xref: /openbmc/qemu/include/exec/memory.h (revision 6d0ceb80)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36 
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 
47 struct MemoryRegionMmio {
48     CPUReadMemoryFunc *read[3];
49     CPUWriteMemoryFunc *write[3];
50 };
51 
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 
54 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
55 typedef enum {
56     IOMMU_NONE = 0,
57     IOMMU_RO   = 1,
58     IOMMU_WO   = 2,
59     IOMMU_RW   = 3,
60 } IOMMUAccessFlags;
61 
62 struct IOMMUTLBEntry {
63     AddressSpace    *target_as;
64     hwaddr           iova;
65     hwaddr           translated_addr;
66     hwaddr           addr_mask;  /* 0xfff = 4k translation */
67     IOMMUAccessFlags perm;
68 };
69 
70 /*
71  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
72  * register with one or multiple IOMMU Notifier capability bit(s).
73  */
74 typedef enum {
75     IOMMU_NOTIFIER_NONE = 0,
76     /* Notify cache invalidations */
77     IOMMU_NOTIFIER_UNMAP = 0x1,
78     /* Notify entry changes (newly created entries) */
79     IOMMU_NOTIFIER_MAP = 0x2,
80 } IOMMUNotifierFlag;
81 
82 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
83 
84 struct IOMMUNotifier {
85     void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
86     IOMMUNotifierFlag notifier_flags;
87     QLIST_ENTRY(IOMMUNotifier) node;
88 };
89 typedef struct IOMMUNotifier IOMMUNotifier;
90 
91 /* New-style MMIO accessors can indicate that the transaction failed.
92  * A zero (MEMTX_OK) response means success; anything else is a failure
93  * of some kind. The memory subsystem will bitwise-OR together results
94  * if it is synthesizing an operation from multiple smaller accesses.
95  */
96 #define MEMTX_OK 0
97 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
98 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
99 typedef uint32_t MemTxResult;
100 
101 /*
102  * Memory region callbacks
103  */
104 struct MemoryRegionOps {
105     /* Read from the memory region. @addr is relative to @mr; @size is
106      * in bytes. */
107     uint64_t (*read)(void *opaque,
108                      hwaddr addr,
109                      unsigned size);
110     /* Write to the memory region. @addr is relative to @mr; @size is
111      * in bytes. */
112     void (*write)(void *opaque,
113                   hwaddr addr,
114                   uint64_t data,
115                   unsigned size);
116 
117     MemTxResult (*read_with_attrs)(void *opaque,
118                                    hwaddr addr,
119                                    uint64_t *data,
120                                    unsigned size,
121                                    MemTxAttrs attrs);
122     MemTxResult (*write_with_attrs)(void *opaque,
123                                     hwaddr addr,
124                                     uint64_t data,
125                                     unsigned size,
126                                     MemTxAttrs attrs);
127 
128     enum device_endian endianness;
129     /* Guest-visible constraints: */
130     struct {
131         /* If nonzero, specify bounds on access sizes beyond which a machine
132          * check is thrown.
133          */
134         unsigned min_access_size;
135         unsigned max_access_size;
136         /* If true, unaligned accesses are supported.  Otherwise unaligned
137          * accesses throw machine checks.
138          */
139          bool unaligned;
140         /*
141          * If present, and returns #false, the transaction is not accepted
142          * by the device (and results in machine dependent behaviour such
143          * as a machine check exception).
144          */
145         bool (*accepts)(void *opaque, hwaddr addr,
146                         unsigned size, bool is_write);
147     } valid;
148     /* Internal implementation constraints: */
149     struct {
150         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
151          * will be rounded upwards and a partial result will be returned.
152          */
153         unsigned min_access_size;
154         /* If nonzero, specifies the maximum size implemented.  Larger sizes
155          * will be done as a series of accesses with smaller sizes.
156          */
157         unsigned max_access_size;
158         /* If true, unaligned accesses are supported.  Otherwise all accesses
159          * are converted to (possibly multiple) naturally aligned accesses.
160          */
161         bool unaligned;
162     } impl;
163 
164     /* If .read and .write are not present, old_mmio may be used for
165      * backwards compatibility with old mmio registration
166      */
167     const MemoryRegionMmio old_mmio;
168 };
169 
170 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
171 
172 struct MemoryRegionIOMMUOps {
173     /* Return a TLB entry that contains a given address. */
174     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
175     /* Returns minimum supported page size */
176     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
177     /* Called when IOMMU Notifier flag changed */
178     void (*notify_flag_changed)(MemoryRegion *iommu,
179                                 IOMMUNotifierFlag old_flags,
180                                 IOMMUNotifierFlag new_flags);
181 };
182 
183 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
184 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
185 
186 struct MemoryRegion {
187     Object parent_obj;
188 
189     /* All fields are private - violators will be prosecuted */
190 
191     /* The following fields should fit in a cache line */
192     bool romd_mode;
193     bool ram;
194     bool subpage;
195     bool readonly; /* For RAM regions */
196     bool rom_device;
197     bool flush_coalesced_mmio;
198     bool global_locking;
199     uint8_t dirty_log_mask;
200     RAMBlock *ram_block;
201     Object *owner;
202     const MemoryRegionIOMMUOps *iommu_ops;
203 
204     const MemoryRegionOps *ops;
205     void *opaque;
206     MemoryRegion *container;
207     Int128 size;
208     hwaddr addr;
209     void (*destructor)(MemoryRegion *mr);
210     uint64_t align;
211     bool terminates;
212     bool skip_dump;
213     bool enabled;
214     bool warning_printed; /* For reservations */
215     uint8_t vga_logging_count;
216     MemoryRegion *alias;
217     hwaddr alias_offset;
218     int32_t priority;
219     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
220     QTAILQ_ENTRY(MemoryRegion) subregions_link;
221     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
222     const char *name;
223     unsigned ioeventfd_nb;
224     MemoryRegionIoeventfd *ioeventfds;
225     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
226     IOMMUNotifierFlag iommu_notify_flags;
227 };
228 
229 /**
230  * MemoryListener: callbacks structure for updates to the physical memory map
231  *
232  * Allows a component to adjust to changes in the guest-visible memory map.
