1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #ifndef CONFIG_USER_ONLY 21 #include "exec/hwaddr.h" 22 #endif 23 #include "exec/memattrs.h" 24 #include "exec/ramlist.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 #define MEMORY_REGION(obj) \ 38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 39 40 typedef struct MemoryRegionOps MemoryRegionOps; 41 typedef struct MemoryRegionMmio MemoryRegionMmio; 42 43 struct MemoryRegionMmio { 44 CPUReadMemoryFunc *read[3]; 45 CPUWriteMemoryFunc *write[3]; 46 }; 47 48 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 49 50 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 51 typedef enum { 52 IOMMU_NONE = 0, 53 IOMMU_RO = 1, 54 IOMMU_WO = 2, 55 IOMMU_RW = 3, 56 } IOMMUAccessFlags; 57 58 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 59 60 struct IOMMUTLBEntry { 61 AddressSpace *target_as; 62 hwaddr iova; 63 hwaddr translated_addr; 64 hwaddr addr_mask; /* 0xfff = 4k translation */ 65 IOMMUAccessFlags perm; 66 }; 67 68 /* 69 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 70 * register with one or multiple IOMMU Notifier capability bit(s). 71 */ 72 typedef enum { 73 IOMMU_NOTIFIER_NONE = 0, 74 /* Notify cache invalidations */ 75 IOMMU_NOTIFIER_UNMAP = 0x1, 76 /* Notify entry changes (newly created entries) */ 77 IOMMU_NOTIFIER_MAP = 0x2, 78 } IOMMUNotifierFlag; 79 80 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 81 82 struct IOMMUNotifier; 83 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 84 IOMMUTLBEntry *data); 85 86 struct IOMMUNotifier { 87 IOMMUNotify notify; 88 IOMMUNotifierFlag notifier_flags; 89 /* Notify for address space range start <= addr <= end */ 90 hwaddr start; 91 hwaddr end; 92 QLIST_ENTRY(IOMMUNotifier) node; 93 }; 94 typedef struct IOMMUNotifier IOMMUNotifier; 95 96 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 97 IOMMUNotifierFlag flags, 98 hwaddr start, hwaddr end) 99 { 100 n->notify = fn; 101 n->notifier_flags = flags; 102 n->start = start; 103 n->end = end; 104 } 105 106 /* New-style MMIO accessors can indicate that the transaction failed. 107 * A zero (MEMTX_OK) response means success; anything else is a failure 108 * of some kind. The memory subsystem will bitwise-OR together results 109 * if it is synthesizing an operation from multiple smaller accesses. 110 */ 111 #define MEMTX_OK 0 112 #define MEMTX_ERROR (1U << 0) /* device returned an error */ 113 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ 114 typedef uint32_t MemTxResult; 115 116 /* 117 * Memory region callbacks 118 */ 119 struct MemoryRegionOps { 120 /* Read from the memory region. @addr is relative to @mr; @size is 121 * in bytes. */ 122 uint64_t (*read)(void *opaque, 123 hwaddr addr, 124 unsigned size); 125 /* Write to the memory region. @addr is relative to @mr; @size is 126 * in bytes. */ 127 void (*write)(void *opaque, 128 hwaddr addr, 129 uint64_t data, 130 unsigned size); 131 132 MemTxResult (*read_with_attrs)(void *opaque, 133 hwaddr addr, 134 uint64_t *data, 135 unsigned size, 136 MemTxAttrs attrs); 137 MemTxResult (*write_with_attrs)(void *opaque, 138 hwaddr addr, 139 uint64_t data, 140 unsigned size, 141 MemTxAttrs attrs); 142 143 enum device_endian endianness; 144 /* Guest-visible constraints: */ 145 struct { 146 /* If nonzero, specify bounds on access sizes beyond which a machine 147 * check is thrown. 148 */ 149 unsigned min_access_size; 150 unsigned max_access_size; 151 /* If true, unaligned accesses are supported. Otherwise unaligned 152 * accesses throw machine checks. 153 */ 154 bool unaligned; 155 /* 156 * If present, and returns #false, the transaction is not accepted 157 * by the device (and results in machine dependent behaviour such 158 * as a machine check exception). 159 */ 160 bool (*accepts)(void *opaque, hwaddr addr, 161 unsigned size, bool is_write); 162 } valid; 163 /* Internal implementation constraints: */ 164 struct { 165 /* If nonzero, specifies the minimum size implemented. Smaller sizes 166 * will be rounded upwards and a partial result will be returned. 167 */ 168 unsigned min_access_size; 169 /* If nonzero, specifies the maximum size implemented. Larger sizes 170 * will be done as a series of accesses with smaller sizes. 171 */ 172 unsigned max_access_size; 173 /* If true, unaligned accesses are supported. Otherwise all accesses 174 * are converted to (possibly multiple) naturally aligned accesses. 175 */ 176 bool unaligned; 177 } impl; 178 179 /* If .read and .write are not present, old_mmio may be used for 180 * backwards compatibility with old mmio registration 181 */ 182 const MemoryRegionMmio old_mmio; 183 }; 184 185 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 186 187 struct MemoryRegionIOMMUOps { 188 /* Return a TLB entry that contains a given address. */ 189 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); 190 /* Returns minimum supported page size */ 191 uint64_t (*get_min_page_size)(MemoryRegion *iommu); 192 /* Called when IOMMU Notifier flag changed */ 193 void (*notify_flag_changed)(MemoryRegion *iommu, 194 IOMMUNotifierFlag old_flags, 195 IOMMUNotifierFlag new_flags); 196 /* Set this up to provide customized IOMMU replay function */ 197 void (*replay)(MemoryRegion *iommu, IOMMUNotifier *notifier); 198 }; 199 200 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 201 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 202 203 struct MemoryRegion { 204 Object parent_obj; 205 206 /* All fields are private - violators will be prosecuted */ 207 208 /* The following fields should fit in a cache line */ 209 bool romd_mode; 210 bool ram; 211 bool subpage; 212 bool readonly; /* For RAM regions */ 213 bool rom_device; 214 bool flush_coalesced_mmio; 215 bool global_locking; 216 uint8_t dirty_log_mask; 217 RAMBlock *ram_block; 218 Object *owner; 219 const MemoryRegionIOMMUOps *iommu_ops; 220 221 const MemoryRegionOps *ops; 222 void *opaque; 223 MemoryRegion *container; 224 Int128 size; 225 hwaddr addr; 226 void (*destructor)(MemoryRegion *mr); 227 uint64_t align; 228 bool terminates; 229 bool ram_device; 230 bool enabled; 231 bool warning_printed; /* For reservations */ 232 uint8_t vga_logging_count; 233 MemoryRegion *alias; 234 hwaddr alias_offset; 235 int32_t priority; 236 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 237 QTAILQ_ENTRY(MemoryRegion) subregions_link; 238 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 239 const char *name; 240 unsigned ioeventfd_nb; 241 MemoryRegionIoeventfd *ioeventfds; 242 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 243 IOMMUNotifierFlag iommu_notify_flags; 244 }; 245 246 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 247 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 248 249 /** 250 * MemoryListener: callbacks structure for updates to the physical memory map 251 * 252 * Allows a component to adjust to changes in the guest-visible memory map. 253 * Use with memory_listener_register() and memory_listener_unregister(). 