1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/ramlist.h" 23 #include "qemu/queue.h" 24 #include "qemu/int128.h" 25 #include "qemu/notify.h" 26 #include "qom/object.h" 27 #include "qemu/rcu.h" 28 #include "hw/qdev-core.h" 29 30 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 31 32 #define MAX_PHYS_ADDR_SPACE_BITS 62 33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 34 35 #define TYPE_MEMORY_REGION "qemu:memory-region" 36 #define MEMORY_REGION(obj) \ 37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 38 39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 40 #define IOMMU_MEMORY_REGION(obj) \ 41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 42 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 44 TYPE_IOMMU_MEMORY_REGION) 45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 47 TYPE_IOMMU_MEMORY_REGION) 48 49 typedef struct MemoryRegionOps MemoryRegionOps; 50 typedef struct MemoryRegionMmio MemoryRegionMmio; 51 52 struct MemoryRegionMmio { 53 CPUReadMemoryFunc *read[3]; 54 CPUWriteMemoryFunc *write[3]; 55 }; 56 57 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 58 59 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 60 typedef enum { 61 IOMMU_NONE = 0, 62 IOMMU_RO = 1, 63 IOMMU_WO = 2, 64 IOMMU_RW = 3, 65 } IOMMUAccessFlags; 66 67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 68 69 struct IOMMUTLBEntry { 70 AddressSpace *target_as; 71 hwaddr iova; 72 hwaddr translated_addr; 73 hwaddr addr_mask; /* 0xfff = 4k translation */ 74 IOMMUAccessFlags perm; 75 }; 76 77 /* 78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 79 * register with one or multiple IOMMU Notifier capability bit(s). 80 */ 81 typedef enum { 82 IOMMU_NOTIFIER_NONE = 0, 83 /* Notify cache invalidations */ 84 IOMMU_NOTIFIER_UNMAP = 0x1, 85 /* Notify entry changes (newly created entries) */ 86 IOMMU_NOTIFIER_MAP = 0x2, 87 } IOMMUNotifierFlag; 88 89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 90 91 struct IOMMUNotifier; 92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 93 IOMMUTLBEntry *data); 94 95 struct IOMMUNotifier { 96 IOMMUNotify notify; 97 IOMMUNotifierFlag notifier_flags; 98 /* Notify for address space range start <= addr <= end */ 99 hwaddr start; 100 hwaddr end; 101 int iommu_idx; 102 QLIST_ENTRY(IOMMUNotifier) node; 103 }; 104 typedef struct IOMMUNotifier IOMMUNotifier; 105 106 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 107 #define RAM_PREALLOC (1 << 0) 108 109 /* RAM is mmap-ed with MAP_SHARED */ 110 #define RAM_SHARED (1 << 1) 111 112 /* Only a portion of RAM (used_length) is actually used, and migrated. 113 * This used_length size can change across reboots. 114 */ 115 #define RAM_RESIZEABLE (1 << 2) 116 117 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 118 * zero the page and wake waiting processes. 119 * (Set during postcopy) 120 */ 121 #define RAM_UF_ZEROPAGE (1 << 3) 122 123 /* RAM can be migrated */ 124 #define RAM_MIGRATABLE (1 << 4) 125 126 /* RAM is a persistent kind memory */ 127 #define RAM_PMEM (1 << 5) 128 129 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 130 IOMMUNotifierFlag flags, 131 hwaddr start, hwaddr end, 132 int iommu_idx) 133 { 134 n->notify = fn; 135 n->notifier_flags = flags; 136 n->start = start; 137 n->end = end; 138 n->iommu_idx = iommu_idx; 139 } 140 141 /* 142 * Memory region callbacks 143 */ 144 struct MemoryRegionOps { 145 /* Read from the memory region. @addr is relative to @mr; @size is 146 * in bytes. */ 147 uint64_t (*read)(void *opaque, 148 hwaddr addr, 149 unsigned size); 150 /* Write to the memory region. @addr is relative to @mr; @size is 151 * in bytes. */ 152 void (*write)(void *opaque, 153 hwaddr addr, 154 uint64_t data, 155 unsigned size); 156 157 MemTxResult (*read_with_attrs)(void *opaque, 158 hwaddr addr, 159 uint64_t *data, 160 unsigned size, 161 MemTxAttrs attrs); 162 MemTxResult (*write_with_attrs)(void *opaque, 163 hwaddr addr, 164 uint64_t data, 165 unsigned size, 166 MemTxAttrs attrs); 167 168 enum device_endian endianness; 169 /* Guest-visible constraints: */ 170 struct { 171 /* If nonzero, specify bounds on access sizes beyond which a machine 172 * check is thrown. 173 */ 174 unsigned min_access_size; 175 unsigned max_access_size; 176 /* If true, unaligned accesses are supported. Otherwise unaligned 177 * accesses throw machine checks. 178 */ 179 bool unaligned; 180 /* 181 * If present, and returns #false, the transaction is not accepted 182 * by the device (and results in machine dependent behaviour such 183 * as a machine check exception). 184 */ 185 bool (*accepts)(void *opaque, hwaddr addr, 186 unsigned size, bool is_write, 187 MemTxAttrs attrs); 188 } valid; 189 /* Internal implementation constraints: */ 190 struct { 191 /* If nonzero, specifies the minimum size implemented. Smaller sizes 192 * will be rounded upwards and a partial result will be returned. 193 */ 194 unsigned min_access_size; 195 /* If nonzero, specifies the maximum size implemented. Larger sizes 196 * will be done as a series of accesses with smaller sizes. 197 */ 198 unsigned max_access_size; 199 /* If true, unaligned accesses are supported. Otherwise all accesses 200 * are converted to (possibly multiple) naturally aligned accesses. 201 */ 202 bool unaligned; 203 } impl; 204 }; 205 206 enum IOMMUMemoryRegionAttr { 207 IOMMU_ATTR_SPAPR_TCE_FD 208 }; 209 210 /** 211 * IOMMUMemoryRegionClass: 212 * 213 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 214 * and provide an implementation of at least the @translate method here 215 * to handle requests to the memory region. Other methods are optional. 216 * 217 * The IOMMU implementation must use the IOMMU notifier infrastructure 218 * to report whenever mappings are changed, by calling 219 * memory_region_notify_iommu() (or, if necessary, by calling 220 * memory_region_notify_one() for each registered notifier). 221 * 222 * Conceptually an IOMMU provides a mapping from input address 223 * to an output TLB entry. If the IOMMU is aware of memory transaction 224 * attributes and the output TLB entry depends on the transaction 225 * attributes, we represent this using IOMMU indexes. Each index 226 * selects a particular translation table that the IOMMU has: 227 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 228 * @translate takes an input address and an IOMMU index 229 * and the mapping returned can only depend on the input address and the 230 * IOMMU index. 231 * 232 * Most IOMMUs don't care about the transaction attributes and support 233 * only a single IOMMU index. A more complex IOMMU might have one index 234 * for secure transactions and one for non-secure transactions. 235 */ 236 typedef struct IOMMUMemoryRegionClass { 237 /* private */ 238 struct DeviceClass parent_class; 239 240 /* 241 * Return a TLB entry that contains a given address. 242 * 243 * The IOMMUAccessFlags indicated via @flag are optional and may 244 * be specified as IOMMU_NONE to indicate that the caller needs 245 * the full translation information for both reads and writes. If 246 * the access flags are specified then the IOMMU implementation 247 * may use this as an optimization, to stop doing a page table 248 * walk as soon as it knows that the requested permissions are not 249 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 250 * full page table walk and report the permissions in the returned 251 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 252 * return different mappings for reads and writes.) 253 * 254 * The returned information remains valid while the caller is 255 * holding the big QEMU lock or is inside an RCU critical section; 256 * if the caller wishes to cache the mapping beyond that it must 257 * register an IOMMU notifier so it can invalidate its cached 258 * information when the IOMMU mapping changes. 259 * 260 * @iommu: the IOMMUMemoryRegion 261 * @hwaddr: address to be translated within the memory region 262 * @flag: requested access permissions 263 * @iommu_idx: IOMMU index for the translation 264 */ 265 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 266 IOMMUAccessFlags flag, int iommu_idx); 267 /* Returns minimum supported page size in bytes. 268 * If this method is not provided then the minimum is assumed to 269 * be TARGET_PAGE_SIZE. 270 * 271 * @iommu: the IOMMUMemoryRegion 272 */ 273 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 274 /* Called when IOMMU Notifier flag changes (ie when the set of 275 * events which IOMMU users are requesting notification for changes). 276 * Optional method -- need not be provided if the IOMMU does not 277 * need to know exactly which events must be notified. 278 * 279 * @iommu: the IOMMUMemoryRegion 280 * @old_flags: events which previously needed to be notified 281 * @new_flags: events which now need to be notified 282 */ 283 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 284 IOMMUNotifierFlag old_flags, 285 IOMMUNotifierFlag new_flags); 286 /* Called to handle memory_region_iommu_replay(). 287 * 288 * The default implementation of memory_region_iommu_replay() is to 289 * call the IOMMU translate method for every page in the address space 290 * with flag == IOMMU_NONE and then call the notifier if translate 291 * returns a valid mapping. If this method is implemented then it 292 * overrides the default behaviour, and must provide the full semantics 293 * of memory_region_iommu_replay(), by calling @notifier for every 294 * translation present in the IOMMU. 