1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #ifdef CONFIG_FUZZ 46 void fuzz_dma_read_cb(size_t addr, 47 size_t len, 48 MemoryRegion *mr); 49 #else 50 static inline void fuzz_dma_read_cb(size_t addr, 51 size_t len, 52 MemoryRegion *mr) 53 { 54 /* Do Nothing */ 55 } 56 #endif 57 58 extern bool global_dirty_log; 59 60 typedef struct MemoryRegionOps MemoryRegionOps; 61 62 struct ReservedRegion { 63 hwaddr low; 64 hwaddr high; 65 unsigned type; 66 }; 67 68 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 69 70 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 71 typedef enum { 72 IOMMU_NONE = 0, 73 IOMMU_RO = 1, 74 IOMMU_WO = 2, 75 IOMMU_RW = 3, 76 } IOMMUAccessFlags; 77 78 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 79 80 struct IOMMUTLBEntry { 81 AddressSpace *target_as; 82 hwaddr iova; 83 hwaddr translated_addr; 84 hwaddr addr_mask; /* 0xfff = 4k translation */ 85 IOMMUAccessFlags perm; 86 }; 87 88 /* 89 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 90 * register with one or multiple IOMMU Notifier capability bit(s). 91 */ 92 typedef enum { 93 IOMMU_NOTIFIER_NONE = 0, 94 /* Notify cache invalidations */ 95 IOMMU_NOTIFIER_UNMAP = 0x1, 96 /* Notify entry changes (newly created entries) */ 97 IOMMU_NOTIFIER_MAP = 0x2, 98 /* Notify changes on device IOTLB entries */ 99 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 100 } IOMMUNotifierFlag; 101 102 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 103 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 104 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 105 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 106 107 struct IOMMUNotifier; 108 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 109 IOMMUTLBEntry *data); 110 111 struct IOMMUNotifier { 112 IOMMUNotify notify; 113 IOMMUNotifierFlag notifier_flags; 114 /* Notify for address space range start <= addr <= end */ 115 hwaddr start; 116 hwaddr end; 117 int iommu_idx; 118 QLIST_ENTRY(IOMMUNotifier) node; 119 }; 120 typedef struct IOMMUNotifier IOMMUNotifier; 121 122 typedef struct IOMMUTLBEvent { 123 IOMMUNotifierFlag type; 124 IOMMUTLBEntry entry; 125 } IOMMUTLBEvent; 126 127 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 128 #define RAM_PREALLOC (1 << 0) 129 130 /* RAM is mmap-ed with MAP_SHARED */ 131 #define RAM_SHARED (1 << 1) 132 133 /* Only a portion of RAM (used_length) is actually used, and migrated. 134 * Resizing RAM while migrating can result in the migration being canceled. 135 */ 136 #define RAM_RESIZEABLE (1 << 2) 137 138 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 139 * zero the page and wake waiting processes. 140 * (Set during postcopy) 141 */ 142 #define RAM_UF_ZEROPAGE (1 << 3) 143 144 /* RAM can be migrated */ 145 #define RAM_MIGRATABLE (1 << 4) 146 147 /* RAM is a persistent kind memory */ 148 #define RAM_PMEM (1 << 5) 149 150 151 /* 152 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 153 * support 'write-tracking' migration type. 154 * Implies ram_state->ram_wt_enabled. 155 */ 156 #define RAM_UF_WRITEPROTECT (1 << 6) 157 158 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 159 IOMMUNotifierFlag flags, 160 hwaddr start, hwaddr end, 161 int iommu_idx) 162 { 163 n->notify = fn; 164 n->notifier_flags = flags; 165 n->start = start; 166 n->end = end; 167 n->iommu_idx = iommu_idx; 168 } 169 170 /* 171 * Memory region callbacks 172 */ 173 struct MemoryRegionOps { 174 /* Read from the memory region. @addr is relative to @mr; @size is 175 * in bytes. */ 176 uint64_t (*read)(void *opaque, 177 hwaddr addr, 178 unsigned size); 179 /* Write to the memory region. @addr is relative to @mr; @size is 180 * in bytes. */ 181 void (*write)(void *opaque, 182 hwaddr addr, 183 uint64_t data, 184 unsigned size); 185 186 MemTxResult (*read_with_attrs)(void *opaque, 187 hwaddr addr, 188 uint64_t *data, 189 unsigned size, 190 MemTxAttrs attrs); 191 MemTxResult (*write_with_attrs)(void *opaque, 192 hwaddr addr, 193 uint64_t data, 194 unsigned size, 195 MemTxAttrs attrs); 196 197 enum device_endian endianness; 198 /* Guest-visible constraints: */ 199 struct { 200 /* If nonzero, specify bounds on access sizes beyond which a machine 201 * check is thrown. 202 */ 203 unsigned min_access_size; 204 unsigned max_access_size; 205 /* If true, unaligned accesses are supported. Otherwise unaligned 206 * accesses throw machine checks. 207 */ 208 bool unaligned; 209 /* 210 * If present, and returns #false, the transaction is not accepted 211 * by the device (and results in machine dependent behaviour such 212 * as a machine check exception). 213 */ 214 bool (*accepts)(void *opaque, hwaddr addr, 215 unsigned size, bool is_write, 216 MemTxAttrs attrs); 217 } valid; 218 /* Internal implementation constraints: */ 219 struct { 220 /* If nonzero, specifies the minimum size implemented. Smaller sizes 221 * will be rounded upwards and a partial result will be returned. 222 */ 223 unsigned min_access_size; 224 /* If nonzero, specifies the maximum size implemented. Larger sizes 225 * will be done as a series of accesses with smaller sizes. 226 */ 227 unsigned max_access_size; 228 /* If true, unaligned accesses are supported. Otherwise all accesses 229 * are converted to (possibly multiple) naturally aligned accesses. 230 */ 231 bool unaligned; 232 } impl; 233 }; 234 235 typedef struct MemoryRegionClass { 236 /* private */ 237 ObjectClass parent_class; 238 } MemoryRegionClass; 239 240 241 enum IOMMUMemoryRegionAttr { 242 IOMMU_ATTR_SPAPR_TCE_FD 243 }; 244 245 /* 246 * IOMMUMemoryRegionClass: 247 * 248 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 249 * and provide an implementation of at least the @translate method here 250 * to handle requests to the memory region. Other methods are optional. 251 * 252 * The IOMMU implementation must use the IOMMU notifier infrastructure 253 * to report whenever mappings are changed, by calling 254 * memory_region_notify_iommu() (or, if necessary, by calling 255 * memory_region_notify_iommu_one() for each registered notifier). 256 * 257 * Conceptually an IOMMU provides a mapping from input address 258 * to an output TLB entry. If the IOMMU is aware of memory transaction 259 * attributes and the output TLB entry depends on the transaction 260 * attributes, we represent this using IOMMU indexes. Each index 261 * selects a particular translation table that the IOMMU has: 262 * 263 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 264 * 265 * @translate takes an input address and an IOMMU index 266 * 267 * and the mapping returned can only depend on the input address and the 268 * IOMMU index. 269 * 270 * Most IOMMUs don't care about the transaction attributes and support 271 * only a single IOMMU index. A more complex IOMMU might have one index 272 * for secure transactions and one for non-secure transactions. 273 */ 274 struct IOMMUMemoryRegionClass { 275 /* private: */ 276 MemoryRegionClass parent_class; 277 278 /* public: */ 279 /** 280 * @translate: 281 * 282 * Return a TLB entry that contains a given address. 283 * 284 * The IOMMUAccessFlags indicated via @flag are optional and may 285 * be specified as IOMMU_NONE to indicate that the caller needs 286 * the full translation information for both reads and writes. If 287 * the access flags are specified then the IOMMU implementation 288 * may use this as an optimization, to stop doing a page table 289 * walk as soon as it knows that the requested permissions are not 290 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 291 * full page table walk and report the permissions in the returned 292 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 293 * return different mappings for reads and writes.) 294 * 295 * The returned information remains valid while the caller is 296 * holding the big QEMU lock or is inside an RCU critical section; 297 * if the caller wishes to cache the mapping beyond that it must 298 * register an IOMMU notifier so it can invalidate its cached 299 * information when the IOMMU mapping changes. 300 * 301 * @iommu: the IOMMUMemoryRegion 302 * 303 * @hwaddr: address to be translated within the memory region 304 * 305 * @flag: requested access permission 306 * 307 * @iommu_idx: IOMMU index for the translation 308 */ 309 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 310 IOMMUAccessFlags flag, int iommu_idx); 311 /** 312 * @get_min_page_size: 313 * 314 * Returns minimum supported page size in bytes. 315 * 316 * If this method is not provided then the minimum is assumed to 317 * be TARGET_PAGE_SIZE. 318 * 319 * @iommu: the IOMMUMemoryRegion 320 */ 321 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 322 /** 323 * @notify_flag_changed: 324 * 325 * Called when IOMMU Notifier flag changes (ie when the set of 326 * events which IOMMU users are requesting notification for changes). 327 * Optional method -- need not be provided if the IOMMU does not 328 * need to know exactly which events must be notified. 329 * 330 * @iommu: the IOMMUMemoryRegion 331 * 332 * @old_flags: events which previously needed to be notified 333 * 334 * @new_flags: events which now need to be notified 335 * 336 * Returns 0 on success, or a negative errno; in particular 337 * returns -EINVAL if the new flag bitmap is not supported by the 338 * IOMMU memory region. In case of failure, the error object 339 * must be created 340 */ 341 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 342 IOMMUNotifierFlag old_flags, 343 IOMMUNotifierFlag new_flags, 344 Error **errp); 345 /** 346 * @replay: 347 * 348 * Called to handle memory_region_iommu_replay(). 349 * 350 * The default implementation of memory_region_iommu_replay() is to 351 * call the IOMMU translate method for every page in the address space 352 * with flag == IOMMU_NONE and then call the notifier if translate 353 * returns a valid mapping. If this method is implemented then it 354 * overrides the default behaviour, and must provide the full semantics 355 * of memory_region_iommu_replay(), by calling @notifier for every 356 * translation present in the IOMMU. 357 * 358 * Optional method -- an IOMMU only needs to provide this method 359 * if the default is inefficient or produces undesirable side effects. 360 * 361 * Note: this is not related to record-and-replay functionality. 362 */ 363 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 364 365 /** 366 * @get_attr: 367 * 368 * Get IOMMU misc attributes. This is an optional method that 369 * can be used to allow users of the IOMMU to get implementation-specific 370 * information. The IOMMU implements this method to handle calls 371 * by IOMMU users to memory_region_iommu_get_attr() by filling in 372 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 373 * the IOMMU supports. If the method is unimplemented then 374 * memory_region_iommu_get_attr() will always return -EINVAL. 375 * 376 * @iommu: the IOMMUMemoryRegion 377 * 378 * @attr: attribute being queried 379 * 380 * @data: memory to fill in with the attribute data 381 * 382 * Returns 0 on success, or a negative errno; in particular 383 * returns -EINVAL for unrecognized or unimplemented attribute types. 384 */ 385 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 386 void *data); 387 388 /** 389 * @attrs_to_index: 390 * 391 * Return the IOMMU index to use for a given set of transaction attributes. 392 * 393 * Optional method: if an IOMMU only supports a single IOMMU index then 394 * the default implementation of memory_region_iommu_attrs_to_index() 395 * will return 0. 