233  * Use with memory_listener_register() and memory_listener_unregister().
234  */
235 struct MemoryListener {
236     void (*begin)(MemoryListener *listener);
237     void (*commit)(MemoryListener *listener);
238     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
239     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
240     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
241     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
242                       int old, int new);
243     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
244                      int old, int new);
245     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
246     void (*log_global_start)(MemoryListener *listener);
247     void (*log_global_stop)(MemoryListener *listener);
248     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
249                         bool match_data, uint64_t data, EventNotifier *e);
250     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
251                         bool match_data, uint64_t data, EventNotifier *e);
252     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
253                                hwaddr addr, hwaddr len);
254     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
255                                hwaddr addr, hwaddr len);
256     /* Lower = earlier (during add), later (during del) */
257     unsigned priority;
258     AddressSpace *address_space_filter;
259     QTAILQ_ENTRY(MemoryListener) link;
260 };
261 
262 /**
263  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
264  */
265 struct AddressSpace {
266     /* All fields are private. */
267     struct rcu_head rcu;
268     char *name;
269     MemoryRegion *root;
270     int ref_count;
271     bool malloced;
272 
273     /* Accessed via RCU.  */
274     struct FlatView *current_map;
275 
276     int ioeventfd_nb;
277     struct MemoryRegionIoeventfd *ioeventfds;
278     struct AddressSpaceDispatch *dispatch;
279     struct AddressSpaceDispatch *next_dispatch;
280     MemoryListener dispatch_listener;
281 
282     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
283 };
284 
285 /**
286  * MemoryRegionSection: describes a fragment of a #MemoryRegion
287  *
288  * @mr: the region, or %NULL if empty
289  * @address_space: the address space the region is mapped in
290  * @offset_within_region: the beginning of the section, relative to @mr's start
291  * @size: the size of the section; will not exceed @mr's boundaries
292  * @offset_within_address_space: the address of the first byte of the section
293  *     relative to the region's address space
294  * @readonly: writes to this section are ignored
295  */
296 struct MemoryRegionSection {
297     MemoryRegion *mr;
298     AddressSpace *address_space;
299     hwaddr offset_within_region;
300     Int128 size;
301     hwaddr offset_within_address_space;
302     bool readonly;
303 };
304 
305 /**
306  * memory_region_init: Initialize a memory region
307  *
308  * The region typically acts as a container for other memory regions.  Use
309  * memory_region_add_subregion() to add subregions.
310  *
311  * @mr: the #MemoryRegion to be initialized
312  * @owner: the object that tracks the region's reference count
313  * @name: used for debugging; not visible to the user or ABI
314  * @size: size of the region; any subregions beyond this size will be clipped
315  */
316 void memory_region_init(MemoryRegion *mr,
317                         struct Object *owner,
318                         const char *name,
319                         uint64_t size);
320 
321 /**
322  * memory_region_ref: Add 1 to a memory region's reference count
323  *
324  * Whenever memory regions are accessed outside the BQL, they need to be
325  * preserved against hot-unplug.  MemoryRegions actually do not have their
326  * own reference count; they piggyback on a QOM object, their "owner".
327  * This function adds a reference to the owner.
328  *
329  * All MemoryRegions must have an owner if they can disappear, even if the
330  * device they belong to operates exclusively under the BQL.  This is because
331  * the region could be returned at any time by memory_region_find, and this
332  * is usually under guest control.
333  *
334  * @mr: the #MemoryRegion
335  */
336 void memory_region_ref(MemoryRegion *mr);
337 
338 /**
339  * memory_region_unref: Remove 1 to a memory region's reference count
340  *
341  * Whenever memory regions are accessed outside the BQL, they need to be
342  * preserved against hot-unplug.  MemoryRegions actually do not have their
343  * own reference count; they piggyback on a QOM object, their "owner".
344  * This function removes a reference to the owner and possibly destroys it.
345  *
346  * @mr: the #MemoryRegion
347  */
348 void memory_region_unref(MemoryRegion *mr);
349 
350 /**
351  * memory_region_init_io: Initialize an I/O memory region.
352  *
353  * Accesses into the region will cause the callbacks in @ops to be called.
354  * if @size is nonzero, subregions will be clipped to @size.
355  *
356  * @mr: the #MemoryRegion to be initialized.
357  * @owner: the object that tracks the region's reference count
358  * @ops: a structure containing read and write callbacks to be used when
359  *       I/O is performed on the region.
360  * @opaque: passed to the read and write callbacks of the @ops structure.
361  * @name: used for debugging; not visible to the user or ABI
362  * @size: size of the region.
363  */
364 void memory_region_init_io(MemoryRegion *mr,
365                            struct Object *owner,
366                            const MemoryRegionOps *ops,
367                            void *opaque,
368                            const char *name,
369                            uint64_t size);
370 
371 /**
372  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
373  *                          region will modify memory directly.
374  *
375  * @mr: the #MemoryRegion to be initialized.
376  * @owner: the object that tracks the region's reference count
377  * @name: the name of the region.
378  * @size: size of the region.
379  * @errp: pointer to Error*, to store an error if it happens.
380  */
381 void memory_region_init_ram(MemoryRegion *mr,
382                             struct Object *owner,
383                             const char *name,
384                             uint64_t size,
385                             Error **errp);
386 
387 /**
388  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
389  *                                     RAM.  Accesses into the region will
390  *                                     modify memory directly.  Only an initial
391  *                                     portion of this RAM is actually used.
392  *                                     The used size can change across reboots.
393  *
394  * @mr: the #MemoryRegion to be initialized.
395  * @owner: the object that tracks the region's reference count
396  * @name: the name of the region.
397  * @size: used size of the region.
398  * @max_size: max size of the region.
399  * @resized: callback to notify owner about used size change.
400  * @errp: pointer to Error*, to store an error if it happens.
401  */
402 void memory_region_init_resizeable_ram(MemoryRegion *mr,
403                                        struct Object *owner,
404                                        const char *name,
405                                        uint64_t size,
406                                        uint64_t max_size,
407                                        void (*resized)(const char*,
408                                                        uint64_t length,
409                                                        void *host),
410                                        Error **errp);
411 #ifdef __linux__
412 /**
413  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
414  *                                    mmap-ed backend.