254 */ 255 struct MemoryListener { 256 void (*begin)(MemoryListener *listener); 257 void (*commit)(MemoryListener *listener); 258 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 259 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 260 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 261 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 262 int old, int new); 263 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 264 int old, int new); 265 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 266 void (*log_global_start)(MemoryListener *listener); 267 void (*log_global_stop)(MemoryListener *listener); 268 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 269 bool match_data, uint64_t data, EventNotifier *e); 270 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 271 bool match_data, uint64_t data, EventNotifier *e); 272 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 273 hwaddr addr, hwaddr len); 274 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 275 hwaddr addr, hwaddr len); 276 /* Lower = earlier (during add), later (during del) */ 277 unsigned priority; 278 AddressSpace *address_space; 279 QTAILQ_ENTRY(MemoryListener) link; 280 QTAILQ_ENTRY(MemoryListener) link_as; 281 }; 282 283 /** 284 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 285 */ 286 struct AddressSpace { 287 /* All fields are private. */ 288 struct rcu_head rcu; 289 char *name; 290 MemoryRegion *root; 291 int ref_count; 292 bool malloced; 293 294 /* Accessed via RCU. */ 295 struct FlatView *current_map; 296 297 int ioeventfd_nb; 298 struct MemoryRegionIoeventfd *ioeventfds; 299 struct AddressSpaceDispatch *dispatch; 300 struct AddressSpaceDispatch *next_dispatch; 301 MemoryListener dispatch_listener; 302 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 303 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 304 }; 305 306 /** 307 * MemoryRegionSection: describes a fragment of a #MemoryRegion 308 * 309 * @mr: the region, or %NULL if empty 310 * @address_space: the address space the region is mapped in 311 * @offset_within_region: the beginning of the section, relative to @mr's start 312 * @size: the size of the section; will not exceed @mr's boundaries 313 * @offset_within_address_space: the address of the first byte of the section 314 * relative to the region's address space 315 * @readonly: writes to this section are ignored 316 */ 317 struct MemoryRegionSection { 318 MemoryRegion *mr; 319 AddressSpace *address_space; 320 hwaddr offset_within_region; 321 Int128 size; 322 hwaddr offset_within_address_space; 323 bool readonly; 324 }; 325 326 /** 327 * memory_region_init: Initialize a memory region 328 * 329 * The region typically acts as a container for other memory regions. Use 330 * memory_region_add_subregion() to add subregions. 331 * 332 * @mr: the #MemoryRegion to be initialized 333 * @owner: the object that tracks the region's reference count 334 * @name: used for debugging; not visible to the user or ABI 335 * @size: size of the region; any subregions beyond this size will be clipped 336 */ 337 void memory_region_init(MemoryRegion *mr, 338 struct Object *owner, 339 const char *name, 340 uint64_t size); 341 342 /** 343 * memory_region_ref: Add 1 to a memory region's reference count 344 * 345 * Whenever memory regions are accessed outside the BQL, they need to be 346 * preserved against hot-unplug. MemoryRegions actually do not have their 347 * own reference count; they piggyback on a QOM object, their "owner". 348 * This function adds a reference to the owner. 349 * 350 * All MemoryRegions must have an owner if they can disappear, even if the 351 * device they belong to operates exclusively under the BQL. This is because 352 * the region could be returned at any time by memory_region_find, and this 353 * is usually under guest control. 354 * 355 * @mr: the #MemoryRegion 356 */ 357 void memory_region_ref(MemoryRegion *mr); 358 359 /** 360 * memory_region_unref: Remove 1 to a memory region's reference count 361 * 362 * Whenever memory regions are accessed outside the BQL, they need to be 363 * preserved against hot-unplug. MemoryRegions actually do not have their 364 * own reference count; they piggyback on a QOM object, their "owner". 365 * This function removes a reference to the owner and possibly destroys it. 366 * 367 * @mr: the #MemoryRegion 368 */ 369 void memory_region_unref(MemoryRegion *mr); 370 371 /** 372 * memory_region_init_io: Initialize an I/O memory region. 373 * 374 * Accesses into the region will cause the callbacks in @ops to be called. 375 * if @size is nonzero, subregions will be clipped to @size. 376 * 377 * @mr: the #MemoryRegion to be initialized. 378 * @owner: the object that tracks the region's reference count 379 * @ops: a structure containing read and write callbacks to be used when 380 * I/O is performed on the region. 381 * @opaque: passed to the read and write callbacks of the @ops structure. 382 * @name: used for debugging; not visible to the user or ABI 383 * @size: size of the region. 384 */ 385 void memory_region_init_io(MemoryRegion *mr, 386 struct Object *owner, 387 const MemoryRegionOps *ops, 388 void *opaque, 389 const char *name, 390 uint64_t size); 391 392 /** 393 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 394 * region will modify memory directly. 395 * 396 * @mr: the #MemoryRegion to be initialized. 397 * @owner: the object that tracks the region's reference count 398 * @name: Region name, becomes part of RAMBlock name used in migration stream 399 * must be unique within any device 400 * @size: size of the region. 401 * @errp: pointer to Error*, to store an error if it happens. 402 */ 403 void memory_region_init_ram(MemoryRegion *mr, 404 struct Object *owner, 405 const char *name, 406 uint64_t size, 407 Error **errp); 408 409 /** 410 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 411 * RAM. Accesses into the region will 412 * modify memory directly. Only an initial 413 * portion of this RAM is actually used. 414 * The used size can change across reboots. 415 * 416 * @mr: the #MemoryRegion to be initialized. 417 * @owner: the object that tracks the region's reference count 418 * @name: Region name, becomes part of RAMBlock name used in migration stream 419 * must be unique within any device 420 * @size: used size of the region. 421 * @max_size: max size of the region. 422 * @resized: callback to notify owner about used size change. 423 * @errp: pointer to Error*, to store an error if it happens. 424 */ 425 void memory_region_init_resizeable_ram(MemoryRegion *mr, 426 struct Object *owner, 427 const char *name, 428 uint64_t size, 429 uint64_t max_size, 430 void (*resized)(const char*, 431 uint64_t length, 432 void *host), 433 Error **errp); 434 #ifdef __linux__ 435 /** 436 * memory_region_init_ram_from_file: Initialize RAM memory region with a 437 * mmap-ed backend. 438 * 439 * @mr: the #MemoryRegion to be initialized. 440 * @owner: the object that tracks the region's reference count 441 * @name: Region name, becomes part of RAMBlock name used in migration stream 442 * must be unique within any device 443 * @size: size of the region. 444 * @share: %true if memory must be mmaped with the MAP_SHARED flag 445 * @path: the path in which to allocate the RAM. 446 * @errp: pointer to Error*, to store an error if it happens. 447 */ 448 void memory_region_init_ram_from_file(MemoryRegion *mr, 449 struct Object *owner, 450 const char *name, 451 uint64_t size, 452 bool share, 453 const char *path, 454 Error **errp); 455 #endif 456 457 /** 458 * memory_region_init_ram_ptr: Initialize RAM memory region from a 459 * user-provided pointer. Accesses into the 460 * region will modify memory directly. 461 * 462 * @mr: the #MemoryRegion to be initialized. 463 * @owner: the object that tracks the region's reference count 464 * @name: Region name, becomes part of RAMBlock name used in migration stream 465 * must be unique within any device 466 * @size: size of the region. 467 * @ptr: memory to be mapped; must contain at least @size bytes. 468 */ 469 void memory_region_init_ram_ptr(MemoryRegion *mr, 470 struct Object *owner, 471 const char *name, 472 uint64_t size, 473 void *ptr); 474 475 /** 476 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 477 * a user-provided pointer. 478 * 479 * A RAM device represents a mapping to a physical device, such as to a PCI 480 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 481 * into the VM address space and access to the region will modify memory 482 * directly. However, the memory region should not be included in a memory 483 * dump (device may not be enabled/mapped at the time of the dump), and 484 * operations incompatible with manipulating MMIO should be avoided. Replaces 485 * skip_dump flag. 486 * 487 * @mr: the #MemoryRegion to be initialized. 488 * @owner: the object that tracks the region's reference count 489 * @name: the name of the region. 490 * @size: size of the region. 491 * @ptr: memory to be mapped; must contain at least @size bytes. 492 */ 493 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 494 struct Object *owner, 495 const char *name, 496 uint64_t size, 497 void *ptr); 498 499 /** 500 * memory_region_init_alias: Initialize a memory region that aliases all or a 501 * part of another memory region. 