1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #ifdef CONFIG_FUZZ 46 void fuzz_dma_read_cb(size_t addr, 47 size_t len, 48 MemoryRegion *mr); 49 #else 50 static inline void fuzz_dma_read_cb(size_t addr, 51 size_t len, 52 MemoryRegion *mr) 53 { 54 /* Do Nothing */ 55 } 56 #endif 57 58 extern bool global_dirty_log; 59 60 typedef struct MemoryRegionOps MemoryRegionOps; 61 62 struct ReservedRegion { 63 hwaddr low; 64 hwaddr high; 65 unsigned type; 66 }; 67 68 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 69 70 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 71 typedef enum { 72 IOMMU_NONE = 0, 73 IOMMU_RO = 1, 74 IOMMU_WO = 2, 75 IOMMU_RW = 3, 76 } IOMMUAccessFlags; 77 78 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 79 80 struct IOMMUTLBEntry { 81 AddressSpace *target_as; 82 hwaddr iova; 83 hwaddr translated_addr; 84 hwaddr addr_mask; /* 0xfff = 4k translation */ 85 IOMMUAccessFlags perm; 86 }; 87 88 /* 89 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 90 * register with one or multiple IOMMU Notifier capability bit(s). 91 */ 92 typedef enum { 93 IOMMU_NOTIFIER_NONE = 0, 94 /* Notify cache invalidations */ 95 IOMMU_NOTIFIER_UNMAP = 0x1, 96 /* Notify entry changes (newly created entries) */ 97 IOMMU_NOTIFIER_MAP = 0x2, 98 /* Notify changes on device IOTLB entries */ 99 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 100 } IOMMUNotifierFlag; 101 102 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 103 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 104 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 105 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 106 107 struct IOMMUNotifier; 108 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 109 IOMMUTLBEntry *data); 110 111 struct IOMMUNotifier { 112 IOMMUNotify notify; 113 IOMMUNotifierFlag notifier_flags; 114 /* Notify for address space range start <= addr <= end */ 115 hwaddr start; 116 hwaddr end; 117 int iommu_idx; 118 QLIST_ENTRY(IOMMUNotifier) node; 119 }; 120 typedef struct IOMMUNotifier IOMMUNotifier; 121 122 typedef struct IOMMUTLBEvent { 123 IOMMUNotifierFlag type; 124 IOMMUTLBEntry entry; 125 } IOMMUTLBEvent; 126 127 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 128 #define RAM_PREALLOC (1 << 0) 129 130 /* RAM is mmap-ed with MAP_SHARED */ 131 #define RAM_SHARED (1 << 1) 132 133 /* Only a portion of RAM (used_length) is actually used, and migrated. 134 * Resizing RAM while migrating can result in the migration being canceled. 135 */ 136 #define RAM_RESIZEABLE (1 << 2) 137 138 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 139 * zero the page and wake waiting processes. 140 * (Set during postcopy) 141 */ 142 #define RAM_UF_ZEROPAGE (1 << 3) 143 144 /* RAM can be migrated */ 145 #define RAM_MIGRATABLE (1 << 4) 146 147 /* RAM is a persistent kind memory */ 148 #define RAM_PMEM (1 << 5) 149 150 151 /* 152 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 153 * support 'write-tracking' migration type. 154 * Implies ram_state->ram_wt_enabled. 155 */ 156 #define RAM_UF_WRITEPROTECT (1 << 6) 157 158 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 159 IOMMUNotifierFlag flags, 160 hwaddr start, hwaddr end, 161 int iommu_idx) 162 { 163 n->notify = fn; 164 n->notifier_flags = flags; 165 n->start = start; 166 n->end = end; 167 n->iommu_idx = iommu_idx; 168 } 169 170 /* 171 * Memory region callbacks 172 */ 173 struct MemoryRegionOps { 174 /* Read from the memory region. @addr is relative to @mr; @size is 175 * in bytes. */ 176 uint64_t (*read)(void *opaque, 177 hwaddr addr, 178 unsigned size); 179 /* Write to the memory region. @addr is relative to @mr; @size is 180 * in bytes. */ 181 void (*write)(void *opaque, 182 hwaddr addr, 183 uint64_t data, 184 unsigned size); 185 186 MemTxResult (*read_with_attrs)(void *opaque, 187 hwaddr addr, 188 uint64_t *data, 189 unsigned size, 190 MemTxAttrs attrs); 191 MemTxResult (*write_with_attrs)(void *opaque, 192 hwaddr addr, 193 uint64_t data, 194 unsigned size, 195 MemTxAttrs attrs); 196 197 enum device_endian endianness; 198 /* Guest-visible constraints: */ 199 struct { 200 /* If nonzero, specify bounds on access sizes beyond which a machine 201 * check is thrown. 202 */ 203 unsigned min_access_size; 204 unsigned max_access_size; 205 /* If true, unaligned accesses are supported. Otherwise unaligned 206 * accesses throw machine checks. 207 */ 208 bool unaligned; 209 /* 210 * If present, and returns #false, the transaction is not accepted 211 * by the device (and results in machine dependent behaviour such 212 * as a machine check exception). 213 */ 214 bool (*accepts)(void *opaque, hwaddr addr, 215 unsigned size, bool is_write, 216 MemTxAttrs attrs); 217 } valid; 218 /* Internal implementation constraints: */ 219 struct { 220 /* If nonzero, specifies the minimum size implemented. Smaller sizes 221 * will be rounded upwards and a partial result will be returned. 222 */ 223 unsigned min_access_size; 224 /* If nonzero, specifies the maximum size implemented. Larger sizes 225 * will be done as a series of accesses with smaller sizes. 226 */ 227 unsigned max_access_size; 228 /* If true, unaligned accesses are supported. Otherwise all accesses 229 * are converted to (possibly multiple) naturally aligned accesses. 230 */ 231 bool unaligned; 232 } impl; 233 }; 234 235 typedef struct MemoryRegionClass { 236 /* private */ 237 ObjectClass parent_class; 238 } MemoryRegionClass; 239 240 241 enum IOMMUMemoryRegionAttr { 242 IOMMU_ATTR_SPAPR_TCE_FD 243 }; 244 245 /* 246 * IOMMUMemoryRegionClass: 247 * 248 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 249 * and provide an implementation of at least the @translate method here 250 * to handle requests to the memory region. Other methods are optional. 251 * 252 * The IOMMU implementation must use the IOMMU notifier infrastructure 253 * to report whenever mappings are changed, by calling 254 * memory_region_notify_iommu() (or, if necessary, by calling 255 * memory_region_notify_iommu_one() for each registered notifier). 256 * 257 * Conceptually an IOMMU provides a mapping from input address 258 * to an output TLB entry. If the IOMMU is aware of memory transaction 259 * attributes and the output TLB entry depends on the transaction 260 * attributes, we represent this using IOMMU indexes. Each index 261 * selects a particular translation table that the IOMMU has: 262 * 263 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 264 * 265 * @translate takes an input address and an IOMMU index 266 * 267 * and the mapping returned can only depend on the input address and the 268 * IOMMU index. 269 * 270 * Most IOMMUs don't care about the transaction attributes and support 271 * only a single IOMMU index. A more complex IOMMU might have one index 272 * for secure transactions and one for non-secure transactions. 273 */ 274 struct IOMMUMemoryRegionClass { 275 /* private: */ 276 MemoryRegionClass parent_class; 277 278 /* public: */ 279 /** 280 * @translate: 281 * 282 * Return a TLB entry that contains a given address. 283 * 284 * The IOMMUAccessFlags indicated via @flag are optional and may 285 * be specified as IOMMU_NONE to indicate that the caller needs 286 * the full translation information for both reads and writes. If 287 * the access flags are specified then the IOMMU implementation 288 * may use this as an optimization, to stop doing a page table 289 * walk as soon as it knows that the requested permissions are not 290 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 291 * full page table walk and report the permissions in the returned 292 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 293 * return different mappings for reads and writes.) 294 * 295 * The returned information remains valid while the caller is 296 * holding the big QEMU lock or is inside an RCU critical section; 297 * if the caller wishes to cache the mapping beyond that it must 298 * register an IOMMU notifier so it can invalidate its cached 299 * information when the IOMMU mapping changes. 300 * 301 * @iommu: the IOMMUMemoryRegion 302 * 303 * @hwaddr: address to be translated within the memory region 304 * 305 * @flag: requested access permission 306 * 307 * @iommu_idx: IOMMU index for the translation 308 */ 309 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 310 IOMMUAccessFlags flag, int iommu_idx); 311 /** 312 * @get_min_page_size: 313 * 314 * Returns minimum supported page size in bytes. 315 * 316 * If this method is not provided then the minimum is assumed to 317 * be TARGET_PAGE_SIZE. 318 * 319 * @iommu: the IOMMUMemoryRegion 320 */ 321 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 322 /** 323 * @notify_flag_changed: 324 * 325 * Called when IOMMU Notifier flag changes (ie when the set of 326 * events which IOMMU users are requesting notification for changes). 327 * Optional method -- need not be provided if the IOMMU does not 328 * need to know exactly which events must be notified. 329 * 330 * @iommu: the IOMMUMemoryRegion 331 * 332 * @old_flags: events which previously needed to be notified 333 * 334 * @new_flags: events which now need to be notified 335 * 336 * Returns 0 on success, or a negative errno; in particular 337 * returns -EINVAL if the new flag bitmap is not supported by the 338 * IOMMU memory region. In case of failure, the error object 339 * must be created 340 */ 341 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 342 IOMMUNotifierFlag old_flags, 343 IOMMUNotifierFlag new_flags, 344 Error **errp); 345 /** 346 * @replay: 347 * 348 * Called to handle memory_region_iommu_replay(). 349 * 350 * The default implementation of memory_region_iommu_replay() is to 351 * call the IOMMU translate method for every page in the address space 352 * with flag == IOMMU_NONE and then call the notifier if translate 353 * returns a valid mapping. If this method is implemented then it 354 * overrides the default behaviour, and must provide the full semantics 355 * of memory_region_iommu_replay(), by calling @notifier for every 356 * translation present in the IOMMU. 357 * 358 * Optional method -- an IOMMU only needs to provide this method 359 * if the default is inefficient or produces undesirable side effects. 360 * 361 * Note: this is not related to record-and-replay functionality. 362 */ 363 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 364 365 /** 366 * @get_attr: 367 * 368 * Get IOMMU misc attributes. This is an optional method that 369 * can be used to allow users of the IOMMU to get implementation-specific 370 * information. The IOMMU implements this method to handle calls 371 * by IOMMU users to memory_region_iommu_get_attr() by filling in 372 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 373 * the IOMMU supports. If the method is unimplemented then 374 * memory_region_iommu_get_attr() will always return -EINVAL. 375 * 376 * @iommu: the IOMMUMemoryRegion 377 * 378 * @attr: attribute being queried 379 * 380 * @data: memory to fill in with the attribute data 381 * 382 * Returns 0 on success, or a negative errno; in particular 383 * returns -EINVAL for unrecognized or unimplemented attribute types. 384 */ 385 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 386 void *data); 387 388 /** 389 * @attrs_to_index: 390 * 391 * Return the IOMMU index to use for a given set of transaction attributes. 392 * 393 * Optional method: if an IOMMU only supports a single IOMMU index then 394 * the default implementation of memory_region_iommu_attrs_to_index() 395 * will return 0. 