xref: /openbmc/qemu/include/exec/memory.h (revision 6f2e2730)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 
36 #define MAX_PHYS_ADDR_SPACE_BITS 62
37 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
38 
39 typedef struct MemoryRegionOps MemoryRegionOps;
40 typedef struct MemoryRegionMmio MemoryRegionMmio;
41 
42 struct MemoryRegionMmio {
43     CPUReadMemoryFunc *read[3];
44     CPUWriteMemoryFunc *write[3];
45 };
46 
47 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
48 
49 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
50 typedef enum {
51     IOMMU_NONE = 0,
52     IOMMU_RO   = 1,
53     IOMMU_WO   = 2,
54     IOMMU_RW   = 3,
55 } IOMMUAccessFlags;
56 
57 struct IOMMUTLBEntry {
58     AddressSpace    *target_as;
59     hwaddr           iova;
60     hwaddr           translated_addr;
61     hwaddr           addr_mask;  /* 0xfff = 4k translation */
62     IOMMUAccessFlags perm;
63 };
64 
65 /*
66  * Memory region callbacks
67  */
68 struct MemoryRegionOps {
69     /* Read from the memory region. @addr is relative to @mr; @size is
70      * in bytes. */
71     uint64_t (*read)(void *opaque,
72                      hwaddr addr,
73                      unsigned size);
74     /* Write to the memory region. @addr is relative to @mr; @size is
75      * in bytes. */
76     void (*write)(void *opaque,
77                   hwaddr addr,
78                   uint64_t data,
79                   unsigned size);
80 
81     enum device_endian endianness;
82     /* Guest-visible constraints: */
83     struct {
84         /* If nonzero, specify bounds on access sizes beyond which a machine
85          * check is thrown.
86          */
87         unsigned min_access_size;
88         unsigned max_access_size;
89         /* If true, unaligned accesses are supported.  Otherwise unaligned
90          * accesses throw machine checks.
91          */
92          bool unaligned;
93         /*
94          * If present, and returns #false, the transaction is not accepted
95          * by the device (and results in machine dependent behaviour such
96          * as a machine check exception).
97          */
98         bool (*accepts)(void *opaque, hwaddr addr,
99                         unsigned size, bool is_write);
100     } valid;
101     /* Internal implementation constraints: */
102     struct {
103         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
104          * will be rounded upwards and a partial result will be returned.
105          */
106         unsigned min_access_size;
107         /* If nonzero, specifies the maximum size implemented.  Larger sizes
108          * will be done as a series of accesses with smaller sizes.
109          */
110         unsigned max_access_size;
111         /* If true, unaligned accesses are supported.  Otherwise all accesses
112          * are converted to (possibly multiple) naturally aligned accesses.
113          */
114         bool unaligned;
115     } impl;
116 
117     /* If .read and .write are not present, old_mmio may be used for
118      * backwards compatibility with old mmio registration
119      */
120     const MemoryRegionMmio old_mmio;
121 };
122 
123 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
124 
125 struct MemoryRegionIOMMUOps {
126     /* Return a TLB entry that contains a given address. */
127     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr);
128 };
129 
130 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
131 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
132 
133 struct MemoryRegion {
134     /* All fields are private - violators will be prosecuted */
135     const MemoryRegionOps *ops;
136     const MemoryRegionIOMMUOps *iommu_ops;
137     void *opaque;
138     struct Object *owner;
139     MemoryRegion *container;
140     Int128 size;
141     hwaddr addr;
142     void (*destructor)(MemoryRegion *mr);
143     ram_addr_t ram_addr;
144     bool subpage;
145     bool terminates;
146     bool romd_mode;
147     bool ram;
148     bool readonly; /* For RAM regions */
149     bool enabled;
150     bool rom_device;
151     bool warning_printed; /* For reservations */
152     bool flush_coalesced_mmio;
153     MemoryRegion *alias;
154     hwaddr alias_offset;
155     int priority;
156     bool may_overlap;
157     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
158     QTAILQ_ENTRY(MemoryRegion) subregions_link;
159     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
160     const char *name;
161     uint8_t dirty_log_mask;
162     unsigned ioeventfd_nb;
163     MemoryRegionIoeventfd *ioeventfds;
164     NotifierList iommu_notify;
165 };
166 
167 /**
168  * MemoryListener: callbacks structure for updates to the physical memory map
169  *
170  * Allows a component to adjust to changes in the guest-visible memory map.
