1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "qemu:memory-region" 37 #define MEMORY_REGION(obj) \ 38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 41 #define IOMMU_MEMORY_REGION(obj) \ 42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 43 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 45 TYPE_IOMMU_MEMORY_REGION) 46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 48 TYPE_IOMMU_MEMORY_REGION) 49 50 extern bool global_dirty_log; 51 52 typedef struct MemoryRegionOps MemoryRegionOps; 53 typedef struct MemoryRegionMmio MemoryRegionMmio; 54 55 struct MemoryRegionMmio { 56 CPUReadMemoryFunc *read[3]; 57 CPUWriteMemoryFunc *write[3]; 58 }; 59 60 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 61 62 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 63 typedef enum { 64 IOMMU_NONE = 0, 65 IOMMU_RO = 1, 66 IOMMU_WO = 2, 67 IOMMU_RW = 3, 68 } IOMMUAccessFlags; 69 70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 71 72 struct IOMMUTLBEntry { 73 AddressSpace *target_as; 74 hwaddr iova; 75 hwaddr translated_addr; 76 hwaddr addr_mask; /* 0xfff = 4k translation */ 77 IOMMUAccessFlags perm; 78 }; 79 80 /* 81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 82 * register with one or multiple IOMMU Notifier capability bit(s). 83 */ 84 typedef enum { 85 IOMMU_NOTIFIER_NONE = 0, 86 /* Notify cache invalidations */ 87 IOMMU_NOTIFIER_UNMAP = 0x1, 88 /* Notify entry changes (newly created entries) */ 89 IOMMU_NOTIFIER_MAP = 0x2, 90 } IOMMUNotifierFlag; 91 92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 93 94 struct IOMMUNotifier; 95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 96 IOMMUTLBEntry *data); 97 98 struct IOMMUNotifier { 99 IOMMUNotify notify; 100 IOMMUNotifierFlag notifier_flags; 101 /* Notify for address space range start <= addr <= end */ 102 hwaddr start; 103 hwaddr end; 104 int iommu_idx; 105 QLIST_ENTRY(IOMMUNotifier) node; 106 }; 107 typedef struct IOMMUNotifier IOMMUNotifier; 108 109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 110 #define RAM_PREALLOC (1 << 0) 111 112 /* RAM is mmap-ed with MAP_SHARED */ 113 #define RAM_SHARED (1 << 1) 114 115 /* Only a portion of RAM (used_length) is actually used, and migrated. 116 * This used_length size can change across reboots. 117 */ 118 #define RAM_RESIZEABLE (1 << 2) 119 120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 121 * zero the page and wake waiting processes. 122 * (Set during postcopy) 123 */ 124 #define RAM_UF_ZEROPAGE (1 << 3) 125 126 /* RAM can be migrated */ 127 #define RAM_MIGRATABLE (1 << 4) 128 129 /* RAM is a persistent kind memory */ 130 #define RAM_PMEM (1 << 5) 131 132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 133 IOMMUNotifierFlag flags, 134 hwaddr start, hwaddr end, 135 int iommu_idx) 136 { 137 n->notify = fn; 138 n->notifier_flags = flags; 139 n->start = start; 140 n->end = end; 141 n->iommu_idx = iommu_idx; 142 } 143 144 /* 145 * Memory region callbacks 146 */ 147 struct MemoryRegionOps { 148 /* Read from the memory region. @addr is relative to @mr; @size is 149 * in bytes. */ 150 uint64_t (*read)(void *opaque, 151 hwaddr addr, 152 unsigned size); 153 /* Write to the memory region. @addr is relative to @mr; @size is 154 * in bytes. */ 155 void (*write)(void *opaque, 156 hwaddr addr, 157 uint64_t data, 158 unsigned size); 159 160 MemTxResult (*read_with_attrs)(void *opaque, 161 hwaddr addr, 162 uint64_t *data, 163 unsigned size, 164 MemTxAttrs attrs); 165 MemTxResult (*write_with_attrs)(void *opaque, 166 hwaddr addr, 167 uint64_t data, 168 unsigned size, 169 MemTxAttrs attrs); 170 171 enum device_endian endianness; 172 /* Guest-visible constraints: */ 173 struct { 174 /* If nonzero, specify bounds on access sizes beyond which a machine 175 * check is thrown. 176 */ 177 unsigned min_access_size; 178 unsigned max_access_size; 179 /* If true, unaligned accesses are supported. Otherwise unaligned 180 * accesses throw machine checks. 181 */ 182 bool unaligned; 183 /* 184 * If present, and returns #false, the transaction is not accepted 185 * by the device (and results in machine dependent behaviour such 186 * as a machine check exception). 187 */ 188 bool (*accepts)(void *opaque, hwaddr addr, 189 unsigned size, bool is_write, 190 MemTxAttrs attrs); 191 } valid; 192 /* Internal implementation constraints: */ 193 struct { 194 /* If nonzero, specifies the minimum size implemented. Smaller sizes 195 * will be rounded upwards and a partial result will be returned. 196 */ 197 unsigned min_access_size; 198 /* If nonzero, specifies the maximum size implemented. Larger sizes 199 * will be done as a series of accesses with smaller sizes. 200 */ 201 unsigned max_access_size; 202 /* If true, unaligned accesses are supported. Otherwise all accesses 203 * are converted to (possibly multiple) naturally aligned accesses. 204 */ 205 bool unaligned; 206 } impl; 207 }; 208 209 typedef struct MemoryRegionClass { 210 /* private */ 211 ObjectClass parent_class; 212 } MemoryRegionClass; 213 214 215 enum IOMMUMemoryRegionAttr { 216 IOMMU_ATTR_SPAPR_TCE_FD 217 }; 218 219 /** 220 * IOMMUMemoryRegionClass: 221 * 222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 223 * and provide an implementation of at least the @translate method here 224 * to handle requests to the memory region. Other methods are optional. 225 * 226 * The IOMMU implementation must use the IOMMU notifier infrastructure 227 * to report whenever mappings are changed, by calling 228 * memory_region_notify_iommu() (or, if necessary, by calling 229 * memory_region_notify_one() for each registered notifier). 