396 * 397 * The indexes supported by an IOMMU must be contiguous, starting at 0. 398 * 399 * @iommu: the IOMMUMemoryRegion 400 * @attrs: memory transaction attributes 401 */ 402 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 403 404 /** 405 * @num_indexes: 406 * 407 * Return the number of IOMMU indexes this IOMMU supports. 408 * 409 * Optional method: if this method is not provided, then 410 * memory_region_iommu_num_indexes() will return 1, indicating that 411 * only a single IOMMU index is supported. 412 * 413 * @iommu: the IOMMUMemoryRegion 414 */ 415 int (*num_indexes)(IOMMUMemoryRegion *iommu); 416 417 /** 418 * @iommu_set_page_size_mask: 419 * 420 * Restrict the page size mask that can be supported with a given IOMMU 421 * memory region. Used for example to propagate host physical IOMMU page 422 * size mask limitations to the virtual IOMMU. 423 * 424 * Optional method: if this method is not provided, then the default global 425 * page mask is used. 426 * 427 * @iommu: the IOMMUMemoryRegion 428 * 429 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 430 * representing the smallest page size, must be set. Additional set bits 431 * represent supported block sizes. For example a host physical IOMMU that 432 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 433 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 434 * block sizes is specified with mask 0xfffffffffffff000. 435 * 436 * Returns 0 on success, or a negative error. In case of failure, the error 437 * object must be created. 438 */ 439 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 440 uint64_t page_size_mask, 441 Error **errp); 442 }; 443 444 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 445 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 446 447 /** MemoryRegion: 448 * 449 * A struct representing a memory region. 450 */ 451 struct MemoryRegion { 452 Object parent_obj; 453 454 /* private: */ 455 456 /* The following fields should fit in a cache line */ 457 bool romd_mode; 458 bool ram; 459 bool subpage; 460 bool readonly; /* For RAM regions */ 461 bool nonvolatile; 462 bool rom_device; 463 bool flush_coalesced_mmio; 464 uint8_t dirty_log_mask; 465 bool is_iommu; 466 RAMBlock *ram_block; 467 Object *owner; 468 469 const MemoryRegionOps *ops; 470 void *opaque; 471 MemoryRegion *container; 472 Int128 size; 473 hwaddr addr; 474 void (*destructor)(MemoryRegion *mr); 475 uint64_t align; 476 bool terminates; 477 bool ram_device; 478 bool enabled; 479 bool warning_printed; /* For reservations */ 480 uint8_t vga_logging_count; 481 MemoryRegion *alias; 482 hwaddr alias_offset; 483 int32_t priority; 484 QTAILQ_HEAD(, MemoryRegion) subregions; 485 QTAILQ_ENTRY(MemoryRegion) subregions_link; 486 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 487 const char *name; 488 unsigned ioeventfd_nb; 489 MemoryRegionIoeventfd *ioeventfds; 490 }; 491 492 struct IOMMUMemoryRegion { 493 MemoryRegion parent_obj; 494 495 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 496 IOMMUNotifierFlag iommu_notify_flags; 497 }; 498 499 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 500 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 501 502 /** 503 * struct MemoryListener: callbacks structure for updates to the physical memory map 504 * 505 * Allows a component to adjust to changes in the guest-visible memory map. 506 * Use with memory_listener_register() and memory_listener_unregister(). 507 */ 508 struct MemoryListener { 509 /** 510 * @begin: 511 * 512 * Called at the beginning of an address space update transaction. 513 * Followed by calls to #MemoryListener.region_add(), 514 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 515 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 516 * increasing address order. 517 * 518 * @listener: The #MemoryListener. 519 */ 520 void (*begin)(MemoryListener *listener); 521 522 /** 523 * @commit: 524 * 525 * Called at the end of an address space update transaction, 526 * after the last call to #MemoryListener.region_add(), 527 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 528 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 529 * 530 * @listener: The #MemoryListener. 531 */ 532 void (*commit)(MemoryListener *listener); 533 534 /** 535 * @region_add: 536 * 537 * Called during an address space update transaction, 538 * for a section of the address space that is new in this address space 539 * space since the last transaction. 540 * 541 * @listener: The #MemoryListener. 542 * @section: The new #MemoryRegionSection. 543 */ 544 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 545 546 /** 547 * @region_del: 548 * 549 * Called during an address space update transaction, 550 * for a section of the address space that has disappeared in the address 551 * space since the last transaction. 552 * 553 * @listener: The #MemoryListener. 554 * @section: The old #MemoryRegionSection. 555 */ 556 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 557 558 /** 559 * @region_nop: 560 * 561 * Called during an address space update transaction, 562 * for a section of the address space that is in the same place in the address 563 * space as in the last transaction. 564 * 565 * @listener: The #MemoryListener. 566 * @section: The #MemoryRegionSection. 567 */ 568 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 569 570 /** 571 * @log_start: 572 * 573 * Called during an address space update transaction, after 574 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or 575 * #MemoryListener.region_nop(), if dirty memory logging clients have 576 * become active since the last transaction. 577 * 578 * @listener: The #MemoryListener. 579 * @section: The #MemoryRegionSection. 580 * @old: A bitmap of dirty memory logging clients that were active in 581 * the previous transaction. 582 * @new: A bitmap of dirty memory logging clients that are active in 583 * the current transaction. 584 */ 585 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 586 int old, int new); 587 588 /** 589 * @log_stop: 590 * 591 * Called during an address space update transaction, after 592 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 593 * #MemoryListener.region_nop() and possibly after 594 * #MemoryListener.log_start(), if dirty memory logging clients have 595 * become inactive since the last transaction. 596 * 597 * @listener: The #MemoryListener. 598 * @section: The #MemoryRegionSection. 599 * @old: A bitmap of dirty memory logging clients that were active in 600 * the previous transaction. 601 * @new: A bitmap of dirty memory logging clients that are active in 602 * the current transaction. 603 */ 604 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 605 int old, int new); 606 607 /** 608 * @log_sync: 609 * 610 * Called by memory_region_snapshot_and_clear_dirty() and 611 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 612 * copy of the dirty memory bitmap for a #MemoryRegionSection. 613 * 614 * @listener: The #MemoryListener. 615 * @section: The #MemoryRegionSection. 616 */ 617 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 618 619 /** 620 * @log_sync_global: 621 * 622 * This is the global version of @log_sync when the listener does 623 * not have a way to synchronize the log with finer granularity. 624 * When the listener registers with @log_sync_global defined, then 625 * its @log_sync must be NULL. Vice versa. 626 * 627 * @listener: The #MemoryListener. 628 */ 629 void (*log_sync_global)(MemoryListener *listener); 630 631 /** 632 * @log_clear: 633 * 634 * Called before reading the dirty memory bitmap for a 635 * #MemoryRegionSection. 636 * 637 * @listener: The #MemoryListener. 638 * @section: The #MemoryRegionSection. 639 */ 640 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 641 642 /** 643 * @log_global_start: 644 * 645 * Called by memory_global_dirty_log_start(), which 646 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 647 * the address space. #MemoryListener.log_global_start() is also 648 * called when a #MemoryListener is added, if global dirty logging is 649 * active at that time. 650 * 651 * @listener: The #MemoryListener. 652 */ 653 void (*log_global_start)(MemoryListener *listener); 654 655 /** 656 * @log_global_stop: 657 * 658 * Called by memory_global_dirty_log_stop(), which 659 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 660 * the address space. 661 * 662 * @listener: The #MemoryListener. 663 */ 664 void (*log_global_stop)(MemoryListener *listener); 665 666 /** 667 * @log_global_after_sync: 668 * 669 * Called after reading the dirty memory bitmap 670 * for any #MemoryRegionSection. 671 * 672 * @listener: The #MemoryListener. 673 */ 674 void (*log_global_after_sync)(MemoryListener *listener); 675 676 /** 677 * @eventfd_add: 678 * 679 * Called during an address space update transaction, 680 * for a section of the address space that has had a new ioeventfd 681 * registration since the last transaction. 682 * 683 * @listener: The #MemoryListener. 684 * @section: The new #MemoryRegionSection. 685 * @match_data: The @match_data parameter for the new ioeventfd. 686 * @data: The @data parameter for the new ioeventfd. 687 * @e: The #EventNotifier parameter for the new ioeventfd. 688 */ 689 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 690 bool match_data, uint64_t data, EventNotifier *e); 691 692 /** 693 * @eventfd_del: 694 * 695 * Called during an address space update transaction, 696 * for a section of the address space that has dropped an ioeventfd 697 * registration since the last transaction. 698 * 699 * @listener: The #MemoryListener. 700 * @section: The new #MemoryRegionSection. 701 * @match_data: The @match_data parameter for the dropped ioeventfd. 702 * @data: The @data parameter for the dropped ioeventfd. 703 * @e: The #EventNotifier parameter for the dropped ioeventfd. 704 */ 705 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 706 bool match_data, uint64_t data, EventNotifier *e); 707 708 /** 709 * @coalesced_io_add: 710 * 711 * Called during an address space update transaction, 712 * for a section of the address space that has had a new coalesced 713 * MMIO range registration since the last transaction. 714 * 715 * @listener: The #MemoryListener. 716 * @section: The new #MemoryRegionSection. 717 * @addr: The starting address for the coalesced MMIO range. 718 * @len: The length of the coalesced MMIO range. 719 */ 720 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 721 hwaddr addr, hwaddr len); 722 723 /** 724 * @coalesced_io_del: 725 * 726 * Called during an address space update transaction, 727 * for a section of the address space that has dropped a coalesced 728 * MMIO range since the last transaction. 729 * 730 * @listener: The #MemoryListener. 731 * @section: The new #MemoryRegionSection. 732 * @addr: The starting address for the coalesced MMIO range. 733 * @len: The length of the coalesced MMIO range. 734 */ 735 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 736 hwaddr addr, hwaddr len); 737 /** 738 * @priority: 739 * 740 * Govern the order in which memory listeners are invoked. Lower priorities 741 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 742 * or "stop" callbacks. 