171  * Use with memory_listener_register() and memory_listener_unregister().
172  */
173 struct MemoryListener {
174     void (*begin)(MemoryListener *listener);
175     void (*commit)(MemoryListener *listener);
176     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
177     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
178     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
179     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
180     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
181     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
182     void (*log_global_start)(MemoryListener *listener);
183     void (*log_global_stop)(MemoryListener *listener);
184     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
185                         bool match_data, uint64_t data, EventNotifier *e);
186     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
187                         bool match_data, uint64_t data, EventNotifier *e);
188     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
189                                hwaddr addr, hwaddr len);
190     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
191                                hwaddr addr, hwaddr len);
192     /* Lower = earlier (during add), later (during del) */
193     unsigned priority;
194     AddressSpace *address_space_filter;
195     QTAILQ_ENTRY(MemoryListener) link;
196 };
197 
198 /**
199  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
200  */
201 struct AddressSpace {
202     /* All fields are private. */
203     char *name;
204     MemoryRegion *root;
205     struct FlatView *current_map;
206     int ioeventfd_nb;
207     struct MemoryRegionIoeventfd *ioeventfds;
208     struct AddressSpaceDispatch *dispatch;
209     struct AddressSpaceDispatch *next_dispatch;
210     MemoryListener dispatch_listener;
211 
212     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
213 };
214 
215 /**
216  * MemoryRegionSection: describes a fragment of a #MemoryRegion
217  *
218  * @mr: the region, or %NULL if empty
219  * @address_space: the address space the region is mapped in
220  * @offset_within_region: the beginning of the section, relative to @mr's start
221  * @size: the size of the section; will not exceed @mr's boundaries
222  * @offset_within_address_space: the address of the first byte of the section
223  *     relative to the region's address space
224  * @readonly: writes to this section are ignored
225  */
226 struct MemoryRegionSection {
227     MemoryRegion *mr;
228     AddressSpace *address_space;
229     hwaddr offset_within_region;
230     Int128 size;
231     hwaddr offset_within_address_space;
232     bool readonly;
233 };
234 
235 /**
236  * memory_region_init: Initialize a memory region
237  *
238  * The region typically acts as a container for other memory regions.  Use
239  * memory_region_add_subregion() to add subregions.
240  *
241  * @mr: the #MemoryRegion to be initialized
242  * @owner: the object that tracks the region's reference count
243  * @name: used for debugging; not visible to the user or ABI
244  * @size: size of the region; any subregions beyond this size will be clipped
245  */
246 void memory_region_init(MemoryRegion *mr,
247                         struct Object *owner,
248                         const char *name,
249                         uint64_t size);
250 
251 /**
252  * memory_region_ref: Add 1 to a memory region's reference count
253  *
254  * Whenever memory regions are accessed outside the BQL, they need to be
255  * preserved against hot-unplug.  MemoryRegions actually do not have their
256  * own reference count; they piggyback on a QOM object, their "owner".
257  * This function adds a reference to the owner.
258  *
259  * All MemoryRegions must have an owner if they can disappear, even if the
260  * device they belong to operates exclusively under the BQL.  This is because
261  * the region could be returned at any time by memory_region_find, and this
262  * is usually under guest control.
263  *
264  * @mr: the #MemoryRegion
265  */
266 void memory_region_ref(MemoryRegion *mr);
267 
268 /**
269  * memory_region_unref: Remove 1 to a memory region's reference count
270  *
271  * Whenever memory regions are accessed outside the BQL, they need to be
272  * preserved against hot-unplug.  MemoryRegions actually do not have their
273  * own reference count; they piggyback on a QOM object, their "owner".
274  * This function removes a reference to the owner and possibly destroys it.
275  *
276  * @mr: the #MemoryRegion
277  */
278 void memory_region_unref(MemoryRegion *mr);
279 
280 /**
281  * memory_region_init_io: Initialize an I/O memory region.
282  *
283  * Accesses into the region will cause the callbacks in @ops to be called.
284  * if @size is nonzero, subregions will be clipped to @size.
285  *
286  * @mr: the #MemoryRegion to be initialized.
287  * @owner: the object that tracks the region's reference count
288  * @ops: a structure containing read and write callbacks to be used when
289  *       I/O is performed on the region.
290  * @opaque: passed to to the read and write callbacks of the @ops structure.