295 * 296 * Optional method -- an IOMMU only needs to provide this method 297 * if the default is inefficient or produces undesirable side effects. 298 * 299 * Note: this is not related to record-and-replay functionality. 300 */ 301 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 302 303 /* Get IOMMU misc attributes. This is an optional method that 304 * can be used to allow users of the IOMMU to get implementation-specific 305 * information. The IOMMU implements this method to handle calls 306 * by IOMMU users to memory_region_iommu_get_attr() by filling in 307 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 308 * the IOMMU supports. If the method is unimplemented then 309 * memory_region_iommu_get_attr() will always return -EINVAL. 310 * 311 * @iommu: the IOMMUMemoryRegion 312 * @attr: attribute being queried 313 * @data: memory to fill in with the attribute data 314 * 315 * Returns 0 on success, or a negative errno; in particular 316 * returns -EINVAL for unrecognized or unimplemented attribute types. 317 */ 318 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 319 void *data); 320 321 /* Return the IOMMU index to use for a given set of transaction attributes. 322 * 323 * Optional method: if an IOMMU only supports a single IOMMU index then 324 * the default implementation of memory_region_iommu_attrs_to_index() 325 * will return 0. 326 * 327 * The indexes supported by an IOMMU must be contiguous, starting at 0. 328 * 329 * @iommu: the IOMMUMemoryRegion 330 * @attrs: memory transaction attributes 331 */ 332 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 333 334 /* Return the number of IOMMU indexes this IOMMU supports. 335 * 336 * Optional method: if this method is not provided, then 337 * memory_region_iommu_num_indexes() will return 1, indicating that 338 * only a single IOMMU index is supported. 339 * 340 * @iommu: the IOMMUMemoryRegion 341 */ 342 int (*num_indexes)(IOMMUMemoryRegion *iommu); 343 } IOMMUMemoryRegionClass; 344 345 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 346 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 347 348 struct MemoryRegion { 349 Object parent_obj; 350 351 /* All fields are private - violators will be prosecuted */ 352 353 /* The following fields should fit in a cache line */ 354 bool romd_mode; 355 bool ram; 356 bool subpage; 357 bool readonly; /* For RAM regions */ 358 bool rom_device; 359 bool flush_coalesced_mmio; 360 bool global_locking; 361 uint8_t dirty_log_mask; 362 bool is_iommu; 363 RAMBlock *ram_block; 364 Object *owner; 365 366 const MemoryRegionOps *ops; 367 void *opaque; 368 MemoryRegion *container; 369 Int128 size; 370 hwaddr addr; 371 void (*destructor)(MemoryRegion *mr); 372 uint64_t align; 373 bool terminates; 374 bool ram_device; 375 bool enabled; 376 bool warning_printed; /* For reservations */ 377 uint8_t vga_logging_count; 378 MemoryRegion *alias; 379 hwaddr alias_offset; 380 int32_t priority; 381 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 382 QTAILQ_ENTRY(MemoryRegion) subregions_link; 383 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 384 const char *name; 385 unsigned ioeventfd_nb; 386 MemoryRegionIoeventfd *ioeventfds; 387 }; 388 389 struct IOMMUMemoryRegion { 390 MemoryRegion parent_obj; 391 392 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 393 IOMMUNotifierFlag iommu_notify_flags; 394 }; 395 396 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 397 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 398 399 /** 400 * MemoryListener: callbacks structure for updates to the physical memory map 401 * 402 * Allows a component to adjust to changes in the guest-visible memory map. 403 * Use with memory_listener_register() and memory_listener_unregister(). 404 */ 405 struct MemoryListener { 406 void (*begin)(MemoryListener *listener); 407 void (*commit)(MemoryListener *listener); 408 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 409 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 410 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 411 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 412 int old, int new); 413 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 414 int old, int new); 415 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 416 void (*log_global_start)(MemoryListener *listener); 417 void (*log_global_stop)(MemoryListener *listener); 418 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 419 bool match_data, uint64_t data, EventNotifier *e); 420 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 421 bool match_data, uint64_t data, EventNotifier *e); 422 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 423 hwaddr addr, hwaddr len); 424 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 425 hwaddr addr, hwaddr len); 426 /* Lower = earlier (during add), later (during del) */ 427 unsigned priority; 428 AddressSpace *address_space; 429 QTAILQ_ENTRY(MemoryListener) link; 430 QTAILQ_ENTRY(MemoryListener) link_as; 431 }; 432 433 /** 434 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 435 */ 436 struct AddressSpace { 437 /* All fields are private. */ 438 struct rcu_head rcu; 439 char *name; 440 MemoryRegion *root; 441 442 /* Accessed via RCU. */ 443 struct FlatView *current_map; 444 445 int ioeventfd_nb; 446 struct MemoryRegionIoeventfd *ioeventfds; 447 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 448 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 449 }; 450 451 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 452 typedef struct FlatRange FlatRange; 453 454 /* Flattened global view of current active memory hierarchy. Kept in sorted 455 * order. 456 */ 457 struct FlatView { 458 struct rcu_head rcu; 459 unsigned ref; 460 FlatRange *ranges; 461 unsigned nr; 462 unsigned nr_allocated; 463 struct AddressSpaceDispatch *dispatch; 464 MemoryRegion *root; 465 }; 466 467 static inline FlatView *address_space_to_flatview(AddressSpace *as) 468 { 469 return atomic_rcu_read(&as->current_map); 470 } 471 472 473 /** 474 * MemoryRegionSection: describes a fragment of a #MemoryRegion 475 * 476 * @mr: the region, or %NULL if empty 477 * @fv: the flat view of the address space the region is mapped in 478 * @offset_within_region: the beginning of the section, relative to @mr's start 479 * @size: the size of the section; will not exceed @mr's boundaries 480 * @offset_within_address_space: the address of the first byte of the section 481 * relative to the region's address space 482 * @readonly: writes to this section are ignored 483 */ 484 struct MemoryRegionSection { 485 MemoryRegion *mr; 486 FlatView *fv; 487 hwaddr offset_within_region; 488 Int128 size; 489 hwaddr offset_within_address_space; 490 bool readonly; 491 }; 492 493 /** 494 * memory_region_init: Initialize a memory region 495 * 496 * The region typically acts as a container for other memory regions. Use 497 * memory_region_add_subregion() to add subregions. 498 * 499 * @mr: the #MemoryRegion to be initialized 500 * @owner: the object that tracks the region's reference count 501 * @name: used for debugging; not visible to the user or ABI 502 * @size: size of the region; any subregions beyond this size will be clipped 503 */ 504 void memory_region_init(MemoryRegion *mr, 505 struct Object *owner, 506 const char *name, 507 uint64_t size); 508 509 /** 510 * memory_region_ref: Add 1 to a memory region's reference count 511 * 512 * Whenever memory regions are accessed outside the BQL, they need to be 513 * preserved against hot-unplug. MemoryRegions actually do not have their 514 * own reference count; they piggyback on a QOM object, their "owner". 515 * This function adds a reference to the owner. 516 * 517 * All MemoryRegions must have an owner if they can disappear, even if the 518 * device they belong to operates exclusively under the BQL. This is because 519 * the region could be returned at any time by memory_region_find, and this 520 * is usually under guest control. 521 * 522 * @mr: the #MemoryRegion 523 */ 524 void memory_region_ref(MemoryRegion *mr); 525 526 /** 527 * memory_region_unref: Remove 1 to a memory region's reference count 528 * 529 * Whenever memory regions are accessed outside the BQL, they need to be 530 * preserved against hot-unplug. MemoryRegions actually do not have their 531 * own reference count; they piggyback on a QOM object, their "owner". 532 * This function removes a reference to the owner and possibly destroys it. 533 * 534 * @mr: the #MemoryRegion 535 */ 536 void memory_region_unref(MemoryRegion *mr); 537 538 /** 539 * memory_region_init_io: Initialize an I/O memory region. 540 * 541 * Accesses into the region will cause the callbacks in @ops to be called. 542 * if @size is nonzero, subregions will be clipped to @size. 543 * 544 * @mr: the #MemoryRegion to be initialized. 545 * @owner: the object that tracks the region's reference count 546 * @ops: a structure containing read and write callbacks to be used when 547 * I/O is performed on the region. 548 * @opaque: passed to the read and write callbacks of the @ops structure. 549 * @name: used for debugging; not visible to the user or ABI 550 * @size: size of the region. 551 */ 552 void memory_region_init_io(MemoryRegion *mr, 553 struct Object *owner, 554 const MemoryRegionOps *ops, 555 void *opaque, 556 const char *name, 557 uint64_t size); 558 559 /** 560 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 561 * into the region will modify memory 562 * directly. 563 * 564 * @mr: the #MemoryRegion to be initialized. 