743 */ 744 unsigned priority; 745 746 /* private: */ 747 AddressSpace *address_space; 748 QTAILQ_ENTRY(MemoryListener) link; 749 QTAILQ_ENTRY(MemoryListener) link_as; 750 }; 751 752 /** 753 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 754 */ 755 struct AddressSpace { 756 /* private: */ 757 struct rcu_head rcu; 758 char *name; 759 MemoryRegion *root; 760 761 /* Accessed via RCU. */ 762 struct FlatView *current_map; 763 764 int ioeventfd_nb; 765 struct MemoryRegionIoeventfd *ioeventfds; 766 QTAILQ_HEAD(, MemoryListener) listeners; 767 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 768 }; 769 770 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 771 typedef struct FlatRange FlatRange; 772 773 /* Flattened global view of current active memory hierarchy. Kept in sorted 774 * order. 775 */ 776 struct FlatView { 777 struct rcu_head rcu; 778 unsigned ref; 779 FlatRange *ranges; 780 unsigned nr; 781 unsigned nr_allocated; 782 struct AddressSpaceDispatch *dispatch; 783 MemoryRegion *root; 784 }; 785 786 static inline FlatView *address_space_to_flatview(AddressSpace *as) 787 { 788 return qatomic_rcu_read(&as->current_map); 789 } 790 791 /** 792 * typedef flatview_cb: callback for flatview_for_each_range() 793 * 794 * @start: start address of the range within the FlatView 795 * @len: length of the range in bytes 796 * @mr: MemoryRegion covering this range 797 * @offset_in_region: offset of the first byte of the range within @mr 798 * @opaque: data pointer passed to flatview_for_each_range() 799 * 800 * Returns: true to stop the iteration, false to keep going. 801 */ 802 typedef bool (*flatview_cb)(Int128 start, 803 Int128 len, 804 const MemoryRegion *mr, 805 hwaddr offset_in_region, 806 void *opaque); 807 808 /** 809 * flatview_for_each_range: Iterate through a FlatView 810 * @fv: the FlatView to iterate through 811 * @cb: function to call for each range 812 * @opaque: opaque data pointer to pass to @cb 813 * 814 * A FlatView is made up of a list of non-overlapping ranges, each of 815 * which is a slice of a MemoryRegion. This function iterates through 816 * each range in @fv, calling @cb. The callback function can terminate 817 * iteration early by returning 'true'. 818 */ 819 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 820 821 /** 822 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 823 * 824 * @mr: the region, or %NULL if empty 825 * @fv: the flat view of the address space the region is mapped in 826 * @offset_within_region: the beginning of the section, relative to @mr's start 827 * @size: the size of the section; will not exceed @mr's boundaries 828 * @offset_within_address_space: the address of the first byte of the section 829 * relative to the region's address space 830 * @readonly: writes to this section are ignored 831 * @nonvolatile: this section is non-volatile 832 */ 833 struct MemoryRegionSection { 834 Int128 size; 835 MemoryRegion *mr; 836 FlatView *fv; 837 hwaddr offset_within_region; 838 hwaddr offset_within_address_space; 839 bool readonly; 840 bool nonvolatile; 841 }; 842 843 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 844 MemoryRegionSection *b) 845 { 846 return a->mr == b->mr && 847 a->fv == b->fv && 848 a->offset_within_region == b->offset_within_region && 849 a->offset_within_address_space == b->offset_within_address_space && 850 int128_eq(a->size, b->size) && 851 a->readonly == b->readonly && 852 a->nonvolatile == b->nonvolatile; 853 } 854 855 /** 856 * memory_region_init: Initialize a memory region 857 * 858 * The region typically acts as a container for other memory regions. Use 859 * memory_region_add_subregion() to add subregions. 860 * 861 * @mr: the #MemoryRegion to be initialized 862 * @owner: the object that tracks the region's reference count 863 * @name: used for debugging; not visible to the user or ABI 864 * @size: size of the region; any subregions beyond this size will be clipped 865 */ 866 void memory_region_init(MemoryRegion *mr, 867 Object *owner, 868 const char *name, 869 uint64_t size); 870 871 /** 872 * memory_region_ref: Add 1 to a memory region's reference count 873 * 874 * Whenever memory regions are accessed outside the BQL, they need to be 875 * preserved against hot-unplug. MemoryRegions actually do not have their 876 * own reference count; they piggyback on a QOM object, their "owner". 877 * This function adds a reference to the owner. 878 * 879 * All MemoryRegions must have an owner if they can disappear, even if the 880 * device they belong to operates exclusively under the BQL. This is because 881 * the region could be returned at any time by memory_region_find, and this 882 * is usually under guest control. 883 * 884 * @mr: the #MemoryRegion 885 */ 886 void memory_region_ref(MemoryRegion *mr); 887 888 /** 889 * memory_region_unref: Remove 1 to a memory region's reference count 890 * 891 * Whenever memory regions are accessed outside the BQL, they need to be 892 * preserved against hot-unplug. MemoryRegions actually do not have their 893 * own reference count; they piggyback on a QOM object, their "owner". 894 * This function removes a reference to the owner and possibly destroys it. 895 * 896 * @mr: the #MemoryRegion 897 */ 898 void memory_region_unref(MemoryRegion *mr); 899 900 /** 901 * memory_region_init_io: Initialize an I/O memory region. 902 * 903 * Accesses into the region will cause the callbacks in @ops to be called. 904 * if @size is nonzero, subregions will be clipped to @size. 905 * 906 * @mr: the #MemoryRegion to be initialized. 907 * @owner: the object that tracks the region's reference count 908 * @ops: a structure containing read and write callbacks to be used when 909 * I/O is performed on the region. 910 * @opaque: passed to the read and write callbacks of the @ops structure. 911 * @name: used for debugging; not visible to the user or ABI 912 * @size: size of the region. 913 */ 914 void memory_region_init_io(MemoryRegion *mr, 915 Object *owner, 916 const MemoryRegionOps *ops, 917 void *opaque, 918 const char *name, 919 uint64_t size); 920 921 /** 922 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 923 * into the region will modify memory 924 * directly. 925 * 926 * @mr: the #MemoryRegion to be initialized. 927 * @owner: the object that tracks the region's reference count 928 * @name: Region name, becomes part of RAMBlock name used in migration stream 929 * must be unique within any device 930 * @size: size of the region. 931 * @errp: pointer to Error*, to store an error if it happens. 932 * 933 * Note that this function does not do anything to cause the data in the 934 * RAM memory region to be migrated; that is the responsibility of the caller. 935 */ 936 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 937 Object *owner, 938 const char *name, 939 uint64_t size, 940 Error **errp); 941 942 /** 943 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 944 * Accesses into the region will 945 * modify memory directly. 946 * 947 * @mr: the #MemoryRegion to be initialized. 948 * @owner: the object that tracks the region's reference count 949 * @name: Region name, becomes part of RAMBlock name used in migration stream 950 * must be unique within any device 951 * @size: size of the region. 952 * @share: allow remapping RAM to different addresses 953 * @errp: pointer to Error*, to store an error if it happens. 954 * 955 * Note that this function is similar to memory_region_init_ram_nomigrate. 956 * The only difference is part of the RAM region can be remapped. 957 */ 958 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 959 Object *owner, 960 const char *name, 961 uint64_t size, 962 bool share, 963 Error **errp); 964 965 /** 966 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 967 * RAM. Accesses into the region will 968 * modify memory directly. Only an initial 969 * portion of this RAM is actually used. 970 * Changing the size while migrating 971 * can result in the migration being 972 * canceled. 973 * 974 * @mr: the #MemoryRegion to be initialized. 975 * @owner: the object that tracks the region's reference count 976 * @name: Region name, becomes part of RAMBlock name used in migration stream 977 * must be unique within any device 978 * @size: used size of the region. 979 * @max_size: max size of the region. 980 * @resized: callback to notify owner about used size change. 981 * @errp: pointer to Error*, to store an error if it happens. 982 * 983 * Note that this function does not do anything to cause the data in the 984 * RAM memory region to be migrated; that is the responsibility of the caller. 985 */ 986 void memory_region_init_resizeable_ram(MemoryRegion *mr, 987 Object *owner, 988 const char *name, 989 uint64_t size, 990 uint64_t max_size, 991 void (*resized)(const char*, 992 uint64_t length, 993 void *host), 994 Error **errp); 995 #ifdef CONFIG_POSIX 996 997 /** 998 * memory_region_init_ram_from_file: Initialize RAM memory region with a 999 * mmap-ed backend. 1000 * 1001 * @mr: the #MemoryRegion to be initialized. 1002 * @owner: the object that tracks the region's reference count 1003 * @name: Region name, becomes part of RAMBlock name used in migration stream 1004 * must be unique within any device 1005 * @size: size of the region. 1006 * @align: alignment of the region base address; if 0, the default alignment 1007 * (getpagesize()) will be used. 1008 * @ram_flags: Memory region features: 1009 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 1010 * - RAM_PMEM: the memory is persistent memory 1011 * Other bits are ignored now. 1012 * @path: the path in which to allocate the RAM. 1013 * @readonly: true to open @path for reading, false for read/write. 1014 * @errp: pointer to Error*, to store an error if it happens. 1015 * 1016 * Note that this function does not do anything to cause the data in the 1017 * RAM memory region to be migrated; that is the responsibility of the caller. 1018 */ 1019 void memory_region_init_ram_from_file(MemoryRegion *mr, 1020 Object *owner, 1021 const char *name, 1022 uint64_t size, 1023 uint64_t align, 1024 uint32_t ram_flags, 1025 const char *path, 1026 bool readonly, 1027 Error **errp); 1028 1029 /** 1030 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1031 * mmap-ed backend. 1032 * 1033 * @mr: the #MemoryRegion to be initialized. 1034 * @owner: the object that tracks the region's reference count 1035 * @name: the name of the region. 1036 * @size: size of the region. 1037 * @share: %true if memory must be mmaped with the MAP_SHARED flag 1038 * @fd: the fd to mmap. 1039 * @offset: offset within the file referenced by fd 1040 * @errp: pointer to Error*, to store an error if it happens. 1041 * 1042 * Note that this function does not do anything to cause the data in the 1043 * RAM memory region to be migrated; that is the responsibility of the caller. 1044 */ 1045 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1046 Object *owner, 1047 const char *name, 1048 uint64_t size, 1049 bool share, 1050 int fd, 1051 ram_addr_t offset, 1052 Error **errp); 1053 #endif 1054 1055 /** 1056 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1057 * user-provided pointer. Accesses into the 1058 * region will modify memory directly. 1059 * 1060 * @mr: the #MemoryRegion to be initialized. 1061 * @owner: the object that tracks the region's reference count 1062 * @name: Region name, becomes part of RAMBlock name used in migration stream 1063 * must be unique within any device 1064 * @size: size of the region. 1065 * @ptr: memory to be mapped; must contain at least @size bytes. 1066 * 1067 * Note that this function does not do anything to cause the data in the 1068 * RAM memory region to be migrated; that is the responsibility of the caller. 1069 */ 1070 void memory_region_init_ram_ptr(MemoryRegion *mr, 1071 Object *owner, 1072 const char *name, 1073 uint64_t size, 1074 void *ptr); 1075 1076 /** 1077 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1078 * a user-provided pointer. 