230 * 231 * Conceptually an IOMMU provides a mapping from input address 232 * to an output TLB entry. If the IOMMU is aware of memory transaction 233 * attributes and the output TLB entry depends on the transaction 234 * attributes, we represent this using IOMMU indexes. Each index 235 * selects a particular translation table that the IOMMU has: 236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 237 * @translate takes an input address and an IOMMU index 238 * and the mapping returned can only depend on the input address and the 239 * IOMMU index. 240 * 241 * Most IOMMUs don't care about the transaction attributes and support 242 * only a single IOMMU index. A more complex IOMMU might have one index 243 * for secure transactions and one for non-secure transactions. 244 */ 245 typedef struct IOMMUMemoryRegionClass { 246 /* private */ 247 MemoryRegionClass parent_class; 248 249 /* 250 * Return a TLB entry that contains a given address. 251 * 252 * The IOMMUAccessFlags indicated via @flag are optional and may 253 * be specified as IOMMU_NONE to indicate that the caller needs 254 * the full translation information for both reads and writes. If 255 * the access flags are specified then the IOMMU implementation 256 * may use this as an optimization, to stop doing a page table 257 * walk as soon as it knows that the requested permissions are not 258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 259 * full page table walk and report the permissions in the returned 260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 261 * return different mappings for reads and writes.) 262 * 263 * The returned information remains valid while the caller is 264 * holding the big QEMU lock or is inside an RCU critical section; 265 * if the caller wishes to cache the mapping beyond that it must 266 * register an IOMMU notifier so it can invalidate its cached 267 * information when the IOMMU mapping changes. 268 * 269 * @iommu: the IOMMUMemoryRegion 270 * @hwaddr: address to be translated within the memory region 271 * @flag: requested access permissions 272 * @iommu_idx: IOMMU index for the translation 273 */ 274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 275 IOMMUAccessFlags flag, int iommu_idx); 276 /* Returns minimum supported page size in bytes. 277 * If this method is not provided then the minimum is assumed to 278 * be TARGET_PAGE_SIZE. 279 * 280 * @iommu: the IOMMUMemoryRegion 281 */ 282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 283 /* Called when IOMMU Notifier flag changes (ie when the set of 284 * events which IOMMU users are requesting notification for changes). 285 * Optional method -- need not be provided if the IOMMU does not 286 * need to know exactly which events must be notified. 287 * 288 * @iommu: the IOMMUMemoryRegion 289 * @old_flags: events which previously needed to be notified 290 * @new_flags: events which now need to be notified 291 */ 292 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 293 IOMMUNotifierFlag old_flags, 294 IOMMUNotifierFlag new_flags); 295 /* Called to handle memory_region_iommu_replay(). 296 * 297 * The default implementation of memory_region_iommu_replay() is to 298 * call the IOMMU translate method for every page in the address space 299 * with flag == IOMMU_NONE and then call the notifier if translate 300 * returns a valid mapping. If this method is implemented then it 301 * overrides the default behaviour, and must provide the full semantics 302 * of memory_region_iommu_replay(), by calling @notifier for every 303 * translation present in the IOMMU. 304 * 305 * Optional method -- an IOMMU only needs to provide this method 306 * if the default is inefficient or produces undesirable side effects. 307 * 308 * Note: this is not related to record-and-replay functionality. 309 */ 310 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 311 312 /* Get IOMMU misc attributes. This is an optional method that 313 * can be used to allow users of the IOMMU to get implementation-specific 314 * information. The IOMMU implements this method to handle calls 315 * by IOMMU users to memory_region_iommu_get_attr() by filling in 316 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 317 * the IOMMU supports. If the method is unimplemented then 318 * memory_region_iommu_get_attr() will always return -EINVAL. 319 * 320 * @iommu: the IOMMUMemoryRegion 321 * @attr: attribute being queried 322 * @data: memory to fill in with the attribute data 323 * 324 * Returns 0 on success, or a negative errno; in particular 325 * returns -EINVAL for unrecognized or unimplemented attribute types. 326 */ 327 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 328 void *data); 329 330 /* Return the IOMMU index to use for a given set of transaction attributes. 331 * 332 * Optional method: if an IOMMU only supports a single IOMMU index then 333 * the default implementation of memory_region_iommu_attrs_to_index() 334 * will return 0. 335 * 336 * The indexes supported by an IOMMU must be contiguous, starting at 0. 337 * 338 * @iommu: the IOMMUMemoryRegion 339 * @attrs: memory transaction attributes 340 */ 341 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 342 343 /* Return the number of IOMMU indexes this IOMMU supports. 344 * 345 * Optional method: if this method is not provided, then 346 * memory_region_iommu_num_indexes() will return 1, indicating that 347 * only a single IOMMU index is supported. 