565 * @owner: the object that tracks the region's reference count 566 * @name: Region name, becomes part of RAMBlock name used in migration stream 567 * must be unique within any device 568 * @size: size of the region. 569 * @errp: pointer to Error*, to store an error if it happens. 570 * 571 * Note that this function does not do anything to cause the data in the 572 * RAM memory region to be migrated; that is the responsibility of the caller. 573 */ 574 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 575 struct Object *owner, 576 const char *name, 577 uint64_t size, 578 Error **errp); 579 580 /** 581 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 582 * Accesses into the region will 583 * modify memory directly. 584 * 585 * @mr: the #MemoryRegion to be initialized. 586 * @owner: the object that tracks the region's reference count 587 * @name: Region name, becomes part of RAMBlock name used in migration stream 588 * must be unique within any device 589 * @size: size of the region. 590 * @share: allow remapping RAM to different addresses 591 * @errp: pointer to Error*, to store an error if it happens. 592 * 593 * Note that this function is similar to memory_region_init_ram_nomigrate. 594 * The only difference is part of the RAM region can be remapped. 595 */ 596 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 597 struct Object *owner, 598 const char *name, 599 uint64_t size, 600 bool share, 601 Error **errp); 602 603 /** 604 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 605 * RAM. Accesses into the region will 606 * modify memory directly. Only an initial 607 * portion of this RAM is actually used. 608 * The used size can change across reboots. 609 * 610 * @mr: the #MemoryRegion to be initialized. 611 * @owner: the object that tracks the region's reference count 612 * @name: Region name, becomes part of RAMBlock name used in migration stream 613 * must be unique within any device 614 * @size: used size of the region. 615 * @max_size: max size of the region. 616 * @resized: callback to notify owner about used size change. 617 * @errp: pointer to Error*, to store an error if it happens. 618 * 619 * Note that this function does not do anything to cause the data in the 620 * RAM memory region to be migrated; that is the responsibility of the caller. 621 */ 622 void memory_region_init_resizeable_ram(MemoryRegion *mr, 623 struct Object *owner, 624 const char *name, 625 uint64_t size, 626 uint64_t max_size, 627 void (*resized)(const char*, 628 uint64_t length, 629 void *host), 630 Error **errp); 631 #ifdef CONFIG_POSIX 632 633 /** 634 * memory_region_init_ram_from_file: Initialize RAM memory region with a 635 * mmap-ed backend. 636 * 637 * @mr: the #MemoryRegion to be initialized. 638 * @owner: the object that tracks the region's reference count 639 * @name: Region name, becomes part of RAMBlock name used in migration stream 640 * must be unique within any device 641 * @size: size of the region. 642 * @align: alignment of the region base address; if 0, the default alignment 643 * (getpagesize()) will be used. 644 * @ram_flags: Memory region features: 645 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 646 * - RAM_PMEM: the memory is persistent memory 647 * Other bits are ignored now. 648 * @path: the path in which to allocate the RAM. 649 * @errp: pointer to Error*, to store an error if it happens. 650 * 651 * Note that this function does not do anything to cause the data in the 652 * RAM memory region to be migrated; that is the responsibility of the caller. 653 */ 654 void memory_region_init_ram_from_file(MemoryRegion *mr, 655 struct Object *owner, 656 const char *name, 657 uint64_t size, 658 uint64_t align, 659 uint32_t ram_flags, 660 const char *path, 661 Error **errp); 662 663 /** 664 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 665 * mmap-ed backend. 666 * 667 * @mr: the #MemoryRegion to be initialized. 668 * @owner: the object that tracks the region's reference count 669 * @name: the name of the region. 670 * @size: size of the region. 671 * @share: %true if memory must be mmaped with the MAP_SHARED flag 672 * @fd: the fd to mmap. 673 * @errp: pointer to Error*, to store an error if it happens. 674 * 675 * Note that this function does not do anything to cause the data in the 676 * RAM memory region to be migrated; that is the responsibility of the caller. 677 */ 678 void memory_region_init_ram_from_fd(MemoryRegion *mr, 679 struct Object *owner, 680 const char *name, 681 uint64_t size, 682 bool share, 683 int fd, 684 Error **errp); 685 #endif 686 687 /** 688 * memory_region_init_ram_ptr: Initialize RAM memory region from a 689 * user-provided pointer. Accesses into the 690 * region will modify memory directly. 691 * 692 * @mr: the #MemoryRegion to be initialized. 693 * @owner: the object that tracks the region's reference count 694 * @name: Region name, becomes part of RAMBlock name used in migration stream 695 * must be unique within any device 696 * @size: size of the region. 697 * @ptr: memory to be mapped; must contain at least @size bytes. 698 * 699 * Note that this function does not do anything to cause the data in the 700 * RAM memory region to be migrated; that is the responsibility of the caller. 701 */ 702 void memory_region_init_ram_ptr(MemoryRegion *mr, 703 struct Object *owner, 704 const char *name, 705 uint64_t size, 706 void *ptr); 707 708 /** 709 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 710 * a user-provided pointer. 711 * 712 * A RAM device represents a mapping to a physical device, such as to a PCI 713 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 714 * into the VM address space and access to the region will modify memory 715 * directly. However, the memory region should not be included in a memory 716 * dump (device may not be enabled/mapped at the time of the dump), and 717 * operations incompatible with manipulating MMIO should be avoided. Replaces 718 * skip_dump flag. 719 * 720 * @mr: the #MemoryRegion to be initialized. 721 * @owner: the object that tracks the region's reference count 722 * @name: the name of the region. 723 * @size: size of the region. 724 * @ptr: memory to be mapped; must contain at least @size bytes. 725 * 726 * Note that this function does not do anything to cause the data in the 727 * RAM memory region to be migrated; that is the responsibility of the caller. 728 * (For RAM device memory regions, migrating the contents rarely makes sense.) 729 */ 730 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 731 struct Object *owner, 732 const char *name, 733 uint64_t size, 734 void *ptr); 735 736 /** 737 * memory_region_init_alias: Initialize a memory region that aliases all or a 738 * part of another memory region. 739 * 740 * @mr: the #MemoryRegion to be initialized. 741 * @owner: the object that tracks the region's reference count 742 * @name: used for debugging; not visible to the user or ABI 743 * @orig: the region to be referenced; @mr will be equivalent to 744 * @orig between @offset and @offset + @size - 1. 745 * @offset: start of the section in @orig to be referenced. 746 * @size: size of the region. 747 */ 748 void memory_region_init_alias(MemoryRegion *mr, 749 struct Object *owner, 750 const char *name, 751 MemoryRegion *orig, 752 hwaddr offset, 753 uint64_t size); 754 755 /** 756 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 757 * 758 * This has the same effect as calling memory_region_init_ram_nomigrate() 759 * and then marking the resulting region read-only with 760 * memory_region_set_readonly(). 761 * 762 * Note that this function does not do anything to cause the data in the 763 * RAM side of the memory region to be migrated; that is the responsibility 764 * of the caller. 765 * 766 * @mr: the #MemoryRegion to be initialized. 767 * @owner: the object that tracks the region's reference count 768 * @name: Region name, becomes part of RAMBlock name used in migration stream 769 * must be unique within any device 770 * @size: size of the region. 771 * @errp: pointer to Error*, to store an error if it happens. 772 */ 773 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 774 struct Object *owner, 775 const char *name, 776 uint64_t size, 777 Error **errp); 778 779 /** 780 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 781 * Writes are handled via callbacks. 782 * 783 * Note that this function does not do anything to cause the data in the 784 * RAM side of the memory region to be migrated; that is the responsibility 785 * of the caller. 786 * 787 * @mr: the #MemoryRegion to be initialized. 788 * @owner: the object that tracks the region's reference count 789 * @ops: callbacks for write access handling (must not be NULL). 790 * @opaque: passed to the read and write callbacks of the @ops structure. 791 * @name: Region name, becomes part of RAMBlock name used in migration stream 792 * must be unique within any device 793 * @size: size of the region. 794 * @errp: pointer to Error*, to store an error if it happens. 795 */ 796 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 797 struct Object *owner, 798 const MemoryRegionOps *ops, 799 void *opaque, 800 const char *name, 801 uint64_t size, 802 Error **errp); 803 804 /** 805 * memory_region_init_iommu: Initialize a memory region of a custom type 806 * that translates addresses 807 * 808 * An IOMMU region translates addresses and forwards accesses to a target 809 * memory region. 