415  *
416  * @mr: the #MemoryRegion to be initialized.
417  * @owner: the object that tracks the region's reference count
418  * @name: the name of the region.
419  * @size: size of the region.
420  * @share: %true if memory must be mmaped with the MAP_SHARED flag
421  * @path: the path in which to allocate the RAM.
422  * @errp: pointer to Error*, to store an error if it happens.
423  */
424 void memory_region_init_ram_from_file(MemoryRegion *mr,
425                                       struct Object *owner,
426                                       const char *name,
427                                       uint64_t size,
428                                       bool share,
429                                       const char *path,
430                                       Error **errp);
431 #endif
432 
433 /**
434  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
435  *                              user-provided pointer.  Accesses into the
436  *                              region will modify memory directly.
437  *
438  * @mr: the #MemoryRegion to be initialized.
439  * @owner: the object that tracks the region's reference count
440  * @name: the name of the region.
441  * @size: size of the region.
442  * @ptr: memory to be mapped; must contain at least @size bytes.
443  */
444 void memory_region_init_ram_ptr(MemoryRegion *mr,
445                                 struct Object *owner,
446                                 const char *name,
447                                 uint64_t size,
448                                 void *ptr);
449 
450 /**
451  * memory_region_init_alias: Initialize a memory region that aliases all or a
452  *                           part of another memory region.
453  *
454  * @mr: the #MemoryRegion to be initialized.
455  * @owner: the object that tracks the region's reference count
456  * @name: used for debugging; not visible to the user or ABI
457  * @orig: the region to be referenced; @mr will be equivalent to
458  *        @orig between @offset and @offset + @size - 1.
459  * @offset: start of the section in @orig to be referenced.
460  * @size: size of the region.
461  */
462 void memory_region_init_alias(MemoryRegion *mr,
463                               struct Object *owner,
464                               const char *name,
465                               MemoryRegion *orig,
466                               hwaddr offset,
467                               uint64_t size);
468 
469 /**
470  * memory_region_init_rom: Initialize a ROM memory region.
471  *
472  * This has the same effect as calling memory_region_init_ram()
473  * and then marking the resulting region read-only with
474  * memory_region_set_readonly().
475  *
476  * @mr: the #MemoryRegion to be initialized.
477  * @owner: the object that tracks the region's reference count
478  * @name: the name of the region.
479  * @size: size of the region.
480  * @errp: pointer to Error*, to store an error if it happens.
481  */
482 void memory_region_init_rom(MemoryRegion *mr,
483                             struct Object *owner,
484                             const char *name,
485                             uint64_t size,
486                             Error **errp);
487 
488 /**
489  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
490  *                                 handled via callbacks.
491  *
492  * @mr: the #MemoryRegion to be initialized.
493  * @owner: the object that tracks the region's reference count
494  * @ops: callbacks for write access handling (must not be NULL).
495  * @name: the name of the region.
496  * @size: size of the region.
497  * @errp: pointer to Error*, to store an error if it happens.
498  */
499 void memory_region_init_rom_device(MemoryRegion *mr,
500                                    struct Object *owner,
501                                    const MemoryRegionOps *ops,
502                                    void *opaque,
503                                    const char *name,
504                                    uint64_t size,
505                                    Error **errp);
506 
507 /**
508  * memory_region_init_reservation: Initialize a memory region that reserves
509  *                                 I/O space.
510  *
511  * A reservation region primariy serves debugging purposes.  It claims I/O
512  * space that is not supposed to be handled by QEMU itself.  Any access via
513  * the memory API will cause an abort().
514  * This function is deprecated. Use memory_region_init_io() with NULL
515  * callbacks instead.
516  *
517  * @mr: the #MemoryRegion to be initialized
518  * @owner: the object that tracks the region's reference count
519  * @name: used for debugging; not visible to the user or ABI
520  * @size: size of the region.
521  */
522 static inline void memory_region_init_reservation(MemoryRegion *mr,
523                                     Object *owner,
524                                     const char *name,
525                                     uint64_t size)
526 {
527     memory_region_init_io(mr, owner, NULL, mr, name, size);
528 }
529 
530 /**
531  * memory_region_init_iommu: Initialize a memory region that translates
532  * addresses
533  *
534  * An IOMMU region translates addresses and forwards accesses to a target
535  * memory region.
536  *
537  * @mr: the #MemoryRegion to be initialized
538  * @owner: the object that tracks the region's reference count
539  * @ops: a function that translates addresses into the @target region
540  * @name: used for debugging; not visible to the user or ABI
541  * @size: size of the region.
542  */
543 void memory_region_init_iommu(MemoryRegion *mr,
544                               struct Object *owner,
545                               const MemoryRegionIOMMUOps *ops,
546                               const char *name,
547                               uint64_t size);
548 
549 /**
550  * memory_region_owner: get a memory region's owner.
551  *
552  * @mr: the memory region being queried.
553  */
554 struct Object *memory_region_owner(MemoryRegion *mr);
555 
556 /**
557  * memory_region_size: get a memory region's size.
558  *
559  * @mr: the memory region being queried.
560  */
561 uint64_t memory_region_size(MemoryRegion *mr);
562 
563 /**
564  * memory_region_is_ram: check whether a memory region is random access
565  *
566  * Returns %true is a memory region is random access.
567  *
568  * @mr: the memory region being queried
569  */
570 static inline bool memory_region_is_ram(MemoryRegion *mr)
571 {
572     return mr->ram;
573 }
574 
575 /**
576  * memory_region_is_skip_dump: check whether a memory region should not be
577  *                             dumped
578  *
579  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
580  *
581  * @mr: the memory region being queried
582  */
583 bool memory_region_is_skip_dump(MemoryRegion *mr);
584 
585 /**
586  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
587  *                              region
588  *
589  * @mr: the memory region being queried
590  */
591 void memory_region_set_skip_dump(MemoryRegion *mr);
592 
593 /**
594  * memory_region_is_romd: check whether a memory region is in ROMD mode
595  *
596  * Returns %true if a memory region is a ROM device and currently set to allow
597  * direct reads.