1079 * 1080 * A RAM device represents a mapping to a physical device, such as to a PCI 1081 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1082 * into the VM address space and access to the region will modify memory 1083 * directly. However, the memory region should not be included in a memory 1084 * dump (device may not be enabled/mapped at the time of the dump), and 1085 * operations incompatible with manipulating MMIO should be avoided. Replaces 1086 * skip_dump flag. 1087 * 1088 * @mr: the #MemoryRegion to be initialized. 1089 * @owner: the object that tracks the region's reference count 1090 * @name: the name of the region. 1091 * @size: size of the region. 1092 * @ptr: memory to be mapped; must contain at least @size bytes. 1093 * 1094 * Note that this function does not do anything to cause the data in the 1095 * RAM memory region to be migrated; that is the responsibility of the caller. 1096 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1097 */ 1098 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1099 Object *owner, 1100 const char *name, 1101 uint64_t size, 1102 void *ptr); 1103 1104 /** 1105 * memory_region_init_alias: Initialize a memory region that aliases all or a 1106 * part of another memory region. 1107 * 1108 * @mr: the #MemoryRegion to be initialized. 1109 * @owner: the object that tracks the region's reference count 1110 * @name: used for debugging; not visible to the user or ABI 1111 * @orig: the region to be referenced; @mr will be equivalent to 1112 * @orig between @offset and @offset + @size - 1. 1113 * @offset: start of the section in @orig to be referenced. 1114 * @size: size of the region. 1115 */ 1116 void memory_region_init_alias(MemoryRegion *mr, 1117 Object *owner, 1118 const char *name, 1119 MemoryRegion *orig, 1120 hwaddr offset, 1121 uint64_t size); 1122 1123 /** 1124 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1125 * 1126 * This has the same effect as calling memory_region_init_ram_nomigrate() 1127 * and then marking the resulting region read-only with 1128 * memory_region_set_readonly(). 1129 * 1130 * Note that this function does not do anything to cause the data in the 1131 * RAM side of the memory region to be migrated; that is the responsibility 1132 * of the caller. 1133 * 1134 * @mr: the #MemoryRegion to be initialized. 1135 * @owner: the object that tracks the region's reference count 1136 * @name: Region name, becomes part of RAMBlock name used in migration stream 1137 * must be unique within any device 1138 * @size: size of the region. 1139 * @errp: pointer to Error*, to store an error if it happens. 1140 */ 1141 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1142 Object *owner, 1143 const char *name, 1144 uint64_t size, 1145 Error **errp); 1146 1147 /** 1148 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1149 * Writes are handled via callbacks. 1150 * 1151 * Note that this function does not do anything to cause the data in the 1152 * RAM side of the memory region to be migrated; that is the responsibility 1153 * of the caller. 1154 * 1155 * @mr: the #MemoryRegion to be initialized. 1156 * @owner: the object that tracks the region's reference count 1157 * @ops: callbacks for write access handling (must not be NULL). 1158 * @opaque: passed to the read and write callbacks of the @ops structure. 1159 * @name: Region name, becomes part of RAMBlock name used in migration stream 1160 * must be unique within any device 1161 * @size: size of the region. 1162 * @errp: pointer to Error*, to store an error if it happens. 1163 */ 1164 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1165 Object *owner, 1166 const MemoryRegionOps *ops, 1167 void *opaque, 1168 const char *name, 1169 uint64_t size, 1170 Error **errp); 1171 1172 /** 1173 * memory_region_init_iommu: Initialize a memory region of a custom type 1174 * that translates addresses 1175 * 1176 * An IOMMU region translates addresses and forwards accesses to a target 1177 * memory region. 1178 * 1179 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1180 * @_iommu_mr should be a pointer to enough memory for an instance of 1181 * that subclass, @instance_size is the size of that subclass, and 1182 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1183 * instance of the subclass, and its methods will then be called to handle 1184 * accesses to the memory region. See the documentation of 1185 * #IOMMUMemoryRegionClass for further details. 1186 * 1187 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1188 * @instance_size: the IOMMUMemoryRegion subclass instance size 1189 * @mrtypename: the type name of the #IOMMUMemoryRegion 1190 * @owner: the object that tracks the region's reference count 1191 * @name: used for debugging; not visible to the user or ABI 1192 * @size: size of the region. 1193 */ 1194 void memory_region_init_iommu(void *_iommu_mr, 1195 size_t instance_size, 1196 const char *mrtypename, 1197 Object *owner, 1198 const char *name, 1199 uint64_t size); 1200 1201 /** 1202 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1203 * region will modify memory directly. 1204 * 1205 * @mr: the #MemoryRegion to be initialized 1206 * @owner: the object that tracks the region's reference count (must be 1207 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1208 * @name: name of the memory region 1209 * @size: size of the region in bytes 1210 * @errp: pointer to Error*, to store an error if it happens. 1211 * 1212 * This function allocates RAM for a board model or device, and 1213 * arranges for it to be migrated (by calling vmstate_register_ram() 1214 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1215 * @owner is NULL). 1216 * 1217 * TODO: Currently we restrict @owner to being either NULL (for 1218 * global RAM regions with no owner) or devices, so that we can 1219 * give the RAM block a unique name for migration purposes. 1220 * We should lift this restriction and allow arbitrary Objects. 1221 * If you pass a non-NULL non-device @owner then we will assert. 1222 */ 1223 void memory_region_init_ram(MemoryRegion *mr, 1224 Object *owner, 1225 const char *name, 1226 uint64_t size, 1227 Error **errp); 1228 1229 /** 1230 * memory_region_init_rom: Initialize a ROM memory region. 1231 * 1232 * This has the same effect as calling memory_region_init_ram() 1233 * and then marking the resulting region read-only with 1234 * memory_region_set_readonly(). This includes arranging for the 1235 * contents to be migrated. 1236 * 1237 * TODO: Currently we restrict @owner to being either NULL (for 1238 * global RAM regions with no owner) or devices, so that we can 1239 * give the RAM block a unique name for migration purposes. 1240 * We should lift this restriction and allow arbitrary Objects. 1241 * If you pass a non-NULL non-device @owner then we will assert. 1242 * 1243 * @mr: the #MemoryRegion to be initialized. 1244 * @owner: the object that tracks the region's reference count 1245 * @name: Region name, becomes part of RAMBlock name used in migration stream 1246 * must be unique within any device 1247 * @size: size of the region. 1248 * @errp: pointer to Error*, to store an error if it happens. 1249 */ 1250 void memory_region_init_rom(MemoryRegion *mr, 1251 Object *owner, 1252 const char *name, 1253 uint64_t size, 1254 Error **errp); 1255 1256 /** 1257 * memory_region_init_rom_device: Initialize a ROM memory region. 1258 * Writes are handled via callbacks. 1259 * 1260 * This function initializes a memory region backed by RAM for reads 1261 * and callbacks for writes, and arranges for the RAM backing to 1262 * be migrated (by calling vmstate_register_ram() 1263 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1264 * @owner is NULL). 1265 * 1266 * TODO: Currently we restrict @owner to being either NULL (for 1267 * global RAM regions with no owner) or devices, so that we can 1268 * give the RAM block a unique name for migration purposes. 1269 * We should lift this restriction and allow arbitrary Objects. 1270 * If you pass a non-NULL non-device @owner then we will assert. 1271 * 1272 * @mr: the #MemoryRegion to be initialized. 1273 * @owner: the object that tracks the region's reference count 1274 * @ops: callbacks for write access handling (must not be NULL). 1275 * @opaque: passed to the read and write callbacks of the @ops structure. 1276 * @name: Region name, becomes part of RAMBlock name used in migration stream 1277 * must be unique within any device 1278 * @size: size of the region. 1279 * @errp: pointer to Error*, to store an error if it happens. 1280 */ 1281 void memory_region_init_rom_device(MemoryRegion *mr, 1282 Object *owner, 1283 const MemoryRegionOps *ops, 1284 void *opaque, 1285 const char *name, 1286 uint64_t size, 1287 Error **errp); 1288 1289 1290 /** 1291 * memory_region_owner: get a memory region's owner. 1292 * 1293 * @mr: the memory region being queried. 1294 */ 1295 Object *memory_region_owner(MemoryRegion *mr); 1296 1297 /** 1298 * memory_region_size: get a memory region's size. 1299 * 1300 * @mr: the memory region being queried. 1301 */ 1302 uint64_t memory_region_size(MemoryRegion *mr); 1303 1304 /** 1305 * memory_region_is_ram: check whether a memory region is random access 1306 * 1307 * Returns %true if a memory region is random access. 1308 * 1309 * @mr: the memory region being queried 1310 */ 1311 static inline bool memory_region_is_ram(MemoryRegion *mr) 1312 { 1313 return mr->ram; 1314 } 1315 1316 /** 1317 * memory_region_is_ram_device: check whether a memory region is a ram device 1318 * 1319 * Returns %true if a memory region is a device backed ram region 1320 * 1321 * @mr: the memory region being queried 1322 */ 1323 bool memory_region_is_ram_device(MemoryRegion *mr); 1324 1325 /** 1326 * memory_region_is_romd: check whether a memory region is in ROMD mode 1327 * 1328 * Returns %true if a memory region is a ROM device and currently set to allow 1329 * direct reads. 1330 * 1331 * @mr: the memory region being queried 1332 */ 1333 static inline bool memory_region_is_romd(MemoryRegion *mr) 1334 { 1335 return mr->rom_device && mr->romd_mode; 1336 } 1337 1338 /** 1339 * memory_region_get_iommu: check whether a memory region is an iommu 1340 * 1341 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1342 * otherwise NULL. 1343 * 1344 * @mr: the memory region being queried 1345 */ 1346 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1347 { 1348 if (mr->alias) { 1349 return memory_region_get_iommu(mr->alias); 1350 } 1351 if (mr->is_iommu) { 1352 return (IOMMUMemoryRegion *) mr; 1353 } 1354 return NULL; 1355 } 1356 1357 /** 1358 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1359 * if an iommu or NULL if not 1360 * 1361 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1362 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1363 * 1364 * @iommu_mr: the memory region being queried 1365 */ 1366 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1367 IOMMUMemoryRegion *iommu_mr) 1368 { 1369 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1370 } 1371 1372 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1373 1374 /** 1375 * memory_region_iommu_get_min_page_size: get minimum supported page size 1376 * for an iommu 1377 * 1378 * Returns minimum supported page size for an iommu. 