810 * 811 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 812 * @_iommu_mr should be a pointer to enough memory for an instance of 813 * that subclass, @instance_size is the size of that subclass, and 814 * @mrtypename is its name. This function will initialize @_iommu_mr as an 815 * instance of the subclass, and its methods will then be called to handle 816 * accesses to the memory region. See the documentation of 817 * #IOMMUMemoryRegionClass for further details. 818 * 819 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 820 * @instance_size: the IOMMUMemoryRegion subclass instance size 821 * @mrtypename: the type name of the #IOMMUMemoryRegion 822 * @owner: the object that tracks the region's reference count 823 * @name: used for debugging; not visible to the user or ABI 824 * @size: size of the region. 825 */ 826 void memory_region_init_iommu(void *_iommu_mr, 827 size_t instance_size, 828 const char *mrtypename, 829 Object *owner, 830 const char *name, 831 uint64_t size); 832 833 /** 834 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 835 * region will modify memory directly. 836 * 837 * @mr: the #MemoryRegion to be initialized 838 * @owner: the object that tracks the region's reference count (must be 839 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 840 * @name: name of the memory region 841 * @size: size of the region in bytes 842 * @errp: pointer to Error*, to store an error if it happens. 843 * 844 * This function allocates RAM for a board model or device, and 845 * arranges for it to be migrated (by calling vmstate_register_ram() 846 * if @owner is a DeviceState, or vmstate_register_ram_global() if 847 * @owner is NULL). 848 * 849 * TODO: Currently we restrict @owner to being either NULL (for 850 * global RAM regions with no owner) or devices, so that we can 851 * give the RAM block a unique name for migration purposes. 852 * We should lift this restriction and allow arbitrary Objects. 853 * If you pass a non-NULL non-device @owner then we will assert. 854 */ 855 void memory_region_init_ram(MemoryRegion *mr, 856 struct Object *owner, 857 const char *name, 858 uint64_t size, 859 Error **errp); 860 861 /** 862 * memory_region_init_rom: Initialize a ROM memory region. 863 * 864 * This has the same effect as calling memory_region_init_ram() 865 * and then marking the resulting region read-only with 866 * memory_region_set_readonly(). This includes arranging for the 867 * contents to be migrated. 868 * 869 * TODO: Currently we restrict @owner to being either NULL (for 870 * global RAM regions with no owner) or devices, so that we can 871 * give the RAM block a unique name for migration purposes. 872 * We should lift this restriction and allow arbitrary Objects. 873 * If you pass a non-NULL non-device @owner then we will assert. 874 * 875 * @mr: the #MemoryRegion to be initialized. 876 * @owner: the object that tracks the region's reference count 877 * @name: Region name, becomes part of RAMBlock name used in migration stream 878 * must be unique within any device 879 * @size: size of the region. 880 * @errp: pointer to Error*, to store an error if it happens. 881 */ 882 void memory_region_init_rom(MemoryRegion *mr, 883 struct Object *owner, 884 const char *name, 885 uint64_t size, 886 Error **errp); 887 888 /** 889 * memory_region_init_rom_device: Initialize a ROM memory region. 890 * Writes are handled via callbacks. 891 * 892 * This function initializes a memory region backed by RAM for reads 893 * and callbacks for writes, and arranges for the RAM backing to 894 * be migrated (by calling vmstate_register_ram() 895 * if @owner is a DeviceState, or vmstate_register_ram_global() if 896 * @owner is NULL). 897 * 898 * TODO: Currently we restrict @owner to being either NULL (for 899 * global RAM regions with no owner) or devices, so that we can 900 * give the RAM block a unique name for migration purposes. 901 * We should lift this restriction and allow arbitrary Objects. 902 * If you pass a non-NULL non-device @owner then we will assert. 903 * 904 * @mr: the #MemoryRegion to be initialized. 905 * @owner: the object that tracks the region's reference count 906 * @ops: callbacks for write access handling (must not be NULL). 907 * @name: Region name, becomes part of RAMBlock name used in migration stream 908 * must be unique within any device 909 * @size: size of the region. 910 * @errp: pointer to Error*, to store an error if it happens. 911 */ 912 void memory_region_init_rom_device(MemoryRegion *mr, 913 struct Object *owner, 914 const MemoryRegionOps *ops, 915 void *opaque, 916 const char *name, 917 uint64_t size, 918 Error **errp); 919 920 921 /** 922 * memory_region_owner: get a memory region's owner. 923 * 924 * @mr: the memory region being queried. 925 */ 926 struct Object *memory_region_owner(MemoryRegion *mr); 927 928 /** 929 * memory_region_size: get a memory region's size. 930 * 931 * @mr: the memory region being queried. 932 */ 933 uint64_t memory_region_size(MemoryRegion *mr); 934 935 /** 936 * memory_region_is_ram: check whether a memory region is random access 937 * 938 * Returns %true is a memory region is random access. 939 * 940 * @mr: the memory region being queried 941 */ 942 static inline bool memory_region_is_ram(MemoryRegion *mr) 943 { 944 return mr->ram; 945 } 946 947 /** 948 * memory_region_is_ram_device: check whether a memory region is a ram device 949 * 950 * Returns %true is a memory region is a device backed ram region 951 * 952 * @mr: the memory region being queried 953 */ 954 bool memory_region_is_ram_device(MemoryRegion *mr); 955 956 /** 957 * memory_region_is_romd: check whether a memory region is in ROMD mode 958 * 959 * Returns %true if a memory region is a ROM device and currently set to allow 960 * direct reads. 961 * 962 * @mr: the memory region being queried 963 */ 964 static inline bool memory_region_is_romd(MemoryRegion *mr) 965 { 966 return mr->rom_device && mr->romd_mode; 967 } 968 969 /** 970 * memory_region_get_iommu: check whether a memory region is an iommu 971 * 972 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 973 * otherwise NULL. 974 * 975 * @mr: the memory region being queried 976 */ 977 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 978 { 979 if (mr->alias) { 980 return memory_region_get_iommu(mr->alias); 981 } 982 if (mr->is_iommu) { 983 return (IOMMUMemoryRegion *) mr; 984 } 985 return NULL; 986 } 987 988 /** 989 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 990 * if an iommu or NULL if not 991 * 992 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 993 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 994 * 995 * @mr: the memory region being queried 996 */ 997 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 998 IOMMUMemoryRegion *iommu_mr) 999 { 1000 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1001 } 1002 1003 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1004 1005 /** 1006 * memory_region_iommu_get_min_page_size: get minimum supported page size 1007 * for an iommu 1008 * 1009 * Returns minimum supported page size for an iommu. 1010 * 1011 * @iommu_mr: the memory region being queried 1012 */ 1013 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1014 1015 /** 1016 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1017 * 1018 * The notification type will be decided by entry.perm bits: 1019 * 1020 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1021 * - For MAP (newly added entry) notifies: set entry.perm to the 1022 * permission of the page (which is definitely !IOMMU_NONE). 1023 * 1024 * Note: for any IOMMU implementation, an in-place mapping change 1025 * should be notified with an UNMAP followed by a MAP. 1026 * 1027 * @iommu_mr: the memory region that was changed 1028 * @iommu_idx: the IOMMU index for the translation table which has changed 1029 * @entry: the new entry in the IOMMU translation table. The entry 1030 * replaces all old entries for the same virtual I/O address range. 1031 * Deleted entries have .@perm == 0. 1032 */ 1033 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1034 int iommu_idx, 1035 IOMMUTLBEntry entry); 1036 1037 /** 1038 * memory_region_notify_one: notify a change in an IOMMU translation 1039 * entry to a single notifier 1040 * 1041 * This works just like memory_region_notify_iommu(), but it only 1042 * notifies a specific notifier, not all of them. 1043 * 1044 * @notifier: the notifier to be notified 1045 * @entry: the new entry in the IOMMU translation table. The entry 1046 * replaces all old entries for the same virtual I/O address range. 1047 * Deleted entries have .@perm == 0. 1048 */ 1049 void memory_region_notify_one(IOMMUNotifier *notifier, 1050 IOMMUTLBEntry *entry); 1051 1052 /** 1053 * memory_region_register_iommu_notifier: register a notifier for changes to 1054 * IOMMU translation entries. 1055 * 1056 * @mr: the memory region to observe 1057 * @n: the IOMMUNotifier to be added; the notify callback receives a 1058 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1059 * ceases to be valid on exit from the notifier. 1060 */ 1061 void memory_region_register_iommu_notifier(MemoryRegion *mr, 1062 IOMMUNotifier *n); 1063 1064 /** 1065 * memory_region_iommu_replay: replay existing IOMMU translations to 1066 * a notifier with the minimum page granularity returned by 1067 * mr->iommu_ops->get_page_size(). 1068 * 1069 * Note: this is not related to record-and-replay functionality. 