598  *
599  * @mr: the memory region being queried
600  */
601 static inline bool memory_region_is_romd(MemoryRegion *mr)
602 {
603     return mr->rom_device && mr->romd_mode;
604 }
605 
606 /**
607  * memory_region_is_iommu: check whether a memory region is an iommu
608  *
609  * Returns %true is a memory region is an iommu.
610  *
611  * @mr: the memory region being queried
612  */
613 static inline bool memory_region_is_iommu(MemoryRegion *mr)
614 {
615     return mr->iommu_ops;
616 }
617 
618 
619 /**
620  * memory_region_iommu_get_min_page_size: get minimum supported page size
621  * for an iommu
622  *
623  * Returns minimum supported page size for an iommu.
624  *
625  * @mr: the memory region being queried
626  */
627 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
628 
629 /**
630  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
631  *
632  * The notification type will be decided by entry.perm bits:
633  *
634  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
635  * - For MAP (newly added entry) notifies: set entry.perm to the
636  *   permission of the page (which is definitely !IOMMU_NONE).
637  *
638  * Note: for any IOMMU implementation, an in-place mapping change
639  * should be notified with an UNMAP followed by a MAP.
640  *
641  * @mr: the memory region that was changed
642  * @entry: the new entry in the IOMMU translation table.  The entry
643  *         replaces all old entries for the same virtual I/O address range.
644  *         Deleted entries have .@perm == 0.
645  */
646 void memory_region_notify_iommu(MemoryRegion *mr,
647                                 IOMMUTLBEntry entry);
648 
649 /**
650  * memory_region_register_iommu_notifier: register a notifier for changes to
651  * IOMMU translation entries.
652  *
653  * @mr: the memory region to observe
654  * @n: the IOMMUNotifier to be added; the notify callback receives a
655  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
656  *     ceases to be valid on exit from the notifier.
657  */
658 void memory_region_register_iommu_notifier(MemoryRegion *mr,
659                                            IOMMUNotifier *n);
660 
661 /**
662  * memory_region_iommu_replay: replay existing IOMMU translations to
663  * a notifier with the minimum page granularity returned by
664  * mr->iommu_ops->get_page_size().
665  *
666  * @mr: the memory region to observe
667  * @n: the notifier to which to replay iommu mappings
668  * @is_write: Whether to treat the replay as a translate "write"
669  *     through the iommu
670  */
671 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
672                                 bool is_write);
673 
674 /**
675  * memory_region_unregister_iommu_notifier: unregister a notifier for
676  * changes to IOMMU translation entries.
677  *
678  * @mr: the memory region which was observed and for which notity_stopped()
679  *      needs to be called
680  * @n: the notifier to be removed.
681  */
682 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
683                                              IOMMUNotifier *n);
684 
685 /**
686  * memory_region_name: get a memory region's name
687  *
688  * Returns the string that was used to initialize the memory region.
689  *
690  * @mr: the memory region being queried
691  */
692 const char *memory_region_name(const MemoryRegion *mr);
693 
694 /**
695  * memory_region_is_logging: return whether a memory region is logging writes
696  *
697  * Returns %true if the memory region is logging writes for the given client
698  *
699  * @mr: the memory region being queried
700  * @client: the client being queried
701  */
702 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
703 
704 /**
705  * memory_region_get_dirty_log_mask: return the clients for which a
706  * memory region is logging writes.
707  *
708  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
709  * are the bit indices.
710  *
711  * @mr: the memory region being queried
712  */
713 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
714 
715 /**
716  * memory_region_is_rom: check whether a memory region is ROM
717  *
718  * Returns %true is a memory region is read-only memory.
719  *
720  * @mr: the memory region being queried
721  */
722 static inline bool memory_region_is_rom(MemoryRegion *mr)
723 {
724     return mr->ram && mr->readonly;
725 }
726 
727 
728 /**
729  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
730  *
731  * Returns a file descriptor backing a file-based RAM memory region,
732  * or -1 if the region is not a file-based RAM memory region.
733  *
734  * @mr: the RAM or alias memory region being queried.
735  */
736 int memory_region_get_fd(MemoryRegion *mr);
737 
738 /**
739  * memory_region_set_fd: Mark a RAM memory region as backed by a
740  * file descriptor.
741  *
742  * This function is typically used after memory_region_init_ram_ptr().
743  *
744  * @mr: the memory region being queried.
745  * @fd: the file descriptor that backs @mr.
746  */
747 void memory_region_set_fd(MemoryRegion *mr, int fd);
748 
749 /**
750  * memory_region_from_host: Convert a pointer into a RAM memory region
751  * and an offset within it.
752  *
753  * Given a host pointer inside a RAM memory region (created with
754  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
755  * the MemoryRegion and the offset within it.
756  *
757  * Use with care; by the time this function returns, the returned pointer is
758  * not protected by RCU anymore.  If the caller is not within an RCU critical
759  * section and does not hold the iothread lock, it must have other means of
760  * protecting the pointer, such as a reference to the region that includes
761  * the incoming ram_addr_t.
762  *
763  * @mr: the memory region being queried.
764  */
765 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
766 
767 /**
768  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
769  *
770  * Returns a host pointer to a RAM memory region (created with
771  * memory_region_init_ram() or memory_region_init_ram_ptr()).
772  *
773  * Use with care; by the time this function returns, the returned pointer is
774  * not protected by RCU anymore.  If the caller is not within an RCU critical
775  * section and does not hold the iothread lock, it must have other means of
776  * protecting the pointer, such as a reference to the region that includes
777  * the incoming ram_addr_t.
778  *
779  * @mr: the memory region being queried.
780  */
781 void *memory_region_get_ram_ptr(MemoryRegion *mr);
782 
783 /* memory_region_ram_resize: Resize a RAM region.
784  *
785  * Only legal before guest might have detected the memory size: e.g. on
786  * incoming migration, or right after reset.
787  *
788  * @mr: a memory region created with @memory_region_init_resizeable_ram.