1379 * 1380 * @iommu_mr: the memory region being queried 1381 */ 1382 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1383 1384 /** 1385 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1386 * 1387 * Note: for any IOMMU implementation, an in-place mapping change 1388 * should be notified with an UNMAP followed by a MAP. 1389 * 1390 * @iommu_mr: the memory region that was changed 1391 * @iommu_idx: the IOMMU index for the translation table which has changed 1392 * @event: TLB event with the new entry in the IOMMU translation table. 1393 * The entry replaces all old entries for the same virtual I/O address 1394 * range. 1395 */ 1396 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1397 int iommu_idx, 1398 IOMMUTLBEvent event); 1399 1400 /** 1401 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1402 * entry to a single notifier 1403 * 1404 * This works just like memory_region_notify_iommu(), but it only 1405 * notifies a specific notifier, not all of them. 1406 * 1407 * @notifier: the notifier to be notified 1408 * @event: TLB event with the new entry in the IOMMU translation table. 1409 * The entry replaces all old entries for the same virtual I/O address 1410 * range. 1411 */ 1412 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1413 IOMMUTLBEvent *event); 1414 1415 /** 1416 * memory_region_register_iommu_notifier: register a notifier for changes to 1417 * IOMMU translation entries. 1418 * 1419 * Returns 0 on success, or a negative errno otherwise. In particular, 1420 * -EINVAL indicates that at least one of the attributes of the notifier 1421 * is not supported (flag/range) by the IOMMU memory region. In case of error 1422 * the error object must be created. 1423 * 1424 * @mr: the memory region to observe 1425 * @n: the IOMMUNotifier to be added; the notify callback receives a 1426 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1427 * ceases to be valid on exit from the notifier. 1428 * @errp: pointer to Error*, to store an error if it happens. 1429 */ 1430 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1431 IOMMUNotifier *n, Error **errp); 1432 1433 /** 1434 * memory_region_iommu_replay: replay existing IOMMU translations to 1435 * a notifier with the minimum page granularity returned by 1436 * mr->iommu_ops->get_page_size(). 1437 * 1438 * Note: this is not related to record-and-replay functionality. 1439 * 1440 * @iommu_mr: the memory region to observe 1441 * @n: the notifier to which to replay iommu mappings 1442 */ 1443 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1444 1445 /** 1446 * memory_region_unregister_iommu_notifier: unregister a notifier for 1447 * changes to IOMMU translation entries. 1448 * 1449 * @mr: the memory region which was observed and for which notity_stopped() 1450 * needs to be called 1451 * @n: the notifier to be removed. 1452 */ 1453 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1454 IOMMUNotifier *n); 1455 1456 /** 1457 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1458 * defined on the IOMMU. 1459 * 1460 * Returns 0 on success, or a negative errno otherwise. In particular, 1461 * -EINVAL indicates that the IOMMU does not support the requested 1462 * attribute. 1463 * 1464 * @iommu_mr: the memory region 1465 * @attr: the requested attribute 1466 * @data: a pointer to the requested attribute data 1467 */ 1468 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1469 enum IOMMUMemoryRegionAttr attr, 1470 void *data); 1471 1472 /** 1473 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1474 * use for translations with the given memory transaction attributes. 1475 * 1476 * @iommu_mr: the memory region 1477 * @attrs: the memory transaction attributes 1478 */ 1479 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1480 MemTxAttrs attrs); 1481 1482 /** 1483 * memory_region_iommu_num_indexes: return the total number of IOMMU 1484 * indexes that this IOMMU supports. 1485 * 1486 * @iommu_mr: the memory region 1487 */ 1488 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1489 1490 /** 1491 * memory_region_iommu_set_page_size_mask: set the supported page 1492 * sizes for a given IOMMU memory region 1493 * 1494 * @iommu_mr: IOMMU memory region 1495 * @page_size_mask: supported page size mask 1496 * @errp: pointer to Error*, to store an error if it happens. 1497 */ 1498 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1499 uint64_t page_size_mask, 1500 Error **errp); 1501 1502 /** 1503 * memory_region_name: get a memory region's name 1504 * 1505 * Returns the string that was used to initialize the memory region. 1506 * 1507 * @mr: the memory region being queried 1508 */ 1509 const char *memory_region_name(const MemoryRegion *mr); 1510 1511 /** 1512 * memory_region_is_logging: return whether a memory region is logging writes 1513 * 1514 * Returns %true if the memory region is logging writes for the given client 1515 * 1516 * @mr: the memory region being queried 1517 * @client: the client being queried 1518 */ 1519 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1520 1521 /** 1522 * memory_region_get_dirty_log_mask: return the clients for which a 1523 * memory region is logging writes. 1524 * 1525 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1526 * are the bit indices. 1527 * 1528 * @mr: the memory region being queried 1529 */ 1530 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1531 1532 /** 1533 * memory_region_is_rom: check whether a memory region is ROM 1534 * 1535 * Returns %true if a memory region is read-only memory. 1536 * 1537 * @mr: the memory region being queried 1538 */ 1539 static inline bool memory_region_is_rom(MemoryRegion *mr) 1540 { 1541 return mr->ram && mr->readonly; 1542 } 1543 1544 /** 1545 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1546 * 1547 * Returns %true is a memory region is non-volatile memory. 1548 * 1549 * @mr: the memory region being queried 1550 */ 1551 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1552 { 1553 return mr->nonvolatile; 1554 } 1555 1556 /** 1557 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1558 * 1559 * Returns a file descriptor backing a file-based RAM memory region, 1560 * or -1 if the region is not a file-based RAM memory region. 1561 * 1562 * @mr: the RAM or alias memory region being queried. 1563 */ 1564 int memory_region_get_fd(MemoryRegion *mr); 1565 1566 /** 1567 * memory_region_from_host: Convert a pointer into a RAM memory region 1568 * and an offset within it. 1569 * 1570 * Given a host pointer inside a RAM memory region (created with 1571 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1572 * the MemoryRegion and the offset within it. 1573 * 1574 * Use with care; by the time this function returns, the returned pointer is 1575 * not protected by RCU anymore. If the caller is not within an RCU critical 1576 * section and does not hold the iothread lock, it must have other means of 1577 * protecting the pointer, such as a reference to the region that includes 1578 * the incoming ram_addr_t. 1579 * 1580 * @ptr: the host pointer to be converted 1581 * @offset: the offset within memory region 1582 */ 1583 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1584 1585 /** 1586 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1587 * 1588 * Returns a host pointer to a RAM memory region (created with 1589 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1590 * 1591 * Use with care; by the time this function returns, the returned pointer is 1592 * not protected by RCU anymore. If the caller is not within an RCU critical 1593 * section and does not hold the iothread lock, it must have other means of 1594 * protecting the pointer, such as a reference to the region that includes 1595 * the incoming ram_addr_t. 1596 * 1597 * @mr: the memory region being queried. 1598 */ 1599 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1600 1601 /* memory_region_ram_resize: Resize a RAM region. 1602 * 1603 * Resizing RAM while migrating can result in the migration being canceled. 1604 * Care has to be taken if the guest might have already detected the memory. 1605 * 1606 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1607 * @newsize: the new size the region 1608 * @errp: pointer to Error*, to store an error if it happens. 1609 */ 1610 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1611 Error **errp); 1612 1613 /** 1614 * memory_region_msync: Synchronize selected address range of 1615 * a memory mapped region 1616 * 1617 * @mr: the memory region to be msync 1618 * @addr: the initial address of the range to be sync 1619 * @size: the size of the range to be sync 1620 */ 1621 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1622 1623 /** 1624 * memory_region_writeback: Trigger cache writeback for 1625 * selected address range 1626 * 1627 * @mr: the memory region to be updated 1628 * @addr: the initial address of the range to be written back 1629 * @size: the size of the range to be written back 1630 */ 1631 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1632 1633 /** 1634 * memory_region_set_log: Turn dirty logging on or off for a region. 1635 * 1636 * Turns dirty logging on or off for a specified client (display, migration). 1637 * Only meaningful for RAM regions. 1638 * 1639 * @mr: the memory region being updated. 1640 * @log: whether dirty logging is to be enabled or disabled. 1641 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1642 */ 1643 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1644 1645 /** 1646 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1647 * 1648 * Marks a range of bytes as dirty, after it has been dirtied outside 1649 * guest code. 1650 * 1651 * @mr: the memory region being dirtied. 1652 * @addr: the address (relative to the start of the region) being dirtied. 1653 * @size: size of the range being dirtied. 1654 */ 1655 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1656 hwaddr size); 1657 1658 /** 1659 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1660 * 1661 * This function is called when the caller wants to clear the remote 1662 * dirty bitmap of a memory range within the memory region. This can 1663 * be used by e.g. KVM to manually clear dirty log when 1664 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1665 * kernel. 1666 * 1667 * @mr: the memory region to clear the dirty log upon 1668 * @start: start address offset within the memory region 1669 * @len: length of the memory region to clear dirty bitmap 1670 */ 1671 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1672 hwaddr len); 1673 1674 /** 1675 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1676 * bitmap and clear it. 1677 * 1678 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1679 * returns the snapshot. The snapshot can then be used to query dirty 1680 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1681 * querying the same page multiple times, which is especially useful for 1682 * display updates where the scanlines often are not page aligned. 1683 * 1684 * The dirty bitmap region which gets copyed into the snapshot (and 1685 * cleared afterwards) can be larger than requested. The boundaries 1686 * are rounded up/down so complete bitmap longs (covering 64 pages on 1687 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1688 * isn't a problem for display updates as the extra pages are outside 1689 * the visible area, and in case the visible area changes a full 1690 * display redraw is due anyway. Should other use cases for this 1691 * function emerge we might have to revisit this implementation 1692 * detail. 1693 * 1694 * Use g_free to release DirtyBitmapSnapshot. 1695 * 1696 * @mr: the memory region being queried. 