502 * 503 * @mr: the #MemoryRegion to be initialized. 504 * @owner: the object that tracks the region's reference count 505 * @name: used for debugging; not visible to the user or ABI 506 * @orig: the region to be referenced; @mr will be equivalent to 507 * @orig between @offset and @offset + @size - 1. 508 * @offset: start of the section in @orig to be referenced. 509 * @size: size of the region. 510 */ 511 void memory_region_init_alias(MemoryRegion *mr, 512 struct Object *owner, 513 const char *name, 514 MemoryRegion *orig, 515 hwaddr offset, 516 uint64_t size); 517 518 /** 519 * memory_region_init_rom: Initialize a ROM memory region. 520 * 521 * This has the same effect as calling memory_region_init_ram() 522 * and then marking the resulting region read-only with 523 * memory_region_set_readonly(). 524 * 525 * @mr: the #MemoryRegion to be initialized. 526 * @owner: the object that tracks the region's reference count 527 * @name: Region name, becomes part of RAMBlock name used in migration stream 528 * must be unique within any device 529 * @size: size of the region. 530 * @errp: pointer to Error*, to store an error if it happens. 531 */ 532 void memory_region_init_rom(MemoryRegion *mr, 533 struct Object *owner, 534 const char *name, 535 uint64_t size, 536 Error **errp); 537 538 /** 539 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 540 * handled via callbacks. 541 * 542 * @mr: the #MemoryRegion to be initialized. 543 * @owner: the object that tracks the region's reference count 544 * @ops: callbacks for write access handling (must not be NULL). 545 * @name: Region name, becomes part of RAMBlock name used in migration stream 546 * must be unique within any device 547 * @size: size of the region. 548 * @errp: pointer to Error*, to store an error if it happens. 549 */ 550 void memory_region_init_rom_device(MemoryRegion *mr, 551 struct Object *owner, 552 const MemoryRegionOps *ops, 553 void *opaque, 554 const char *name, 555 uint64_t size, 556 Error **errp); 557 558 /** 559 * memory_region_init_reservation: Initialize a memory region that reserves 560 * I/O space. 561 * 562 * A reservation region primariy serves debugging purposes. It claims I/O 563 * space that is not supposed to be handled by QEMU itself. Any access via 564 * the memory API will cause an abort(). 565 * This function is deprecated. Use memory_region_init_io() with NULL 566 * callbacks instead. 567 * 568 * @mr: the #MemoryRegion to be initialized 569 * @owner: the object that tracks the region's reference count 570 * @name: used for debugging; not visible to the user or ABI 571 * @size: size of the region. 572 */ 573 static inline void memory_region_init_reservation(MemoryRegion *mr, 574 Object *owner, 575 const char *name, 576 uint64_t size) 577 { 578 memory_region_init_io(mr, owner, NULL, mr, name, size); 579 } 580 581 /** 582 * memory_region_init_iommu: Initialize a memory region that translates 583 * addresses 584 * 585 * An IOMMU region translates addresses and forwards accesses to a target 586 * memory region. 587 * 588 * @mr: the #MemoryRegion to be initialized 589 * @owner: the object that tracks the region's reference count 590 * @ops: a function that translates addresses into the @target region 591 * @name: used for debugging; not visible to the user or ABI 592 * @size: size of the region. 593 */ 594 void memory_region_init_iommu(MemoryRegion *mr, 595 struct Object *owner, 596 const MemoryRegionIOMMUOps *ops, 597 const char *name, 598 uint64_t size); 599 600 /** 601 * memory_region_owner: get a memory region's owner. 602 * 603 * @mr: the memory region being queried. 604 */ 605 struct Object *memory_region_owner(MemoryRegion *mr); 606 607 /** 608 * memory_region_size: get a memory region's size. 609 * 610 * @mr: the memory region being queried. 611 */ 612 uint64_t memory_region_size(MemoryRegion *mr); 613 614 /** 615 * memory_region_is_ram: check whether a memory region is random access 616 * 617 * Returns %true is a memory region is random access. 618 * 619 * @mr: the memory region being queried 620 */ 621 static inline bool memory_region_is_ram(MemoryRegion *mr) 622 { 623 return mr->ram; 624 } 625 626 /** 627 * memory_region_is_ram_device: check whether a memory region is a ram device 628 * 629 * Returns %true is a memory region is a device backed ram region 630 * 631 * @mr: the memory region being queried 632 */ 633 bool memory_region_is_ram_device(MemoryRegion *mr); 634 635 /** 636 * memory_region_is_romd: check whether a memory region is in ROMD mode 637 * 638 * Returns %true if a memory region is a ROM device and currently set to allow 639 * direct reads. 640 * 641 * @mr: the memory region being queried 642 */ 643 static inline bool memory_region_is_romd(MemoryRegion *mr) 644 { 645 return mr->rom_device && mr->romd_mode; 646 } 647 648 /** 649 * memory_region_is_iommu: check whether a memory region is an iommu 650 * 651 * Returns %true is a memory region is an iommu. 652 * 653 * @mr: the memory region being queried 654 */ 655 static inline bool memory_region_is_iommu(MemoryRegion *mr) 656 { 657 if (mr->alias) { 658 return memory_region_is_iommu(mr->alias); 659 } 660 return mr->iommu_ops; 661 } 662 663 664 /** 665 * memory_region_iommu_get_min_page_size: get minimum supported page size 666 * for an iommu 667 * 668 * Returns minimum supported page size for an iommu. 669 * 670 * @mr: the memory region being queried 671 */ 672 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr); 673 674 /** 675 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 676 * 677 * The notification type will be decided by entry.perm bits: 678 * 679 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 680 * - For MAP (newly added entry) notifies: set entry.perm to the 681 * permission of the page (which is definitely !IOMMU_NONE). 682 * 683 * Note: for any IOMMU implementation, an in-place mapping change 684 * should be notified with an UNMAP followed by a MAP. 685 * 686 * @mr: the memory region that was changed 687 * @entry: the new entry in the IOMMU translation table. The entry 688 * replaces all old entries for the same virtual I/O address range. 689 * Deleted entries have .@perm == 0. 690 */ 691 void memory_region_notify_iommu(MemoryRegion *mr, 692 IOMMUTLBEntry entry); 693 694 /** 695 * memory_region_notify_one: notify a change in an IOMMU translation 696 * entry to a single notifier 697 * 698 * This works just like memory_region_notify_iommu(), but it only 699 * notifies a specific notifier, not all of them. 700 * 701 * @notifier: the notifier to be notified 702 * @entry: the new entry in the IOMMU translation table. The entry 703 * replaces all old entries for the same virtual I/O address range. 704 * Deleted entries have .@perm == 0. 705 */ 706 void memory_region_notify_one(IOMMUNotifier *notifier, 707 IOMMUTLBEntry *entry); 708 709 /** 710 * memory_region_register_iommu_notifier: register a notifier for changes to 711 * IOMMU translation entries. 712 * 713 * @mr: the memory region to observe 714 * @n: the IOMMUNotifier to be added; the notify callback receives a 715 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 716 * ceases to be valid on exit from the notifier. 717 */ 718 void memory_region_register_iommu_notifier(MemoryRegion *mr, 719 IOMMUNotifier *n); 720 721 /** 722 * memory_region_iommu_replay: replay existing IOMMU translations to 723 * a notifier with the minimum page granularity returned by 724 * mr->iommu_ops->get_page_size(). 725 * 726 * @mr: the memory region to observe 727 * @n: the notifier to which to replay iommu mappings 728 * @is_write: Whether to treat the replay as a translate "write" 729 * through the iommu 730 */ 731 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n, 732 bool is_write); 733 734 /** 735 * memory_region_iommu_replay_all: replay existing IOMMU translations 736 * to all the notifiers registered. 737 * 738 * @mr: the memory region to observe 739 */ 740 void memory_region_iommu_replay_all(MemoryRegion *mr); 741 742 /** 743 * memory_region_unregister_iommu_notifier: unregister a notifier for 744 * changes to IOMMU translation entries. 