789  * @newsize: the new size the region
790  * @errp: pointer to Error*, to store an error if it happens.
791  */
792 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
793                               Error **errp);
794 
795 /**
796  * memory_region_set_log: Turn dirty logging on or off for a region.
797  *
798  * Turns dirty logging on or off for a specified client (display, migration).
799  * Only meaningful for RAM regions.
800  *
801  * @mr: the memory region being updated.
802  * @log: whether dirty logging is to be enabled or disabled.
803  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
804  */
805 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
806 
807 /**
808  * memory_region_get_dirty: Check whether a range of bytes is dirty
809  *                          for a specified client.
810  *
811  * Checks whether a range of bytes has been written to since the last
812  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
813  * must be enabled.
814  *
815  * @mr: the memory region being queried.
816  * @addr: the address (relative to the start of the region) being queried.
817  * @size: the size of the range being queried.
818  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
819  *          %DIRTY_MEMORY_VGA.
820  */
821 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
822                              hwaddr size, unsigned client);
823 
824 /**
825  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
826  *
827  * Marks a range of bytes as dirty, after it has been dirtied outside
828  * guest code.
829  *
830  * @mr: the memory region being dirtied.
831  * @addr: the address (relative to the start of the region) being dirtied.
832  * @size: size of the range being dirtied.
833  */
834 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
835                              hwaddr size);
836 
837 /**
838  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
839  *                                     for a specified client. It clears them.
840  *
841  * Checks whether a range of bytes has been written to since the last
842  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
843  * must be enabled.
844  *
845  * @mr: the memory region being queried.
846  * @addr: the address (relative to the start of the region) being queried.
847  * @size: the size of the range being queried.
848  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
849  *          %DIRTY_MEMORY_VGA.
850  */
851 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
852                                         hwaddr size, unsigned client);
853 /**
854  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
855  *                                  any external TLBs (e.g. kvm)
856  *
857  * Flushes dirty information from accelerators such as kvm and vhost-net
858  * and makes it available to users of the memory API.
859  *
860  * @mr: the region being flushed.
861  */
862 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
863 
864 /**
865  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
866  *                            client.
867  *
868  * Marks a range of pages as no longer dirty.
869  *
870  * @mr: the region being updated.
871  * @addr: the start of the subrange being cleaned.
872  * @size: the size of the subrange being cleaned.
873  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
874  *          %DIRTY_MEMORY_VGA.
875  */
876 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
877                                hwaddr size, unsigned client);
878 
879 /**
880  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
881  *
882  * Allows a memory region to be marked as read-only (turning it into a ROM).
883  * only useful on RAM regions.
884  *
885  * @mr: the region being updated.
886  * @readonly: whether rhe region is to be ROM or RAM.
887  */
888 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
889 
890 /**
891  * memory_region_rom_device_set_romd: enable/disable ROMD mode
892  *
893  * Allows a ROM device (initialized with memory_region_init_rom_device() to
894  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
895  * device is mapped to guest memory and satisfies read access directly.
896  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
897  * Writes are always handled by the #MemoryRegion.write function.
898  *
899  * @mr: the memory region to be updated
900  * @romd_mode: %true to put the region into ROMD mode
901  */
902 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
903 
904 /**
905  * memory_region_set_coalescing: Enable memory coalescing for the region.
906  *
907  * Enabled writes to a region to be queued for later processing. MMIO ->write
908  * callbacks may be delayed until a non-coalesced MMIO is issued.
909  * Only useful for IO regions.  Roughly similar to write-combining hardware.
910  *
911  * @mr: the memory region to be write coalesced
912  */
913 void memory_region_set_coalescing(MemoryRegion *mr);
914 
915 /**
916  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
917  *                               a region.
918  *
919  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
920  * Multiple calls can be issued coalesced disjoint ranges.
921  *
922  * @mr: the memory region to be updated.
923  * @offset: the start of the range within the region to be coalesced.
924  * @size: the size of the subrange to be coalesced.
925  */
926 void memory_region_add_coalescing(MemoryRegion *mr,
927                                   hwaddr offset,
928                                   uint64_t size);
929 
930 /**
931  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
932  *
933  * Disables any coalescing caused by memory_region_set_coalescing() or
934  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
935  * hardware.
936  *
937  * @mr: the memory region to be updated.
938  */
939 void memory_region_clear_coalescing(MemoryRegion *mr);
940 
941 /**
942  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
943  *                                    accesses.
944  *
945  * Ensure that pending coalesced MMIO request are flushed before the memory
946  * region is accessed. This property is automatically enabled for all regions
947  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
948  *
949  * @mr: the memory region to be updated.
950  */
951 void memory_region_set_flush_coalesced(MemoryRegion *mr);
952 
953 /**
954  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
955  *                                      accesses.
956  *
957  * Clear the automatic coalesced MMIO flushing enabled via
958  * memory_region_set_flush_coalesced. Note that this service has no effect on
959  * memory regions that have MMIO coalescing enabled for themselves. For them,
960  * automatic flushing will stop once coalescing is disabled.
961  *
962  * @mr: the memory region to be updated.
963  */
964 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
965 
966 /**
967  * memory_region_set_global_locking: Declares the access processing requires
968  *                                   QEMU's global lock.
969  *
970  * When this is invoked, accesses to the memory region will be processed while
971  * holding the global lock of QEMU. This is the default behavior of memory
972  * regions.
973  *
974  * @mr: the memory region to be updated.
975  */
976 void memory_region_set_global_locking(MemoryRegion *mr);
977 
978 /**
979  * memory_region_clear_global_locking: Declares that access processing does
980  *                                     not depend on the QEMU global lock.
981  *
982  * By clearing this property, accesses to the memory region will be processed
983  * outside of QEMU's global lock (unless the lock is held on when issuing the
984  * access request). In this case, the device model implementing the access
985  * handlers is responsible for synchronization of concurrency.
986  *
987  * @mr: the memory region to be updated.
988  */
989 void memory_region_clear_global_locking(MemoryRegion *mr);
990 
991 /**
992  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
993  *                            is written to a location.