291  * @name: used for debugging; not visible to the user or ABI
292  * @size: size of the region.
293  */
294 void memory_region_init_io(MemoryRegion *mr,
295                            struct Object *owner,
296                            const MemoryRegionOps *ops,
297                            void *opaque,
298                            const char *name,
299                            uint64_t size);
300 
301 /**
302  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
303  *                          region will modify memory directly.
304  *
305  * @mr: the #MemoryRegion to be initialized.
306  * @owner: the object that tracks the region's reference count
307  * @name: the name of the region.
308  * @size: size of the region.
309  */
310 void memory_region_init_ram(MemoryRegion *mr,
311                             struct Object *owner,
312                             const char *name,
313                             uint64_t size);
314 
315 #ifdef __linux__
316 /**
317  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
318  *                                    mmap-ed backend.
319  *
320  * @mr: the #MemoryRegion to be initialized.
321  * @owner: the object that tracks the region's reference count
322  * @name: the name of the region.
323  * @size: size of the region.
324  * @share: %true if memory must be mmaped with the MAP_SHARED flag
325  * @path: the path in which to allocate the RAM.
326  * @errp: pointer to Error*, to store an error if it happens.
327  */
328 void memory_region_init_ram_from_file(MemoryRegion *mr,
329                                       struct Object *owner,
330                                       const char *name,
331                                       uint64_t size,
332                                       bool share,
333                                       const char *path,
334                                       Error **errp);
335 #endif
336 
337 /**
338  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
339  *                              user-provided pointer.  Accesses into the
340  *                              region will modify memory directly.
341  *
342  * @mr: the #MemoryRegion to be initialized.
343  * @owner: the object that tracks the region's reference count
344  * @name: the name of the region.
345  * @size: size of the region.
346  * @ptr: memory to be mapped; must contain at least @size bytes.
347  */
348 void memory_region_init_ram_ptr(MemoryRegion *mr,
349                                 struct Object *owner,
350                                 const char *name,
351                                 uint64_t size,
352                                 void *ptr);
353 
354 /**
355  * memory_region_init_alias: Initialize a memory region that aliases all or a
356  *                           part of another memory region.
357  *
358  * @mr: the #MemoryRegion to be initialized.
359  * @owner: the object that tracks the region's reference count
360  * @name: used for debugging; not visible to the user or ABI
361  * @orig: the region to be referenced; @mr will be equivalent to
362  *        @orig between @offset and @offset + @size - 1.
363  * @offset: start of the section in @orig to be referenced.
364  * @size: size of the region.
365  */
366 void memory_region_init_alias(MemoryRegion *mr,
367                               struct Object *owner,
368                               const char *name,
369                               MemoryRegion *orig,
370                               hwaddr offset,
371                               uint64_t size);
372 
373 /**
374  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
375  *                                 handled via callbacks.
376  *
377  * @mr: the #MemoryRegion to be initialized.
378  * @owner: the object that tracks the region's reference count
379  * @ops: callbacks for write access handling.
380  * @name: the name of the region.
381  * @size: size of the region.
382  */
383 void memory_region_init_rom_device(MemoryRegion *mr,
384                                    struct Object *owner,
385                                    const MemoryRegionOps *ops,
386                                    void *opaque,
387                                    const char *name,
388                                    uint64_t size);
389 
390 /**
391  * memory_region_init_reservation: Initialize a memory region that reserves
392  *                                 I/O space.
393  *
394  * A reservation region primariy serves debugging purposes.  It claims I/O
395  * space that is not supposed to be handled by QEMU itself.  Any access via
396  * the memory API will cause an abort().
397  *
398  * @mr: the #MemoryRegion to be initialized
399  * @owner: the object that tracks the region's reference count
400  * @name: used for debugging; not visible to the user or ABI
401  * @size: size of the region.
402  */
403 void memory_region_init_reservation(MemoryRegion *mr,
404                                     struct Object *owner,
405                                     const char *name,
406                                     uint64_t size);
407 
408 /**
409  * memory_region_init_iommu: Initialize a memory region that translates
410  * addresses
411  *
412  * An IOMMU region translates addresses and forwards accesses to a target
413  * memory region.
414  *
415  * @mr: the #MemoryRegion to be initialized
416  * @owner: the object that tracks the region's reference count
417  * @ops: a function that translates addresses into the @target region
418  * @name: used for debugging; not visible to the user or ABI
419  * @size: size of the region.