745 * 746 * @mr: the memory region which was observed and for which notity_stopped() 747 * needs to be called 748 * @n: the notifier to be removed. 749 */ 750 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 751 IOMMUNotifier *n); 752 753 /** 754 * memory_region_name: get a memory region's name 755 * 756 * Returns the string that was used to initialize the memory region. 757 * 758 * @mr: the memory region being queried 759 */ 760 const char *memory_region_name(const MemoryRegion *mr); 761 762 /** 763 * memory_region_is_logging: return whether a memory region is logging writes 764 * 765 * Returns %true if the memory region is logging writes for the given client 766 * 767 * @mr: the memory region being queried 768 * @client: the client being queried 769 */ 770 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 771 772 /** 773 * memory_region_get_dirty_log_mask: return the clients for which a 774 * memory region is logging writes. 775 * 776 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 777 * are the bit indices. 778 * 779 * @mr: the memory region being queried 780 */ 781 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 782 783 /** 784 * memory_region_is_rom: check whether a memory region is ROM 785 * 786 * Returns %true is a memory region is read-only memory. 787 * 788 * @mr: the memory region being queried 789 */ 790 static inline bool memory_region_is_rom(MemoryRegion *mr) 791 { 792 return mr->ram && mr->readonly; 793 } 794 795 796 /** 797 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 798 * 799 * Returns a file descriptor backing a file-based RAM memory region, 800 * or -1 if the region is not a file-based RAM memory region. 801 * 802 * @mr: the RAM or alias memory region being queried. 803 */ 804 int memory_region_get_fd(MemoryRegion *mr); 805 806 /** 807 * memory_region_set_fd: Mark a RAM memory region as backed by a 808 * file descriptor. 809 * 810 * This function is typically used after memory_region_init_ram_ptr(). 811 * 812 * @mr: the memory region being queried. 813 * @fd: the file descriptor that backs @mr. 814 */ 815 void memory_region_set_fd(MemoryRegion *mr, int fd); 816 817 /** 818 * memory_region_from_host: Convert a pointer into a RAM memory region 819 * and an offset within it. 820 * 821 * Given a host pointer inside a RAM memory region (created with 822 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 823 * the MemoryRegion and the offset within it. 824 * 825 * Use with care; by the time this function returns, the returned pointer is 826 * not protected by RCU anymore. If the caller is not within an RCU critical 827 * section and does not hold the iothread lock, it must have other means of 828 * protecting the pointer, such as a reference to the region that includes 829 * the incoming ram_addr_t. 830 * 831 * @mr: the memory region being queried. 832 */ 833 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 834 835 /** 836 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 837 * 838 * Returns a host pointer to a RAM memory region (created with 839 * memory_region_init_ram() or memory_region_init_ram_ptr()). 840 * 841 * Use with care; by the time this function returns, the returned pointer is 842 * not protected by RCU anymore. If the caller is not within an RCU critical 843 * section and does not hold the iothread lock, it must have other means of 844 * protecting the pointer, such as a reference to the region that includes 845 * the incoming ram_addr_t. 846 * 847 * @mr: the memory region being queried. 848 */ 849 void *memory_region_get_ram_ptr(MemoryRegion *mr); 850 851 /* memory_region_ram_resize: Resize a RAM region. 852 * 853 * Only legal before guest might have detected the memory size: e.g. on 854 * incoming migration, or right after reset. 855 * 856 * @mr: a memory region created with @memory_region_init_resizeable_ram. 857 * @newsize: the new size the region 858 * @errp: pointer to Error*, to store an error if it happens. 859 */ 860 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 861 Error **errp); 862 863 /** 864 * memory_region_set_log: Turn dirty logging on or off for a region. 865 * 866 * Turns dirty logging on or off for a specified client (display, migration). 867 * Only meaningful for RAM regions. 868 * 869 * @mr: the memory region being updated. 870 * @log: whether dirty logging is to be enabled or disabled. 871 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 872 */ 873 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 874 875 /** 876 * memory_region_get_dirty: Check whether a range of bytes is dirty 877 * for a specified client. 878 * 879 * Checks whether a range of bytes has been written to since the last 880 * call to memory_region_reset_dirty() with the same @client. Dirty logging 881 * must be enabled. 882 * 883 * @mr: the memory region being queried. 884 * @addr: the address (relative to the start of the region) being queried. 885 * @size: the size of the range being queried. 886 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 887 * %DIRTY_MEMORY_VGA. 888 */ 889 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 890 hwaddr size, unsigned client); 891 892 /** 893 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 894 * 895 * Marks a range of bytes as dirty, after it has been dirtied outside 896 * guest code. 897 * 898 * @mr: the memory region being dirtied. 899 * @addr: the address (relative to the start of the region) being dirtied. 900 * @size: size of the range being dirtied. 901 */ 902 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 903 hwaddr size); 904 905 /** 906 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 907 * for a specified client. It clears them. 908 * 909 * Checks whether a range of bytes has been written to since the last 910 * call to memory_region_reset_dirty() with the same @client. Dirty logging 911 * must be enabled. 912 * 913 * @mr: the memory region being queried. 914 * @addr: the address (relative to the start of the region) being queried. 915 * @size: the size of the range being queried. 916 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 917 * %DIRTY_MEMORY_VGA. 918 */ 919 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 920 hwaddr size, unsigned client); 921 922 /** 923 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 924 * bitmap and clear it. 925 * 926 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 927 * returns the snapshot. The snapshot can then be used to query dirty 928 * status, using memory_region_snapshot_get_dirty. Unlike 929 * memory_region_test_and_clear_dirty this allows to query the same 930 * page multiple times, which is especially useful for display updates 931 * where the scanlines often are not page aligned. 932 * 933 * The dirty bitmap region which gets copyed into the snapshot (and 934 * cleared afterwards) can be larger than requested. The boundaries 935 * are rounded up/down so complete bitmap longs (covering 64 pages on 936 * 64bit hosts) can be copied over into the bitmap snapshot. Which 937 * isn't a problem for display updates as the extra pages are outside 938 * the visible area, and in case the visible area changes a full 939 * display redraw is due anyway. Should other use cases for this 940 * function emerge we might have to revisit this implementation 941 * detail. 942 * 943 * Use g_free to release DirtyBitmapSnapshot. 944 * 945 * @mr: the memory region being queried. 946 * @addr: the address (relative to the start of the region) being queried. 947 * @size: the size of the range being queried. 948 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 949 */ 950 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 951 hwaddr addr, 952 hwaddr size, 953 unsigned client); 954 955 /** 956 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 957 * in the specified dirty bitmap snapshot. 958 * 959 * @mr: the memory region being queried. 960 * @snap: the dirty bitmap snapshot 961 * @addr: the address (relative to the start of the region) being queried. 962 * @size: the size of the range being queried. 