994  *
995  * Marks a word in an IO region (initialized with memory_region_init_io())
996  * as a trigger for an eventfd event.  The I/O callback will not be called.
997  * The caller must be prepared to handle failure (that is, take the required
998  * action if the callback _is_ called).
999  *
1000  * @mr: the memory region being updated.
1001  * @addr: the address within @mr that is to be monitored
1002  * @size: the size of the access to trigger the eventfd
1003  * @match_data: whether to match against @data, instead of just @addr
1004  * @data: the data to match against the guest write
1005  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1006  **/
1007 void memory_region_add_eventfd(MemoryRegion *mr,
1008                                hwaddr addr,
1009                                unsigned size,
1010                                bool match_data,
1011                                uint64_t data,
1012                                EventNotifier *e);
1013 
1014 /**
1015  * memory_region_del_eventfd: Cancel an eventfd.
1016  *
1017  * Cancels an eventfd trigger requested by a previous
1018  * memory_region_add_eventfd() call.
1019  *
1020  * @mr: the memory region being updated.
1021  * @addr: the address within @mr that is to be monitored
1022  * @size: the size of the access to trigger the eventfd
1023  * @match_data: whether to match against @data, instead of just @addr
1024  * @data: the data to match against the guest write
1025  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1026  */
1027 void memory_region_del_eventfd(MemoryRegion *mr,
1028                                hwaddr addr,
1029                                unsigned size,
1030                                bool match_data,
1031                                uint64_t data,
1032                                EventNotifier *e);
1033 
1034 /**
1035  * memory_region_add_subregion: Add a subregion to a container.
1036  *
1037  * Adds a subregion at @offset.  The subregion may not overlap with other
1038  * subregions (except for those explicitly marked as overlapping).  A region
1039  * may only be added once as a subregion (unless removed with
1040  * memory_region_del_subregion()); use memory_region_init_alias() if you
1041  * want a region to be a subregion in multiple locations.
1042  *
1043  * @mr: the region to contain the new subregion; must be a container
1044  *      initialized with memory_region_init().
1045  * @offset: the offset relative to @mr where @subregion is added.
1046  * @subregion: the subregion to be added.
1047  */
1048 void memory_region_add_subregion(MemoryRegion *mr,
1049                                  hwaddr offset,
1050                                  MemoryRegion *subregion);
1051 /**
1052  * memory_region_add_subregion_overlap: Add a subregion to a container
1053  *                                      with overlap.
1054  *
1055  * Adds a subregion at @offset.  The subregion may overlap with other
1056  * subregions.  Conflicts are resolved by having a higher @priority hide a
1057  * lower @priority. Subregions without priority are taken as @priority 0.
1058  * A region may only be added once as a subregion (unless removed with
1059  * memory_region_del_subregion()); use memory_region_init_alias() if you
1060  * want a region to be a subregion in multiple locations.
1061  *
1062  * @mr: the region to contain the new subregion; must be a container
1063  *      initialized with memory_region_init().
1064  * @offset: the offset relative to @mr where @subregion is added.
1065  * @subregion: the subregion to be added.
1066  * @priority: used for resolving overlaps; highest priority wins.
1067  */
1068 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1069                                          hwaddr offset,
1070                                          MemoryRegion *subregion,
1071                                          int priority);
1072 
1073 /**
1074  * memory_region_get_ram_addr: Get the ram address associated with a memory
1075  *                             region
1076  */
1077 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1078 
1079 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1080 /**
1081  * memory_region_del_subregion: Remove a subregion.
1082  *
1083  * Removes a subregion from its container.
1084  *
1085  * @mr: the container to be updated.
1086  * @subregion: the region being removed; must be a current subregion of @mr.
1087  */
1088 void memory_region_del_subregion(MemoryRegion *mr,
1089                                  MemoryRegion *subregion);
1090 
1091 /*
1092  * memory_region_set_enabled: dynamically enable or disable a region
1093  *
1094  * Enables or disables a memory region.  A disabled memory region
1095  * ignores all accesses to itself and its subregions.  It does not
1096  * obscure sibling subregions with lower priority - it simply behaves as
1097  * if it was removed from the hierarchy.
1098  *
1099  * Regions default to being enabled.
1100  *
1101  * @mr: the region to be updated
1102  * @enabled: whether to enable or disable the region
1103  */
1104 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1105 
1106 /*
1107  * memory_region_set_address: dynamically update the address of a region
1108  *
1109  * Dynamically updates the address of a region, relative to its container.
1110  * May be used on regions are currently part of a memory hierarchy.
1111  *
1112  * @mr: the region to be updated
1113  * @addr: new address, relative to container region
1114  */
1115 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1116 
1117 /*
1118  * memory_region_set_size: dynamically update the size of a region.
1119  *
1120  * Dynamically updates the size of a region.
1121  *
1122  * @mr: the region to be updated
1123  * @size: used size of the region.
1124  */
1125 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1126 
1127 /*
1128  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1129  *
1130  * Dynamically updates the offset into the target region that an alias points
1131  * to, as if the fourth argument to memory_region_init_alias() has changed.
1132  *
1133  * @mr: the #MemoryRegion to be updated; should be an alias.
1134  * @offset: the new offset into the target memory region
1135  */
1136 void memory_region_set_alias_offset(MemoryRegion *mr,
1137                                     hwaddr offset);
1138 
1139 /**
1140  * memory_region_present: checks if an address relative to a @container
1141  * translates into #MemoryRegion within @container
1142  *
1143  * Answer whether a #MemoryRegion within @container covers the address
1144  * @addr.
1145  *
1146  * @container: a #MemoryRegion within which @addr is a relative address
1147  * @addr: the area within @container to be searched
1148  */
1149 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1150 
1151 /**
1152  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1153  * into any address space.
1154  *
1155  * @mr: a #MemoryRegion which should be checked if it's mapped
1156  */
1157 bool memory_region_is_mapped(MemoryRegion *mr);
1158 
1159 /**
1160  * memory_region_find: translate an address/size relative to a
1161  * MemoryRegion into a #MemoryRegionSection.
1162  *
1163  * Locates the first #MemoryRegion within @mr that overlaps the range
1164  * given by @addr and @size.