348 * 349 * @iommu: the IOMMUMemoryRegion 350 */ 351 int (*num_indexes)(IOMMUMemoryRegion *iommu); 352 } IOMMUMemoryRegionClass; 353 354 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 355 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 356 357 struct MemoryRegion { 358 Object parent_obj; 359 360 /* All fields are private - violators will be prosecuted */ 361 362 /* The following fields should fit in a cache line */ 363 bool romd_mode; 364 bool ram; 365 bool subpage; 366 bool readonly; /* For RAM regions */ 367 bool nonvolatile; 368 bool rom_device; 369 bool flush_coalesced_mmio; 370 bool global_locking; 371 uint8_t dirty_log_mask; 372 bool is_iommu; 373 RAMBlock *ram_block; 374 Object *owner; 375 376 const MemoryRegionOps *ops; 377 void *opaque; 378 MemoryRegion *container; 379 Int128 size; 380 hwaddr addr; 381 void (*destructor)(MemoryRegion *mr); 382 uint64_t align; 383 bool terminates; 384 bool ram_device; 385 bool enabled; 386 bool warning_printed; /* For reservations */ 387 uint8_t vga_logging_count; 388 MemoryRegion *alias; 389 hwaddr alias_offset; 390 int32_t priority; 391 QTAILQ_HEAD(, MemoryRegion) subregions; 392 QTAILQ_ENTRY(MemoryRegion) subregions_link; 393 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 394 const char *name; 395 unsigned ioeventfd_nb; 396 MemoryRegionIoeventfd *ioeventfds; 397 }; 398 399 struct IOMMUMemoryRegion { 400 MemoryRegion parent_obj; 401 402 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 403 IOMMUNotifierFlag iommu_notify_flags; 404 }; 405 406 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 407 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 408 409 /** 410 * MemoryListener: callbacks structure for updates to the physical memory map 411 * 412 * Allows a component to adjust to changes in the guest-visible memory map. 413 * Use with memory_listener_register() and memory_listener_unregister(). 414 */ 415 struct MemoryListener { 416 void (*begin)(MemoryListener *listener); 417 void (*commit)(MemoryListener *listener); 418 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 419 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 420 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 421 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 422 int old, int new); 423 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 424 int old, int new); 425 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 426 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 427 void (*log_global_start)(MemoryListener *listener); 428 void (*log_global_stop)(MemoryListener *listener); 429 void (*log_global_after_sync)(MemoryListener *listener); 430 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 431 bool match_data, uint64_t data, EventNotifier *e); 432 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 433 bool match_data, uint64_t data, EventNotifier *e); 434 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 435 hwaddr addr, hwaddr len); 436 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 437 hwaddr addr, hwaddr len); 438 /* Lower = earlier (during add), later (during del) */ 439 unsigned priority; 440 AddressSpace *address_space; 441 QTAILQ_ENTRY(MemoryListener) link; 442 QTAILQ_ENTRY(MemoryListener) link_as; 443 }; 444 445 /** 446 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 447 */ 448 struct AddressSpace { 449 /* All fields are private. */ 450 struct rcu_head rcu; 451 char *name; 452 MemoryRegion *root; 453 454 /* Accessed via RCU. */ 455 struct FlatView *current_map; 456 457 int ioeventfd_nb; 458 struct MemoryRegionIoeventfd *ioeventfds; 459 QTAILQ_HEAD(, MemoryListener) listeners; 460 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 461 }; 462 463 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 464 typedef struct FlatRange FlatRange; 465 466 /* Flattened global view of current active memory hierarchy. Kept in sorted 467 * order. 468 */ 469 struct FlatView { 470 struct rcu_head rcu; 471 unsigned ref; 472 FlatRange *ranges; 473 unsigned nr; 474 unsigned nr_allocated; 475 struct AddressSpaceDispatch *dispatch; 476 MemoryRegion *root; 477 }; 478 479 static inline FlatView *address_space_to_flatview(AddressSpace *as) 480 { 481 return atomic_rcu_read(&as->current_map); 482 } 483 484 485 /** 486 * MemoryRegionSection: describes a fragment of a #MemoryRegion 487 * 488 * @mr: the region, or %NULL if empty 489 * @fv: the flat view of the address space the region is mapped in 490 * @offset_within_region: the beginning of the section, relative to @mr's start 491 * @size: the size of the section; will not exceed @mr's boundaries 492 * @offset_within_address_space: the address of the first byte of the section 493 * relative to the region's address space 494 * @readonly: writes to this section are ignored 495 * @nonvolatile: this section is non-volatile 496 */ 497 struct MemoryRegionSection { 498 Int128 size; 499 MemoryRegion *mr; 500 FlatView *fv; 501 hwaddr offset_within_region; 502 hwaddr offset_within_address_space; 503 bool readonly; 504 bool nonvolatile; 505 }; 506 507 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 508 MemoryRegionSection *b) 509 { 510 return a->mr == b->mr && 511 a->fv == b->fv && 512 a->offset_within_region == b->offset_within_region && 513 a->offset_within_address_space == b->offset_within_address_space && 514 int128_eq(a->size, b->size) && 515 a->readonly == b->readonly && 516 a->nonvolatile == b->nonvolatile; 517 } 518 519 /** 520 * memory_region_init: Initialize a memory region 521 * 522 * The region typically acts as a container for other memory regions. Use 523 * memory_region_add_subregion() to add subregions. 524 * 525 * @mr: the #MemoryRegion to be initialized 526 * @owner: the object that tracks the region's reference count 527 * @name: used for debugging; not visible to the user or ABI 528 * @size: size of the region; any subregions beyond this size will be clipped 529 */ 530 void memory_region_init(MemoryRegion *mr, 531 struct Object *owner, 532 const char *name, 533 uint64_t size); 534 535 /** 536 * memory_region_ref: Add 1 to a memory region's reference count 537 * 538 * Whenever memory regions are accessed outside the BQL, they need to be 539 * preserved against hot-unplug. MemoryRegions actually do not have their 540 * own reference count; they piggyback on a QOM object, their "owner". 541 * This function adds a reference to the owner. 