1070 * 1071 * @iommu_mr: the memory region to observe 1072 * @n: the notifier to which to replay iommu mappings 1073 */ 1074 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1075 1076 /** 1077 * memory_region_iommu_replay_all: replay existing IOMMU translations 1078 * to all the notifiers registered. 1079 * 1080 * Note: this is not related to record-and-replay functionality. 1081 * 1082 * @iommu_mr: the memory region to observe 1083 */ 1084 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 1085 1086 /** 1087 * memory_region_unregister_iommu_notifier: unregister a notifier for 1088 * changes to IOMMU translation entries. 1089 * 1090 * @mr: the memory region which was observed and for which notity_stopped() 1091 * needs to be called 1092 * @n: the notifier to be removed. 1093 */ 1094 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1095 IOMMUNotifier *n); 1096 1097 /** 1098 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1099 * defined on the IOMMU. 1100 * 1101 * Returns 0 on success, or a negative errno otherwise. In particular, 1102 * -EINVAL indicates that the IOMMU does not support the requested 1103 * attribute. 1104 * 1105 * @iommu_mr: the memory region 1106 * @attr: the requested attribute 1107 * @data: a pointer to the requested attribute data 1108 */ 1109 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1110 enum IOMMUMemoryRegionAttr attr, 1111 void *data); 1112 1113 /** 1114 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1115 * use for translations with the given memory transaction attributes. 1116 * 1117 * @iommu_mr: the memory region 1118 * @attrs: the memory transaction attributes 1119 */ 1120 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1121 MemTxAttrs attrs); 1122 1123 /** 1124 * memory_region_iommu_num_indexes: return the total number of IOMMU 1125 * indexes that this IOMMU supports. 1126 * 1127 * @iommu_mr: the memory region 1128 */ 1129 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1130 1131 /** 1132 * memory_region_name: get a memory region's name 1133 * 1134 * Returns the string that was used to initialize the memory region. 1135 * 1136 * @mr: the memory region being queried 1137 */ 1138 const char *memory_region_name(const MemoryRegion *mr); 1139 1140 /** 1141 * memory_region_is_logging: return whether a memory region is logging writes 1142 * 1143 * Returns %true if the memory region is logging writes for the given client 1144 * 1145 * @mr: the memory region being queried 1146 * @client: the client being queried 1147 */ 1148 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1149 1150 /** 1151 * memory_region_get_dirty_log_mask: return the clients for which a 1152 * memory region is logging writes. 1153 * 1154 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1155 * are the bit indices. 1156 * 1157 * @mr: the memory region being queried 1158 */ 1159 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1160 1161 /** 1162 * memory_region_is_rom: check whether a memory region is ROM 1163 * 1164 * Returns %true is a memory region is read-only memory. 1165 * 1166 * @mr: the memory region being queried 1167 */ 1168 static inline bool memory_region_is_rom(MemoryRegion *mr) 1169 { 1170 return mr->ram && mr->readonly; 1171 } 1172 1173 1174 /** 1175 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1176 * 1177 * Returns a file descriptor backing a file-based RAM memory region, 1178 * or -1 if the region is not a file-based RAM memory region. 1179 * 1180 * @mr: the RAM or alias memory region being queried. 1181 */ 1182 int memory_region_get_fd(MemoryRegion *mr); 1183 1184 /** 1185 * memory_region_from_host: Convert a pointer into a RAM memory region 1186 * and an offset within it. 1187 * 1188 * Given a host pointer inside a RAM memory region (created with 1189 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1190 * the MemoryRegion and the offset within it. 1191 * 1192 * Use with care; by the time this function returns, the returned pointer is 1193 * not protected by RCU anymore. If the caller is not within an RCU critical 1194 * section and does not hold the iothread lock, it must have other means of 1195 * protecting the pointer, such as a reference to the region that includes 1196 * the incoming ram_addr_t. 1197 * 1198 * @ptr: the host pointer to be converted 1199 * @offset: the offset within memory region 1200 */ 1201 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1202 1203 /** 1204 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1205 * 1206 * Returns a host pointer to a RAM memory region (created with 1207 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1208 * 1209 * Use with care; by the time this function returns, the returned pointer is 1210 * not protected by RCU anymore. If the caller is not within an RCU critical 1211 * section and does not hold the iothread lock, it must have other means of 1212 * protecting the pointer, such as a reference to the region that includes 1213 * the incoming ram_addr_t. 1214 * 1215 * @mr: the memory region being queried. 1216 */ 1217 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1218 1219 /* memory_region_ram_resize: Resize a RAM region. 1220 * 1221 * Only legal before guest might have detected the memory size: e.g. on 1222 * incoming migration, or right after reset. 1223 * 1224 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1225 * @newsize: the new size the region 1226 * @errp: pointer to Error*, to store an error if it happens. 1227 */ 1228 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1229 Error **errp); 1230 1231 /** 1232 * memory_region_set_log: Turn dirty logging on or off for a region. 1233 * 1234 * Turns dirty logging on or off for a specified client (display, migration). 1235 * Only meaningful for RAM regions. 1236 * 1237 * @mr: the memory region being updated. 1238 * @log: whether dirty logging is to be enabled or disabled. 1239 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1240 */ 1241 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1242 1243 /** 1244 * memory_region_get_dirty: Check whether a range of bytes is dirty 1245 * for a specified client. 1246 * 1247 * Checks whether a range of bytes has been written to since the last 1248 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1249 * must be enabled. 1250 * 1251 * @mr: the memory region being queried. 1252 * @addr: the address (relative to the start of the region) being queried. 1253 * @size: the size of the range being queried. 1254 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1255 * %DIRTY_MEMORY_VGA. 1256 */ 1257 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 1258 hwaddr size, unsigned client); 1259 1260 /** 1261 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1262 * 1263 * Marks a range of bytes as dirty, after it has been dirtied outside 1264 * guest code. 1265 * 1266 * @mr: the memory region being dirtied. 1267 * @addr: the address (relative to the start of the region) being dirtied. 1268 * @size: size of the range being dirtied. 1269 */ 1270 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1271 hwaddr size); 1272 1273 /** 1274 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1275 * bitmap and clear it. 1276 * 1277 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1278 * returns the snapshot. The snapshot can then be used to query dirty 1279 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1280 * querying the same page multiple times, which is especially useful for 1281 * display updates where the scanlines often are not page aligned. 1282 * 1283 * The dirty bitmap region which gets copyed into the snapshot (and 1284 * cleared afterwards) can be larger than requested. The boundaries 1285 * are rounded up/down so complete bitmap longs (covering 64 pages on 1286 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1287 * isn't a problem for display updates as the extra pages are outside 1288 * the visible area, and in case the visible area changes a full 1289 * display redraw is due anyway. Should other use cases for this 1290 * function emerge we might have to revisit this implementation 1291 * detail. 1292 * 1293 * Use g_free to release DirtyBitmapSnapshot. 1294 * 1295 * @mr: the memory region being queried. 1296 * @addr: the address (relative to the start of the region) being queried. 1297 * @size: the size of the range being queried. 1298 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1299 */ 1300 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1301 hwaddr addr, 1302 hwaddr size, 1303 unsigned client); 1304 1305 /** 1306 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1307 * in the specified dirty bitmap snapshot. 1308 * 1309 * @mr: the memory region being queried. 1310 * @snap: the dirty bitmap snapshot 1311 * @addr: the address (relative to the start of the region) being queried. 1312 * @size: the size of the range being queried. 1313 */ 1314 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1315 DirtyBitmapSnapshot *snap, 1316 hwaddr addr, hwaddr size); 1317 1318 /** 1319 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1320 * client. 1321 * 1322 * Marks a range of pages as no longer dirty. 1323 * 1324 * @mr: the region being updated. 1325 * @addr: the start of the subrange being cleaned. 1326 * @size: the size of the subrange being cleaned. 1327 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1328 * %DIRTY_MEMORY_VGA. 1329 */ 1330 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1331 hwaddr size, unsigned client); 1332 1333 /** 1334 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1335 * 1336 * Allows a memory region to be marked as read-only (turning it into a ROM). 