963 */ 964 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 965 DirtyBitmapSnapshot *snap, 966 hwaddr addr, hwaddr size); 967 968 /** 969 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 970 * any external TLBs (e.g. kvm) 971 * 972 * Flushes dirty information from accelerators such as kvm and vhost-net 973 * and makes it available to users of the memory API. 974 * 975 * @mr: the region being flushed. 976 */ 977 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 978 979 /** 980 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 981 * client. 982 * 983 * Marks a range of pages as no longer dirty. 984 * 985 * @mr: the region being updated. 986 * @addr: the start of the subrange being cleaned. 987 * @size: the size of the subrange being cleaned. 988 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 989 * %DIRTY_MEMORY_VGA. 990 */ 991 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 992 hwaddr size, unsigned client); 993 994 /** 995 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 996 * 997 * Allows a memory region to be marked as read-only (turning it into a ROM). 998 * only useful on RAM regions. 999 * 1000 * @mr: the region being updated. 1001 * @readonly: whether rhe region is to be ROM or RAM. 1002 */ 1003 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1004 1005 /** 1006 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1007 * 1008 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1009 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1010 * device is mapped to guest memory and satisfies read access directly. 1011 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1012 * Writes are always handled by the #MemoryRegion.write function. 1013 * 1014 * @mr: the memory region to be updated 1015 * @romd_mode: %true to put the region into ROMD mode 1016 */ 1017 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1018 1019 /** 1020 * memory_region_set_coalescing: Enable memory coalescing for the region. 1021 * 1022 * Enabled writes to a region to be queued for later processing. MMIO ->write 1023 * callbacks may be delayed until a non-coalesced MMIO is issued. 1024 * Only useful for IO regions. Roughly similar to write-combining hardware. 1025 * 1026 * @mr: the memory region to be write coalesced 1027 */ 1028 void memory_region_set_coalescing(MemoryRegion *mr); 1029 1030 /** 1031 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1032 * a region. 1033 * 1034 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1035 * Multiple calls can be issued coalesced disjoint ranges. 1036 * 1037 * @mr: the memory region to be updated. 1038 * @offset: the start of the range within the region to be coalesced. 1039 * @size: the size of the subrange to be coalesced. 1040 */ 1041 void memory_region_add_coalescing(MemoryRegion *mr, 1042 hwaddr offset, 1043 uint64_t size); 1044 1045 /** 1046 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1047 * 1048 * Disables any coalescing caused by memory_region_set_coalescing() or 1049 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1050 * hardware. 1051 * 1052 * @mr: the memory region to be updated. 1053 */ 1054 void memory_region_clear_coalescing(MemoryRegion *mr); 1055 1056 /** 1057 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1058 * accesses. 1059 * 1060 * Ensure that pending coalesced MMIO request are flushed before the memory 1061 * region is accessed. This property is automatically enabled for all regions 1062 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1063 * 1064 * @mr: the memory region to be updated. 1065 */ 1066 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1067 1068 /** 1069 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1070 * accesses. 1071 * 1072 * Clear the automatic coalesced MMIO flushing enabled via 1073 * memory_region_set_flush_coalesced. Note that this service has no effect on 1074 * memory regions that have MMIO coalescing enabled for themselves. For them, 1075 * automatic flushing will stop once coalescing is disabled. 1076 * 1077 * @mr: the memory region to be updated. 1078 */ 1079 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1080 1081 /** 1082 * memory_region_set_global_locking: Declares the access processing requires 1083 * QEMU's global lock. 1084 * 1085 * When this is invoked, accesses to the memory region will be processed while 1086 * holding the global lock of QEMU. This is the default behavior of memory 1087 * regions. 1088 * 1089 * @mr: the memory region to be updated. 1090 */ 1091 void memory_region_set_global_locking(MemoryRegion *mr); 1092 1093 /** 1094 * memory_region_clear_global_locking: Declares that access processing does 1095 * not depend on the QEMU global lock. 1096 * 1097 * By clearing this property, accesses to the memory region will be processed 1098 * outside of QEMU's global lock (unless the lock is held on when issuing the 1099 * access request). In this case, the device model implementing the access 1100 * handlers is responsible for synchronization of concurrency. 1101 * 1102 * @mr: the memory region to be updated. 1103 */ 1104 void memory_region_clear_global_locking(MemoryRegion *mr); 1105 1106 /** 1107 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1108 * is written to a location. 1109 * 1110 * Marks a word in an IO region (initialized with memory_region_init_io()) 1111 * as a trigger for an eventfd event. The I/O callback will not be called. 1112 * The caller must be prepared to handle failure (that is, take the required 1113 * action if the callback _is_ called). 1114 * 1115 * @mr: the memory region being updated. 1116 * @addr: the address within @mr that is to be monitored 1117 * @size: the size of the access to trigger the eventfd 1118 * @match_data: whether to match against @data, instead of just @addr 1119 * @data: the data to match against the guest write 1120 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1121 **/ 1122 void memory_region_add_eventfd(MemoryRegion *mr, 1123 hwaddr addr, 1124 unsigned size, 1125 bool match_data, 1126 uint64_t data, 1127 EventNotifier *e); 1128 1129 /** 1130 * memory_region_del_eventfd: Cancel an eventfd. 1131 * 1132 * Cancels an eventfd trigger requested by a previous 1133 * memory_region_add_eventfd() call. 1134 * 1135 * @mr: the memory region being updated. 1136 * @addr: the address within @mr that is to be monitored 1137 * @size: the size of the access to trigger the eventfd 1138 * @match_data: whether to match against @data, instead of just @addr 1139 * @data: the data to match against the guest write 1140 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1141 */ 1142 void memory_region_del_eventfd(MemoryRegion *mr, 1143 hwaddr addr, 1144 unsigned size, 1145 bool match_data, 1146 uint64_t data, 1147 EventNotifier *e); 1148 1149 /** 1150 * memory_region_add_subregion: Add a subregion to a container. 1151 * 1152 * Adds a subregion at @offset. The subregion may not overlap with other 1153 * subregions (except for those explicitly marked as overlapping). A region 1154 * may only be added once as a subregion (unless removed with 1155 * memory_region_del_subregion()); use memory_region_init_alias() if you 1156 * want a region to be a subregion in multiple locations. 1157 * 1158 * @mr: the region to contain the new subregion; must be a container 1159 * initialized with memory_region_init(). 1160 * @offset: the offset relative to @mr where @subregion is added. 1161 * @subregion: the subregion to be added. 1162 */ 1163 void memory_region_add_subregion(MemoryRegion *mr, 1164 hwaddr offset, 1165 MemoryRegion *subregion); 1166 /** 1167 * memory_region_add_subregion_overlap: Add a subregion to a container 1168 * with overlap. 1169 * 1170 * Adds a subregion at @offset. The subregion may overlap with other 1171 * subregions. Conflicts are resolved by having a higher @priority hide a 1172 * lower @priority. Subregions without priority are taken as @priority 0. 1173 * A region may only be added once as a subregion (unless removed with 1174 * memory_region_del_subregion()); use memory_region_init_alias() if you 1175 * want a region to be a subregion in multiple locations. 