542 * 543 * All MemoryRegions must have an owner if they can disappear, even if the 544 * device they belong to operates exclusively under the BQL. This is because 545 * the region could be returned at any time by memory_region_find, and this 546 * is usually under guest control. 547 * 548 * @mr: the #MemoryRegion 549 */ 550 void memory_region_ref(MemoryRegion *mr); 551 552 /** 553 * memory_region_unref: Remove 1 to a memory region's reference count 554 * 555 * Whenever memory regions are accessed outside the BQL, they need to be 556 * preserved against hot-unplug. MemoryRegions actually do not have their 557 * own reference count; they piggyback on a QOM object, their "owner". 558 * This function removes a reference to the owner and possibly destroys it. 559 * 560 * @mr: the #MemoryRegion 561 */ 562 void memory_region_unref(MemoryRegion *mr); 563 564 /** 565 * memory_region_init_io: Initialize an I/O memory region. 566 * 567 * Accesses into the region will cause the callbacks in @ops to be called. 568 * if @size is nonzero, subregions will be clipped to @size. 569 * 570 * @mr: the #MemoryRegion to be initialized. 571 * @owner: the object that tracks the region's reference count 572 * @ops: a structure containing read and write callbacks to be used when 573 * I/O is performed on the region. 574 * @opaque: passed to the read and write callbacks of the @ops structure. 575 * @name: used for debugging; not visible to the user or ABI 576 * @size: size of the region. 577 */ 578 void memory_region_init_io(MemoryRegion *mr, 579 struct Object *owner, 580 const MemoryRegionOps *ops, 581 void *opaque, 582 const char *name, 583 uint64_t size); 584 585 /** 586 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 587 * into the region will modify memory 588 * directly. 589 * 590 * @mr: the #MemoryRegion to be initialized. 591 * @owner: the object that tracks the region's reference count 592 * @name: Region name, becomes part of RAMBlock name used in migration stream 593 * must be unique within any device 594 * @size: size of the region. 595 * @errp: pointer to Error*, to store an error if it happens. 596 * 597 * Note that this function does not do anything to cause the data in the 598 * RAM memory region to be migrated; that is the responsibility of the caller. 599 */ 600 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 601 struct Object *owner, 602 const char *name, 603 uint64_t size, 604 Error **errp); 605 606 /** 607 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 608 * Accesses into the region will 609 * modify memory directly. 610 * 611 * @mr: the #MemoryRegion to be initialized. 612 * @owner: the object that tracks the region's reference count 613 * @name: Region name, becomes part of RAMBlock name used in migration stream 614 * must be unique within any device 615 * @size: size of the region. 616 * @share: allow remapping RAM to different addresses 617 * @errp: pointer to Error*, to store an error if it happens. 618 * 619 * Note that this function is similar to memory_region_init_ram_nomigrate. 620 * The only difference is part of the RAM region can be remapped. 621 */ 622 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 623 struct Object *owner, 624 const char *name, 625 uint64_t size, 626 bool share, 627 Error **errp); 628 629 /** 630 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 631 * RAM. Accesses into the region will 632 * modify memory directly. Only an initial 633 * portion of this RAM is actually used. 634 * The used size can change across reboots. 635 * 636 * @mr: the #MemoryRegion to be initialized. 637 * @owner: the object that tracks the region's reference count 638 * @name: Region name, becomes part of RAMBlock name used in migration stream 639 * must be unique within any device 640 * @size: used size of the region. 641 * @max_size: max size of the region. 642 * @resized: callback to notify owner about used size change. 643 * @errp: pointer to Error*, to store an error if it happens. 644 * 645 * Note that this function does not do anything to cause the data in the 646 * RAM memory region to be migrated; that is the responsibility of the caller. 647 */ 648 void memory_region_init_resizeable_ram(MemoryRegion *mr, 649 struct Object *owner, 650 const char *name, 651 uint64_t size, 652 uint64_t max_size, 653 void (*resized)(const char*, 654 uint64_t length, 655 void *host), 656 Error **errp); 657 #ifdef CONFIG_POSIX 658 659 /** 660 * memory_region_init_ram_from_file: Initialize RAM memory region with a 661 * mmap-ed backend. 662 * 663 * @mr: the #MemoryRegion to be initialized. 664 * @owner: the object that tracks the region's reference count 665 * @name: Region name, becomes part of RAMBlock name used in migration stream 666 * must be unique within any device 667 * @size: size of the region. 668 * @align: alignment of the region base address; if 0, the default alignment 669 * (getpagesize()) will be used. 670 * @ram_flags: Memory region features: 671 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 672 * - RAM_PMEM: the memory is persistent memory 673 * Other bits are ignored now. 674 * @path: the path in which to allocate the RAM. 675 * @errp: pointer to Error*, to store an error if it happens. 676 * 677 * Note that this function does not do anything to cause the data in the 678 * RAM memory region to be migrated; that is the responsibility of the caller. 679 */ 680 void memory_region_init_ram_from_file(MemoryRegion *mr, 681 struct Object *owner, 682 const char *name, 683 uint64_t size, 684 uint64_t align, 685 uint32_t ram_flags, 686 const char *path, 687 Error **errp); 688 689 /** 690 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 691 * mmap-ed backend. 692 * 693 * @mr: the #MemoryRegion to be initialized. 694 * @owner: the object that tracks the region's reference count 695 * @name: the name of the region. 696 * @size: size of the region. 