420  */
421 void memory_region_init_iommu(MemoryRegion *mr,
422                               struct Object *owner,
423                               const MemoryRegionIOMMUOps *ops,
424                               const char *name,
425                               uint64_t size);
426 
427 /**
428  * memory_region_destroy: Destroy a memory region and reclaim all resources.
429  *
430  * @mr: the region to be destroyed.  May not currently be a subregion
431  *      (see memory_region_add_subregion()) or referenced in an alias
432  *      (see memory_region_init_alias()).
433  */
434 void memory_region_destroy(MemoryRegion *mr);
435 
436 /**
437  * memory_region_owner: get a memory region's owner.
438  *
439  * @mr: the memory region being queried.
440  */
441 struct Object *memory_region_owner(MemoryRegion *mr);
442 
443 /**
444  * memory_region_size: get a memory region's size.
445  *
446  * @mr: the memory region being queried.
447  */
448 uint64_t memory_region_size(MemoryRegion *mr);
449 
450 /**
451  * memory_region_is_ram: check whether a memory region is random access
452  *
453  * Returns %true is a memory region is random access.
454  *
455  * @mr: the memory region being queried
456  */
457 bool memory_region_is_ram(MemoryRegion *mr);
458 
459 /**
460  * memory_region_is_romd: check whether a memory region is in ROMD mode
461  *
462  * Returns %true if a memory region is a ROM device and currently set to allow
463  * direct reads.
464  *
465  * @mr: the memory region being queried
466  */
467 static inline bool memory_region_is_romd(MemoryRegion *mr)
468 {
469     return mr->rom_device && mr->romd_mode;
470 }
471 
472 /**
473  * memory_region_is_iommu: check whether a memory region is an iommu
474  *
475  * Returns %true is a memory region is an iommu.
476  *
477  * @mr: the memory region being queried
478  */
479 bool memory_region_is_iommu(MemoryRegion *mr);
480 
481 /**
482  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
483  *
484  * @mr: the memory region that was changed
485  * @entry: the new entry in the IOMMU translation table.  The entry
486  *         replaces all old entries for the same virtual I/O address range.
487  *         Deleted entries have .@perm == 0.
488  */
489 void memory_region_notify_iommu(MemoryRegion *mr,
490                                 IOMMUTLBEntry entry);
491 
492 /**
493  * memory_region_register_iommu_notifier: register a notifier for changes to
494  * IOMMU translation entries.
495  *
496  * @mr: the memory region to observe
497  * @n: the notifier to be added; the notifier receives a pointer to an
498  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
499  *     valid on exit from the notifier.
500  */
501 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
502 
503 /**
504  * memory_region_unregister_iommu_notifier: unregister a notifier for
505  * changes to IOMMU translation entries.
506  *
507  * @n: the notifier to be removed.
508  */
509 void memory_region_unregister_iommu_notifier(Notifier *n);
510 
511 /**
512  * memory_region_name: get a memory region's name
513  *
514  * Returns the string that was used to initialize the memory region.
515  *
516  * @mr: the memory region being queried
517  */
518 const char *memory_region_name(MemoryRegion *mr);
519 
520 /**
521  * memory_region_is_logging: return whether a memory region is logging writes
522  *
523  * Returns %true if the memory region is logging writes
524  *
525  * @mr: the memory region being queried
526  */
527 bool memory_region_is_logging(MemoryRegion *mr);
528 
529 /**
530  * memory_region_is_rom: check whether a memory region is ROM
531  *
532  * Returns %true is a memory region is read-only memory.
533  *
534  * @mr: the memory region being queried
535  */
536 bool memory_region_is_rom(MemoryRegion *mr);
537 
538 /**
539  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
540  *
541  * Returns a file descriptor backing a file-based RAM memory region,
542  * or -1 if the region is not a file-based RAM memory region.
543  *
544  * @mr: the RAM or alias memory region being queried.
545  */
546 int memory_region_get_fd(MemoryRegion *mr);
547 
548 /**
549  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
550  *
551  * Returns a host pointer to a RAM memory region (created with
552  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
553  * care.
554  *
555  * @mr: the memory region being queried.
556  */
557 void *memory_region_get_ram_ptr(MemoryRegion *mr);
558 
559 /**
560  * memory_region_set_log: Turn dirty logging on or off for a region.