396 * 397 * The indexes supported by an IOMMU must be contiguous, starting at 0. 398 * 399 * @iommu: the IOMMUMemoryRegion 400 * @attrs: memory transaction attributes 401 */ 402 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 403 404 /** 405 * @num_indexes: 406 * 407 * Return the number of IOMMU indexes this IOMMU supports. 408 * 409 * Optional method: if this method is not provided, then 410 * memory_region_iommu_num_indexes() will return 1, indicating that 411 * only a single IOMMU index is supported. 412 * 413 * @iommu: the IOMMUMemoryRegion 414 */ 415 int (*num_indexes)(IOMMUMemoryRegion *iommu); 416 417 /** 418 * @iommu_set_page_size_mask: 419 * 420 * Restrict the page size mask that can be supported with a given IOMMU 421 * memory region. Used for example to propagate host physical IOMMU page 422 * size mask limitations to the virtual IOMMU. 423 * 424 * Optional method: if this method is not provided, then the default global 425 * page mask is used. 426 * 427 * @iommu: the IOMMUMemoryRegion 428 * 429 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 430 * representing the smallest page size, must be set. Additional set bits 431 * represent supported block sizes. For example a host physical IOMMU that 432 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 433 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 434 * block sizes is specified with mask 0xfffffffffffff000. 435 * 436 * Returns 0 on success, or a negative error. In case of failure, the error 437 * object must be created. 438 */ 439 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 440 uint64_t page_size_mask, 441 Error **errp); 442 }; 443 444 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 445 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 446 447 /** MemoryRegion: 448 * 449 * A struct representing a memory region. 450 */ 451 struct MemoryRegion { 452 Object parent_obj; 453 454 /* private: */ 455 456 /* The following fields should fit in a cache line */ 457 bool romd_mode; 458 bool ram; 459 bool subpage; 460 bool readonly; /* For RAM regions */ 461 bool nonvolatile; 462 bool rom_device; 463 bool flush_coalesced_mmio; 464 uint8_t dirty_log_mask; 465 bool is_iommu; 466 RAMBlock *ram_block; 467 Object *owner; 468 469 const MemoryRegionOps *ops; 470 void *opaque; 471 MemoryRegion *container; 472 Int128 size; 473 hwaddr addr; 474 void (*destructor)(MemoryRegion *mr); 475 uint64_t align; 476 bool terminates; 477 bool ram_device; 478 bool enabled; 479 bool warning_printed; /* For reservations */ 480 uint8_t vga_logging_count; 481 MemoryRegion *alias; 482 hwaddr alias_offset; 483 int32_t priority; 484 QTAILQ_HEAD(, MemoryRegion) subregions; 485 QTAILQ_ENTRY(MemoryRegion) subregions_link; 486 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 487 const char *name; 488 unsigned ioeventfd_nb; 489 MemoryRegionIoeventfd *ioeventfds; 490 }; 491 492 struct IOMMUMemoryRegion { 493 MemoryRegion parent_obj; 494 495 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 496 IOMMUNotifierFlag iommu_notify_flags; 497 }; 498 499 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 500 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 501 502 /** 503 * struct MemoryListener: callbacks structure for updates to the physical memory map 504 * 505 * Allows a component to adjust to changes in the guest-visible memory map. 506 * Use with memory_listener_register() and memory_listener_unregister(). 507 */ 508 struct MemoryListener { 509 /** 510 * @begin: 511 * 512 * Called at the beginning of an address space update transaction. 513 * Followed by calls to #MemoryListener.region_add(), 514 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 515 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 516 * increasing address order. 517 * 518 * @listener: The #MemoryListener. 519 */ 520 void (*begin)(MemoryListener *listener); 521 522 /** 523 * @commit: 524 * 525 * Called at the end of an address space update transaction, 526 * after the last call to #MemoryListener.region_add(), 527 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 528 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 529 * 530 * @listener: The #MemoryListener. 531 */ 532 void (*commit)(MemoryListener *listener); 533 534 /** 535 * @region_add: 536 * 537 * Called during an address space update transaction, 538 * for a section of the address space that is new in this address space 539 * space since the last transaction. 540 * 541 * @listener: The #MemoryListener. 542 * @section: The new #MemoryRegionSection. 543 */ 544 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 545 546 /** 547 * @region_del: 548 * 549 * Called during an address space update transaction, 550 * for a section of the address space that has disappeared in the address 551 * space since the last transaction. 552 * 553 * @listener: The #MemoryListener. 554 * @section: The old #MemoryRegionSection. 555 */ 556 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 557 558 /** 559 * @region_nop: 560 * 561 * Called during an address space update transaction, 562 * for a section of the address space that is in the same place in the address 563 * space as in the last transaction. 564 * 565 * @listener: The #MemoryListener. 566 * @section: The #MemoryRegionSection. 567 */ 568 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 569 570 /** 571 * @log_start: 572 * 573 * Called during an address space update transaction, after 574 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or 575 * #MemoryListener.region_nop(), if dirty memory logging clients have 576 * become active since the last transaction. 577 * 578 * @listener: The #MemoryListener. 579 * @section: The #MemoryRegionSection. 580 * @old: A bitmap of dirty memory logging clients that were active in 581 * the previous transaction. 582 * @new: A bitmap of dirty memory logging clients that are active in 583 * the current transaction. 584 */ 585 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 586 int old, int new); 587 588 /** 589 * @log_stop: 590 * 591 * Called during an address space update transaction, after 592 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 593 * #MemoryListener.region_nop() and possibly after 594 * #MemoryListener.log_start(), if dirty memory logging clients have 595 * become inactive since the last transaction. 596 * 597 * @listener: The #MemoryListener. 598 * @section: The #MemoryRegionSection. 599 * @old: A bitmap of dirty memory logging clients that were active in 600 * the previous transaction. 601 * @new: A bitmap of dirty memory logging clients that are active in 602 * the current transaction. 603 */ 604 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 605 int old, int new); 606 607 /** 608 * @log_sync: 609 * 610 * Called by memory_region_snapshot_and_clear_dirty() and 611 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 612 * copy of the dirty memory bitmap for a #MemoryRegionSection. 613 * 614 * @listener: The #MemoryListener. 615 * @section: The #MemoryRegionSection. 616 */ 617 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 618 619 /** 620 * @log_clear: 621 * 622 * Called before reading the dirty memory bitmap for a 623 * #MemoryRegionSection. 624 * 625 * @listener: The #MemoryListener. 626 * @section: The #MemoryRegionSection. 627 */ 628 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 629 630 /** 631 * @log_global_start: 632 * 633 * Called by memory_global_dirty_log_start(), which 634 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 635 * the address space. #MemoryListener.log_global_start() is also 636 * called when a #MemoryListener is added, if global dirty logging is 637 * active at that time. 638 * 639 * @listener: The #MemoryListener. 640 */ 641 void (*log_global_start)(MemoryListener *listener); 642 643 /** 644 * @log_global_stop: 645 * 646 * Called by memory_global_dirty_log_stop(), which 647 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 648 * the address space. 649 * 650 * @listener: The #MemoryListener. 651 */ 652 void (*log_global_stop)(MemoryListener *listener); 653 654 /** 655 * @log_global_after_sync: 656 * 657 * Called after reading the dirty memory bitmap 658 * for any #MemoryRegionSection. 659 * 660 * @listener: The #MemoryListener. 661 */ 662 void (*log_global_after_sync)(MemoryListener *listener); 663 664 /** 665 * @eventfd_add: 666 * 667 * Called during an address space update transaction, 668 * for a section of the address space that has had a new ioeventfd 669 * registration since the last transaction. 670 * 671 * @listener: The #MemoryListener. 672 * @section: The new #MemoryRegionSection. 673 * @match_data: The @match_data parameter for the new ioeventfd. 674 * @data: The @data parameter for the new ioeventfd. 675 * @e: The #EventNotifier parameter for the new ioeventfd. 676 */ 677 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 678 bool match_data, uint64_t data, EventNotifier *e); 679 680 /** 681 * @eventfd_del: 682 * 683 * Called during an address space update transaction, 684 * for a section of the address space that has dropped an ioeventfd 685 * registration since the last transaction. 686 * 687 * @listener: The #MemoryListener. 688 * @section: The new #MemoryRegionSection. 689 * @match_data: The @match_data parameter for the dropped ioeventfd. 690 * @data: The @data parameter for the dropped ioeventfd. 691 * @e: The #EventNotifier parameter for the dropped ioeventfd. 692 */ 693 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 694 bool match_data, uint64_t data, EventNotifier *e); 695 696 /** 697 * @coalesced_io_add: 698 * 699 * Called during an address space update transaction, 700 * for a section of the address space that has had a new coalesced 701 * MMIO range registration since the last transaction. 702 * 703 * @listener: The #MemoryListener. 704 * @section: The new #MemoryRegionSection. 705 * @addr: The starting address for the coalesced MMIO range. 706 * @len: The length of the coalesced MMIO range. 707 */ 708 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 709 hwaddr addr, hwaddr len); 710 711 /** 712 * @coalesced_io_del: 713 * 714 * Called during an address space update transaction, 715 * for a section of the address space that has dropped a coalesced 716 * MMIO range since the last transaction. 717 * 718 * @listener: The #MemoryListener. 719 * @section: The new #MemoryRegionSection. 720 * @addr: The starting address for the coalesced MMIO range. 721 * @len: The length of the coalesced MMIO range. 722 */ 723 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 724 hwaddr addr, hwaddr len); 725 /** 726 * @priority: 727 * 728 * Govern the order in which memory listeners are invoked. Lower priorities 729 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 730 * or "stop" callbacks. 731 */ 732 unsigned priority; 733 734 /* private: */ 735 AddressSpace *address_space; 736 QTAILQ_ENTRY(MemoryListener) link; 737 QTAILQ_ENTRY(MemoryListener) link_as; 738 }; 739 740 /** 741 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 742 */ 743 struct AddressSpace { 744 /* private: */ 745 struct rcu_head rcu; 746 char *name; 747 MemoryRegion *root; 748 749 /* Accessed via RCU. */ 750 struct FlatView *current_map; 751 752 int ioeventfd_nb; 753 struct MemoryRegionIoeventfd *ioeventfds; 754 QTAILQ_HEAD(, MemoryListener) listeners; 755 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 756 }; 757 758 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 759 typedef struct FlatRange FlatRange; 760 761 /* Flattened global view of current active memory hierarchy. Kept in sorted 762 * order. 