697 * @share: %true if memory must be mmaped with the MAP_SHARED flag 698 * @fd: the fd to mmap. 699 * @errp: pointer to Error*, to store an error if it happens. 700 * 701 * Note that this function does not do anything to cause the data in the 702 * RAM memory region to be migrated; that is the responsibility of the caller. 703 */ 704 void memory_region_init_ram_from_fd(MemoryRegion *mr, 705 struct Object *owner, 706 const char *name, 707 uint64_t size, 708 bool share, 709 int fd, 710 Error **errp); 711 #endif 712 713 /** 714 * memory_region_init_ram_ptr: Initialize RAM memory region from a 715 * user-provided pointer. Accesses into the 716 * region will modify memory directly. 717 * 718 * @mr: the #MemoryRegion to be initialized. 719 * @owner: the object that tracks the region's reference count 720 * @name: Region name, becomes part of RAMBlock name used in migration stream 721 * must be unique within any device 722 * @size: size of the region. 723 * @ptr: memory to be mapped; must contain at least @size bytes. 724 * 725 * Note that this function does not do anything to cause the data in the 726 * RAM memory region to be migrated; that is the responsibility of the caller. 727 */ 728 void memory_region_init_ram_ptr(MemoryRegion *mr, 729 struct Object *owner, 730 const char *name, 731 uint64_t size, 732 void *ptr); 733 734 /** 735 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 736 * a user-provided pointer. 737 * 738 * A RAM device represents a mapping to a physical device, such as to a PCI 739 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 740 * into the VM address space and access to the region will modify memory 741 * directly. However, the memory region should not be included in a memory 742 * dump (device may not be enabled/mapped at the time of the dump), and 743 * operations incompatible with manipulating MMIO should be avoided. Replaces 744 * skip_dump flag. 745 * 746 * @mr: the #MemoryRegion to be initialized. 747 * @owner: the object that tracks the region's reference count 748 * @name: the name of the region. 749 * @size: size of the region. 750 * @ptr: memory to be mapped; must contain at least @size bytes. 751 * 752 * Note that this function does not do anything to cause the data in the 753 * RAM memory region to be migrated; that is the responsibility of the caller. 754 * (For RAM device memory regions, migrating the contents rarely makes sense.) 755 */ 756 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 757 struct Object *owner, 758 const char *name, 759 uint64_t size, 760 void *ptr); 761 762 /** 763 * memory_region_init_alias: Initialize a memory region that aliases all or a 764 * part of another memory region. 765 * 766 * @mr: the #MemoryRegion to be initialized. 767 * @owner: the object that tracks the region's reference count 768 * @name: used for debugging; not visible to the user or ABI 769 * @orig: the region to be referenced; @mr will be equivalent to 770 * @orig between @offset and @offset + @size - 1. 771 * @offset: start of the section in @orig to be referenced. 772 * @size: size of the region. 773 */ 774 void memory_region_init_alias(MemoryRegion *mr, 775 struct Object *owner, 776 const char *name, 777 MemoryRegion *orig, 778 hwaddr offset, 779 uint64_t size); 780 781 /** 782 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 783 * 784 * This has the same effect as calling memory_region_init_ram_nomigrate() 785 * and then marking the resulting region read-only with 786 * memory_region_set_readonly(). 787 * 788 * Note that this function does not do anything to cause the data in the 789 * RAM side of the memory region to be migrated; that is the responsibility 790 * of the caller. 791 * 792 * @mr: the #MemoryRegion to be initialized. 793 * @owner: the object that tracks the region's reference count 794 * @name: Region name, becomes part of RAMBlock name used in migration stream 795 * must be unique within any device 796 * @size: size of the region. 797 * @errp: pointer to Error*, to store an error if it happens. 798 */ 799 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 800 struct Object *owner, 801 const char *name, 802 uint64_t size, 803 Error **errp); 804 805 /** 806 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 807 * Writes are handled via callbacks. 808 * 809 * Note that this function does not do anything to cause the data in the 810 * RAM side of the memory region to be migrated; that is the responsibility 811 * of the caller. 812 * 813 * @mr: the #MemoryRegion to be initialized. 814 * @owner: the object that tracks the region's reference count 815 * @ops: callbacks for write access handling (must not be NULL). 816 * @opaque: passed to the read and write callbacks of the @ops structure. 817 * @name: Region name, becomes part of RAMBlock name used in migration stream 818 * must be unique within any device 819 * @size: size of the region. 820 * @errp: pointer to Error*, to store an error if it happens. 821 */ 822 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 823 struct Object *owner, 824 const MemoryRegionOps *ops, 825 void *opaque, 826 const char *name, 827 uint64_t size, 828 Error **errp); 829 830 /** 831 * memory_region_init_iommu: Initialize a memory region of a custom type 832 * that translates addresses 833 * 834 * An IOMMU region translates addresses and forwards accesses to a target 835 * memory region. 836 * 837 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 838 * @_iommu_mr should be a pointer to enough memory for an instance of 839 * that subclass, @instance_size is the size of that subclass, and 840 * @mrtypename is its name. This function will initialize @_iommu_mr as an 841 * instance of the subclass, and its methods will then be called to handle 842 * accesses to the memory region. See the documentation of 843 * #IOMMUMemoryRegionClass for further details. 