1176 * 1177 * @mr: the region to contain the new subregion; must be a container 1178 * initialized with memory_region_init(). 1179 * @offset: the offset relative to @mr where @subregion is added. 1180 * @subregion: the subregion to be added. 1181 * @priority: used for resolving overlaps; highest priority wins. 1182 */ 1183 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1184 hwaddr offset, 1185 MemoryRegion *subregion, 1186 int priority); 1187 1188 /** 1189 * memory_region_get_ram_addr: Get the ram address associated with a memory 1190 * region 1191 */ 1192 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1193 1194 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1195 /** 1196 * memory_region_del_subregion: Remove a subregion. 1197 * 1198 * Removes a subregion from its container. 1199 * 1200 * @mr: the container to be updated. 1201 * @subregion: the region being removed; must be a current subregion of @mr. 1202 */ 1203 void memory_region_del_subregion(MemoryRegion *mr, 1204 MemoryRegion *subregion); 1205 1206 /* 1207 * memory_region_set_enabled: dynamically enable or disable a region 1208 * 1209 * Enables or disables a memory region. A disabled memory region 1210 * ignores all accesses to itself and its subregions. It does not 1211 * obscure sibling subregions with lower priority - it simply behaves as 1212 * if it was removed from the hierarchy. 1213 * 1214 * Regions default to being enabled. 1215 * 1216 * @mr: the region to be updated 1217 * @enabled: whether to enable or disable the region 1218 */ 1219 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1220 1221 /* 1222 * memory_region_set_address: dynamically update the address of a region 1223 * 1224 * Dynamically updates the address of a region, relative to its container. 1225 * May be used on regions are currently part of a memory hierarchy. 1226 * 1227 * @mr: the region to be updated 1228 * @addr: new address, relative to container region 1229 */ 1230 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1231 1232 /* 1233 * memory_region_set_size: dynamically update the size of a region. 1234 * 1235 * Dynamically updates the size of a region. 1236 * 1237 * @mr: the region to be updated 1238 * @size: used size of the region. 1239 */ 1240 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1241 1242 /* 1243 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1244 * 1245 * Dynamically updates the offset into the target region that an alias points 1246 * to, as if the fourth argument to memory_region_init_alias() has changed. 1247 * 1248 * @mr: the #MemoryRegion to be updated; should be an alias. 1249 * @offset: the new offset into the target memory region 1250 */ 1251 void memory_region_set_alias_offset(MemoryRegion *mr, 1252 hwaddr offset); 1253 1254 /** 1255 * memory_region_present: checks if an address relative to a @container 1256 * translates into #MemoryRegion within @container 1257 * 1258 * Answer whether a #MemoryRegion within @container covers the address 1259 * @addr. 1260 * 1261 * @container: a #MemoryRegion within which @addr is a relative address 1262 * @addr: the area within @container to be searched 1263 */ 1264 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1265 1266 /** 1267 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1268 * into any address space. 1269 * 1270 * @mr: a #MemoryRegion which should be checked if it's mapped 1271 */ 1272 bool memory_region_is_mapped(MemoryRegion *mr); 1273 1274 /** 1275 * memory_region_find: translate an address/size relative to a 1276 * MemoryRegion into a #MemoryRegionSection. 1277 * 1278 * Locates the first #MemoryRegion within @mr that overlaps the range 1279 * given by @addr and @size. 1280 * 1281 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1282 * It will have the following characteristics: 1283 * .@size = 0 iff no overlap was found 1284 * .@mr is non-%NULL iff an overlap was found 1285 * 1286 * Remember that in the return value the @offset_within_region is 1287 * relative to the returned region (in the .@mr field), not to the 1288 * @mr argument. 1289 * 1290 * Similarly, the .@offset_within_address_space is relative to the 1291 * address space that contains both regions, the passed and the 1292 * returned one. However, in the special case where the @mr argument 1293 * has no container (and thus is the root of the address space), the 1294 * following will hold: 1295 * .@offset_within_address_space >= @addr 1296 * .@offset_within_address_space + .@size <= @addr + @size 1297 * 1298 * @mr: a MemoryRegion within which @addr is a relative address 1299 * @addr: start of the area within @as to be searched 1300 * @size: size of the area to be searched 1301 */ 1302 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1303 hwaddr addr, uint64_t size); 1304 1305 /** 1306 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1307 * 1308 * Synchronizes the dirty page log for all address spaces. 1309 */ 1310 void memory_global_dirty_log_sync(void); 1311 1312 /** 1313 * memory_region_transaction_begin: Start a transaction. 1314 * 1315 * During a transaction, changes will be accumulated and made visible 1316 * only when the transaction ends (is committed). 1317 */ 1318 void memory_region_transaction_begin(void); 1319 1320 /** 1321 * memory_region_transaction_commit: Commit a transaction and make changes 1322 * visible to the guest. 1323 */ 1324 void memory_region_transaction_commit(void); 1325 1326 /** 1327 * memory_listener_register: register callbacks to be called when memory 1328 * sections are mapped or unmapped into an address 1329 * space 1330 * 1331 * @listener: an object containing the callbacks to be called 1332 * @filter: if non-%NULL, only regions in this address space will be observed 1333 */ 1334 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1335 1336 /** 1337 * memory_listener_unregister: undo the effect of memory_listener_register() 1338 * 1339 * @listener: an object containing the callbacks to be removed 1340 */ 1341 void memory_listener_unregister(MemoryListener *listener); 1342 1343 /** 1344 * memory_global_dirty_log_start: begin dirty logging for all regions 1345 */ 1346 void memory_global_dirty_log_start(void); 1347 1348 /** 1349 * memory_global_dirty_log_stop: end dirty logging for all regions 1350 */ 1351 void memory_global_dirty_log_stop(void); 1352 1353 void mtree_info(fprintf_function mon_printf, void *f, bool flatview); 1354 1355 /** 1356 * memory_region_dispatch_read: perform a read directly to the specified 1357 * MemoryRegion. 1358 * 1359 * @mr: #MemoryRegion to access 1360 * @addr: address within that region 1361 * @pval: pointer to uint64_t which the data is written to 1362 * @size: size of the access in bytes 1363 * @attrs: memory transaction attributes to use for the access 1364 */ 1365 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1366 hwaddr addr, 1367 uint64_t *pval, 1368 unsigned size, 1369 MemTxAttrs attrs); 1370 /** 1371 * memory_region_dispatch_write: perform a write directly to the specified 1372 * MemoryRegion. 1373 * 1374 * @mr: #MemoryRegion to access 1375 * @addr: address within that region 1376 * @data: data to write 1377 * @size: size of the access in bytes 1378 * @attrs: memory transaction attributes to use for the access 1379 */ 1380 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1381 hwaddr addr, 1382 uint64_t data, 1383 unsigned size, 1384 MemTxAttrs attrs); 1385 1386 /** 1387 * address_space_init: initializes an address space 1388 * 1389 * @as: an uninitialized #AddressSpace 1390 * @root: a #MemoryRegion that routes addresses for the address space 1391 * @name: an address space name. The name is only used for debugging 1392 * output. 1393 */ 1394 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1395 1396 /** 1397 * address_space_init_shareable: return an address space for a memory region, 1398 * creating it if it does not already exist 1399 * 1400 * @root: a #MemoryRegion that routes addresses for the address space 1401 * @name: an address space name. The name is only used for debugging 1402 * output. 