763 */ 764 struct FlatView { 765 struct rcu_head rcu; 766 unsigned ref; 767 FlatRange *ranges; 768 unsigned nr; 769 unsigned nr_allocated; 770 struct AddressSpaceDispatch *dispatch; 771 MemoryRegion *root; 772 }; 773 774 static inline FlatView *address_space_to_flatview(AddressSpace *as) 775 { 776 return qatomic_rcu_read(&as->current_map); 777 } 778 779 /** 780 * typedef flatview_cb: callback for flatview_for_each_range() 781 * 782 * @start: start address of the range within the FlatView 783 * @len: length of the range in bytes 784 * @mr: MemoryRegion covering this range 785 * @offset_in_region: offset of the first byte of the range within @mr 786 * @opaque: data pointer passed to flatview_for_each_range() 787 * 788 * Returns: true to stop the iteration, false to keep going. 789 */ 790 typedef bool (*flatview_cb)(Int128 start, 791 Int128 len, 792 const MemoryRegion *mr, 793 hwaddr offset_in_region, 794 void *opaque); 795 796 /** 797 * flatview_for_each_range: Iterate through a FlatView 798 * @fv: the FlatView to iterate through 799 * @cb: function to call for each range 800 * @opaque: opaque data pointer to pass to @cb 801 * 802 * A FlatView is made up of a list of non-overlapping ranges, each of 803 * which is a slice of a MemoryRegion. This function iterates through 804 * each range in @fv, calling @cb. The callback function can terminate 805 * iteration early by returning 'true'. 806 */ 807 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 808 809 /** 810 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 811 * 812 * @mr: the region, or %NULL if empty 813 * @fv: the flat view of the address space the region is mapped in 814 * @offset_within_region: the beginning of the section, relative to @mr's start 815 * @size: the size of the section; will not exceed @mr's boundaries 816 * @offset_within_address_space: the address of the first byte of the section 817 * relative to the region's address space 818 * @readonly: writes to this section are ignored 819 * @nonvolatile: this section is non-volatile 820 */ 821 struct MemoryRegionSection { 822 Int128 size; 823 MemoryRegion *mr; 824 FlatView *fv; 825 hwaddr offset_within_region; 826 hwaddr offset_within_address_space; 827 bool readonly; 828 bool nonvolatile; 829 }; 830 831 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 832 MemoryRegionSection *b) 833 { 834 return a->mr == b->mr && 835 a->fv == b->fv && 836 a->offset_within_region == b->offset_within_region && 837 a->offset_within_address_space == b->offset_within_address_space && 838 int128_eq(a->size, b->size) && 839 a->readonly == b->readonly && 840 a->nonvolatile == b->nonvolatile; 841 } 842 843 /** 844 * memory_region_init: Initialize a memory region 845 * 846 * The region typically acts as a container for other memory regions. Use 847 * memory_region_add_subregion() to add subregions. 848 * 849 * @mr: the #MemoryRegion to be initialized 850 * @owner: the object that tracks the region's reference count 851 * @name: used for debugging; not visible to the user or ABI 852 * @size: size of the region; any subregions beyond this size will be clipped 853 */ 854 void memory_region_init(MemoryRegion *mr, 855 Object *owner, 856 const char *name, 857 uint64_t size); 858 859 /** 860 * memory_region_ref: Add 1 to a memory region's reference count 861 * 862 * Whenever memory regions are accessed outside the BQL, they need to be 863 * preserved against hot-unplug. MemoryRegions actually do not have their 864 * own reference count; they piggyback on a QOM object, their "owner". 865 * This function adds a reference to the owner. 866 * 867 * All MemoryRegions must have an owner if they can disappear, even if the 868 * device they belong to operates exclusively under the BQL. This is because 869 * the region could be returned at any time by memory_region_find, and this 870 * is usually under guest control. 871 * 872 * @mr: the #MemoryRegion 873 */ 874 void memory_region_ref(MemoryRegion *mr); 875 876 /** 877 * memory_region_unref: Remove 1 to a memory region's reference count 878 * 879 * Whenever memory regions are accessed outside the BQL, they need to be 880 * preserved against hot-unplug. MemoryRegions actually do not have their 881 * own reference count; they piggyback on a QOM object, their "owner". 882 * This function removes a reference to the owner and possibly destroys it. 883 * 884 * @mr: the #MemoryRegion 885 */ 886 void memory_region_unref(MemoryRegion *mr); 887 888 /** 889 * memory_region_init_io: Initialize an I/O memory region. 890 * 891 * Accesses into the region will cause the callbacks in @ops to be called. 892 * if @size is nonzero, subregions will be clipped to @size. 893 * 894 * @mr: the #MemoryRegion to be initialized. 895 * @owner: the object that tracks the region's reference count 896 * @ops: a structure containing read and write callbacks to be used when 897 * I/O is performed on the region. 898 * @opaque: passed to the read and write callbacks of the @ops structure. 899 * @name: used for debugging; not visible to the user or ABI 900 * @size: size of the region. 901 */ 902 void memory_region_init_io(MemoryRegion *mr, 903 Object *owner, 904 const MemoryRegionOps *ops, 905 void *opaque, 906 const char *name, 907 uint64_t size); 908 909 /** 910 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 911 * into the region will modify memory 912 * directly. 913 * 914 * @mr: the #MemoryRegion to be initialized. 915 * @owner: the object that tracks the region's reference count 916 * @name: Region name, becomes part of RAMBlock name used in migration stream 917 * must be unique within any device 918 * @size: size of the region. 919 * @errp: pointer to Error*, to store an error if it happens. 920 * 921 * Note that this function does not do anything to cause the data in the 922 * RAM memory region to be migrated; that is the responsibility of the caller. 923 */ 924 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 925 Object *owner, 926 const char *name, 927 uint64_t size, 928 Error **errp); 929 930 /** 931 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 932 * Accesses into the region will 933 * modify memory directly. 934 * 935 * @mr: the #MemoryRegion to be initialized. 936 * @owner: the object that tracks the region's reference count 937 * @name: Region name, becomes part of RAMBlock name used in migration stream 938 * must be unique within any device 939 * @size: size of the region. 940 * @share: allow remapping RAM to different addresses 941 * @errp: pointer to Error*, to store an error if it happens. 942 * 943 * Note that this function is similar to memory_region_init_ram_nomigrate. 944 * The only difference is part of the RAM region can be remapped. 945 */ 946 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 947 Object *owner, 948 const char *name, 949 uint64_t size, 950 bool share, 951 Error **errp); 952 953 /** 954 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 955 * RAM. Accesses into the region will 956 * modify memory directly. Only an initial 957 * portion of this RAM is actually used. 958 * Changing the size while migrating 959 * can result in the migration being 960 * canceled. 961 * 962 * @mr: the #MemoryRegion to be initialized. 963 * @owner: the object that tracks the region's reference count 964 * @name: Region name, becomes part of RAMBlock name used in migration stream 965 * must be unique within any device 966 * @size: used size of the region. 967 * @max_size: max size of the region. 968 * @resized: callback to notify owner about used size change. 969 * @errp: pointer to Error*, to store an error if it happens. 970 * 971 * Note that this function does not do anything to cause the data in the 972 * RAM memory region to be migrated; that is the responsibility of the caller. 973 */ 974 void memory_region_init_resizeable_ram(MemoryRegion *mr, 975 Object *owner, 976 const char *name, 977 uint64_t size, 978 uint64_t max_size, 979 void (*resized)(const char*, 980 uint64_t length, 981 void *host), 982 Error **errp); 983 #ifdef CONFIG_POSIX 984 985 /** 986 * memory_region_init_ram_from_file: Initialize RAM memory region with a 987 * mmap-ed backend. 988 * 989 * @mr: the #MemoryRegion to be initialized. 990 * @owner: the object that tracks the region's reference count 991 * @name: Region name, becomes part of RAMBlock name used in migration stream 992 * must be unique within any device 993 * @size: size of the region. 994 * @align: alignment of the region base address; if 0, the default alignment 995 * (getpagesize()) will be used. 996 * @ram_flags: Memory region features: 997 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 998 * - RAM_PMEM: the memory is persistent memory 999 * Other bits are ignored now. 1000 * @path: the path in which to allocate the RAM. 1001 * @readonly: true to open @path for reading, false for read/write. 1002 * @errp: pointer to Error*, to store an error if it happens. 1003 * 1004 * Note that this function does not do anything to cause the data in the 1005 * RAM memory region to be migrated; that is the responsibility of the caller. 1006 */ 1007 void memory_region_init_ram_from_file(MemoryRegion *mr, 1008 Object *owner, 1009 const char *name, 1010 uint64_t size, 1011 uint64_t align, 1012 uint32_t ram_flags, 1013 const char *path, 1014 bool readonly, 1015 Error **errp); 1016 1017 /** 1018 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1019 * mmap-ed backend. 1020 * 1021 * @mr: the #MemoryRegion to be initialized. 1022 * @owner: the object that tracks the region's reference count 1023 * @name: the name of the region. 1024 * @size: size of the region. 1025 * @share: %true if memory must be mmaped with the MAP_SHARED flag 1026 * @fd: the fd to mmap. 1027 * @offset: offset within the file referenced by fd 1028 * @errp: pointer to Error*, to store an error if it happens. 1029 * 1030 * Note that this function does not do anything to cause the data in the 1031 * RAM memory region to be migrated; that is the responsibility of the caller. 1032 */ 1033 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1034 Object *owner, 1035 const char *name, 1036 uint64_t size, 1037 bool share, 1038 int fd, 1039 ram_addr_t offset, 1040 Error **errp); 1041 #endif 1042 1043 /** 1044 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1045 * user-provided pointer. Accesses into the 1046 * region will modify memory directly. 1047 * 1048 * @mr: the #MemoryRegion to be initialized. 1049 * @owner: the object that tracks the region's reference count 1050 * @name: Region name, becomes part of RAMBlock name used in migration stream 1051 * must be unique within any device 1052 * @size: size of the region. 1053 * @ptr: memory to be mapped; must contain at least @size bytes. 1054 * 1055 * Note that this function does not do anything to cause the data in the 1056 * RAM memory region to be migrated; that is the responsibility of the caller. 1057 */ 1058 void memory_region_init_ram_ptr(MemoryRegion *mr, 1059 Object *owner, 1060 const char *name, 1061 uint64_t size, 1062 void *ptr); 1063 1064 /** 1065 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1066 * a user-provided pointer. 