844 * 845 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 846 * @instance_size: the IOMMUMemoryRegion subclass instance size 847 * @mrtypename: the type name of the #IOMMUMemoryRegion 848 * @owner: the object that tracks the region's reference count 849 * @name: used for debugging; not visible to the user or ABI 850 * @size: size of the region. 851 */ 852 void memory_region_init_iommu(void *_iommu_mr, 853 size_t instance_size, 854 const char *mrtypename, 855 Object *owner, 856 const char *name, 857 uint64_t size); 858 859 /** 860 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 861 * region will modify memory directly. 862 * 863 * @mr: the #MemoryRegion to be initialized 864 * @owner: the object that tracks the region's reference count (must be 865 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 866 * @name: name of the memory region 867 * @size: size of the region in bytes 868 * @errp: pointer to Error*, to store an error if it happens. 869 * 870 * This function allocates RAM for a board model or device, and 871 * arranges for it to be migrated (by calling vmstate_register_ram() 872 * if @owner is a DeviceState, or vmstate_register_ram_global() if 873 * @owner is NULL). 874 * 875 * TODO: Currently we restrict @owner to being either NULL (for 876 * global RAM regions with no owner) or devices, so that we can 877 * give the RAM block a unique name for migration purposes. 878 * We should lift this restriction and allow arbitrary Objects. 879 * If you pass a non-NULL non-device @owner then we will assert. 880 */ 881 void memory_region_init_ram(MemoryRegion *mr, 882 struct Object *owner, 883 const char *name, 884 uint64_t size, 885 Error **errp); 886 887 /** 888 * memory_region_init_rom: Initialize a ROM memory region. 889 * 890 * This has the same effect as calling memory_region_init_ram() 891 * and then marking the resulting region read-only with 892 * memory_region_set_readonly(). This includes arranging for the 893 * contents to be migrated. 894 * 895 * TODO: Currently we restrict @owner to being either NULL (for 896 * global RAM regions with no owner) or devices, so that we can 897 * give the RAM block a unique name for migration purposes. 898 * We should lift this restriction and allow arbitrary Objects. 899 * If you pass a non-NULL non-device @owner then we will assert. 900 * 901 * @mr: the #MemoryRegion to be initialized. 902 * @owner: the object that tracks the region's reference count 903 * @name: Region name, becomes part of RAMBlock name used in migration stream 904 * must be unique within any device 905 * @size: size of the region. 906 * @errp: pointer to Error*, to store an error if it happens. 907 */ 908 void memory_region_init_rom(MemoryRegion *mr, 909 struct Object *owner, 910 const char *name, 911 uint64_t size, 912 Error **errp); 913 914 /** 915 * memory_region_init_rom_device: Initialize a ROM memory region. 916 * Writes are handled via callbacks. 917 * 918 * This function initializes a memory region backed by RAM for reads 919 * and callbacks for writes, and arranges for the RAM backing to 920 * be migrated (by calling vmstate_register_ram() 921 * if @owner is a DeviceState, or vmstate_register_ram_global() if 922 * @owner is NULL). 923 * 924 * TODO: Currently we restrict @owner to being either NULL (for 925 * global RAM regions with no owner) or devices, so that we can 926 * give the RAM block a unique name for migration purposes. 927 * We should lift this restriction and allow arbitrary Objects. 928 * If you pass a non-NULL non-device @owner then we will assert. 929 * 930 * @mr: the #MemoryRegion to be initialized. 931 * @owner: the object that tracks the region's reference count 932 * @ops: callbacks for write access handling (must not be NULL). 933 * @name: Region name, becomes part of RAMBlock name used in migration stream 934 * must be unique within any device 935 * @size: size of the region. 936 * @errp: pointer to Error*, to store an error if it happens. 937 */ 938 void memory_region_init_rom_device(MemoryRegion *mr, 939 struct Object *owner, 940 const MemoryRegionOps *ops, 941 void *opaque, 942 const char *name, 943 uint64_t size, 944 Error **errp); 945 946 947 /** 948 * memory_region_owner: get a memory region's owner. 949 * 950 * @mr: the memory region being queried. 951 */ 952 struct Object *memory_region_owner(MemoryRegion *mr); 953 954 /** 955 * memory_region_size: get a memory region's size. 956 * 957 * @mr: the memory region being queried. 958 */ 959 uint64_t memory_region_size(MemoryRegion *mr); 960 961 /** 962 * memory_region_is_ram: check whether a memory region is random access 963 * 964 * Returns %true if a memory region is random access. 965 * 966 * @mr: the memory region being queried 967 */ 968 static inline bool memory_region_is_ram(MemoryRegion *mr) 969 { 970 return mr->ram; 971 } 972 973 /** 974 * memory_region_is_ram_device: check whether a memory region is a ram device 975 * 976 * Returns %true if a memory region is a device backed ram region 977 * 978 * @mr: the memory region being queried 979 */ 980 bool memory_region_is_ram_device(MemoryRegion *mr); 981 982 /** 983 * memory_region_is_romd: check whether a memory region is in ROMD mode 984 * 985 * Returns %true if a memory region is a ROM device and currently set to allow 986 * direct reads. 