1403 * 1404 * This function will return a pointer to an existing AddressSpace 1405 * which was initialized with the specified MemoryRegion, or it will 1406 * create and initialize one if it does not already exist. The ASes 1407 * are reference-counted, so the memory will be freed automatically 1408 * when the AddressSpace is destroyed via address_space_destroy. 1409 */ 1410 AddressSpace *address_space_init_shareable(MemoryRegion *root, 1411 const char *name); 1412 1413 /** 1414 * address_space_destroy: destroy an address space 1415 * 1416 * Releases all resources associated with an address space. After an address space 1417 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1418 * as well. 1419 * 1420 * @as: address space to be destroyed 1421 */ 1422 void address_space_destroy(AddressSpace *as); 1423 1424 /** 1425 * address_space_rw: read from or write to an address space. 1426 * 1427 * Return a MemTxResult indicating whether the operation succeeded 1428 * or failed (eg unassigned memory, device rejected the transaction, 1429 * IOMMU fault). 1430 * 1431 * @as: #AddressSpace to be accessed 1432 * @addr: address within that address space 1433 * @attrs: memory transaction attributes 1434 * @buf: buffer with the data transferred 1435 * @is_write: indicates the transfer direction 1436 */ 1437 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1438 MemTxAttrs attrs, uint8_t *buf, 1439 int len, bool is_write); 1440 1441 /** 1442 * address_space_write: write to address space. 1443 * 1444 * Return a MemTxResult indicating whether the operation succeeded 1445 * or failed (eg unassigned memory, device rejected the transaction, 1446 * IOMMU fault). 1447 * 1448 * @as: #AddressSpace to be accessed 1449 * @addr: address within that address space 1450 * @attrs: memory transaction attributes 1451 * @buf: buffer with the data transferred 1452 */ 1453 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1454 MemTxAttrs attrs, 1455 const uint8_t *buf, int len); 1456 1457 /* address_space_ld*: load from an address space 1458 * address_space_st*: store to an address space 1459 * 1460 * These functions perform a load or store of the byte, word, 1461 * longword or quad to the specified address within the AddressSpace. 1462 * The _le suffixed functions treat the data as little endian; 1463 * _be indicates big endian; no suffix indicates "same endianness 1464 * as guest CPU". 1465 * 1466 * The "guest CPU endianness" accessors are deprecated for use outside 1467 * target-* code; devices should be CPU-agnostic and use either the LE 1468 * or the BE accessors. 1469 * 1470 * @as #AddressSpace to be accessed 1471 * @addr: address within that address space 1472 * @val: data value, for stores 1473 * @attrs: memory transaction attributes 1474 * @result: location to write the success/failure of the transaction; 1475 * if NULL, this information is discarded 1476 */ 1477 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1478 MemTxAttrs attrs, MemTxResult *result); 1479 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1480 MemTxAttrs attrs, MemTxResult *result); 1481 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1482 MemTxAttrs attrs, MemTxResult *result); 1483 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1484 MemTxAttrs attrs, MemTxResult *result); 1485 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1486 MemTxAttrs attrs, MemTxResult *result); 1487 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1488 MemTxAttrs attrs, MemTxResult *result); 1489 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1490 MemTxAttrs attrs, MemTxResult *result); 1491 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1492 MemTxAttrs attrs, MemTxResult *result); 1493 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1494 MemTxAttrs attrs, MemTxResult *result); 1495 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1496 MemTxAttrs attrs, MemTxResult *result); 1497 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1498 MemTxAttrs attrs, MemTxResult *result); 1499 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1500 MemTxAttrs attrs, MemTxResult *result); 1501 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1502 MemTxAttrs attrs, MemTxResult *result); 1503 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1504 MemTxAttrs attrs, MemTxResult *result); 1505 1506 uint32_t ldub_phys(AddressSpace *as, hwaddr addr); 1507 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr); 1508 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr); 1509 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr); 1510 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr); 1511 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr); 1512 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr); 1513 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1514 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1515 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1516 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1517 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1518 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1519 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1520 1521 struct MemoryRegionCache { 1522 hwaddr xlat; 1523 hwaddr len; 1524 AddressSpace *as; 1525 }; 1526 1527 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL }) 1528 1529 /* address_space_cache_init: prepare for repeated access to a physical 1530 * memory region 1531 * 1532 * @cache: #MemoryRegionCache to be filled 1533 * @as: #AddressSpace to be accessed 1534 * @addr: address within that address space 1535 * @len: length of buffer 1536 * @is_write: indicates the transfer direction 1537 * 1538 * Will only work with RAM, and may map a subset of the requested range by 1539 * returning a value that is less than @len. On failure, return a negative 1540 * errno value. 1541 * 1542 * Because it only works with RAM, this function can be used for 1543 * read-modify-write operations. In this case, is_write should be %true. 1544 * 1545 * Note that addresses passed to the address_space_*_cached functions 1546 * are relative to @addr. 1547 */ 1548 int64_t address_space_cache_init(MemoryRegionCache *cache, 1549 AddressSpace *as, 1550 hwaddr addr, 1551 hwaddr len, 1552 bool is_write); 1553 1554 /** 1555 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1556 * 1557 * @cache: The #MemoryRegionCache to operate on. 1558 * @addr: The first physical address that was written, relative to the 1559 * address that was passed to @address_space_cache_init. 1560 * @access_len: The number of bytes that were written starting at @addr. 1561 */ 1562 void address_space_cache_invalidate(MemoryRegionCache *cache, 1563 hwaddr addr, 1564 hwaddr access_len); 1565 1566 /** 1567 * address_space_cache_destroy: free a #MemoryRegionCache 1568 * 1569 * @cache: The #MemoryRegionCache whose memory should be released. 1570 */ 1571 void address_space_cache_destroy(MemoryRegionCache *cache); 1572 1573 /* address_space_ld*_cached: load from a cached #MemoryRegion 1574 * address_space_st*_cached: store into a cached #MemoryRegion 1575 * 1576 * These functions perform a load or store of the byte, word, 1577 * longword or quad to the specified address. The address is 1578 * a physical address in the AddressSpace, but it must lie within 1579 * a #MemoryRegion that was mapped with address_space_cache_init. 1580 * 1581 * The _le suffixed functions treat the data as little endian; 1582 * _be indicates big endian; no suffix indicates "same endianness 1583 * as guest CPU". 1584 * 1585 * The "guest CPU endianness" accessors are deprecated for use outside 1586 * target-* code; devices should be CPU-agnostic and use either the LE 1587 * or the BE accessors. 