1067 * 1068 * A RAM device represents a mapping to a physical device, such as to a PCI 1069 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1070 * into the VM address space and access to the region will modify memory 1071 * directly. However, the memory region should not be included in a memory 1072 * dump (device may not be enabled/mapped at the time of the dump), and 1073 * operations incompatible with manipulating MMIO should be avoided. Replaces 1074 * skip_dump flag. 1075 * 1076 * @mr: the #MemoryRegion to be initialized. 1077 * @owner: the object that tracks the region's reference count 1078 * @name: the name of the region. 1079 * @size: size of the region. 1080 * @ptr: memory to be mapped; must contain at least @size bytes. 1081 * 1082 * Note that this function does not do anything to cause the data in the 1083 * RAM memory region to be migrated; that is the responsibility of the caller. 1084 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1085 */ 1086 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1087 Object *owner, 1088 const char *name, 1089 uint64_t size, 1090 void *ptr); 1091 1092 /** 1093 * memory_region_init_alias: Initialize a memory region that aliases all or a 1094 * part of another memory region. 1095 * 1096 * @mr: the #MemoryRegion to be initialized. 1097 * @owner: the object that tracks the region's reference count 1098 * @name: used for debugging; not visible to the user or ABI 1099 * @orig: the region to be referenced; @mr will be equivalent to 1100 * @orig between @offset and @offset + @size - 1. 1101 * @offset: start of the section in @orig to be referenced. 1102 * @size: size of the region. 1103 */ 1104 void memory_region_init_alias(MemoryRegion *mr, 1105 Object *owner, 1106 const char *name, 1107 MemoryRegion *orig, 1108 hwaddr offset, 1109 uint64_t size); 1110 1111 /** 1112 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1113 * 1114 * This has the same effect as calling memory_region_init_ram_nomigrate() 1115 * and then marking the resulting region read-only with 1116 * memory_region_set_readonly(). 1117 * 1118 * Note that this function does not do anything to cause the data in the 1119 * RAM side of the memory region to be migrated; that is the responsibility 1120 * of the caller. 1121 * 1122 * @mr: the #MemoryRegion to be initialized. 1123 * @owner: the object that tracks the region's reference count 1124 * @name: Region name, becomes part of RAMBlock name used in migration stream 1125 * must be unique within any device 1126 * @size: size of the region. 1127 * @errp: pointer to Error*, to store an error if it happens. 1128 */ 1129 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1130 Object *owner, 1131 const char *name, 1132 uint64_t size, 1133 Error **errp); 1134 1135 /** 1136 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1137 * Writes are handled via callbacks. 1138 * 1139 * Note that this function does not do anything to cause the data in the 1140 * RAM side of the memory region to be migrated; that is the responsibility 1141 * of the caller. 1142 * 1143 * @mr: the #MemoryRegion to be initialized. 1144 * @owner: the object that tracks the region's reference count 1145 * @ops: callbacks for write access handling (must not be NULL). 1146 * @opaque: passed to the read and write callbacks of the @ops structure. 1147 * @name: Region name, becomes part of RAMBlock name used in migration stream 1148 * must be unique within any device 1149 * @size: size of the region. 1150 * @errp: pointer to Error*, to store an error if it happens. 1151 */ 1152 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1153 Object *owner, 1154 const MemoryRegionOps *ops, 1155 void *opaque, 1156 const char *name, 1157 uint64_t size, 1158 Error **errp); 1159 1160 /** 1161 * memory_region_init_iommu: Initialize a memory region of a custom type 1162 * that translates addresses 1163 * 1164 * An IOMMU region translates addresses and forwards accesses to a target 1165 * memory region. 1166 * 1167 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1168 * @_iommu_mr should be a pointer to enough memory for an instance of 1169 * that subclass, @instance_size is the size of that subclass, and 1170 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1171 * instance of the subclass, and its methods will then be called to handle 1172 * accesses to the memory region. See the documentation of 1173 * #IOMMUMemoryRegionClass for further details. 1174 * 1175 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1176 * @instance_size: the IOMMUMemoryRegion subclass instance size 1177 * @mrtypename: the type name of the #IOMMUMemoryRegion 1178 * @owner: the object that tracks the region's reference count 1179 * @name: used for debugging; not visible to the user or ABI 1180 * @size: size of the region. 1181 */ 1182 void memory_region_init_iommu(void *_iommu_mr, 1183 size_t instance_size, 1184 const char *mrtypename, 1185 Object *owner, 1186 const char *name, 1187 uint64_t size); 1188 1189 /** 1190 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1191 * region will modify memory directly. 1192 * 1193 * @mr: the #MemoryRegion to be initialized 1194 * @owner: the object that tracks the region's reference count (must be 1195 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1196 * @name: name of the memory region 1197 * @size: size of the region in bytes 1198 * @errp: pointer to Error*, to store an error if it happens. 1199 * 1200 * This function allocates RAM for a board model or device, and 1201 * arranges for it to be migrated (by calling vmstate_register_ram() 1202 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1203 * @owner is NULL). 1204 * 1205 * TODO: Currently we restrict @owner to being either NULL (for 1206 * global RAM regions with no owner) or devices, so that we can 1207 * give the RAM block a unique name for migration purposes. 1208 * We should lift this restriction and allow arbitrary Objects. 1209 * If you pass a non-NULL non-device @owner then we will assert. 1210 */ 1211 void memory_region_init_ram(MemoryRegion *mr, 1212 Object *owner, 1213 const char *name, 1214 uint64_t size, 1215 Error **errp); 1216 1217 /** 1218 * memory_region_init_rom: Initialize a ROM memory region. 1219 * 1220 * This has the same effect as calling memory_region_init_ram() 1221 * and then marking the resulting region read-only with 1222 * memory_region_set_readonly(). This includes arranging for the 1223 * contents to be migrated. 1224 * 1225 * TODO: Currently we restrict @owner to being either NULL (for 1226 * global RAM regions with no owner) or devices, so that we can 1227 * give the RAM block a unique name for migration purposes. 1228 * We should lift this restriction and allow arbitrary Objects. 1229 * If you pass a non-NULL non-device @owner then we will assert. 1230 * 1231 * @mr: the #MemoryRegion to be initialized. 1232 * @owner: the object that tracks the region's reference count 1233 * @name: Region name, becomes part of RAMBlock name used in migration stream 1234 * must be unique within any device 1235 * @size: size of the region. 1236 * @errp: pointer to Error*, to store an error if it happens. 1237 */ 1238 void memory_region_init_rom(MemoryRegion *mr, 1239 Object *owner, 1240 const char *name, 1241 uint64_t size, 1242 Error **errp); 1243 1244 /** 1245 * memory_region_init_rom_device: Initialize a ROM memory region. 1246 * Writes are handled via callbacks. 1247 * 1248 * This function initializes a memory region backed by RAM for reads 1249 * and callbacks for writes, and arranges for the RAM backing to 1250 * be migrated (by calling vmstate_register_ram() 1251 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1252 * @owner is NULL). 1253 * 1254 * TODO: Currently we restrict @owner to being either NULL (for 1255 * global RAM regions with no owner) or devices, so that we can 1256 * give the RAM block a unique name for migration purposes. 1257 * We should lift this restriction and allow arbitrary Objects. 1258 * If you pass a non-NULL non-device @owner then we will assert. 1259 * 1260 * @mr: the #MemoryRegion to be initialized. 1261 * @owner: the object that tracks the region's reference count 1262 * @ops: callbacks for write access handling (must not be NULL). 1263 * @opaque: passed to the read and write callbacks of the @ops structure. 1264 * @name: Region name, becomes part of RAMBlock name used in migration stream 1265 * must be unique within any device 1266 * @size: size of the region. 1267 * @errp: pointer to Error*, to store an error if it happens. 1268 */ 1269 void memory_region_init_rom_device(MemoryRegion *mr, 1270 Object *owner, 1271 const MemoryRegionOps *ops, 1272 void *opaque, 1273 const char *name, 1274 uint64_t size, 1275 Error **errp); 1276 1277 1278 /** 1279 * memory_region_owner: get a memory region's owner. 1280 * 1281 * @mr: the memory region being queried. 1282 */ 1283 Object *memory_region_owner(MemoryRegion *mr); 1284 1285 /** 1286 * memory_region_size: get a memory region's size. 1287 * 1288 * @mr: the memory region being queried. 1289 */ 1290 uint64_t memory_region_size(MemoryRegion *mr); 1291 1292 /** 1293 * memory_region_is_ram: check whether a memory region is random access 1294 * 1295 * Returns %true if a memory region is random access. 1296 * 1297 * @mr: the memory region being queried 1298 */ 1299 static inline bool memory_region_is_ram(MemoryRegion *mr) 1300 { 1301 return mr->ram; 1302 } 1303 1304 /** 1305 * memory_region_is_ram_device: check whether a memory region is a ram device 1306 * 1307 * Returns %true if a memory region is a device backed ram region 1308 * 1309 * @mr: the memory region being queried 1310 */ 1311 bool memory_region_is_ram_device(MemoryRegion *mr); 1312 1313 /** 1314 * memory_region_is_romd: check whether a memory region is in ROMD mode 1315 * 1316 * Returns %true if a memory region is a ROM device and currently set to allow 1317 * direct reads. 1318 * 1319 * @mr: the memory region being queried 1320 */ 1321 static inline bool memory_region_is_romd(MemoryRegion *mr) 1322 { 1323 return mr->rom_device && mr->romd_mode; 1324 } 1325 1326 /** 1327 * memory_region_get_iommu: check whether a memory region is an iommu 1328 * 1329 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1330 * otherwise NULL. 1331 * 1332 * @mr: the memory region being queried 1333 */ 1334 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1335 { 1336 if (mr->alias) { 1337 return memory_region_get_iommu(mr->alias); 1338 } 1339 if (mr->is_iommu) { 1340 return (IOMMUMemoryRegion *) mr; 1341 } 1342 return NULL; 1343 } 1344 1345 /** 1346 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1347 * if an iommu or NULL if not 1348 * 1349 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1350 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1351 * 1352 * @iommu_mr: the memory region being queried 1353 */ 1354 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1355 IOMMUMemoryRegion *iommu_mr) 1356 { 1357 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1358 } 1359 1360 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1361 1362 /** 1363 * memory_region_iommu_get_min_page_size: get minimum supported page size 1364 * for an iommu 1365 * 1366 * Returns minimum supported page size for an iommu. 1367 * 1368 * @iommu_mr: the memory region being queried 1369 */ 1370 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1371 1372 /** 1373 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1374 * 1375 * Note: for any IOMMU implementation, an in-place mapping change 1376 * should be notified with an UNMAP followed by a MAP. 1377 * 1378 * @iommu_mr: the memory region that was changed 1379 * @iommu_idx: the IOMMU index for the translation table which has changed 1380 * @event: TLB event with the new entry in the IOMMU translation table. 