1337 * only useful on RAM regions. 1338 * 1339 * @mr: the region being updated. 1340 * @readonly: whether rhe region is to be ROM or RAM. 1341 */ 1342 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1343 1344 /** 1345 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1346 * 1347 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1348 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1349 * device is mapped to guest memory and satisfies read access directly. 1350 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1351 * Writes are always handled by the #MemoryRegion.write function. 1352 * 1353 * @mr: the memory region to be updated 1354 * @romd_mode: %true to put the region into ROMD mode 1355 */ 1356 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1357 1358 /** 1359 * memory_region_set_coalescing: Enable memory coalescing for the region. 1360 * 1361 * Enabled writes to a region to be queued for later processing. MMIO ->write 1362 * callbacks may be delayed until a non-coalesced MMIO is issued. 1363 * Only useful for IO regions. Roughly similar to write-combining hardware. 1364 * 1365 * @mr: the memory region to be write coalesced 1366 */ 1367 void memory_region_set_coalescing(MemoryRegion *mr); 1368 1369 /** 1370 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1371 * a region. 1372 * 1373 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1374 * Multiple calls can be issued coalesced disjoint ranges. 1375 * 1376 * @mr: the memory region to be updated. 1377 * @offset: the start of the range within the region to be coalesced. 1378 * @size: the size of the subrange to be coalesced. 1379 */ 1380 void memory_region_add_coalescing(MemoryRegion *mr, 1381 hwaddr offset, 1382 uint64_t size); 1383 1384 /** 1385 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1386 * 1387 * Disables any coalescing caused by memory_region_set_coalescing() or 1388 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1389 * hardware. 1390 * 1391 * @mr: the memory region to be updated. 1392 */ 1393 void memory_region_clear_coalescing(MemoryRegion *mr); 1394 1395 /** 1396 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1397 * accesses. 1398 * 1399 * Ensure that pending coalesced MMIO request are flushed before the memory 1400 * region is accessed. This property is automatically enabled for all regions 1401 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1402 * 1403 * @mr: the memory region to be updated. 1404 */ 1405 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1406 1407 /** 1408 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1409 * accesses. 1410 * 1411 * Clear the automatic coalesced MMIO flushing enabled via 1412 * memory_region_set_flush_coalesced. Note that this service has no effect on 1413 * memory regions that have MMIO coalescing enabled for themselves. For them, 1414 * automatic flushing will stop once coalescing is disabled. 1415 * 1416 * @mr: the memory region to be updated. 1417 */ 1418 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1419 1420 /** 1421 * memory_region_clear_global_locking: Declares that access processing does 1422 * not depend on the QEMU global lock. 1423 * 1424 * By clearing this property, accesses to the memory region will be processed 1425 * outside of QEMU's global lock (unless the lock is held on when issuing the 1426 * access request). In this case, the device model implementing the access 1427 * handlers is responsible for synchronization of concurrency. 1428 * 1429 * @mr: the memory region to be updated. 1430 */ 1431 void memory_region_clear_global_locking(MemoryRegion *mr); 1432 1433 /** 1434 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1435 * is written to a location. 1436 * 1437 * Marks a word in an IO region (initialized with memory_region_init_io()) 1438 * as a trigger for an eventfd event. The I/O callback will not be called. 1439 * The caller must be prepared to handle failure (that is, take the required 1440 * action if the callback _is_ called). 1441 * 1442 * @mr: the memory region being updated. 1443 * @addr: the address within @mr that is to be monitored 1444 * @size: the size of the access to trigger the eventfd 1445 * @match_data: whether to match against @data, instead of just @addr 1446 * @data: the data to match against the guest write 1447 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1448 **/ 1449 void memory_region_add_eventfd(MemoryRegion *mr, 1450 hwaddr addr, 1451 unsigned size, 1452 bool match_data, 1453 uint64_t data, 1454 EventNotifier *e); 1455 1456 /** 1457 * memory_region_del_eventfd: Cancel an eventfd. 1458 * 1459 * Cancels an eventfd trigger requested by a previous 1460 * memory_region_add_eventfd() call. 1461 * 1462 * @mr: the memory region being updated. 1463 * @addr: the address within @mr that is to be monitored 1464 * @size: the size of the access to trigger the eventfd 1465 * @match_data: whether to match against @data, instead of just @addr 1466 * @data: the data to match against the guest write 1467 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1468 */ 1469 void memory_region_del_eventfd(MemoryRegion *mr, 1470 hwaddr addr, 1471 unsigned size, 1472 bool match_data, 1473 uint64_t data, 1474 EventNotifier *e); 1475 1476 /** 1477 * memory_region_add_subregion: Add a subregion to a container. 1478 * 1479 * Adds a subregion at @offset. The subregion may not overlap with other 1480 * subregions (except for those explicitly marked as overlapping). A region 1481 * may only be added once as a subregion (unless removed with 1482 * memory_region_del_subregion()); use memory_region_init_alias() if you 1483 * want a region to be a subregion in multiple locations. 1484 * 1485 * @mr: the region to contain the new subregion; must be a container 1486 * initialized with memory_region_init(). 1487 * @offset: the offset relative to @mr where @subregion is added. 1488 * @subregion: the subregion to be added. 1489 */ 1490 void memory_region_add_subregion(MemoryRegion *mr, 1491 hwaddr offset, 1492 MemoryRegion *subregion); 1493 /** 1494 * memory_region_add_subregion_overlap: Add a subregion to a container 1495 * with overlap. 1496 * 1497 * Adds a subregion at @offset. The subregion may overlap with other 1498 * subregions. Conflicts are resolved by having a higher @priority hide a 1499 * lower @priority. Subregions without priority are taken as @priority 0. 1500 * A region may only be added once as a subregion (unless removed with 1501 * memory_region_del_subregion()); use memory_region_init_alias() if you 1502 * want a region to be a subregion in multiple locations. 1503 * 1504 * @mr: the region to contain the new subregion; must be a container 1505 * initialized with memory_region_init(). 1506 * @offset: the offset relative to @mr where @subregion is added. 1507 * @subregion: the subregion to be added. 1508 * @priority: used for resolving overlaps; highest priority wins. 1509 */ 1510 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1511 hwaddr offset, 1512 MemoryRegion *subregion, 1513 int priority); 1514 1515 /** 1516 * memory_region_get_ram_addr: Get the ram address associated with a memory 1517 * region 1518 */ 1519 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1520 1521 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1522 /** 1523 * memory_region_del_subregion: Remove a subregion. 1524 * 1525 * Removes a subregion from its container. 1526 * 1527 * @mr: the container to be updated. 1528 * @subregion: the region being removed; must be a current subregion of @mr. 1529 */ 1530 void memory_region_del_subregion(MemoryRegion *mr, 1531 MemoryRegion *subregion); 1532 1533 /* 1534 * memory_region_set_enabled: dynamically enable or disable a region 1535 * 1536 * Enables or disables a memory region. A disabled memory region 1537 * ignores all accesses to itself and its subregions. It does not 1538 * obscure sibling subregions with lower priority - it simply behaves as 1539 * if it was removed from the hierarchy. 1540 * 1541 * Regions default to being enabled. 1542 * 1543 * @mr: the region to be updated 1544 * @enabled: whether to enable or disable the region 1545 */ 1546 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1547 1548 /* 1549 * memory_region_set_address: dynamically update the address of a region 1550 * 1551 * Dynamically updates the address of a region, relative to its container. 1552 * May be used on regions are currently part of a memory hierarchy. 1553 * 1554 * @mr: the region to be updated 1555 * @addr: new address, relative to container region 1556 */ 1557 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1558 1559 /* 1560 * memory_region_set_size: dynamically update the size of a region. 1561 * 1562 * Dynamically updates the size of a region. 1563 * 1564 * @mr: the region to be updated 1565 * @size: used size of the region. 1566 */ 1567 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1568 1569 /* 1570 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1571 * 1572 * Dynamically updates the offset into the target region that an alias points 1573 * to, as if the fourth argument to memory_region_init_alias() has changed. 1574 * 1575 * @mr: the #MemoryRegion to be updated; should be an alias. 