1165  *
1166  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1167  * It will have the following characteristics:
1168  *    .@size = 0 iff no overlap was found
1169  *    .@mr is non-%NULL iff an overlap was found
1170  *
1171  * Remember that in the return value the @offset_within_region is
1172  * relative to the returned region (in the .@mr field), not to the
1173  * @mr argument.
1174  *
1175  * Similarly, the .@offset_within_address_space is relative to the
1176  * address space that contains both regions, the passed and the
1177  * returned one.  However, in the special case where the @mr argument
1178  * has no container (and thus is the root of the address space), the
1179  * following will hold:
1180  *    .@offset_within_address_space >= @addr
1181  *    .@offset_within_address_space + .@size <= @addr + @size
1182  *
1183  * @mr: a MemoryRegion within which @addr is a relative address
1184  * @addr: start of the area within @as to be searched
1185  * @size: size of the area to be searched
1186  */
1187 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1188                                        hwaddr addr, uint64_t size);
1189 
1190 /**
1191  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1192  *
1193  * Synchronizes the dirty page log for all address spaces.
1194  */
1195 void memory_global_dirty_log_sync(void);
1196 
1197 /**
1198  * memory_region_transaction_begin: Start a transaction.
1199  *
1200  * During a transaction, changes will be accumulated and made visible
1201  * only when the transaction ends (is committed).
1202  */
1203 void memory_region_transaction_begin(void);
1204 
1205 /**
1206  * memory_region_transaction_commit: Commit a transaction and make changes
1207  *                                   visible to the guest.
1208  */
1209 void memory_region_transaction_commit(void);
1210 
1211 /**
1212  * memory_listener_register: register callbacks to be called when memory
1213  *                           sections are mapped or unmapped into an address
1214  *                           space
1215  *
1216  * @listener: an object containing the callbacks to be called
1217  * @filter: if non-%NULL, only regions in this address space will be observed
1218  */
1219 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1220 
1221 /**
1222  * memory_listener_unregister: undo the effect of memory_listener_register()
1223  *
1224  * @listener: an object containing the callbacks to be removed
1225  */
1226 void memory_listener_unregister(MemoryListener *listener);
1227 
1228 /**
1229  * memory_global_dirty_log_start: begin dirty logging for all regions
1230  */
1231 void memory_global_dirty_log_start(void);
1232 
1233 /**
1234  * memory_global_dirty_log_stop: end dirty logging for all regions
1235  */
1236 void memory_global_dirty_log_stop(void);
1237 
1238 void mtree_info(fprintf_function mon_printf, void *f);
1239 
1240 /**
1241  * memory_region_dispatch_read: perform a read directly to the specified
1242  * MemoryRegion.
1243  *
1244  * @mr: #MemoryRegion to access
1245  * @addr: address within that region
1246  * @pval: pointer to uint64_t which the data is written to
1247  * @size: size of the access in bytes
1248  * @attrs: memory transaction attributes to use for the access
1249  */
1250 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1251                                         hwaddr addr,
1252                                         uint64_t *pval,
1253                                         unsigned size,
1254                                         MemTxAttrs attrs);
1255 /**
1256  * memory_region_dispatch_write: perform a write directly to the specified
1257  * MemoryRegion.
1258  *
1259  * @mr: #MemoryRegion to access
1260  * @addr: address within that region
1261  * @data: data to write
1262  * @size: size of the access in bytes
1263  * @attrs: memory transaction attributes to use for the access
1264  */
1265 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1266                                          hwaddr addr,
1267                                          uint64_t data,
1268                                          unsigned size,
1269                                          MemTxAttrs attrs);
1270 
1271 /**
1272  * address_space_init: initializes an address space
1273  *
1274  * @as: an uninitialized #AddressSpace
1275  * @root: a #MemoryRegion that routes addresses for the address space
1276  * @name: an address space name.  The name is only used for debugging
1277  *        output.
1278  */
1279 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1280 
1281 /**
1282  * address_space_init_shareable: return an address space for a memory region,
1283  *                               creating it if it does not already exist
1284  *
1285  * @root: a #MemoryRegion that routes addresses for the address space
1286  * @name: an address space name.  The name is only used for debugging
1287  *        output.
1288  *
1289  * This function will return a pointer to an existing AddressSpace
1290  * which was initialized with the specified MemoryRegion, or it will
1291  * create and initialize one if it does not already exist. The ASes
1292  * are reference-counted, so the memory will be freed automatically
1293  * when the AddressSpace is destroyed via address_space_destroy.
1294  */
1295 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1296                                            const char *name);
1297 
1298 /**
1299  * address_space_destroy: destroy an address space
1300  *
1301  * Releases all resources associated with an address space.  After an address space
1302  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1303  * as well.
1304  *
1305  * @as: address space to be destroyed
1306  */
1307 void address_space_destroy(AddressSpace *as);
1308 
1309 /**
1310  * address_space_rw: read from or write to an address space.
1311  *
1312  * Return a MemTxResult indicating whether the operation succeeded
1313  * or failed (eg unassigned memory, device rejected the transaction,
1314  * IOMMU fault).
1315  *
1316  * @as: #AddressSpace to be accessed
1317  * @addr: address within that address space
1318  * @attrs: memory transaction attributes
1319  * @buf: buffer with the data transferred
1320  * @is_write: indicates the transfer direction
1321  */
1322 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1323                              MemTxAttrs attrs, uint8_t *buf,
1324                              int len, bool is_write);
1325 
1326 /**
1327  * address_space_write: write to address space.
1328  *
1329  * Return a MemTxResult indicating whether the operation succeeded
1330  * or failed (eg unassigned memory, device rejected the transaction,
1331  * IOMMU fault).
1332  *
1333  * @as: #AddressSpace to be accessed
1334  * @addr: address within that address space
1335  * @attrs: memory transaction attributes
1336  * @buf: buffer with the data transferred
1337  */
1338 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1339                                 MemTxAttrs attrs,
1340                                 const uint8_t *buf, int len);
1341 
1342 /* address_space_ld*: load from an address space
1343  * address_space_st*: store to an address space
1344  *
1345  * These functions perform a load or store of the byte, word,
1346  * longword or quad to the specified address within the AddressSpace.