1381 * The entry replaces all old entries for the same virtual I/O address 1382 * range. 1383 */ 1384 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1385 int iommu_idx, 1386 IOMMUTLBEvent event); 1387 1388 /** 1389 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1390 * entry to a single notifier 1391 * 1392 * This works just like memory_region_notify_iommu(), but it only 1393 * notifies a specific notifier, not all of them. 1394 * 1395 * @notifier: the notifier to be notified 1396 * @event: TLB event with the new entry in the IOMMU translation table. 1397 * The entry replaces all old entries for the same virtual I/O address 1398 * range. 1399 */ 1400 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1401 IOMMUTLBEvent *event); 1402 1403 /** 1404 * memory_region_register_iommu_notifier: register a notifier for changes to 1405 * IOMMU translation entries. 1406 * 1407 * Returns 0 on success, or a negative errno otherwise. In particular, 1408 * -EINVAL indicates that at least one of the attributes of the notifier 1409 * is not supported (flag/range) by the IOMMU memory region. In case of error 1410 * the error object must be created. 1411 * 1412 * @mr: the memory region to observe 1413 * @n: the IOMMUNotifier to be added; the notify callback receives a 1414 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1415 * ceases to be valid on exit from the notifier. 1416 * @errp: pointer to Error*, to store an error if it happens. 1417 */ 1418 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1419 IOMMUNotifier *n, Error **errp); 1420 1421 /** 1422 * memory_region_iommu_replay: replay existing IOMMU translations to 1423 * a notifier with the minimum page granularity returned by 1424 * mr->iommu_ops->get_page_size(). 1425 * 1426 * Note: this is not related to record-and-replay functionality. 1427 * 1428 * @iommu_mr: the memory region to observe 1429 * @n: the notifier to which to replay iommu mappings 1430 */ 1431 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1432 1433 /** 1434 * memory_region_unregister_iommu_notifier: unregister a notifier for 1435 * changes to IOMMU translation entries. 1436 * 1437 * @mr: the memory region which was observed and for which notity_stopped() 1438 * needs to be called 1439 * @n: the notifier to be removed. 1440 */ 1441 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1442 IOMMUNotifier *n); 1443 1444 /** 1445 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1446 * defined on the IOMMU. 1447 * 1448 * Returns 0 on success, or a negative errno otherwise. In particular, 1449 * -EINVAL indicates that the IOMMU does not support the requested 1450 * attribute. 1451 * 1452 * @iommu_mr: the memory region 1453 * @attr: the requested attribute 1454 * @data: a pointer to the requested attribute data 1455 */ 1456 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1457 enum IOMMUMemoryRegionAttr attr, 1458 void *data); 1459 1460 /** 1461 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1462 * use for translations with the given memory transaction attributes. 1463 * 1464 * @iommu_mr: the memory region 1465 * @attrs: the memory transaction attributes 1466 */ 1467 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1468 MemTxAttrs attrs); 1469 1470 /** 1471 * memory_region_iommu_num_indexes: return the total number of IOMMU 1472 * indexes that this IOMMU supports. 1473 * 1474 * @iommu_mr: the memory region 1475 */ 1476 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1477 1478 /** 1479 * memory_region_iommu_set_page_size_mask: set the supported page 1480 * sizes for a given IOMMU memory region 1481 * 1482 * @iommu_mr: IOMMU memory region 1483 * @page_size_mask: supported page size mask 1484 * @errp: pointer to Error*, to store an error if it happens. 1485 */ 1486 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1487 uint64_t page_size_mask, 1488 Error **errp); 1489 1490 /** 1491 * memory_region_name: get a memory region's name 1492 * 1493 * Returns the string that was used to initialize the memory region. 1494 * 1495 * @mr: the memory region being queried 1496 */ 1497 const char *memory_region_name(const MemoryRegion *mr); 1498 1499 /** 1500 * memory_region_is_logging: return whether a memory region is logging writes 1501 * 1502 * Returns %true if the memory region is logging writes for the given client 1503 * 1504 * @mr: the memory region being queried 1505 * @client: the client being queried 1506 */ 1507 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1508 1509 /** 1510 * memory_region_get_dirty_log_mask: return the clients for which a 1511 * memory region is logging writes. 1512 * 1513 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1514 * are the bit indices. 1515 * 1516 * @mr: the memory region being queried 1517 */ 1518 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1519 1520 /** 1521 * memory_region_is_rom: check whether a memory region is ROM 1522 * 1523 * Returns %true if a memory region is read-only memory. 1524 * 1525 * @mr: the memory region being queried 1526 */ 1527 static inline bool memory_region_is_rom(MemoryRegion *mr) 1528 { 1529 return mr->ram && mr->readonly; 1530 } 1531 1532 /** 1533 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1534 * 1535 * Returns %true is a memory region is non-volatile memory. 1536 * 1537 * @mr: the memory region being queried 1538 */ 1539 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1540 { 1541 return mr->nonvolatile; 1542 } 1543 1544 /** 1545 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1546 * 1547 * Returns a file descriptor backing a file-based RAM memory region, 1548 * or -1 if the region is not a file-based RAM memory region. 1549 * 1550 * @mr: the RAM or alias memory region being queried. 1551 */ 1552 int memory_region_get_fd(MemoryRegion *mr); 1553 1554 /** 1555 * memory_region_from_host: Convert a pointer into a RAM memory region 1556 * and an offset within it. 1557 * 1558 * Given a host pointer inside a RAM memory region (created with 1559 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1560 * the MemoryRegion and the offset within it. 1561 * 1562 * Use with care; by the time this function returns, the returned pointer is 1563 * not protected by RCU anymore. If the caller is not within an RCU critical 1564 * section and does not hold the iothread lock, it must have other means of 1565 * protecting the pointer, such as a reference to the region that includes 1566 * the incoming ram_addr_t. 1567 * 1568 * @ptr: the host pointer to be converted 1569 * @offset: the offset within memory region 1570 */ 1571 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1572 1573 /** 1574 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1575 * 1576 * Returns a host pointer to a RAM memory region (created with 1577 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1578 * 1579 * Use with care; by the time this function returns, the returned pointer is 1580 * not protected by RCU anymore. If the caller is not within an RCU critical 1581 * section and does not hold the iothread lock, it must have other means of 1582 * protecting the pointer, such as a reference to the region that includes 1583 * the incoming ram_addr_t. 1584 * 1585 * @mr: the memory region being queried. 1586 */ 1587 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1588 1589 /* memory_region_ram_resize: Resize a RAM region. 1590 * 1591 * Resizing RAM while migrating can result in the migration being canceled. 1592 * Care has to be taken if the guest might have already detected the memory. 1593 * 1594 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1595 * @newsize: the new size the region 1596 * @errp: pointer to Error*, to store an error if it happens. 1597 */ 1598 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1599 Error **errp); 1600 1601 /** 1602 * memory_region_msync: Synchronize selected address range of 1603 * a memory mapped region 1604 * 1605 * @mr: the memory region to be msync 1606 * @addr: the initial address of the range to be sync 1607 * @size: the size of the range to be sync 1608 */ 1609 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1610 1611 /** 1612 * memory_region_writeback: Trigger cache writeback for 1613 * selected address range 1614 * 1615 * @mr: the memory region to be updated 1616 * @addr: the initial address of the range to be written back 1617 * @size: the size of the range to be written back 1618 */ 1619 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1620 1621 /** 1622 * memory_region_set_log: Turn dirty logging on or off for a region. 1623 * 1624 * Turns dirty logging on or off for a specified client (display, migration). 1625 * Only meaningful for RAM regions. 1626 * 1627 * @mr: the memory region being updated. 1628 * @log: whether dirty logging is to be enabled or disabled. 1629 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1630 */ 1631 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1632 1633 /** 1634 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1635 * 1636 * Marks a range of bytes as dirty, after it has been dirtied outside 1637 * guest code. 1638 * 1639 * @mr: the memory region being dirtied. 1640 * @addr: the address (relative to the start of the region) being dirtied. 1641 * @size: size of the range being dirtied. 1642 */ 1643 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1644 hwaddr size); 1645 1646 /** 1647 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1648 * 1649 * This function is called when the caller wants to clear the remote 1650 * dirty bitmap of a memory range within the memory region. This can 1651 * be used by e.g. KVM to manually clear dirty log when 1652 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1653 * kernel. 1654 * 1655 * @mr: the memory region to clear the dirty log upon 1656 * @start: start address offset within the memory region 1657 * @len: length of the memory region to clear dirty bitmap 1658 */ 1659 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1660 hwaddr len); 1661 1662 /** 1663 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1664 * bitmap and clear it. 1665 * 1666 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1667 * returns the snapshot. The snapshot can then be used to query dirty 1668 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1669 * querying the same page multiple times, which is especially useful for 1670 * display updates where the scanlines often are not page aligned. 1671 * 1672 * The dirty bitmap region which gets copyed into the snapshot (and 1673 * cleared afterwards) can be larger than requested. The boundaries 1674 * are rounded up/down so complete bitmap longs (covering 64 pages on 1675 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1676 * isn't a problem for display updates as the extra pages are outside 1677 * the visible area, and in case the visible area changes a full 1678 * display redraw is due anyway. Should other use cases for this 1679 * function emerge we might have to revisit this implementation 1680 * detail. 1681 * 1682 * Use g_free to release DirtyBitmapSnapshot. 1683 * 1684 * @mr: the memory region being queried. 1685 * @addr: the address (relative to the start of the region) being queried. 1686 * @size: the size of the range being queried. 