1697 * @addr: the address (relative to the start of the region) being queried. 1698 * @size: the size of the range being queried. 1699 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1700 */ 1701 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1702 hwaddr addr, 1703 hwaddr size, 1704 unsigned client); 1705 1706 /** 1707 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1708 * in the specified dirty bitmap snapshot. 1709 * 1710 * @mr: the memory region being queried. 1711 * @snap: the dirty bitmap snapshot 1712 * @addr: the address (relative to the start of the region) being queried. 1713 * @size: the size of the range being queried. 1714 */ 1715 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1716 DirtyBitmapSnapshot *snap, 1717 hwaddr addr, hwaddr size); 1718 1719 /** 1720 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1721 * client. 1722 * 1723 * Marks a range of pages as no longer dirty. 1724 * 1725 * @mr: the region being updated. 1726 * @addr: the start of the subrange being cleaned. 1727 * @size: the size of the subrange being cleaned. 1728 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1729 * %DIRTY_MEMORY_VGA. 1730 */ 1731 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1732 hwaddr size, unsigned client); 1733 1734 /** 1735 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1736 * TBs (for self-modifying code). 1737 * 1738 * The MemoryRegionOps->write() callback of a ROM device must use this function 1739 * to mark byte ranges that have been modified internally, such as by directly 1740 * accessing the memory returned by memory_region_get_ram_ptr(). 1741 * 1742 * This function marks the range dirty and invalidates TBs so that TCG can 1743 * detect self-modifying code. 1744 * 1745 * @mr: the region being flushed. 1746 * @addr: the start, relative to the start of the region, of the range being 1747 * flushed. 1748 * @size: the size, in bytes, of the range being flushed. 1749 */ 1750 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1751 1752 /** 1753 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1754 * 1755 * Allows a memory region to be marked as read-only (turning it into a ROM). 1756 * only useful on RAM regions. 1757 * 1758 * @mr: the region being updated. 1759 * @readonly: whether rhe region is to be ROM or RAM. 1760 */ 1761 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1762 1763 /** 1764 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1765 * 1766 * Allows a memory region to be marked as non-volatile. 1767 * only useful on RAM regions. 1768 * 1769 * @mr: the region being updated. 1770 * @nonvolatile: whether rhe region is to be non-volatile. 1771 */ 1772 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1773 1774 /** 1775 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1776 * 1777 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1778 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1779 * device is mapped to guest memory and satisfies read access directly. 1780 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1781 * Writes are always handled by the #MemoryRegion.write function. 1782 * 1783 * @mr: the memory region to be updated 1784 * @romd_mode: %true to put the region into ROMD mode 1785 */ 1786 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1787 1788 /** 1789 * memory_region_set_coalescing: Enable memory coalescing for the region. 1790 * 1791 * Enabled writes to a region to be queued for later processing. MMIO ->write 1792 * callbacks may be delayed until a non-coalesced MMIO is issued. 1793 * Only useful for IO regions. Roughly similar to write-combining hardware. 1794 * 1795 * @mr: the memory region to be write coalesced 1796 */ 1797 void memory_region_set_coalescing(MemoryRegion *mr); 1798 1799 /** 1800 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1801 * a region. 1802 * 1803 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1804 * Multiple calls can be issued coalesced disjoint ranges. 1805 * 1806 * @mr: the memory region to be updated. 1807 * @offset: the start of the range within the region to be coalesced. 1808 * @size: the size of the subrange to be coalesced. 1809 */ 1810 void memory_region_add_coalescing(MemoryRegion *mr, 1811 hwaddr offset, 1812 uint64_t size); 1813 1814 /** 1815 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1816 * 1817 * Disables any coalescing caused by memory_region_set_coalescing() or 1818 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1819 * hardware. 1820 * 1821 * @mr: the memory region to be updated. 1822 */ 1823 void memory_region_clear_coalescing(MemoryRegion *mr); 1824 1825 /** 1826 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1827 * accesses. 1828 * 1829 * Ensure that pending coalesced MMIO request are flushed before the memory 1830 * region is accessed. This property is automatically enabled for all regions 1831 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1832 * 1833 * @mr: the memory region to be updated. 1834 */ 1835 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1836 1837 /** 1838 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1839 * accesses. 1840 * 1841 * Clear the automatic coalesced MMIO flushing enabled via 1842 * memory_region_set_flush_coalesced. Note that this service has no effect on 1843 * memory regions that have MMIO coalescing enabled for themselves. For them, 1844 * automatic flushing will stop once coalescing is disabled. 1845 * 1846 * @mr: the memory region to be updated. 1847 */ 1848 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1849 1850 /** 1851 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1852 * is written to a location. 1853 * 1854 * Marks a word in an IO region (initialized with memory_region_init_io()) 1855 * as a trigger for an eventfd event. The I/O callback will not be called. 1856 * The caller must be prepared to handle failure (that is, take the required 1857 * action if the callback _is_ called). 1858 * 1859 * @mr: the memory region being updated. 1860 * @addr: the address within @mr that is to be monitored 1861 * @size: the size of the access to trigger the eventfd 1862 * @match_data: whether to match against @data, instead of just @addr 1863 * @data: the data to match against the guest write 1864 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1865 **/ 1866 void memory_region_add_eventfd(MemoryRegion *mr, 1867 hwaddr addr, 1868 unsigned size, 1869 bool match_data, 1870 uint64_t data, 1871 EventNotifier *e); 1872 1873 /** 1874 * memory_region_del_eventfd: Cancel an eventfd. 1875 * 1876 * Cancels an eventfd trigger requested by a previous 1877 * memory_region_add_eventfd() call. 1878 * 1879 * @mr: the memory region being updated. 1880 * @addr: the address within @mr that is to be monitored 1881 * @size: the size of the access to trigger the eventfd 1882 * @match_data: whether to match against @data, instead of just @addr 1883 * @data: the data to match against the guest write 1884 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1885 */ 1886 void memory_region_del_eventfd(MemoryRegion *mr, 1887 hwaddr addr, 1888 unsigned size, 1889 bool match_data, 1890 uint64_t data, 1891 EventNotifier *e); 1892 1893 /** 1894 * memory_region_add_subregion: Add a subregion to a container. 1895 * 1896 * Adds a subregion at @offset. The subregion may not overlap with other 1897 * subregions (except for those explicitly marked as overlapping). A region 1898 * may only be added once as a subregion (unless removed with 1899 * memory_region_del_subregion()); use memory_region_init_alias() if you 1900 * want a region to be a subregion in multiple locations. 1901 * 1902 * @mr: the region to contain the new subregion; must be a container 1903 * initialized with memory_region_init(). 1904 * @offset: the offset relative to @mr where @subregion is added. 1905 * @subregion: the subregion to be added. 1906 */ 1907 void memory_region_add_subregion(MemoryRegion *mr, 1908 hwaddr offset, 1909 MemoryRegion *subregion); 1910 /** 1911 * memory_region_add_subregion_overlap: Add a subregion to a container 1912 * with overlap. 1913 * 1914 * Adds a subregion at @offset. The subregion may overlap with other 1915 * subregions. Conflicts are resolved by having a higher @priority hide a 1916 * lower @priority. Subregions without priority are taken as @priority 0. 1917 * A region may only be added once as a subregion (unless removed with 1918 * memory_region_del_subregion()); use memory_region_init_alias() if you 1919 * want a region to be a subregion in multiple locations. 1920 * 1921 * @mr: the region to contain the new subregion; must be a container 1922 * initialized with memory_region_init(). 1923 * @offset: the offset relative to @mr where @subregion is added. 1924 * @subregion: the subregion to be added. 1925 * @priority: used for resolving overlaps; highest priority wins. 1926 */ 1927 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1928 hwaddr offset, 1929 MemoryRegion *subregion, 1930 int priority); 1931 1932 /** 1933 * memory_region_get_ram_addr: Get the ram address associated with a memory 1934 * region 1935 * 1936 * @mr: the region to be queried 1937 */ 1938 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1939 1940 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1941 /** 1942 * memory_region_del_subregion: Remove a subregion. 1943 * 1944 * Removes a subregion from its container. 1945 * 1946 * @mr: the container to be updated. 1947 * @subregion: the region being removed; must be a current subregion of @mr. 1948 */ 1949 void memory_region_del_subregion(MemoryRegion *mr, 1950 MemoryRegion *subregion); 1951 1952 /* 1953 * memory_region_set_enabled: dynamically enable or disable a region 1954 * 1955 * Enables or disables a memory region. A disabled memory region 1956 * ignores all accesses to itself and its subregions. It does not 1957 * obscure sibling subregions with lower priority - it simply behaves as 1958 * if it was removed from the hierarchy. 1959 * 1960 * Regions default to being enabled. 1961 * 1962 * @mr: the region to be updated 1963 * @enabled: whether to enable or disable the region 1964 */ 1965 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1966 1967 /* 1968 * memory_region_set_address: dynamically update the address of a region 1969 * 1970 * Dynamically updates the address of a region, relative to its container. 1971 * May be used on regions are currently part of a memory hierarchy. 1972 * 1973 * @mr: the region to be updated 1974 * @addr: new address, relative to container region 1975 */ 1976 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1977 1978 /* 1979 * memory_region_set_size: dynamically update the size of a region. 1980 * 1981 * Dynamically updates the size of a region. 1982 * 1983 * @mr: the region to be updated 1984 * @size: used size of the region. 1985 */ 1986 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1987 1988 /* 1989 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1990 * 1991 * Dynamically updates the offset into the target region that an alias points 1992 * to, as if the fourth argument to memory_region_init_alias() has changed. 1993 * 1994 * @mr: the #MemoryRegion to be updated; should be an alias. 