRegionCache to be filled
1734  * @as: #AddressSpace to be accessed
1735  * @addr: address within that address space
1736  * @len: length of buffer
1737  * @is_write: indicates the transfer direction
1738  *
1739  * Will only work with RAM, and may map a subset of the requested range by
1740  * returning a value that is less than @len.  On failure, return a negative
1741  * errno value.
1742  *
1743  * Because it only works with RAM, this function can be used for
1744  * read-modify-write operations.  In this case, is_write should be %true.
1745  *
1746  * Note that addresses passed to the address_space_*_cached functions
1747  * are relative to @addr.
1748  */
1749 int64_t address_space_cache_init(MemoryRegionCache *cache,
1750                                  AddressSpace *as,
1751                                  hwaddr addr,
1752                                  hwaddr len,
1753                                  bool is_write);
1754 
1755 /**
1756  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1757  *
1758  * @cache: The #MemoryRegionCache to operate on.
1759  * @addr: The first physical address that was written, relative to the
1760  * address that was passed to @address_space_cache_init.
1761  * @access_len: The number of bytes that were written starting at @addr.
1762  */
1763 void address_space_cache_invalidate(MemoryRegionCache *cache,
1764                                     hwaddr addr,
1765                                     hwaddr access_len);
1766 
1767 /**
1768  * address_space_cache_destroy: free a #MemoryRegionCache
1769  *
1770  * @cache: The #MemoryRegionCache whose memory should be released.
1771  */
1772 void address_space_cache_destroy(MemoryRegionCache *cache);
1773 
1774 /* address_space_ld*_cached: load from a cached #MemoryRegion
1775  * address_space_st*_cached: store into a cached #MemoryRegion
1776  *
1777  * These functions perform a load or store of the byte, word,
1778  * longword or quad to the specified address.  The address is
1779  * a physical address in the AddressSpace, but it must lie within
1780  * a #MemoryRegion that was mapped with address_space_cache_init.
1781  *
1782  * The _le suffixed functions treat the data as little endian;
1783  * _be indicates big endian; no suffix indicates "same endianness
1784  * as guest CPU".
1785  *
1786  * The "guest CPU endianness" accessors are deprecated for use outside
1787  * target-* code; devices should be CPU-agnostic and use either the LE
1788  * or the BE accessors.
1789  *
1790  * @cache: previously initialized #MemoryRegionCache to be accessed
1791  * @addr: address within the address space
1792  * @val: data value, for stores
1793  * @attrs: memory transaction attributes
1794  * @result: location to write the success/failure of the transaction;
1795  *   if NULL, this information is discarded
1796  */
1797 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1798                             MemTxAttrs attrs, MemTxResult *result);
1799 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1800                             MemTxAttrs attrs, MemTxResult *result);
1801 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1802                             MemTxAttrs attrs, MemTxResult *result);
1803 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1804                             MemTxAttrs attrs, MemTxResult *result);
1805 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1806                             MemTxAttrs attrs, MemTxResult *result);
1807 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1808                             MemTxAttrs attrs, MemTxResult *result);
1809 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1810                             MemTxAttrs attrs, MemTxResult *result);
1811 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1812                             MemTxAttrs attrs, MemTxResult *result);
1813 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1814                             MemTxAttrs attrs, MemTxResult *result);
1815 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1816                             MemTxAttrs attrs, MemTxResult *result);
1817 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1818                             MemTxAttrs attrs, MemTxResult *result);
1819 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1820                             MemTxAttrs attrs, MemTxResult *result);
1821 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1822                             MemTxAttrs attrs, MemTxResult *result);
1823 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1824                             MemTxAttrs attrs, MemTxResult *result);
1825 
1826 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1827 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1828 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1829 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1830 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1831 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1832 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1833 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1834 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1835 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1836 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1837 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1838 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1839 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1840 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1841  * entry. Should be called from an RCU critical section.
1842  */
1843 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1844                                             bool is_write);
1845 
1846 /* address_space_translate: translate an address range into an address space
1847  * into a MemoryRegion and an address range into that section.  Should be
1848  * called from an RCU critical section, to avoid that the last reference
1849  * to the returned region disappears after address_space_translate returns.
1850  *
1851  * @as: #AddressSpace to be accessed
1852  * @addr: address within that address space
1853  * @xlat: pointer to address within the returned memory region section's
1854  * #MemoryRegion.
1855  * @len: pointer to length
1856  * @is_write: indicates the transfer direction
1857  */
1858 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1859                                       hwaddr *xlat, hwaddr *len,
1860                                       bool is_write);
1861 
1862 /* address_space_access_valid: check for validity of accessing an address
1863  * space range
1864  *
1865  * Check whether memory is assigned to the given address space range, and
1866  * access is permitted by any IOMMU regions that are active for the address
1867  * space.