1687 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1688 */ 1689 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1690 hwaddr addr, 1691 hwaddr size, 1692 unsigned client); 1693 1694 /** 1695 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1696 * in the specified dirty bitmap snapshot. 1697 * 1698 * @mr: the memory region being queried. 1699 * @snap: the dirty bitmap snapshot 1700 * @addr: the address (relative to the start of the region) being queried. 1701 * @size: the size of the range being queried. 1702 */ 1703 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1704 DirtyBitmapSnapshot *snap, 1705 hwaddr addr, hwaddr size); 1706 1707 /** 1708 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1709 * client. 1710 * 1711 * Marks a range of pages as no longer dirty. 1712 * 1713 * @mr: the region being updated. 1714 * @addr: the start of the subrange being cleaned. 1715 * @size: the size of the subrange being cleaned. 1716 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1717 * %DIRTY_MEMORY_VGA. 1718 */ 1719 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1720 hwaddr size, unsigned client); 1721 1722 /** 1723 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1724 * TBs (for self-modifying code). 1725 * 1726 * The MemoryRegionOps->write() callback of a ROM device must use this function 1727 * to mark byte ranges that have been modified internally, such as by directly 1728 * accessing the memory returned by memory_region_get_ram_ptr(). 1729 * 1730 * This function marks the range dirty and invalidates TBs so that TCG can 1731 * detect self-modifying code. 1732 * 1733 * @mr: the region being flushed. 1734 * @addr: the start, relative to the start of the region, of the range being 1735 * flushed. 1736 * @size: the size, in bytes, of the range being flushed. 1737 */ 1738 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1739 1740 /** 1741 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1742 * 1743 * Allows a memory region to be marked as read-only (turning it into a ROM). 1744 * only useful on RAM regions. 1745 * 1746 * @mr: the region being updated. 1747 * @readonly: whether rhe region is to be ROM or RAM. 1748 */ 1749 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1750 1751 /** 1752 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1753 * 1754 * Allows a memory region to be marked as non-volatile. 1755 * only useful on RAM regions. 1756 * 1757 * @mr: the region being updated. 1758 * @nonvolatile: whether rhe region is to be non-volatile. 1759 */ 1760 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1761 1762 /** 1763 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1764 * 1765 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1766 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1767 * device is mapped to guest memory and satisfies read access directly. 1768 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1769 * Writes are always handled by the #MemoryRegion.write function. 1770 * 1771 * @mr: the memory region to be updated 1772 * @romd_mode: %true to put the region into ROMD mode 1773 */ 1774 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1775 1776 /** 1777 * memory_region_set_coalescing: Enable memory coalescing for the region. 1778 * 1779 * Enabled writes to a region to be queued for later processing. MMIO ->write 1780 * callbacks may be delayed until a non-coalesced MMIO is issued. 1781 * Only useful for IO regions. Roughly similar to write-combining hardware. 1782 * 1783 * @mr: the memory region to be write coalesced 1784 */ 1785 void memory_region_set_coalescing(MemoryRegion *mr); 1786 1787 /** 1788 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1789 * a region. 1790 * 1791 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1792 * Multiple calls can be issued coalesced disjoint ranges. 1793 * 1794 * @mr: the memory region to be updated. 1795 * @offset: the start of the range within the region to be coalesced. 1796 * @size: the size of the subrange to be coalesced. 1797 */ 1798 void memory_region_add_coalescing(MemoryRegion *mr, 1799 hwaddr offset, 1800 uint64_t size); 1801 1802 /** 1803 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1804 * 1805 * Disables any coalescing caused by memory_region_set_coalescing() or 1806 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1807 * hardware. 1808 * 1809 * @mr: the memory region to be updated. 1810 */ 1811 void memory_region_clear_coalescing(MemoryRegion *mr); 1812 1813 /** 1814 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1815 * accesses. 1816 * 1817 * Ensure that pending coalesced MMIO request are flushed before the memory 1818 * region is accessed. This property is automatically enabled for all regions 1819 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1820 * 1821 * @mr: the memory region to be updated. 1822 */ 1823 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1824 1825 /** 1826 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1827 * accesses. 1828 * 1829 * Clear the automatic coalesced MMIO flushing enabled via 1830 * memory_region_set_flush_coalesced. Note that this service has no effect on 1831 * memory regions that have MMIO coalescing enabled for themselves. For them, 1832 * automatic flushing will stop once coalescing is disabled. 1833 * 1834 * @mr: the memory region to be updated. 1835 */ 1836 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1837 1838 /** 1839 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1840 * is written to a location. 1841 * 1842 * Marks a word in an IO region (initialized with memory_region_init_io()) 1843 * as a trigger for an eventfd event. The I/O callback will not be called. 1844 * The caller must be prepared to handle failure (that is, take the required 1845 * action if the callback _is_ called). 1846 * 1847 * @mr: the memory region being updated. 1848 * @addr: the address within @mr that is to be monitored 1849 * @size: the size of the access to trigger the eventfd 1850 * @match_data: whether to match against @data, instead of just @addr 1851 * @data: the data to match against the guest write 1852 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1853 **/ 1854 void memory_region_add_eventfd(MemoryRegion *mr, 1855 hwaddr addr, 1856 unsigned size, 1857 bool match_data, 1858 uint64_t data, 1859 EventNotifier *e); 1860 1861 /** 1862 * memory_region_del_eventfd: Cancel an eventfd. 1863 * 1864 * Cancels an eventfd trigger requested by a previous 1865 * memory_region_add_eventfd() call. 1866 * 1867 * @mr: the memory region being updated. 1868 * @addr: the address within @mr that is to be monitored 1869 * @size: the size of the access to trigger the eventfd 1870 * @match_data: whether to match against @data, instead of just @addr 1871 * @data: the data to match against the guest write 1872 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1873 */ 1874 void memory_region_del_eventfd(MemoryRegion *mr, 1875 hwaddr addr, 1876 unsigned size, 1877 bool match_data, 1878 uint64_t data, 1879 EventNotifier *e); 1880 1881 /** 1882 * memory_region_add_subregion: Add a subregion to a container. 1883 * 1884 * Adds a subregion at @offset. The subregion may not overlap with other 1885 * subregions (except for those explicitly marked as overlapping). A region 1886 * may only be added once as a subregion (unless removed with 1887 * memory_region_del_subregion()); use memory_region_init_alias() if you 1888 * want a region to be a subregion in multiple locations. 1889 * 1890 * @mr: the region to contain the new subregion; must be a container 1891 * initialized with memory_region_init(). 1892 * @offset: the offset relative to @mr where @subregion is added. 1893 * @subregion: the subregion to be added. 1894 */ 1895 void memory_region_add_subregion(MemoryRegion *mr, 1896 hwaddr offset, 1897 MemoryRegion *subregion); 1898 /** 1899 * memory_region_add_subregion_overlap: Add a subregion to a container 1900 * with overlap. 1901 * 1902 * Adds a subregion at @offset. The subregion may overlap with other 1903 * subregions. Conflicts are resolved by having a higher @priority hide a 1904 * lower @priority. Subregions without priority are taken as @priority 0. 1905 * A region may only be added once as a subregion (unless removed with 1906 * memory_region_del_subregion()); use memory_region_init_alias() if you 1907 * want a region to be a subregion in multiple locations. 1908 * 1909 * @mr: the region to contain the new subregion; must be a container 1910 * initialized with memory_region_init(). 1911 * @offset: the offset relative to @mr where @subregion is added. 1912 * @subregion: the subregion to be added. 1913 * @priority: used for resolving overlaps; highest priority wins. 1914 */ 1915 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1916 hwaddr offset, 1917 MemoryRegion *subregion, 1918 int priority); 1919 1920 /** 1921 * memory_region_get_ram_addr: Get the ram address associated with a memory 1922 * region 1923 * 1924 * @mr: the region to be queried 1925 */ 1926 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1927 1928 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1929 /** 1930 * memory_region_del_subregion: Remove a subregion. 1931 * 1932 * Removes a subregion from its container. 1933 * 1934 * @mr: the container to be updated. 1935 * @subregion: the region being removed; must be a current subregion of @mr. 1936 */ 1937 void memory_region_del_subregion(MemoryRegion *mr, 1938 MemoryRegion *subregion); 1939 1940 /* 1941 * memory_region_set_enabled: dynamically enable or disable a region 1942 * 1943 * Enables or disables a memory region. A disabled memory region 1944 * ignores all accesses to itself and its subregions. It does not 1945 * obscure sibling subregions with lower priority - it simply behaves as 1946 * if it was removed from the hierarchy. 1947 * 1948 * Regions default to being enabled. 1949 * 1950 * @mr: the region to be updated 1951 * @enabled: whether to enable or disable the region 1952 */ 1953 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1954 1955 /* 1956 * memory_region_set_address: dynamically update the address of a region 1957 * 1958 * Dynamically updates the address of a region, relative to its container. 1959 * May be used on regions are currently part of a memory hierarchy. 1960 * 1961 * @mr: the region to be updated 1962 * @addr: new address, relative to container region 1963 */ 1964 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1965 1966 /* 1967 * memory_region_set_size: dynamically update the size of a region. 1968 * 1969 * Dynamically updates the size of a region. 1970 * 1971 * @mr: the region to be updated 1972 * @size: used size of the region. 1973 */ 1974 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1975 1976 /* 1977 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1978 * 1979 * Dynamically updates the offset into the target region that an alias points 1980 * to, as if the fourth argument to memory_region_init_alias() has changed. 1981 * 1982 * @mr: the #MemoryRegion to be updated; should be an alias. 1983 * @offset: the new offset into the target memory region 1984 */ 1985 void memory_region_set_alias_offset(MemoryRegion *mr, 1986 hwaddr offset); 1987 1988 /** 1989 * memory_region_present: checks if an address relative to a @container 1990 * translates into #MemoryRegion within @container 1991 * 1992 * Answer whether a #MemoryRegion within @container covers the address 1993 * @addr. 1994 * 1995 * @container: a #MemoryRegion within which @addr is a relative address 1996 * @addr: the area within @container to be searched 1997 */ 1998 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1999 2000 /** 2001 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2002 * into any address space. 