561  *
562  * Turns dirty logging on or off for a specified client (display, migration).
563  * Only meaningful for RAM regions.
564  *
565  * @mr: the memory region being updated.
566  * @log: whether dirty logging is to be enabled or disabled.
567  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
568  *          %DIRTY_MEMORY_VGA.
569  */
570 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
571 
572 /**
573  * memory_region_get_dirty: Check whether a range of bytes is dirty
574  *                          for a specified client.
575  *
576  * Checks whether a range of bytes has been written to since the last
577  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
578  * must be enabled.
579  *
580  * @mr: the memory region being queried.
581  * @addr: the address (relative to the start of the region) being queried.
582  * @size: the size of the range being queried.
583  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
584  *          %DIRTY_MEMORY_VGA.
585  */
586 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
587                              hwaddr size, unsigned client);
588 
589 /**
590  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
591  *
592  * Marks a range of bytes as dirty, after it has been dirtied outside
593  * guest code.
594  *
595  * @mr: the memory region being dirtied.
596  * @addr: the address (relative to the start of the region) being dirtied.
597  * @size: size of the range being dirtied.
598  */
599 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
600                              hwaddr size);
601 
602 /**
603  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
604  *                                     for a specified client. It clears them.
605  *
606  * Checks whether a range of bytes has been written to since the last
607  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
608  * must be enabled.
609  *
610  * @mr: the memory region being queried.
611  * @addr: the address (relative to the start of the region) being queried.
612  * @size: the size of the range being queried.
613  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
614  *          %DIRTY_MEMORY_VGA.
615  */
616 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
617                                         hwaddr size, unsigned client);
618 /**
619  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
620  *                                  any external TLBs (e.g. kvm)
621  *
622  * Flushes dirty information from accelerators such as kvm and vhost-net
623  * and makes it available to users of the memory API.
624  *
625  * @mr: the region being flushed.
626  */
627 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
628 
629 /**
630  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
631  *                            client.
632  *
633  * Marks a range of pages as no longer dirty.
634  *
635  * @mr: the region being updated.
636  * @addr: the start of the subrange being cleaned.
637  * @size: the size of the subrange being cleaned.
638  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
639  *          %DIRTY_MEMORY_VGA.
640  */
641 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
642                                hwaddr size, unsigned client);
643 
644 /**
645  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
646  *
647  * Allows a memory region to be marked as read-only (turning it into a ROM).
648  * only useful on RAM regions.
649  *
650  * @mr: the region being updated.
651  * @readonly: whether rhe region is to be ROM or RAM.
652  */
653 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
654 
655 /**
656  * memory_region_rom_device_set_romd: enable/disable ROMD mode
657  *
658  * Allows a ROM device (initialized with memory_region_init_rom_device() to
659  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
660  * device is mapped to guest memory and satisfies read access directly.
661  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
662  * Writes are always handled by the #MemoryRegion.write function.
663  *
664  * @mr: the memory region to be updated
665  * @romd_mode: %true to put the region into ROMD mode
666  */
667 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
668 
669 /**
670  * memory_region_set_coalescing: Enable memory coalescing for the region.
671  *
672  * Enabled writes to a region to be queued for later processing. MMIO ->write
673  * callbacks may be delayed until a non-coalesced MMIO is issued.
674  * Only useful for IO regions.  Roughly similar to write-combining hardware.
675  *
676  * @mr: the memory region to be write coalesced
677  */
678 void memory_region_set_coalescing(MemoryRegion *mr);
679 
680 /**
681  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
682  *                               a region.
683  *
684  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
685  * Multiple calls can be issued coalesced disjoint ranges.
686  *
687  * @mr: the memory region to be updated.
688  * @offset: the start of the range within the region to be coalesced.
689  * @size: the size of the subrange to be coalesced.
690  */
691 void memory_region_add_coalescing(MemoryRegion *mr,
692                                   hwaddr offset,
693                                   uint64_t size);
694 
695 /**
696  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
697  *
698  * Disables any coalescing caused by memory_region_set_coalescing() or
699  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
700  * hardware.
701  *
702  * @mr: the memory region to be updated.
703  */
704 void memory_region_clear_coalescing(MemoryRegion *mr);
705 
706 /**
707  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
708  *                                    accesses.
709  *
710  * Ensure that pending coalesced MMIO request are flushed before the memory
711  * region is accessed. This property is automatically enabled for all regions
712  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
713  *
714  * @mr: the memory region to be updated.