1868  *
1869  * For now, addr and len should be aligned to a page size.  This limitation
1870  * will be lifted in the future.
1871  *
1872  * @as: #AddressSpace to be accessed
1873  * @addr: address within that address space
1874  * @len: length of the area to be checked
1875  * @is_write: indicates the transfer direction
1876  */
1877 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1878 
1879 /* address_space_map: map a physical memory region into a host virtual address
1880  *
1881  * May map a subset of the requested range, given by and returned in @plen.
1882  * May return %NULL if resources needed to perform the mapping are exhausted.
1883  * Use only for reads OR writes - not for read-modify-write operations.
1884  * Use cpu_register_map_client() to know when retrying the map operation is
1885  * likely to succeed.
1886  *
1887  * @as: #AddressSpace to be accessed
1888  * @addr: address within that address space
1889  * @plen: pointer to length of buffer; updated on return
1890  * @is_write: indicates the transfer direction
1891  */
1892 void *address_space_map(AddressSpace *as, hwaddr addr,
1893                         hwaddr *plen, bool is_write);
1894 
1895 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1896  *
1897  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1898  * the amount of memory that was actually read or written by the caller.
1899  *
1900  * @as: #AddressSpace used
1901  * @addr: address within that address space
1902  * @len: buffer length as returned by address_space_map()
1903  * @access_len: amount of data actually transferred
1904  * @is_write: indicates the transfer direction
1905  */
1906 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1907                          int is_write, hwaddr access_len);
1908 
1909 
1910 /* Internal functions, part of the implementation of address_space_read.  */
1911 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1912                                         MemTxAttrs attrs, uint8_t *buf,
1913                                         int len, hwaddr addr1, hwaddr l,
1914 					MemoryRegion *mr);
1915 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1916                                     MemTxAttrs attrs, uint8_t *buf, int len);
1917 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1918 
1919 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1920 {
1921     if (is_write) {
1922         return memory_region_is_ram(mr) &&
1923                !mr->readonly && !memory_region_is_ram_device(mr);
1924     } else {
1925         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1926                memory_region_is_romd(mr);
1927     }
1928 }
1929 
1930 /**
1931  * address_space_read: read from an address space.
1932  *
1933  * Return a MemTxResult indicating whether the operation succeeded
1934  * or failed (eg unassigned memory, device rejected the transaction,
1935  * IOMMU fault).
1936  *
1937  * @as: #AddressSpace to be accessed
1938  * @addr: address within that address space
1939  * @attrs: memory transaction attributes
1940  * @buf: buffer with the data transferred
1941  */
1942 static inline __attribute__((__always_inline__))
1943 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1944                                uint8_t *buf, int len)
1945 {
1946     MemTxResult result = MEMTX_OK;
1947     hwaddr l, addr1;
1948     void *ptr;
1949     MemoryRegion *mr;
1950 
1951     if (__builtin_constant_p(len)) {
1952         if (len) {
1953             rcu_read_lock();
1954             l = len;
1955             mr = address_space_translate(as, addr, &addr1, &l, false);
1956             if (len == l && memory_access_is_direct(mr, false)) {
1957                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1958                 memcpy(buf, ptr, len);
1959             } else {
1960                 result = address_space_read_continue(as, addr, attrs, buf, len,
1961                                                      addr1, l, mr);
1962             }
1963             rcu_read_unlock();
1964         }
1965     } else {
1966         result = address_space_read_full(as, addr, attrs, buf, len);
1967     }
1968     return result;
1969 }
1970 
1971 /**
1972  * address_space_read_cached: read from a cached RAM region
1973  *
1974  * @cache: Cached region to be addressed
1975  * @addr: address relative to the base of the RAM region
1976  * @buf: buffer with the data transferred
1977  * @len: length of the data transferred
1978  */
1979 static inline void
1980 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1981                           void *buf, int len)
1982 {
1983     assert(addr < cache->len && len <= cache->len - addr);
1984     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1985 }
1986 
1987 /**
1988  * address_space_write_cached: write to a cached RAM region
1989  *
1990  * @cache: Cached region to be addressed
1991  * @addr: address relative to the base of the RAM region
1992  * @buf: buffer with the data transferred
1993  * @len: length of the data transferred
1994  */
1995 static inline void
1996 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1997                            void *buf, int len)
1998 {
1999     assert(addr < cache->len && len <= cache->len - addr);
2000     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2001 }
2002 
2003 #endif
2004 
2005 #endif
2006