2003 * 2004 * @mr: a #MemoryRegion which should be checked if it's mapped 2005 */ 2006 bool memory_region_is_mapped(MemoryRegion *mr); 2007 2008 /** 2009 * memory_region_find: translate an address/size relative to a 2010 * MemoryRegion into a #MemoryRegionSection. 2011 * 2012 * Locates the first #MemoryRegion within @mr that overlaps the range 2013 * given by @addr and @size. 2014 * 2015 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2016 * It will have the following characteristics: 2017 * - @size = 0 iff no overlap was found 2018 * - @mr is non-%NULL iff an overlap was found 2019 * 2020 * Remember that in the return value the @offset_within_region is 2021 * relative to the returned region (in the .@mr field), not to the 2022 * @mr argument. 2023 * 2024 * Similarly, the .@offset_within_address_space is relative to the 2025 * address space that contains both regions, the passed and the 2026 * returned one. However, in the special case where the @mr argument 2027 * has no container (and thus is the root of the address space), the 2028 * following will hold: 2029 * - @offset_within_address_space >= @addr 2030 * - @offset_within_address_space + .@size <= @addr + @size 2031 * 2032 * @mr: a MemoryRegion within which @addr is a relative address 2033 * @addr: start of the area within @as to be searched 2034 * @size: size of the area to be searched 2035 */ 2036 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2037 hwaddr addr, uint64_t size); 2038 2039 /** 2040 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2041 * 2042 * Synchronizes the dirty page log for all address spaces. 2043 */ 2044 void memory_global_dirty_log_sync(void); 2045 2046 /** 2047 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2048 * 2049 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2050 * This function must be called after the dirty log bitmap is cleared, and 2051 * before dirty guest memory pages are read. If you are using 2052 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2053 * care of doing this. 2054 */ 2055 void memory_global_after_dirty_log_sync(void); 2056 2057 /** 2058 * memory_region_transaction_begin: Start a transaction. 2059 * 2060 * During a transaction, changes will be accumulated and made visible 2061 * only when the transaction ends (is committed). 2062 */ 2063 void memory_region_transaction_begin(void); 2064 2065 /** 2066 * memory_region_transaction_commit: Commit a transaction and make changes 2067 * visible to the guest. 2068 */ 2069 void memory_region_transaction_commit(void); 2070 2071 /** 2072 * memory_listener_register: register callbacks to be called when memory 2073 * sections are mapped or unmapped into an address 2074 * space 2075 * 2076 * @listener: an object containing the callbacks to be called 2077 * @filter: if non-%NULL, only regions in this address space will be observed 2078 */ 2079 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2080 2081 /** 2082 * memory_listener_unregister: undo the effect of memory_listener_register() 2083 * 2084 * @listener: an object containing the callbacks to be removed 2085 */ 2086 void memory_listener_unregister(MemoryListener *listener); 2087 2088 /** 2089 * memory_global_dirty_log_start: begin dirty logging for all regions 2090 */ 2091 void memory_global_dirty_log_start(void); 2092 2093 /** 2094 * memory_global_dirty_log_stop: end dirty logging for all regions 2095 */ 2096 void memory_global_dirty_log_stop(void); 2097 2098 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2099 2100 /** 2101 * memory_region_dispatch_read: perform a read directly to the specified 2102 * MemoryRegion. 2103 * 2104 * @mr: #MemoryRegion to access 2105 * @addr: address within that region 2106 * @pval: pointer to uint64_t which the data is written to 2107 * @op: size, sign, and endianness of the memory operation 2108 * @attrs: memory transaction attributes to use for the access 2109 */ 2110 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2111 hwaddr addr, 2112 uint64_t *pval, 2113 MemOp op, 2114 MemTxAttrs attrs); 2115 /** 2116 * memory_region_dispatch_write: perform a write directly to the specified 2117 * MemoryRegion. 2118 * 2119 * @mr: #MemoryRegion to access 2120 * @addr: address within that region 2121 * @data: data to write 2122 * @op: size, sign, and endianness of the memory operation 2123 * @attrs: memory transaction attributes to use for the access 2124 */ 2125 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2126 hwaddr addr, 2127 uint64_t data, 2128 MemOp op, 2129 MemTxAttrs attrs); 2130 2131 /** 2132 * address_space_init: initializes an address space 2133 * 2134 * @as: an uninitialized #AddressSpace 2135 * @root: a #MemoryRegion that routes addresses for the address space 2136 * @name: an address space name. The name is only used for debugging 2137 * output. 2138 */ 2139 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2140 2141 /** 2142 * address_space_destroy: destroy an address space 2143 * 2144 * Releases all resources associated with an address space. After an address space 2145 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2146 * as well. 2147 * 2148 * @as: address space to be destroyed 2149 */ 2150 void address_space_destroy(AddressSpace *as); 2151 2152 /** 2153 * address_space_remove_listeners: unregister all listeners of an address space 2154 * 2155 * Removes all callbacks previously registered with memory_listener_register() 2156 * for @as. 2157 * 2158 * @as: an initialized #AddressSpace 2159 */ 2160 void address_space_remove_listeners(AddressSpace *as); 2161 2162 /** 2163 * address_space_rw: read from or write to an address space. 2164 * 2165 * Return a MemTxResult indicating whether the operation succeeded 2166 * or failed (eg unassigned memory, device rejected the transaction, 2167 * IOMMU fault). 2168 * 2169 * @as: #AddressSpace to be accessed 2170 * @addr: address within that address space 2171 * @attrs: memory transaction attributes 2172 * @buf: buffer with the data transferred 2173 * @len: the number of bytes to read or write 2174 * @is_write: indicates the transfer direction 2175 */ 2176 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2177 MemTxAttrs attrs, void *buf, 2178 hwaddr len, bool is_write); 2179 2180 /** 2181 * address_space_write: write to address space. 2182 * 2183 * Return a MemTxResult indicating whether the operation succeeded 2184 * or failed (eg unassigned memory, device rejected the transaction, 2185 * IOMMU fault). 2186 * 2187 * @as: #AddressSpace to be accessed 2188 * @addr: address within that address space 2189 * @attrs: memory transaction attributes 2190 * @buf: buffer with the data transferred 2191 * @len: the number of bytes to write 2192 */ 2193 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2194 MemTxAttrs attrs, 2195 const void *buf, hwaddr len); 2196 2197 /** 2198 * address_space_write_rom: write to address space, including ROM. 2199 * 2200 * This function writes to the specified address space, but will 2201 * write data to both ROM and RAM. This is used for non-guest 2202 * writes like writes from the gdb debug stub or initial loading 2203 * of ROM contents. 2204 * 2205 * Note that portions of the write which attempt to write data to 2206 * a device will be silently ignored -- only real RAM and ROM will 2207 * be written to. 2208 * 2209 * Return a MemTxResult indicating whether the operation succeeded 2210 * or failed (eg unassigned memory, device rejected the transaction, 2211 * IOMMU fault). 2212 * 2213 * @as: #AddressSpace to be accessed 2214 * @addr: address within that address space 2215 * @attrs: memory transaction attributes 2216 * @buf: buffer with the data transferred 2217 * @len: the number of bytes to write 2218 */ 2219 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2220 MemTxAttrs attrs, 2221 const void *buf, hwaddr len); 2222 2223 /* address_space_ld*: load from an address space 2224 * address_space_st*: store to an address space 2225 * 2226 * These functions perform a load or store of the byte, word, 2227 * longword or quad to the specified address within the AddressSpace. 2228 * The _le suffixed functions treat the data as little endian; 2229 * _be indicates big endian; no suffix indicates "same endianness 2230 * as guest CPU". 2231 * 2232 * The "guest CPU endianness" accessors are deprecated for use outside 2233 * target-* code; devices should be CPU-agnostic and use either the LE 2234 * or the BE accessors. 2235 * 2236 * @as #AddressSpace to be accessed 2237 * @addr: address within that address space 2238 * @val: data value, for stores 2239 * @attrs: memory transaction attributes 2240 * @result: location to write the success/failure of the transaction; 2241 * if NULL, this information is discarded 2242 */ 2243 2244 #define SUFFIX 2245 #define ARG1 as 2246 #define ARG1_DECL AddressSpace *as 2247 #include "exec/memory_ldst.h.inc" 2248 2249 #define SUFFIX 2250 #define ARG1 as 2251 #define ARG1_DECL AddressSpace *as 2252 #include "exec/memory_ldst_phys.h.inc" 2253 2254 struct MemoryRegionCache { 2255 void *ptr; 2256 hwaddr xlat; 2257 hwaddr len; 2258 FlatView *fv; 2259 MemoryRegionSection mrs; 2260 bool is_write; 2261 }; 2262 2263 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2264 2265 2266 /* address_space_ld*_cached: load from a cached #MemoryRegion 2267 * address_space_st*_cached: store into a cached #MemoryRegion 2268 * 2269 * These functions perform a load or store of the byte, word, 2270 * longword or quad to the specified address. The address is 2271 * a physical address in the AddressSpace, but it must lie within 2272 * a #MemoryRegion that was mapped with address_space_cache_init. 2273 * 2274 * The _le suffixed functions treat the data as little endian; 2275 * _be indicates big endian; no suffix indicates "same endianness 2276 * as guest CPU". 2277 * 2278 * The "guest CPU endianness" accessors are deprecated for use outside 2279 * target-* code; devices should be CPU-agnostic and use either the LE 2280 * or the BE accessors. 2281 * 2282 * @cache: previously initialized #MemoryRegionCache to be accessed 2283 * @addr: address within the address space 2284 * @val: data value, for stores 2285 * @attrs: memory transaction attributes 2286 * @result: location to write the success/failure of the transaction; 2287 * if NULL, this information is discarded 2288 */ 2289 2290 #define SUFFIX _cached_slow 2291 #define ARG1 cache 2292 #define ARG1_DECL MemoryRegionCache *cache 2293 #include "exec/memory_ldst.h.inc" 2294 2295 /* Inline fast path for direct RAM access. */ 2296 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2297 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2298 { 2299 assert(addr < cache->len); 2300 if (likely(cache->ptr)) { 2301 return ldub_p(cache->ptr + addr); 2302 } else { 2303 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2304 } 2305 } 2306 2307 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2308 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2309 { 2310 assert(addr < cache->len); 2311 if (likely(cache->ptr)) { 2312 stb_p(cache->ptr + addr, val); 2313 } else { 2314 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2315 } 2316 } 2317 2318 #define ENDIANNESS _le 2319 #include "exec/memory_ldst_cached.h.inc" 2320 2321 #define ENDIANNESS _be 2322 #include "exec/memory_ldst_cached.h.inc" 2323 2324 #define SUFFIX _cached 2325 #define ARG1 cache 2326 #define ARG1_DECL MemoryRegionCache *cache 2327 #include "exec/memory_ldst_phys.h.inc" 2328 2329 /* address_space_cache_init: prepare for repeated access to a physical 2330 * memory region 2331 * 2332 * @cache: #MemoryRegionCache to be filled 2333 * @as: #AddressSpace to be accessed 2334 * @addr: address within that address space 2335 * @len: length of buffer 2336 * @is_write: indicates the transfer direction 2337 * 2338 * Will only work with RAM, and may map a subset of the requested range by 2339 * returning a value that is less than @len. On failure, return a negative 2340 * errno value. 