1995 * @offset: the new offset into the target memory region 1996 */ 1997 void memory_region_set_alias_offset(MemoryRegion *mr, 1998 hwaddr offset); 1999 2000 /** 2001 * memory_region_present: checks if an address relative to a @container 2002 * translates into #MemoryRegion within @container 2003 * 2004 * Answer whether a #MemoryRegion within @container covers the address 2005 * @addr. 2006 * 2007 * @container: a #MemoryRegion within which @addr is a relative address 2008 * @addr: the area within @container to be searched 2009 */ 2010 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2011 2012 /** 2013 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2014 * into any address space. 2015 * 2016 * @mr: a #MemoryRegion which should be checked if it's mapped 2017 */ 2018 bool memory_region_is_mapped(MemoryRegion *mr); 2019 2020 /** 2021 * memory_region_find: translate an address/size relative to a 2022 * MemoryRegion into a #MemoryRegionSection. 2023 * 2024 * Locates the first #MemoryRegion within @mr that overlaps the range 2025 * given by @addr and @size. 2026 * 2027 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2028 * It will have the following characteristics: 2029 * - @size = 0 iff no overlap was found 2030 * - @mr is non-%NULL iff an overlap was found 2031 * 2032 * Remember that in the return value the @offset_within_region is 2033 * relative to the returned region (in the .@mr field), not to the 2034 * @mr argument. 2035 * 2036 * Similarly, the .@offset_within_address_space is relative to the 2037 * address space that contains both regions, the passed and the 2038 * returned one. However, in the special case where the @mr argument 2039 * has no container (and thus is the root of the address space), the 2040 * following will hold: 2041 * - @offset_within_address_space >= @addr 2042 * - @offset_within_address_space + .@size <= @addr + @size 2043 * 2044 * @mr: a MemoryRegion within which @addr is a relative address 2045 * @addr: start of the area within @as to be searched 2046 * @size: size of the area to be searched 2047 */ 2048 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2049 hwaddr addr, uint64_t size); 2050 2051 /** 2052 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2053 * 2054 * Synchronizes the dirty page log for all address spaces. 2055 */ 2056 void memory_global_dirty_log_sync(void); 2057 2058 /** 2059 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2060 * 2061 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2062 * This function must be called after the dirty log bitmap is cleared, and 2063 * before dirty guest memory pages are read. If you are using 2064 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2065 * care of doing this. 2066 */ 2067 void memory_global_after_dirty_log_sync(void); 2068 2069 /** 2070 * memory_region_transaction_begin: Start a transaction. 2071 * 2072 * During a transaction, changes will be accumulated and made visible 2073 * only when the transaction ends (is committed). 2074 */ 2075 void memory_region_transaction_begin(void); 2076 2077 /** 2078 * memory_region_transaction_commit: Commit a transaction and make changes 2079 * visible to the guest. 2080 */ 2081 void memory_region_transaction_commit(void); 2082 2083 /** 2084 * memory_listener_register: register callbacks to be called when memory 2085 * sections are mapped or unmapped into an address 2086 * space 2087 * 2088 * @listener: an object containing the callbacks to be called 2089 * @filter: if non-%NULL, only regions in this address space will be observed 2090 */ 2091 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2092 2093 /** 2094 * memory_listener_unregister: undo the effect of memory_listener_register() 2095 * 2096 * @listener: an object containing the callbacks to be removed 2097 */ 2098 void memory_listener_unregister(MemoryListener *listener); 2099 2100 /** 2101 * memory_global_dirty_log_start: begin dirty logging for all regions 2102 */ 2103 void memory_global_dirty_log_start(void); 2104 2105 /** 2106 * memory_global_dirty_log_stop: end dirty logging for all regions 2107 */ 2108 void memory_global_dirty_log_stop(void); 2109 2110 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2111 2112 /** 2113 * memory_region_dispatch_read: perform a read directly to the specified 2114 * MemoryRegion. 2115 * 2116 * @mr: #MemoryRegion to access 2117 * @addr: address within that region 2118 * @pval: pointer to uint64_t which the data is written to 2119 * @op: size, sign, and endianness of the memory operation 2120 * @attrs: memory transaction attributes to use for the access 2121 */ 2122 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2123 hwaddr addr, 2124 uint64_t *pval, 2125 MemOp op, 2126 MemTxAttrs attrs); 2127 /** 2128 * memory_region_dispatch_write: perform a write directly to the specified 2129 * MemoryRegion. 2130 * 2131 * @mr: #MemoryRegion to access 2132 * @addr: address within that region 2133 * @data: data to write 2134 * @op: size, sign, and endianness of the memory operation 2135 * @attrs: memory transaction attributes to use for the access 2136 */ 2137 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2138 hwaddr addr, 2139 uint64_t data, 2140 MemOp op, 2141 MemTxAttrs attrs); 2142 2143 /** 2144 * address_space_init: initializes an address space 2145 * 2146 * @as: an uninitialized #AddressSpace 2147 * @root: a #MemoryRegion that routes addresses for the address space 2148 * @name: an address space name. The name is only used for debugging 2149 * output. 2150 */ 2151 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2152 2153 /** 2154 * address_space_destroy: destroy an address space 2155 * 2156 * Releases all resources associated with an address space. After an address space 2157 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2158 * as well. 2159 * 2160 * @as: address space to be destroyed 2161 */ 2162 void address_space_destroy(AddressSpace *as); 2163 2164 /** 2165 * address_space_remove_listeners: unregister all listeners of an address space 2166 * 2167 * Removes all callbacks previously registered with memory_listener_register() 2168 * for @as. 2169 * 2170 * @as: an initialized #AddressSpace 2171 */ 2172 void address_space_remove_listeners(AddressSpace *as); 2173 2174 /** 2175 * address_space_rw: read from or write to an address space. 2176 * 2177 * Return a MemTxResult indicating whether the operation succeeded 2178 * or failed (eg unassigned memory, device rejected the transaction, 2179 * IOMMU fault). 2180 * 2181 * @as: #AddressSpace to be accessed 2182 * @addr: address within that address space 2183 * @attrs: memory transaction attributes 2184 * @buf: buffer with the data transferred 2185 * @len: the number of bytes to read or write 2186 * @is_write: indicates the transfer direction 2187 */ 2188 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2189 MemTxAttrs attrs, void *buf, 2190 hwaddr len, bool is_write); 2191 2192 /** 2193 * address_space_write: write to address space. 2194 * 2195 * Return a MemTxResult indicating whether the operation succeeded 2196 * or failed (eg unassigned memory, device rejected the transaction, 2197 * IOMMU fault). 2198 * 2199 * @as: #AddressSpace to be accessed 2200 * @addr: address within that address space 2201 * @attrs: memory transaction attributes 2202 * @buf: buffer with the data transferred 2203 * @len: the number of bytes to write 2204 */ 2205 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2206 MemTxAttrs attrs, 2207 const void *buf, hwaddr len); 2208 2209 /** 2210 * address_space_write_rom: write to address space, including ROM. 2211 * 2212 * This function writes to the specified address space, but will 2213 * write data to both ROM and RAM. This is used for non-guest 2214 * writes like writes from the gdb debug stub or initial loading 2215 * of ROM contents. 2216 * 2217 * Note that portions of the write which attempt to write data to 2218 * a device will be silently ignored -- only real RAM and ROM will 2219 * be written to. 2220 * 2221 * Return a MemTxResult indicating whether the operation succeeded 2222 * or failed (eg unassigned memory, device rejected the transaction, 2223 * IOMMU fault). 2224 * 2225 * @as: #AddressSpace to be accessed 2226 * @addr: address within that address space 2227 * @attrs: memory transaction attributes 2228 * @buf: buffer with the data transferred 2229 * @len: the number of bytes to write 2230 */ 2231 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2232 MemTxAttrs attrs, 2233 const void *buf, hwaddr len); 2234 2235 /* address_space_ld*: load from an address space 2236 * address_space_st*: store to an address space 2237 * 2238 * These functions perform a load or store of the byte, word, 2239 * longword or quad to the specified address within the AddressSpace. 2240 * The _le suffixed functions treat the data as little endian; 2241 * _be indicates big endian; no suffix indicates "same endianness 2242 * as guest CPU". 2243 * 2244 * The "guest CPU endianness" accessors are deprecated for use outside 2245 * target-* code; devices should be CPU-agnostic and use either the LE 2246 * or the BE accessors. 2247 * 2248 * @as #AddressSpace to be accessed 2249 * @addr: address within that address space 2250 * @val: data value, for stores 2251 * @attrs: memory transaction attributes 2252 * @result: location to write the success/failure of the transaction; 2253 * if NULL, this information is discarded 2254 */ 2255 2256 #define SUFFIX 2257 #define ARG1 as 2258 #define ARG1_DECL AddressSpace *as 2259 #include "exec/memory_ldst.h.inc" 2260 2261 #define SUFFIX 2262 #define ARG1 as 2263 #define ARG1_DECL AddressSpace *as 2264 #include "exec/memory_ldst_phys.h.inc" 2265 2266 struct MemoryRegionCache { 2267 void *ptr; 2268 hwaddr xlat; 2269 hwaddr len; 2270 FlatView *fv; 2271 MemoryRegionSection mrs; 2272 bool is_write; 2273 }; 2274 2275 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2276 2277 2278 /* address_space_ld*_cached: load from a cached #MemoryRegion 2279 * address_space_st*_cached: store into a cached #MemoryRegion 2280 * 2281 * These functions perform a load or store of the byte, word, 2282 * longword or quad to the specified address. The address is 2283 * a physical address in the AddressSpace, but it must lie within 2284 * a #MemoryRegion that was mapped with address_space_cache_init. 2285 * 2286 * The _le suffixed functions treat the data as little endian; 2287 * _be indicates big endian; no suffix indicates "same endianness 2288 * as guest CPU". 2289 * 2290 * The "guest CPU endianness" accessors are deprecated for use outside 2291 * target-* code; devices should be CPU-agnostic and use either the LE 2292 * or the BE accessors. 2293 * 2294 * @cache: previously initialized #MemoryRegionCache to be accessed 2295 * @addr: address within the address space 2296 * @val: data value, for stores 2297 * @attrs: memory transaction attributes 2298 * @result: location to write the success/failure of the transaction; 2299 * if NULL, this information is discarded 2300 */ 2301 2302 #define SUFFIX _cached_slow 2303 #define ARG1 cache 2304 #define ARG1_DECL MemoryRegionCache *cache 2305 #include "exec/memory_ldst.h.inc" 2306 2307 /* Inline fast path for direct RAM access. */ 2308 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2309 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2310 { 2311 assert(addr < cache->len); 2312 if (likely(cache->ptr)) { 2313 return ldub_p(cache->ptr + addr); 2314 } else { 2315 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2316 } 2317 } 2318 2319 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2320 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2321 { 2322 assert(addr < cache->len); 2323 if (likely(cache->ptr)) { 2324 stb_p(cache->ptr + addr, val); 2325 } else { 2326 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2327 } 2328 } 2329 2330 #define ENDIANNESS _le 2331 #include "exec/memory_ldst_cached.h.inc" 2332 2333 #define ENDIANNESS _be 2334 #include "exec/memory_ldst_cached.h.inc" 2335 2336 #define SUFFIX _cached 2337 #define ARG1 cache 2338 #define ARG1_DECL MemoryRegionCache *cache 2339 #include "exec/memory_ldst_phys.h.inc" 2340 2341 /* address_space_cache_init: prepare for repeated access to a physical 2342 * memory region 2343 * 2344 * @cache: #MemoryRegionCache to be filled 2345 * @as: #AddressSpace to be accessed 2346 * @addr: address within that address space 2347 * @len: length of buffer 2348 * @is_write: indicates the transfer direction 2349 * 2350 * Will only work with RAM, and may map a subset of the requested range by 2351 * returning a value that is less than @len. On failure, return a negative 2352 * errno value. 