1588 * 1589 * @cache: previously initialized #MemoryRegionCache to be accessed 1590 * @addr: address within the address space 1591 * @val: data value, for stores 1592 * @attrs: memory transaction attributes 1593 * @result: location to write the success/failure of the transaction; 1594 * if NULL, this information is discarded 1595 */ 1596 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr, 1597 MemTxAttrs attrs, MemTxResult *result); 1598 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr, 1599 MemTxAttrs attrs, MemTxResult *result); 1600 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr, 1601 MemTxAttrs attrs, MemTxResult *result); 1602 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr, 1603 MemTxAttrs attrs, MemTxResult *result); 1604 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr, 1605 MemTxAttrs attrs, MemTxResult *result); 1606 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr, 1607 MemTxAttrs attrs, MemTxResult *result); 1608 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr, 1609 MemTxAttrs attrs, MemTxResult *result); 1610 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1611 MemTxAttrs attrs, MemTxResult *result); 1612 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1613 MemTxAttrs attrs, MemTxResult *result); 1614 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1615 MemTxAttrs attrs, MemTxResult *result); 1616 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1617 MemTxAttrs attrs, MemTxResult *result); 1618 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1619 MemTxAttrs attrs, MemTxResult *result); 1620 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1621 MemTxAttrs attrs, MemTxResult *result); 1622 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1623 MemTxAttrs attrs, MemTxResult *result); 1624 1625 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1626 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1627 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1628 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1629 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1630 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1631 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1632 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1633 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1634 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1635 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1636 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1637 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1638 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1639 /* address_space_get_iotlb_entry: translate an address into an IOTLB 1640 * entry. Should be called from an RCU critical section. 1641 */ 1642 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1643 bool is_write); 1644 1645 /* address_space_translate: translate an address range into an address space 1646 * into a MemoryRegion and an address range into that section. Should be 1647 * called from an RCU critical section, to avoid that the last reference 1648 * to the returned region disappears after address_space_translate returns. 1649 * 1650 * @as: #AddressSpace to be accessed 1651 * @addr: address within that address space 1652 * @xlat: pointer to address within the returned memory region section's 1653 * #MemoryRegion. 1654 * @len: pointer to length 1655 * @is_write: indicates the transfer direction 1656 */ 1657 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1658 hwaddr *xlat, hwaddr *len, 1659 bool is_write); 1660 1661 /* address_space_access_valid: check for validity of accessing an address 1662 * space range 1663 * 1664 * Check whether memory is assigned to the given address space range, and 1665 * access is permitted by any IOMMU regions that are active for the address 1666 * space. 1667 * 1668 * For now, addr and len should be aligned to a page size. This limitation 1669 * will be lifted in the future. 1670 * 1671 * @as: #AddressSpace to be accessed 1672 * @addr: address within that address space 1673 * @len: length of the area to be checked 1674 * @is_write: indicates the transfer direction 1675 */ 1676 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1677 1678 /* address_space_map: map a physical memory region into a host virtual address 1679 * 1680 * May map a subset of the requested range, given by and returned in @plen. 1681 * May return %NULL if resources needed to perform the mapping are exhausted. 1682 * Use only for reads OR writes - not for read-modify-write operations. 1683 * Use cpu_register_map_client() to know when retrying the map operation is 1684 * likely to succeed. 1685 * 1686 * @as: #AddressSpace to be accessed 1687 * @addr: address within that address space 1688 * @plen: pointer to length of buffer; updated on return 1689 * @is_write: indicates the transfer direction 1690 */ 1691 void *address_space_map(AddressSpace *as, hwaddr addr, 1692 hwaddr *plen, bool is_write); 1693 1694 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1695 * 1696 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1697 * the amount of memory that was actually read or written by the caller. 1698 * 1699 * @as: #AddressSpace used 1700 * @addr: address within that address space 1701 * @len: buffer length as returned by address_space_map() 1702 * @access_len: amount of data actually transferred 1703 * @is_write: indicates the transfer direction 1704 */ 1705 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1706 int is_write, hwaddr access_len); 1707 1708 1709 /* Internal functions, part of the implementation of address_space_read. */ 1710 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, 1711 MemTxAttrs attrs, uint8_t *buf, 1712 int len, hwaddr addr1, hwaddr l, 1713 MemoryRegion *mr); 1714 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 1715 MemTxAttrs attrs, uint8_t *buf, int len); 1716 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 1717 1718 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1719 { 1720 if (is_write) { 1721 return memory_region_is_ram(mr) && 1722 !mr->readonly && !memory_region_is_ram_device(mr); 1723 } else { 1724 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 1725 memory_region_is_romd(mr); 1726 } 1727 } 1728 1729 /** 1730 * address_space_read: read from an address space. 1731 * 1732 * Return a MemTxResult indicating whether the operation succeeded 1733 * or failed (eg unassigned memory, device rejected the transaction, 1734 * IOMMU fault). 1735 * 1736 * @as: #AddressSpace to be accessed 1737 * @addr: address within that address space 1738 * @attrs: memory transaction attributes 1739 * @buf: buffer with the data transferred 1740 */ 1741 static inline __attribute__((__always_inline__)) 1742 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 1743 uint8_t *buf, int len) 1744 { 1745 MemTxResult result = MEMTX_OK; 1746 hwaddr l, addr1; 1747 void *ptr; 1748 MemoryRegion *mr; 1749 1750 if (__builtin_constant_p(len)) { 1751 if (len) { 1752 rcu_read_lock(); 1753 l = len; 1754 mr = address_space_translate(as, addr, &addr1, &l, false); 1755 if (len == l && memory_access_is_direct(mr, false)) { 1756 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 1757 memcpy(buf, ptr, len); 1758 } else { 1759 result = address_space_read_continue(as, addr, attrs, buf, len, 1760 addr1, l, mr); 1761 } 1762 rcu_read_unlock(); 1763 } 1764 } else { 1765 result = address_space_read_full(as, addr, attrs, buf, len); 1766 } 1767 return result; 1768 } 1769 1770 /** 1771 * address_space_read_cached: read from a cached RAM region 1772 * 1773 * @cache: Cached region to be addressed 1774 * @addr: address relative to the base of the RAM region 1775 * @buf: buffer with the data transferred 1776 * @len: length of the data transferred 1777 */ 1778 static inline void 1779 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 1780 void *buf, int len) 1781 { 1782 assert(addr < cache->len && len <= cache->len - addr); 1783 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 1784 } 1785 1786 /** 1787 * address_space_write_cached: write to a cached RAM region 1788 * 1789 * @cache: Cached region to be addressed 1790 * @addr: address relative to the base of the RAM region 1791 * @buf: buffer with the data transferred 1792 * @len: length of the data transferred 1793 */ 1794 static inline void 1795 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 1796 void *buf, int len) 1797 { 1798 assert(addr < cache->len && len <= cache->len - addr); 1799 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 1800 } 1801 1802 #endif 1803 1804 #endif 1805