1347  * The _le suffixed functions treat the data as little endian;
1348  * _be indicates big endian; no suffix indicates "same endianness
1349  * as guest CPU".
1350  *
1351  * The "guest CPU endianness" accessors are deprecated for use outside
1352  * target-* code; devices should be CPU-agnostic and use either the LE
1353  * or the BE accessors.
1354  *
1355  * @as #AddressSpace to be accessed
1356  * @addr: address within that address space
1357  * @val: data value, for stores
1358  * @attrs: memory transaction attributes
1359  * @result: location to write the success/failure of the transaction;
1360  *   if NULL, this information is discarded
1361  */
1362 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1363                             MemTxAttrs attrs, MemTxResult *result);
1364 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1365                             MemTxAttrs attrs, MemTxResult *result);
1366 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1367                             MemTxAttrs attrs, MemTxResult *result);
1368 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1369                             MemTxAttrs attrs, MemTxResult *result);
1370 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1371                             MemTxAttrs attrs, MemTxResult *result);
1372 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1373                             MemTxAttrs attrs, MemTxResult *result);
1374 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1375                             MemTxAttrs attrs, MemTxResult *result);
1376 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1377                             MemTxAttrs attrs, MemTxResult *result);
1378 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1379                             MemTxAttrs attrs, MemTxResult *result);
1380 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1381                             MemTxAttrs attrs, MemTxResult *result);
1382 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1383                             MemTxAttrs attrs, MemTxResult *result);
1384 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1385                             MemTxAttrs attrs, MemTxResult *result);
1386 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1387                             MemTxAttrs attrs, MemTxResult *result);
1388 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1389                             MemTxAttrs attrs, MemTxResult *result);
1390 
1391 /* address_space_translate: translate an address range into an address space
1392  * into a MemoryRegion and an address range into that section.  Should be
1393  * called from an RCU critical section, to avoid that the last reference
1394  * to the returned region disappears after address_space_translate returns.
1395  *
1396  * @as: #AddressSpace to be accessed
1397  * @addr: address within that address space
1398  * @xlat: pointer to address within the returned memory region section's
1399  * #MemoryRegion.
1400  * @len: pointer to length
1401  * @is_write: indicates the transfer direction
1402  */
1403 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1404                                       hwaddr *xlat, hwaddr *len,
1405                                       bool is_write);
1406 
1407 /* address_space_access_valid: check for validity of accessing an address
1408  * space range
1409  *
1410  * Check whether memory is assigned to the given address space range, and
1411  * access is permitted by any IOMMU regions that are active for the address
1412  * space.
1413  *
1414  * For now, addr and len should be aligned to a page size.  This limitation
1415  * will be lifted in the future.
1416  *
1417  * @as: #AddressSpace to be accessed
1418  * @addr: address within that address space
1419  * @len: length of the area to be checked
1420  * @is_write: indicates the transfer direction
1421  */
1422 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1423 
1424 /* address_space_map: map a physical memory region into a host virtual address
1425  *
1426  * May map a subset of the requested range, given by and returned in @plen.
1427  * May return %NULL if resources needed to perform the mapping are exhausted.
1428  * Use only for reads OR writes - not for read-modify-write operations.
1429  * Use cpu_register_map_client() to know when retrying the map operation is
1430  * likely to succeed.
1431  *
1432  * @as: #AddressSpace to be accessed
1433  * @addr: address within that address space
1434  * @plen: pointer to length of buffer; updated on return
1435  * @is_write: indicates the transfer direction
1436  */
1437 void *address_space_map(AddressSpace *as, hwaddr addr,
1438                         hwaddr *plen, bool is_write);
1439 
1440 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1441  *
1442  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1443  * the amount of memory that was actually read or written by the caller.
1444  *
1445  * @as: #AddressSpace used
1446  * @addr: address within that address space
1447  * @len: buffer length as returned by address_space_map()
1448  * @access_len: amount of data actually transferred
1449  * @is_write: indicates the transfer direction
1450  */
1451 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1452                          int is_write, hwaddr access_len);
1453 
1454 
1455 /* Internal functions, part of the implementation of address_space_read.  */
1456 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1457                                         MemTxAttrs attrs, uint8_t *buf,
1458                                         int len, hwaddr addr1, hwaddr l,
1459 					MemoryRegion *mr);
1460 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1461                                     MemTxAttrs attrs, uint8_t *buf, int len);
1462 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1463 
1464 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1465 {
1466     if (is_write) {
1467         return memory_region_is_ram(mr) && !mr->readonly;
1468     } else {
1469         return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1470     }
1471 }
1472 
1473 /**
1474  * address_space_read: read from an address space.
1475  *
1476  * Return a MemTxResult indicating whether the operation succeeded
1477  * or failed (eg unassigned memory, device rejected the transaction,
1478  * IOMMU fault).
1479  *
1480  * @as: #AddressSpace to be accessed
1481  * @addr: address within that address space
1482  * @attrs: memory transaction attributes
1483  * @buf: buffer with the data transferred
1484  */
1485 static inline __attribute__((__always_inline__))
1486 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1487                                uint8_t *buf, int len)
1488 {
1489     MemTxResult result = MEMTX_OK;
1490     hwaddr l, addr1;
1491     void *ptr;
1492     MemoryRegion *mr;
1493 
1494     if (__builtin_constant_p(len)) {
1495         if (len) {
1496             rcu_read_lock();
1497             l = len;
1498             mr = address_space_translate(as, addr, &addr1, &l, false);
1499             if (len == l && memory_access_is_direct(mr, false)) {
1500                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1501                 memcpy(buf, ptr, len);
1502             } else {
1503                 result = address_space_read_continue(as, addr, attrs, buf, len,
1504                                                      addr1, l, mr);
1505             }
1506             rcu_read_unlock();
1507         }
1508     } else {
1509         result = address_space_read_full(as, addr, attrs, buf, len);
1510     }
1511     return result;
1512 }
1513 
1514 #endif
1515 
1516 #endif
1517