2353 * 2354 * Because it only works with RAM, this function can be used for 2355 * read-modify-write operations. In this case, is_write should be %true. 2356 * 2357 * Note that addresses passed to the address_space_*_cached functions 2358 * are relative to @addr. 2359 */ 2360 int64_t address_space_cache_init(MemoryRegionCache *cache, 2361 AddressSpace *as, 2362 hwaddr addr, 2363 hwaddr len, 2364 bool is_write); 2365 2366 /** 2367 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2368 * 2369 * @cache: The #MemoryRegionCache to operate on. 2370 * @addr: The first physical address that was written, relative to the 2371 * address that was passed to @address_space_cache_init. 2372 * @access_len: The number of bytes that were written starting at @addr. 2373 */ 2374 void address_space_cache_invalidate(MemoryRegionCache *cache, 2375 hwaddr addr, 2376 hwaddr access_len); 2377 2378 /** 2379 * address_space_cache_destroy: free a #MemoryRegionCache 2380 * 2381 * @cache: The #MemoryRegionCache whose memory should be released. 2382 */ 2383 void address_space_cache_destroy(MemoryRegionCache *cache); 2384 2385 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2386 * entry. Should be called from an RCU critical section. 2387 */ 2388 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2389 bool is_write, MemTxAttrs attrs); 2390 2391 /* address_space_translate: translate an address range into an address space 2392 * into a MemoryRegion and an address range into that section. Should be 2393 * called from an RCU critical section, to avoid that the last reference 2394 * to the returned region disappears after address_space_translate returns. 2395 * 2396 * @fv: #FlatView to be accessed 2397 * @addr: address within that address space 2398 * @xlat: pointer to address within the returned memory region section's 2399 * #MemoryRegion. 2400 * @len: pointer to length 2401 * @is_write: indicates the transfer direction 2402 * @attrs: memory attributes 2403 */ 2404 MemoryRegion *flatview_translate(FlatView *fv, 2405 hwaddr addr, hwaddr *xlat, 2406 hwaddr *len, bool is_write, 2407 MemTxAttrs attrs); 2408 2409 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2410 hwaddr addr, hwaddr *xlat, 2411 hwaddr *len, bool is_write, 2412 MemTxAttrs attrs) 2413 { 2414 return flatview_translate(address_space_to_flatview(as), 2415 addr, xlat, len, is_write, attrs); 2416 } 2417 2418 /* address_space_access_valid: check for validity of accessing an address 2419 * space range 2420 * 2421 * Check whether memory is assigned to the given address space range, and 2422 * access is permitted by any IOMMU regions that are active for the address 2423 * space. 2424 * 2425 * For now, addr and len should be aligned to a page size. This limitation 2426 * will be lifted in the future. 2427 * 2428 * @as: #AddressSpace to be accessed 2429 * @addr: address within that address space 2430 * @len: length of the area to be checked 2431 * @is_write: indicates the transfer direction 2432 * @attrs: memory attributes 2433 */ 2434 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2435 bool is_write, MemTxAttrs attrs); 2436 2437 /* address_space_map: map a physical memory region into a host virtual address 2438 * 2439 * May map a subset of the requested range, given by and returned in @plen. 2440 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2441 * the mapping are exhausted. 2442 * Use only for reads OR writes - not for read-modify-write operations. 2443 * Use cpu_register_map_client() to know when retrying the map operation is 2444 * likely to succeed. 2445 * 2446 * @as: #AddressSpace to be accessed 2447 * @addr: address within that address space 2448 * @plen: pointer to length of buffer; updated on return 2449 * @is_write: indicates the transfer direction 2450 * @attrs: memory attributes 2451 */ 2452 void *address_space_map(AddressSpace *as, hwaddr addr, 2453 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2454 2455 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2456 * 2457 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2458 * the amount of memory that was actually read or written by the caller. 2459 * 2460 * @as: #AddressSpace used 2461 * @buffer: host pointer as returned by address_space_map() 2462 * @len: buffer length as returned by address_space_map() 2463 * @access_len: amount of data actually transferred 2464 * @is_write: indicates the transfer direction 2465 */ 2466 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2467 bool is_write, hwaddr access_len); 2468 2469 2470 /* Internal functions, part of the implementation of address_space_read. */ 2471 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2472 MemTxAttrs attrs, void *buf, hwaddr len); 2473 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2474 MemTxAttrs attrs, void *buf, 2475 hwaddr len, hwaddr addr1, hwaddr l, 2476 MemoryRegion *mr); 2477 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2478 2479 /* Internal functions, part of the implementation of address_space_read_cached 2480 * and address_space_write_cached. */ 2481 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2482 hwaddr addr, void *buf, hwaddr len); 2483 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2484 hwaddr addr, const void *buf, 2485 hwaddr len); 2486 2487 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2488 { 2489 if (is_write) { 2490 return memory_region_is_ram(mr) && !mr->readonly && 2491 !mr->rom_device && !memory_region_is_ram_device(mr); 2492 } else { 2493 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2494 memory_region_is_romd(mr); 2495 } 2496 } 2497 2498 /** 2499 * address_space_read: read from an address space. 2500 * 2501 * Return a MemTxResult indicating whether the operation succeeded 2502 * or failed (eg unassigned memory, device rejected the transaction, 2503 * IOMMU fault). Called within RCU critical section. 2504 * 2505 * @as: #AddressSpace to be accessed 2506 * @addr: address within that address space 2507 * @attrs: memory transaction attributes 2508 * @buf: buffer with the data transferred 2509 * @len: length of the data transferred 2510 */ 2511 static inline __attribute__((__always_inline__)) 2512 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2513 MemTxAttrs attrs, void *buf, 2514 hwaddr len) 2515 { 2516 MemTxResult result = MEMTX_OK; 2517 hwaddr l, addr1; 2518 void *ptr; 2519 MemoryRegion *mr; 2520 FlatView *fv; 2521 2522 if (__builtin_constant_p(len)) { 2523 if (len) { 2524 RCU_READ_LOCK_GUARD(); 2525 fv = address_space_to_flatview(as); 2526 l = len; 2527 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2528 if (len == l && memory_access_is_direct(mr, false)) { 2529 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2530 memcpy(buf, ptr, len); 2531 } else { 2532 result = flatview_read_continue(fv, addr, attrs, buf, len, 2533 addr1, l, mr); 2534 } 2535 } 2536 } else { 2537 result = address_space_read_full(as, addr, attrs, buf, len); 2538 } 2539 return result; 2540 } 2541 2542 /** 2543 * address_space_read_cached: read from a cached RAM region 2544 * 2545 * @cache: Cached region to be addressed 2546 * @addr: address relative to the base of the RAM region 2547 * @buf: buffer with the data transferred 2548 * @len: length of the data transferred 2549 */ 2550 static inline MemTxResult 2551 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2552 void *buf, hwaddr len) 2553 { 2554 assert(addr < cache->len && len <= cache->len - addr); 2555 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2556 if (likely(cache->ptr)) { 2557 memcpy(buf, cache->ptr + addr, len); 2558 return MEMTX_OK; 2559 } else { 2560 return address_space_read_cached_slow(cache, addr, buf, len); 2561 } 2562 } 2563 2564 /** 2565 * address_space_write_cached: write to a cached RAM region 2566 * 2567 * @cache: Cached region to be addressed 2568 * @addr: address relative to the base of the RAM region 2569 * @buf: buffer with the data transferred 2570 * @len: length of the data transferred 2571 */ 2572 static inline MemTxResult 2573 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2574 const void *buf, hwaddr len) 2575 { 2576 assert(addr < cache->len && len <= cache->len - addr); 2577 if (likely(cache->ptr)) { 2578 memcpy(cache->ptr + addr, buf, len); 2579 return MEMTX_OK; 2580 } else { 2581 return address_space_write_cached_slow(cache, addr, buf, len); 2582 } 2583 } 2584 2585 #ifdef NEED_CPU_H 2586 /* enum device_endian to MemOp. */ 2587 static inline MemOp devend_memop(enum device_endian end) 2588 { 2589 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2590 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2591 2592 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2593 /* Swap if non-host endianness or native (target) endianness */ 2594 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2595 #else 2596 const int non_host_endianness = 2597 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2598 2599 /* In this case, native (target) endianness needs no swap. */ 2600 return (end == non_host_endianness) ? MO_BSWAP : 0; 2601 #endif 2602 } 2603 #endif 2604 2605 /* 2606 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 2607 * to manage the actual amount of memory consumed by the VM (then, the memory 2608 * provided by RAM blocks might be bigger than the desired memory consumption). 2609 * This *must* be set if: 2610 * - Discarding parts of a RAM blocks does not result in the change being 2611 * reflected in the VM and the pages getting freed. 2612 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 2613 * discards blindly. 2614 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 2615 * encrypted VMs). 2616 * Technologies that only temporarily pin the current working set of a 2617 * driver are fine, because we don't expect such pages to be discarded 2618 * (esp. based on guest action like balloon inflation). 2619 * 2620 * This is *not* to be used to protect from concurrent discards (esp., 2621 * postcopy). 2622 * 2623 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 2624 * discards to work reliably is active. 2625 */ 2626 int ram_block_discard_disable(bool state); 2627 2628 /* 2629 * Inhibit technologies that disable discarding of pages in RAM blocks. 2630 * 2631 * Returns 0 if successful. Returns -EBUSY if discards are already set to 2632 * broken. 2633 */ 2634 int ram_block_discard_require(bool state); 2635 2636 /* 2637 * Test if discarding of memory in ram blocks is disabled. 2638 */ 2639 bool ram_block_discard_is_disabled(void); 2640 2641 /* 2642 * Test if discarding of memory in ram blocks is required to work reliably. 2643 */ 2644 bool ram_block_discard_is_required(void); 2645 2646 #endif 2647 2648 #endif 2649