987 * 988 * @mr: the memory region being queried 989 */ 990 static inline bool memory_region_is_romd(MemoryRegion *mr) 991 { 992 return mr->rom_device && mr->romd_mode; 993 } 994 995 /** 996 * memory_region_get_iommu: check whether a memory region is an iommu 997 * 998 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 999 * otherwise NULL. 1000 * 1001 * @mr: the memory region being queried 1002 */ 1003 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1004 { 1005 if (mr->alias) { 1006 return memory_region_get_iommu(mr->alias); 1007 } 1008 if (mr->is_iommu) { 1009 return (IOMMUMemoryRegion *) mr; 1010 } 1011 return NULL; 1012 } 1013 1014 /** 1015 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1016 * if an iommu or NULL if not 1017 * 1018 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1019 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1020 * 1021 * @mr: the memory region being queried 1022 */ 1023 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1024 IOMMUMemoryRegion *iommu_mr) 1025 { 1026 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1027 } 1028 1029 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1030 1031 /** 1032 * memory_region_iommu_get_min_page_size: get minimum supported page size 1033 * for an iommu 1034 * 1035 * Returns minimum supported page size for an iommu. 1036 * 1037 * @iommu_mr: the memory region being queried 1038 */ 1039 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1040 1041 /** 1042 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1043 * 1044 * The notification type will be decided by entry.perm bits: 1045 * 1046 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1047 * - For MAP (newly added entry) notifies: set entry.perm to the 1048 * permission of the page (which is definitely !IOMMU_NONE). 1049 * 1050 * Note: for any IOMMU implementation, an in-place mapping change 1051 * should be notified with an UNMAP followed by a MAP. 1052 * 1053 * @iommu_mr: the memory region that was changed 1054 * @iommu_idx: the IOMMU index for the translation table which has changed 1055 * @entry: the new entry in the IOMMU translation table. The entry 1056 * replaces all old entries for the same virtual I/O address range. 1057 * Deleted entries have .@perm == 0. 1058 */ 1059 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1060 int iommu_idx, 1061 IOMMUTLBEntry entry); 1062 1063 /** 1064 * memory_region_notify_one: notify a change in an IOMMU translation 1065 * entry to a single notifier 1066 * 1067 * This works just like memory_region_notify_iommu(), but it only 1068 * notifies a specific notifier, not all of them. 1069 * 1070 * @notifier: the notifier to be notified 1071 * @entry: the new entry in the IOMMU translation table. The entry 1072 * replaces all old entries for the same virtual I/O address range. 1073 * Deleted entries have .@perm == 0. 1074 */ 1075 void memory_region_notify_one(IOMMUNotifier *notifier, 1076 IOMMUTLBEntry *entry); 1077 1078 /** 1079 * memory_region_register_iommu_notifier: register a notifier for changes to 1080 * IOMMU translation entries. 1081 * 1082 * @mr: the memory region to observe 1083 * @n: the IOMMUNotifier to be added; the notify callback receives a 1084 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1085 * ceases to be valid on exit from the notifier. 1086 */ 1087 void memory_region_register_iommu_notifier(MemoryRegion *mr, 1088 IOMMUNotifier *n); 1089 1090 /** 1091 * memory_region_iommu_replay: replay existing IOMMU translations to 1092 * a notifier with the minimum page granularity returned by 1093 * mr->iommu_ops->get_page_size(). 1094 * 1095 * Note: this is not related to record-and-replay functionality. 1096 * 1097 * @iommu_mr: the memory region to observe 1098 * @n: the notifier to which to replay iommu mappings 1099 */ 1100 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1101 1102 /** 1103 * memory_region_unregister_iommu_notifier: unregister a notifier for 1104 * changes to IOMMU translation entries. 1105 * 1106 * @mr: the memory region which was observed and for which notity_stopped() 1107 * needs to be called 1108 * @n: the notifier to be removed. 1109 */ 1110 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1111 IOMMUNotifier *n); 1112 1113 /** 1114 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1115 * defined on the IOMMU. 1116 * 1117 * Returns 0 on success, or a negative errno otherwise. In particular, 1118 * -EINVAL indicates that the IOMMU does not support the requested 1119 * attribute. 1120 * 1121 * @iommu_mr: the memory region 1122 * @attr: the requested attribute 1123 * @data: a pointer to the requested attribute data 1124 */ 1125 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1126 enum IOMMUMemoryRegionAttr attr, 1127 void *data); 1128 1129 /** 1130 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1131 * use for translations with the given memory transaction attributes. 1132 * 1133 * @iommu_mr: the memory region 1134 * @attrs: the memory transaction attributes 1135 */ 1136 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1137 MemTxAttrs attrs); 1138 1139 /** 1140 * memory_region_iommu_num_indexes: return the total number of IOMMU 1141 * indexes that this IOMMU supports. 1142 * 1143 * @iommu_mr: the memory region 1144 */ 1145 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1146 1147 /** 1148 * memory_region_name: get a memory region's name 1149 * 1150 * Returns the string that was used to initialize the memory region. 1151 * 1152 * @mr: the memory region being queried 1153 */ 1154 const char *memory_region_name(const MemoryRegion *mr); 1155 1156 /** 1157 * memory_region_is_logging: return whether a memory region is logging writes 1158 * 1159 * Returns %true if the memory region is logging writes for the given client 1160 * 1161 * @mr: the memory region being queried 1162 * @client: the client being queried 1163 */ 1164 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1165 1166 /** 1167 * memory_region_get_dirty_log_mask: return the clients for which a 1168 * memory region is logging writes. 1169 * 1170 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1171 * are the bit indices. 1172 * 1173 * @mr: the memory region being queried 1174 */ 1175 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1176 1177 /** 1178 * memory_region_is_rom: check whether a memory region is ROM 1179 * 1180 * Returns %true if a memory region is read-only memory. 