2341 * 2342 * Because it only works with RAM, this function can be used for 2343 * read-modify-write operations. In this case, is_write should be %true. 2344 * 2345 * Note that addresses passed to the address_space_*_cached functions 2346 * are relative to @addr. 2347 */ 2348 int64_t address_space_cache_init(MemoryRegionCache *cache, 2349 AddressSpace *as, 2350 hwaddr addr, 2351 hwaddr len, 2352 bool is_write); 2353 2354 /** 2355 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2356 * 2357 * @cache: The #MemoryRegionCache to operate on. 2358 * @addr: The first physical address that was written, relative to the 2359 * address that was passed to @address_space_cache_init. 2360 * @access_len: The number of bytes that were written starting at @addr. 2361 */ 2362 void address_space_cache_invalidate(MemoryRegionCache *cache, 2363 hwaddr addr, 2364 hwaddr access_len); 2365 2366 /** 2367 * address_space_cache_destroy: free a #MemoryRegionCache 2368 * 2369 * @cache: The #MemoryRegionCache whose memory should be released. 2370 */ 2371 void address_space_cache_destroy(MemoryRegionCache *cache); 2372 2373 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2374 * entry. Should be called from an RCU critical section. 2375 */ 2376 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2377 bool is_write, MemTxAttrs attrs); 2378 2379 /* address_space_translate: translate an address range into an address space 2380 * into a MemoryRegion and an address range into that section. Should be 2381 * called from an RCU critical section, to avoid that the last reference 2382 * to the returned region disappears after address_space_translate returns. 2383 * 2384 * @fv: #FlatView to be accessed 2385 * @addr: address within that address space 2386 * @xlat: pointer to address within the returned memory region section's 2387 * #MemoryRegion. 2388 * @len: pointer to length 2389 * @is_write: indicates the transfer direction 2390 * @attrs: memory attributes 2391 */ 2392 MemoryRegion *flatview_translate(FlatView *fv, 2393 hwaddr addr, hwaddr *xlat, 2394 hwaddr *len, bool is_write, 2395 MemTxAttrs attrs); 2396 2397 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2398 hwaddr addr, hwaddr *xlat, 2399 hwaddr *len, bool is_write, 2400 MemTxAttrs attrs) 2401 { 2402 return flatview_translate(address_space_to_flatview(as), 2403 addr, xlat, len, is_write, attrs); 2404 } 2405 2406 /* address_space_access_valid: check for validity of accessing an address 2407 * space range 2408 * 2409 * Check whether memory is assigned to the given address space range, and 2410 * access is permitted by any IOMMU regions that are active for the address 2411 * space. 2412 * 2413 * For now, addr and len should be aligned to a page size. This limitation 2414 * will be lifted in the future. 2415 * 2416 * @as: #AddressSpace to be accessed 2417 * @addr: address within that address space 2418 * @len: length of the area to be checked 2419 * @is_write: indicates the transfer direction 2420 * @attrs: memory attributes 2421 */ 2422 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2423 bool is_write, MemTxAttrs attrs); 2424 2425 /* address_space_map: map a physical memory region into a host virtual address 2426 * 2427 * May map a subset of the requested range, given by and returned in @plen. 2428 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2429 * the mapping are exhausted. 2430 * Use only for reads OR writes - not for read-modify-write operations. 2431 * Use cpu_register_map_client() to know when retrying the map operation is 2432 * likely to succeed. 2433 * 2434 * @as: #AddressSpace to be accessed 2435 * @addr: address within that address space 2436 * @plen: pointer to length of buffer; updated on return 2437 * @is_write: indicates the transfer direction 2438 * @attrs: memory attributes 2439 */ 2440 void *address_space_map(AddressSpace *as, hwaddr addr, 2441 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2442 2443 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2444 * 2445 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2446 * the amount of memory that was actually read or written by the caller. 2447 * 2448 * @as: #AddressSpace used 2449 * @buffer: host pointer as returned by address_space_map() 2450 * @len: buffer length as returned by address_space_map() 2451 * @access_len: amount of data actually transferred 2452 * @is_write: indicates the transfer direction 2453 */ 2454 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2455 bool is_write, hwaddr access_len); 2456 2457 2458 /* Internal functions, part of the implementation of address_space_read. */ 2459 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2460 MemTxAttrs attrs, void *buf, hwaddr len); 2461 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2462 MemTxAttrs attrs, void *buf, 2463 hwaddr len, hwaddr addr1, hwaddr l, 2464 MemoryRegion *mr); 2465 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2466 2467 /* Internal functions, part of the implementation of address_space_read_cached 2468 * and address_space_write_cached. */ 2469 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2470 hwaddr addr, void *buf, hwaddr len); 2471 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2472 hwaddr addr, const void *buf, 2473 hwaddr len); 2474 2475 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2476 { 2477 if (is_write) { 2478 return memory_region_is_ram(mr) && !mr->readonly && 2479 !mr->rom_device && !memory_region_is_ram_device(mr); 2480 } else { 2481 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2482 memory_region_is_romd(mr); 2483 } 2484 } 2485 2486 /** 2487 * address_space_read: read from an address space. 2488 * 2489 * Return a MemTxResult indicating whether the operation succeeded 2490 * or failed (eg unassigned memory, device rejected the transaction, 2491 * IOMMU fault). Called within RCU critical section. 2492 * 2493 * @as: #AddressSpace to be accessed 2494 * @addr: address within that address space 2495 * @attrs: memory transaction attributes 2496 * @buf: buffer with the data transferred 2497 * @len: length of the data transferred 2498 */ 2499 static inline __attribute__((__always_inline__)) 2500 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2501 MemTxAttrs attrs, void *buf, 2502 hwaddr len) 2503 { 2504 MemTxResult result = MEMTX_OK; 2505 hwaddr l, addr1; 2506 void *ptr; 2507 MemoryRegion *mr; 2508 FlatView *fv; 2509 2510 if (__builtin_constant_p(len)) { 2511 if (len) { 2512 RCU_READ_LOCK_GUARD(); 2513 fv = address_space_to_flatview(as); 2514 l = len; 2515 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2516 if (len == l && memory_access_is_direct(mr, false)) { 2517 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2518 memcpy(buf, ptr, len); 2519 } else { 2520 result = flatview_read_continue(fv, addr, attrs, buf, len, 2521 addr1, l, mr); 2522 } 2523 } 2524 } else { 2525 result = address_space_read_full(as, addr, attrs, buf, len); 2526 } 2527 return result; 2528 } 2529 2530 /** 2531 * address_space_read_cached: read from a cached RAM region 2532 * 2533 * @cache: Cached region to be addressed 2534 * @addr: address relative to the base of the RAM region 2535 * @buf: buffer with the data transferred 2536 * @len: length of the data transferred 2537 */ 2538 static inline MemTxResult 2539 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2540 void *buf, hwaddr len) 2541 { 2542 assert(addr < cache->len && len <= cache->len - addr); 2543 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2544 if (likely(cache->ptr)) { 2545 memcpy(buf, cache->ptr + addr, len); 2546 return MEMTX_OK; 2547 } else { 2548 return address_space_read_cached_slow(cache, addr, buf, len); 2549 } 2550 } 2551 2552 /** 2553 * address_space_write_cached: write to a cached RAM region 2554 * 2555 * @cache: Cached region to be addressed 2556 * @addr: address relative to the base of the RAM region 2557 * @buf: buffer with the data transferred 2558 * @len: length of the data transferred 2559 */ 2560 static inline MemTxResult 2561 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2562 const void *buf, hwaddr len) 2563 { 2564 assert(addr < cache->len && len <= cache->len - addr); 2565 if (likely(cache->ptr)) { 2566 memcpy(cache->ptr + addr, buf, len); 2567 return MEMTX_OK; 2568 } else { 2569 return address_space_write_cached_slow(cache, addr, buf, len); 2570 } 2571 } 2572 2573 #ifdef NEED_CPU_H 2574 /* enum device_endian to MemOp. */ 2575 static inline MemOp devend_memop(enum device_endian end) 2576 { 2577 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2578 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2579 2580 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2581 /* Swap if non-host endianness or native (target) endianness */ 2582 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2583 #else 2584 const int non_host_endianness = 2585 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2586 2587 /* In this case, native (target) endianness needs no swap. */ 2588 return (end == non_host_endianness) ? MO_BSWAP : 0; 2589 #endif 2590 } 2591 #endif 2592 2593 /* 2594 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2595 * to manage the actual amount of memory consumed by the VM (then, the memory 2596 * provided by RAM blocks might be bigger than the desired memory consumption). 2597 * This *must* be set if: 2598 * - Discarding parts of a RAM blocks does not result in the change being 2599 * reflected in the VM and the pages getting freed. 2600 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2601 * discards blindly. 2602 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2603 * encrypted VMs). 2604 * Technologies that only temporarily pin the current working set of a 2605 * driver are fine, because we don't expect such pages to be discarded 2606 * (esp. based on guest action like balloon inflation). 2607 * 2608 * This is *not* to be used to protect from concurrent discards (esp., 2609 * postcopy). 2610 * 2611 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2612 * discards to work reliably is active. 2613 */ 2614 int ram_block_discard_disable(bool state); 2615 2616 /* 2617 * Inhibit technologies that disable discarding of pages in RAM blocks. 2618 * 2619 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2620 * broken. 2621 */ 2622 int ram_block_discard_require(bool state); 2623 2624 /* 2625 * Test if discarding of memory in ram blocks is disabled. 2626 */ 2627 bool ram_block_discard_is_disabled(void); 2628 2629 /* 2630 * Test if discarding of memory in ram blocks is required to work reliably. 2631 */ 2632 bool ram_block_discard_is_required(void); 2633 2634 #endif 2635 2636 #endif 2637