1576 * @offset: the new offset into the target memory region 1577 */ 1578 void memory_region_set_alias_offset(MemoryRegion *mr, 1579 hwaddr offset); 1580 1581 /** 1582 * memory_region_present: checks if an address relative to a @container 1583 * translates into #MemoryRegion within @container 1584 * 1585 * Answer whether a #MemoryRegion within @container covers the address 1586 * @addr. 1587 * 1588 * @container: a #MemoryRegion within which @addr is a relative address 1589 * @addr: the area within @container to be searched 1590 */ 1591 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1592 1593 /** 1594 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1595 * into any address space. 1596 * 1597 * @mr: a #MemoryRegion which should be checked if it's mapped 1598 */ 1599 bool memory_region_is_mapped(MemoryRegion *mr); 1600 1601 /** 1602 * memory_region_find: translate an address/size relative to a 1603 * MemoryRegion into a #MemoryRegionSection. 1604 * 1605 * Locates the first #MemoryRegion within @mr that overlaps the range 1606 * given by @addr and @size. 1607 * 1608 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1609 * It will have the following characteristics: 1610 * .@size = 0 iff no overlap was found 1611 * .@mr is non-%NULL iff an overlap was found 1612 * 1613 * Remember that in the return value the @offset_within_region is 1614 * relative to the returned region (in the .@mr field), not to the 1615 * @mr argument. 1616 * 1617 * Similarly, the .@offset_within_address_space is relative to the 1618 * address space that contains both regions, the passed and the 1619 * returned one. However, in the special case where the @mr argument 1620 * has no container (and thus is the root of the address space), the 1621 * following will hold: 1622 * .@offset_within_address_space >= @addr 1623 * .@offset_within_address_space + .@size <= @addr + @size 1624 * 1625 * @mr: a MemoryRegion within which @addr is a relative address 1626 * @addr: start of the area within @as to be searched 1627 * @size: size of the area to be searched 1628 */ 1629 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1630 hwaddr addr, uint64_t size); 1631 1632 /** 1633 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1634 * 1635 * Synchronizes the dirty page log for all address spaces. 1636 */ 1637 void memory_global_dirty_log_sync(void); 1638 1639 /** 1640 * memory_region_transaction_begin: Start a transaction. 1641 * 1642 * During a transaction, changes will be accumulated and made visible 1643 * only when the transaction ends (is committed). 1644 */ 1645 void memory_region_transaction_begin(void); 1646 1647 /** 1648 * memory_region_transaction_commit: Commit a transaction and make changes 1649 * visible to the guest. 1650 */ 1651 void memory_region_transaction_commit(void); 1652 1653 /** 1654 * memory_listener_register: register callbacks to be called when memory 1655 * sections are mapped or unmapped into an address 1656 * space 1657 * 1658 * @listener: an object containing the callbacks to be called 1659 * @filter: if non-%NULL, only regions in this address space will be observed 1660 */ 1661 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1662 1663 /** 1664 * memory_listener_unregister: undo the effect of memory_listener_register() 1665 * 1666 * @listener: an object containing the callbacks to be removed 1667 */ 1668 void memory_listener_unregister(MemoryListener *listener); 1669 1670 /** 1671 * memory_global_dirty_log_start: begin dirty logging for all regions 1672 */ 1673 void memory_global_dirty_log_start(void); 1674 1675 /** 1676 * memory_global_dirty_log_stop: end dirty logging for all regions 1677 */ 1678 void memory_global_dirty_log_stop(void); 1679 1680 void mtree_info(fprintf_function mon_printf, void *f, bool flatview, 1681 bool dispatch_tree, bool owner); 1682 1683 /** 1684 * memory_region_dispatch_read: perform a read directly to the specified 1685 * MemoryRegion. 1686 * 1687 * @mr: #MemoryRegion to access 1688 * @addr: address within that region 1689 * @pval: pointer to uint64_t which the data is written to 1690 * @size: size of the access in bytes 1691 * @attrs: memory transaction attributes to use for the access 1692 */ 1693 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1694 hwaddr addr, 1695 uint64_t *pval, 1696 unsigned size, 1697 MemTxAttrs attrs); 1698 /** 1699 * memory_region_dispatch_write: perform a write directly to the specified 1700 * MemoryRegion. 1701 * 1702 * @mr: #MemoryRegion to access 1703 * @addr: address within that region 1704 * @data: data to write 1705 * @size: size of the access in bytes 1706 * @attrs: memory transaction attributes to use for the access 1707 */ 1708 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1709 hwaddr addr, 1710 uint64_t data, 1711 unsigned size, 1712 MemTxAttrs attrs); 1713 1714 /** 1715 * address_space_init: initializes an address space 1716 * 1717 * @as: an uninitialized #AddressSpace 1718 * @root: a #MemoryRegion that routes addresses for the address space 1719 * @name: an address space name. The name is only used for debugging 1720 * output. 1721 */ 1722 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1723 1724 /** 1725 * address_space_destroy: destroy an address space 1726 * 1727 * Releases all resources associated with an address space. After an address space 1728 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1729 * as well. 1730 * 1731 * @as: address space to be destroyed 1732 */ 1733 void address_space_destroy(AddressSpace *as); 1734 1735 /** 1736 * address_space_rw: read from or write to an address space. 1737 * 1738 * Return a MemTxResult indicating whether the operation succeeded 1739 * or failed (eg unassigned memory, device rejected the transaction, 1740 * IOMMU fault). 1741 * 1742 * @as: #AddressSpace to be accessed 1743 * @addr: address within that address space 1744 * @attrs: memory transaction attributes 1745 * @buf: buffer with the data transferred 1746 * @len: the number of bytes to read or write 1747 * @is_write: indicates the transfer direction 1748 */ 1749 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1750 MemTxAttrs attrs, uint8_t *buf, 1751 int len, bool is_write); 1752 1753 /** 1754 * address_space_write: write to address space. 1755 * 1756 * Return a MemTxResult indicating whether the operation succeeded 1757 * or failed (eg unassigned memory, device rejected the transaction, 1758 * IOMMU fault). 1759 * 1760 * @as: #AddressSpace to be accessed 1761 * @addr: address within that address space 1762 * @attrs: memory transaction attributes 1763 * @buf: buffer with the data transferred 1764 * @len: the number of bytes to write 1765 */ 1766 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1767 MemTxAttrs attrs, 1768 const uint8_t *buf, int len); 1769 1770 /* address_space_ld*: load from an address space 1771 * address_space_st*: store to an address space 1772 * 1773 * These functions perform a load or store of the byte, word, 1774 * longword or quad to the specified address within the AddressSpace. 1775 * The _le suffixed functions treat the data as little endian; 1776 * _be indicates big endian; no suffix indicates "same endianness 1777 * as guest CPU". 1778 * 1779 * The "guest CPU endianness" accessors are deprecated for use outside 1780 * target-* code; devices should be CPU-agnostic and use either the LE 1781 * or the BE accessors. 1782 * 1783 * @as #AddressSpace to be accessed 1784 * @addr: address within that address space 1785 * @val: data value, for stores 1786 * @attrs: memory transaction attributes 1787 * @result: location to write the success/failure of the transaction; 1788 * if NULL, this information is discarded 1789 */ 1790 1791 #define SUFFIX 1792 #define ARG1 as 1793 #define ARG1_DECL AddressSpace *as 1794 #include "exec/memory_ldst.inc.h" 1795 1796 #define SUFFIX 1797 #define ARG1 as 1798 #define ARG1_DECL AddressSpace *as 1799 #include "exec/memory_ldst_phys.inc.h" 1800 1801 struct MemoryRegionCache { 1802 void *ptr; 1803 hwaddr xlat; 1804 hwaddr len; 1805 FlatView *fv; 1806 MemoryRegionSection mrs; 1807 bool is_write; 1808 }; 1809 1810 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 1811 1812 1813 /* address_space_ld*_cached: load from a cached #MemoryRegion 1814 * address_space_st*_cached: store into a cached #MemoryRegion 1815 * 1816 * These functions perform a load or store of the byte, word, 1817 * longword or quad to the specified address. The address is 1818 * a physical address in the AddressSpace, but it must lie within 1819 * a #MemoryRegion that was mapped with address_space_cache_init. 1820 * 1821 * The _le suffixed functions treat the data as little endian; 1822 * _be indicates big endian; no suffix indicates "same endianness 1823 * as guest CPU". 1824 * 1825 * The "guest CPU endianness" accessors are deprecated for use outside 1826 * target-* code; devices should be CPU-agnostic and use either the LE 1827 * or the BE accessors. 