715  */
716 void memory_region_set_flush_coalesced(MemoryRegion *mr);
717 
718 /**
719  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
720  *                                      accesses.
721  *
722  * Clear the automatic coalesced MMIO flushing enabled via
723  * memory_region_set_flush_coalesced. Note that this service has no effect on
724  * memory regions that have MMIO coalescing enabled for themselves. For them,
725  * automatic flushing will stop once coalescing is disabled.
726  *
727  * @mr: the memory region to be updated.
728  */
729 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
730 
731 /**
732  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
733  *                            is written to a location.
734  *
735  * Marks a word in an IO region (initialized with memory_region_init_io())
736  * as a trigger for an eventfd event.  The I/O callback will not be called.
737  * The caller must be prepared to handle failure (that is, take the required
738  * action if the callback _is_ called).
739  *
740  * @mr: the memory region being updated.
741  * @addr: the address within @mr that is to be monitored
742  * @size: the size of the access to trigger the eventfd
743  * @match_data: whether to match against @data, instead of just @addr
744  * @data: the data to match against the guest write
745  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
746  **/
747 void memory_region_add_eventfd(MemoryRegion *mr,
748                                hwaddr addr,
749                                unsigned size,
750                                bool match_data,
751                                uint64_t data,
752                                EventNotifier *e);
753 
754 /**
755  * memory_region_del_eventfd: Cancel an eventfd.
756  *
757  * Cancels an eventfd trigger requested by a previous
758  * memory_region_add_eventfd() call.
759  *
760  * @mr: the memory region being updated.
761  * @addr: the address within @mr that is to be monitored
762  * @size: the size of the access to trigger the eventfd
763  * @match_data: whether to match against @data, instead of just @addr
764  * @data: the data to match against the guest write
765  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
766  */
767 void memory_region_del_eventfd(MemoryRegion *mr,
768                                hwaddr addr,
769                                unsigned size,
770                                bool match_data,
771                                uint64_t data,
772                                EventNotifier *e);
773 
774 /**
775  * memory_region_add_subregion: Add a subregion to a container.
776  *
777  * Adds a subregion at @offset.  The subregion may not overlap with other
778  * subregions (except for those explicitly marked as overlapping).  A region
779  * may only be added once as a subregion (unless removed with
780  * memory_region_del_subregion()); use memory_region_init_alias() if you
781  * want a region to be a subregion in multiple locations.
782  *
783  * @mr: the region to contain the new subregion; must be a container
784  *      initialized with memory_region_init().
785  * @offset: the offset relative to @mr where @subregion is added.
786  * @subregion: the subregion to be added.
787  */
788 void memory_region_add_subregion(MemoryRegion *mr,
789                                  hwaddr offset,
790                                  MemoryRegion *subregion);
791 /**
792  * memory_region_add_subregion_overlap: Add a subregion to a container
793  *                                      with overlap.
794  *
795  * Adds a subregion at @offset.  The subregion may overlap with other
796  * subregions.  Conflicts are resolved by having a higher @priority hide a
797  * lower @priority. Subregions without priority are taken as @priority 0.
798  * A region may only be added once as a subregion (unless removed with
799  * memory_region_del_subregion()); use memory_region_init_alias() if you
800  * want a region to be a subregion in multiple locations.
801  *
802  * @mr: the region to contain the new subregion; must be a container
803  *      initialized with memory_region_init().
804  * @offset: the offset relative to @mr where @subregion is added.
805  * @subregion: the subregion to be added.
806  * @priority: used for resolving overlaps; highest priority wins.
807  */
808 void memory_region_add_subregion_overlap(MemoryRegion *mr,
809                                          hwaddr offset,
810                                          MemoryRegion *subregion,
811                                          int priority);
812 
813 /**
814  * memory_region_get_ram_addr: Get the ram address associated with a memory
815  *                             region
816  *
817  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
818  * code is being reworked.
819  */
820 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
821 
822 /**
823  * memory_region_del_subregion: Remove a subregion.
824  *
825  * Removes a subregion from its container.
826  *
827  * @mr: the container to be updated.
828  * @subregion: the region being removed; must be a current subregion of @mr.
829  */
830 void memory_region_del_subregion(MemoryRegion *mr,
831                                  MemoryRegion *subregion);
832 
833 /*
834  * memory_region_set_enabled: dynamically enable or disable a region
835  *
836  * Enables or disables a memory region.  A disabled memory region
837  * ignores all accesses to itself and its subregions.  It does not
838  * obscure sibling subregions with lower priority - it simply behaves as
839  * if it was removed from the hierarchy.
840  *
841  * Regions default to being enabled.
842  *
843  * @mr: the region to be updated
844  * @enabled: whether to enable or disable the region
845  */
846 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
847 
848 /*
849  * memory_region_set_address: dynamically update the address of a region
850  *
851  * Dynamically updates the address of a region, relative to its container.
852  * May be used on regions are currently part of a memory hierarchy.
853  *
854  * @mr: the region to be updated
855  * @addr: new address, relative to container region
856  */
857 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
858 
859 /*
860  * memory_region_set_alias_offset: dynamically update a memory alias's offset
861  *
862  * Dynamically updates the offset into the target region that an alias points
863  * to, as if the fourth argument to memory_region_init_alias() has changed.
864  *
865  * @mr: the #MemoryRegion to be updated; should be an alias.
866  * @offset: the new offset into the target memory region
867  */
868 void memory_region_set_alias_offset(MemoryRegion *mr,
869                                     hwaddr offset);
870 
871 /**
872  * memory_region_present: checks if an address relative to a @container
873  * translates into #MemoryRegion within @container
874  *
875  * Answer whether a #MemoryRegion within @container covers the address
876  * @addr.
877  *
878  * @container: a #MemoryRegion within which @addr is a relative address
879  * @addr: the area within @container to be searched
880  */
881 bool memory_region_present(MemoryRegion *container, hwaddr addr);
882 
883 /**
884  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
885  * into any address space.
886  *
887  * @mr: a #MemoryRegion which should be checked if it's mapped
888  */
889 bool memory_region_is_mapped(MemoryRegion *mr);
890 
891 /**
892  * memory_region_find: translate an address/size relative to a
893  * MemoryRegion into a #MemoryRegionSection.
894  *
895  * Locates the first #MemoryRegion within @mr that overlaps the range
896  * given by @addr and @size.
897  *
898  * Returns a #MemoryRegionSection that describes a contiguous overlap.
899  * It will have the following characteristics:
900  *    .@size = 0 iff no overlap was found
901  *    .@mr is non-%NULL iff an overlap was found
902  *
903  * Remember that in the return value the @offset_within_region is
904  * relative to the returned region (in the .@mr field), not to the
905  * @mr argument.
906  *
907  * Similarly, the .@offset_within_address_space is relative to the
908  * address space that contains both regions, the passed and the
909  * returned one.  However, in the special case where the @mr argument
910  * has no container (and thus is the root of the address space), the
911  * following will hold:
912  *    .@offset_within_address_space >= @addr
913  *    .@offset_within_address_space + .@size <= @addr + @size
914  *
915  * @mr: a MemoryRegion within which @addr is a relative address
916  * @addr: start of the area within @as to be searched
917  * @size: size of the area to be searched
918  */
919 MemoryRegionSection memory_region_find(MemoryRegion *mr,
920                                        hwaddr addr, uint64_t size);
921 
922 /**
923  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
924  *
925  * Synchronizes the dirty page log for an entire address space.
926  * @as: the address space that contains the memory being synchronized
927  */
928 void address_space_sync_dirty_bitmap(AddressSpace *as);
929 
930 /**
931  * memory_region_transaction_begin: Start a transaction.
932  *
933  * During a transaction, changes will be accumulated and made visible
934  * only when the transaction ends (is committed).
935  */
936 void memory_region_transaction_begin(void);
937 
938 /**
939  * memory_region_transaction_commit: Commit a transaction and make changes
940  *                                   visible to the guest.
941  */
942 void memory_region_transaction_commit(void);
943 
944 /**
945  * memory_listener_register: register callbacks to be called when memory
946  *                           sections are mapped or unmapped into an address
947  *                           space
948  *
949  * @listener: an object containing the callbacks to be called
950  * @filter: if non-%NULL, only regions in this address space will be observed
951  */
952 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
953 
954 /**
955  * memory_listener_unregister: undo the effect of memory_listener_register()
956  *
957  * @listener: an object containing the callbacks to be removed
958  */
959 void memory_listener_unregister(MemoryListener *listener);
960 
961 /**
962  * memory_global_dirty_log_start: begin dirty logging for all regions
963  */
964 void memory_global_dirty_log_start(void);
965 
966 /**
967  * memory_global_dirty_log_stop: end dirty logging for all regions
968  */
969 void memory_global_dirty_log_stop(void);
970 
971 void mtree_info(fprintf_function mon_printf, void *f);
972 
973 /**
974  * address_space_init: initializes an address space
975  *
976  * @as: an uninitialized #AddressSpace
977  * @root: a #MemoryRegion that routes addesses for the address space
978  * @name: an address space name.  The name is only used for debugging
979  *        output.