1828 * 1829 * @cache: previously initialized #MemoryRegionCache to be accessed 1830 * @addr: address within the address space 1831 * @val: data value, for stores 1832 * @attrs: memory transaction attributes 1833 * @result: location to write the success/failure of the transaction; 1834 * if NULL, this information is discarded 1835 */ 1836 1837 #define SUFFIX _cached_slow 1838 #define ARG1 cache 1839 #define ARG1_DECL MemoryRegionCache *cache 1840 #include "exec/memory_ldst.inc.h" 1841 1842 /* Inline fast path for direct RAM access. */ 1843 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 1844 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 1845 { 1846 assert(addr < cache->len); 1847 if (likely(cache->ptr)) { 1848 return ldub_p(cache->ptr + addr); 1849 } else { 1850 return address_space_ldub_cached_slow(cache, addr, attrs, result); 1851 } 1852 } 1853 1854 static inline void address_space_stb_cached(MemoryRegionCache *cache, 1855 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 1856 { 1857 assert(addr < cache->len); 1858 if (likely(cache->ptr)) { 1859 stb_p(cache->ptr + addr, val); 1860 } else { 1861 address_space_stb_cached_slow(cache, addr, val, attrs, result); 1862 } 1863 } 1864 1865 #define ENDIANNESS _le 1866 #include "exec/memory_ldst_cached.inc.h" 1867 1868 #define ENDIANNESS _be 1869 #include "exec/memory_ldst_cached.inc.h" 1870 1871 #define SUFFIX _cached 1872 #define ARG1 cache 1873 #define ARG1_DECL MemoryRegionCache *cache 1874 #include "exec/memory_ldst_phys.inc.h" 1875 1876 /* address_space_cache_init: prepare for repeated access to a physical 1877 * memory region 1878 * 1879 * @cache: #MemoryRegionCache to be filled 1880 * @as: #AddressSpace to be accessed 1881 * @addr: address within that address space 1882 * @len: length of buffer 1883 * @is_write: indicates the transfer direction 1884 * 1885 * Will only work with RAM, and may map a subset of the requested range by 1886 * returning a value that is less than @len. On failure, return a negative 1887 * errno value. 1888 * 1889 * Because it only works with RAM, this function can be used for 1890 * read-modify-write operations. In this case, is_write should be %true. 1891 * 1892 * Note that addresses passed to the address_space_*_cached functions 1893 * are relative to @addr. 1894 */ 1895 int64_t address_space_cache_init(MemoryRegionCache *cache, 1896 AddressSpace *as, 1897 hwaddr addr, 1898 hwaddr len, 1899 bool is_write); 1900 1901 /** 1902 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1903 * 1904 * @cache: The #MemoryRegionCache to operate on. 1905 * @addr: The first physical address that was written, relative to the 1906 * address that was passed to @address_space_cache_init. 1907 * @access_len: The number of bytes that were written starting at @addr. 1908 */ 1909 void address_space_cache_invalidate(MemoryRegionCache *cache, 1910 hwaddr addr, 1911 hwaddr access_len); 1912 1913 /** 1914 * address_space_cache_destroy: free a #MemoryRegionCache 1915 * 1916 * @cache: The #MemoryRegionCache whose memory should be released. 1917 */ 1918 void address_space_cache_destroy(MemoryRegionCache *cache); 1919 1920 /* address_space_get_iotlb_entry: translate an address into an IOTLB 1921 * entry. Should be called from an RCU critical section. 1922 */ 1923 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1924 bool is_write, MemTxAttrs attrs); 1925 1926 /* address_space_translate: translate an address range into an address space 1927 * into a MemoryRegion and an address range into that section. Should be 1928 * called from an RCU critical section, to avoid that the last reference 1929 * to the returned region disappears after address_space_translate returns. 1930 * 1931 * @fv: #FlatView to be accessed 1932 * @addr: address within that address space 1933 * @xlat: pointer to address within the returned memory region section's 1934 * #MemoryRegion. 1935 * @len: pointer to length 1936 * @is_write: indicates the transfer direction 1937 * @attrs: memory attributes 1938 */ 1939 MemoryRegion *flatview_translate(FlatView *fv, 1940 hwaddr addr, hwaddr *xlat, 1941 hwaddr *len, bool is_write, 1942 MemTxAttrs attrs); 1943 1944 static inline MemoryRegion *address_space_translate(AddressSpace *as, 1945 hwaddr addr, hwaddr *xlat, 1946 hwaddr *len, bool is_write, 1947 MemTxAttrs attrs) 1948 { 1949 return flatview_translate(address_space_to_flatview(as), 1950 addr, xlat, len, is_write, attrs); 1951 } 1952 1953 /* address_space_access_valid: check for validity of accessing an address 1954 * space range 1955 * 1956 * Check whether memory is assigned to the given address space range, and 1957 * access is permitted by any IOMMU regions that are active for the address 1958 * space. 1959 * 1960 * For now, addr and len should be aligned to a page size. This limitation 1961 * will be lifted in the future. 1962 * 1963 * @as: #AddressSpace to be accessed 1964 * @addr: address within that address space 1965 * @len: length of the area to be checked 1966 * @is_write: indicates the transfer direction 1967 * @attrs: memory attributes 1968 */ 1969 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, 1970 bool is_write, MemTxAttrs attrs); 1971 1972 /* address_space_map: map a physical memory region into a host virtual address 1973 * 1974 * May map a subset of the requested range, given by and returned in @plen. 1975 * May return %NULL if resources needed to perform the mapping are exhausted. 1976 * Use only for reads OR writes - not for read-modify-write operations. 1977 * Use cpu_register_map_client() to know when retrying the map operation is 1978 * likely to succeed. 1979 * 1980 * @as: #AddressSpace to be accessed 1981 * @addr: address within that address space 1982 * @plen: pointer to length of buffer; updated on return 1983 * @is_write: indicates the transfer direction 1984 * @attrs: memory attributes 1985 */ 1986 void *address_space_map(AddressSpace *as, hwaddr addr, 1987 hwaddr *plen, bool is_write, MemTxAttrs attrs); 1988 1989 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1990 * 1991 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1992 * the amount of memory that was actually read or written by the caller. 1993 * 1994 * @as: #AddressSpace used 1995 * @buffer: host pointer as returned by address_space_map() 1996 * @len: buffer length as returned by address_space_map() 1997 * @access_len: amount of data actually transferred 1998 * @is_write: indicates the transfer direction 1999 */ 2000 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2001 int is_write, hwaddr access_len); 2002 2003 2004 /* Internal functions, part of the implementation of address_space_read. */ 2005 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2006 MemTxAttrs attrs, uint8_t *buf, int len); 2007 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2008 MemTxAttrs attrs, uint8_t *buf, 2009 int len, hwaddr addr1, hwaddr l, 2010 MemoryRegion *mr); 2011 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2012 2013 /* Internal functions, part of the implementation of address_space_read_cached 2014 * and address_space_write_cached. */ 2015 void address_space_read_cached_slow(MemoryRegionCache *cache, 2016 hwaddr addr, void *buf, int len); 2017 void address_space_write_cached_slow(MemoryRegionCache *cache, 2018 hwaddr addr, const void *buf, int len); 2019 2020 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2021 { 2022 if (is_write) { 2023 return memory_region_is_ram(mr) && 2024 !mr->readonly && !memory_region_is_ram_device(mr); 2025 } else { 2026 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2027 memory_region_is_romd(mr); 2028 } 2029 } 2030 2031 /** 2032 * address_space_read: read from an address space. 2033 * 2034 * Return a MemTxResult indicating whether the operation succeeded 2035 * or failed (eg unassigned memory, device rejected the transaction, 2036 * IOMMU fault). Called within RCU critical section. 2037 * 2038 * @as: #AddressSpace to be accessed 2039 * @addr: address within that address space 2040 * @attrs: memory transaction attributes 2041 * @buf: buffer with the data transferred 2042 */ 2043 static inline __attribute__((__always_inline__)) 2044 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2045 MemTxAttrs attrs, uint8_t *buf, 2046 int len) 2047 { 2048 MemTxResult result = MEMTX_OK; 2049 hwaddr l, addr1; 2050 void *ptr; 2051 MemoryRegion *mr; 2052 FlatView *fv; 2053 2054 if (__builtin_constant_p(len)) { 2055 if (len) { 2056 rcu_read_lock(); 2057 fv = address_space_to_flatview(as); 2058 l = len; 2059 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2060 if (len == l && memory_access_is_direct(mr, false)) { 2061 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2062 memcpy(buf, ptr, len); 2063 } else { 2064 result = flatview_read_continue(fv, addr, attrs, buf, len, 2065 addr1, l, mr); 2066 } 2067 rcu_read_unlock(); 2068 } 2069 } else { 2070 result = address_space_read_full(as, addr, attrs, buf, len); 2071 } 2072 return result; 2073 } 2074 2075 /** 2076 * address_space_read_cached: read from a cached RAM region 2077 * 2078 * @cache: Cached region to be addressed 2079 * @addr: address relative to the base of the RAM region 2080 * @buf: buffer with the data transferred 2081 * @len: length of the data transferred 2082 */ 2083 static inline void 2084 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2085 void *buf, int len) 2086 { 2087 assert(addr < cache->len && len <= cache->len - addr); 2088 if (likely(cache->ptr)) { 2089 memcpy(buf, cache->ptr + addr, len); 2090 } else { 2091 address_space_read_cached_slow(cache, addr, buf, len); 2092 } 2093 } 2094 2095 /** 2096 * address_space_write_cached: write to a cached RAM region 2097 * 2098 * @cache: Cached region to be addressed 2099 * @addr: address relative to the base of the RAM region 2100 * @buf: buffer with the data transferred 2101 * @len: length of the data transferred 2102 */ 2103 static inline void 2104 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2105 void *buf, int len) 2106 { 2107 assert(addr < cache->len && len <= cache->len - addr); 2108 if (likely(cache->ptr)) { 2109 memcpy(cache->ptr + addr, buf, len); 2110 } else { 2111 address_space_write_cached_slow(cache, addr, buf, len); 2112 } 2113 } 2114 2115 #endif 2116 2117 #endif 2118