980  */
981 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
982 
983 
984 /**
985  * address_space_destroy: destroy an address space
986  *
987  * Releases all resources associated with an address space.  After an address space
988  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
989  * as well.
990  *
991  * @as: address space to be destroyed
992  */
993 void address_space_destroy(AddressSpace *as);
994 
995 /**
996  * address_space_rw: read from or write to an address space.
997  *
998  * Return true if the operation hit any unassigned memory or encountered an
999  * IOMMU fault.
1000  *
1001  * @as: #AddressSpace to be accessed
1002  * @addr: address within that address space
1003  * @buf: buffer with the data transferred
1004  * @is_write: indicates the transfer direction
1005  */
1006 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1007                       int len, bool is_write);
1008 
1009 /**
1010  * address_space_write: write to address space.
1011  *
1012  * Return true if the operation hit any unassigned memory or encountered an
1013  * IOMMU fault.
1014  *
1015  * @as: #AddressSpace to be accessed
1016  * @addr: address within that address space
1017  * @buf: buffer with the data transferred
1018  */
1019 bool address_space_write(AddressSpace *as, hwaddr addr,
1020                          const uint8_t *buf, int len);
1021 
1022 /**
1023  * address_space_read: read from an address space.
1024  *
1025  * Return true if the operation hit any unassigned memory or encountered an
1026  * IOMMU fault.
1027  *
1028  * @as: #AddressSpace to be accessed
1029  * @addr: address within that address space
1030  * @buf: buffer with the data transferred
1031  */
1032 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
1033 
1034 /* address_space_translate: translate an address range into an address space
1035  * into a MemoryRegion and an address range into that section
1036  *
1037  * @as: #AddressSpace to be accessed
1038  * @addr: address within that address space
1039  * @xlat: pointer to address within the returned memory region section's
1040  * #MemoryRegion.
1041  * @len: pointer to length
1042  * @is_write: indicates the transfer direction
1043  */
1044 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1045                                       hwaddr *xlat, hwaddr *len,
1046                                       bool is_write);
1047 
1048 /* address_space_access_valid: check for validity of accessing an address
1049  * space range
1050  *
1051  * Check whether memory is assigned to the given address space range, and
1052  * access is permitted by any IOMMU regions that are active for the address
1053  * space.
1054  *
1055  * For now, addr and len should be aligned to a page size.  This limitation
1056  * will be lifted in the future.
1057  *
1058  * @as: #AddressSpace to be accessed
1059  * @addr: address within that address space
1060  * @len: length of the area to be checked
1061  * @is_write: indicates the transfer direction
1062  */
1063 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1064 
1065 /* address_space_map: map a physical memory region into a host virtual address
1066  *
1067  * May map a subset of the requested range, given by and returned in @plen.
1068  * May return %NULL if resources needed to perform the mapping are exhausted.
1069  * Use only for reads OR writes - not for read-modify-write operations.
1070  * Use cpu_register_map_client() to know when retrying the map operation is
1071  * likely to succeed.
1072  *
1073  * @as: #AddressSpace to be accessed
1074  * @addr: address within that address space
1075  * @plen: pointer to length of buffer; updated on return
1076  * @is_write: indicates the transfer direction
1077  */
1078 void *address_space_map(AddressSpace *as, hwaddr addr,
1079                         hwaddr *plen, bool is_write);
1080 
1081 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1082  *
1083  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1084  * the amount of memory that was actually read or written by the caller.
1085  *
1086  * @as: #AddressSpace used
1087  * @addr: address within that address space
1088  * @len: buffer length as returned by address_space_map()
1089  * @access_len: amount of data actually transferred
1090  * @is_write: indicates the transfer direction
1091  */
1092 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1093                          int is_write, hwaddr access_len);
1094 
1095 
1096 #endif
1097 
1098 #endif
1099