1181 * 1182 * @mr: the memory region being queried 1183 */ 1184 static inline bool memory_region_is_rom(MemoryRegion *mr) 1185 { 1186 return mr->ram && mr->readonly; 1187 } 1188 1189 /** 1190 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1191 * 1192 * Returns %true is a memory region is non-volatile memory. 1193 * 1194 * @mr: the memory region being queried 1195 */ 1196 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1197 { 1198 return mr->nonvolatile; 1199 } 1200 1201 /** 1202 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1203 * 1204 * Returns a file descriptor backing a file-based RAM memory region, 1205 * or -1 if the region is not a file-based RAM memory region. 1206 * 1207 * @mr: the RAM or alias memory region being queried. 1208 */ 1209 int memory_region_get_fd(MemoryRegion *mr); 1210 1211 /** 1212 * memory_region_from_host: Convert a pointer into a RAM memory region 1213 * and an offset within it. 1214 * 1215 * Given a host pointer inside a RAM memory region (created with 1216 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1217 * the MemoryRegion and the offset within it. 1218 * 1219 * Use with care; by the time this function returns, the returned pointer is 1220 * not protected by RCU anymore. If the caller is not within an RCU critical 1221 * section and does not hold the iothread lock, it must have other means of 1222 * protecting the pointer, such as a reference to the region that includes 1223 * the incoming ram_addr_t. 1224 * 1225 * @ptr: the host pointer to be converted 1226 * @offset: the offset within memory region 1227 */ 1228 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1229 1230 /** 1231 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1232 * 1233 * Returns a host pointer to a RAM memory region (created with 1234 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1235 * 1236 * Use with care; by the time this function returns, the returned pointer is 1237 * not protected by RCU anymore. If the caller is not within an RCU critical 1238 * section and does not hold the iothread lock, it must have other means of 1239 * protecting the pointer, such as a reference to the region that includes 1240 * the incoming ram_addr_t. 1241 * 1242 * @mr: the memory region being queried. 1243 */ 1244 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1245 1246 /* memory_region_ram_resize: Resize a RAM region. 1247 * 1248 * Only legal before guest might have detected the memory size: e.g. on 1249 * incoming migration, or right after reset. 1250 * 1251 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1252 * @newsize: the new size the region 1253 * @errp: pointer to Error*, to store an error if it happens. 1254 */ 1255 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1256 Error **errp); 1257 1258 /** 1259 * memory_region_set_log: Turn dirty logging on or off for a region. 1260 * 1261 * Turns dirty logging on or off for a specified client (display, migration). 1262 * Only meaningful for RAM regions. 1263 * 1264 * @mr: the memory region being updated. 1265 * @log: whether dirty logging is to be enabled or disabled. 1266 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1267 */ 1268 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1269 1270 /** 1271 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1272 * 1273 * Marks a range of bytes as dirty, after it has been dirtied outside 1274 * guest code. 1275 * 1276 * @mr: the memory region being dirtied. 1277 * @addr: the address (relative to the start of the region) being dirtied. 1278 * @size: size of the range being dirtied. 1279 */ 1280 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1281 hwaddr size); 1282 1283 /** 1284 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1285 * 1286 * This function is called when the caller wants to clear the remote 1287 * dirty bitmap of a memory range within the memory region. This can 1288 * be used by e.g. KVM to manually clear dirty log when 1289 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1290 * kernel. 1291 * 1292 * @mr: the memory region to clear the dirty log upon 1293 * @start: start address offset within the memory region 1294 * @len: length of the memory region to clear dirty bitmap 1295 */ 1296 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1297 hwaddr len); 1298 1299 /** 1300 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1301 * bitmap and clear it. 1302 * 1303 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1304 * returns the snapshot. The snapshot can then be used to query dirty 1305 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1306 * querying the same page multiple times, which is especially useful for 1307 * display updates where the scanlines often are not page aligned. 1308 * 1309 * The dirty bitmap region which gets copyed into the snapshot (and 1310 * cleared afterwards) can be larger than requested. The boundaries 1311 * are rounded up/down so complete bitmap longs (covering 64 pages on 1312 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1313 * isn't a problem for display updates as the extra pages are outside 1314 * the visible area, and in case the visible area changes a full 1315 * display redraw is due anyway. Should other use cases for this 1316 * function emerge we might have to revisit this implementation 1317 * detail. 1318 * 1319 * Use g_free to release DirtyBitmapSnapshot. 1320 * 1321 * @mr: the memory region being queried. 1322 * @addr: the address (relative to the start of the region) being queried. 1323 * @size: the size of the range being queried. 1324 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1325 */ 1326 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1327 hwaddr addr, 1328 hwaddr size, 1329 unsigned client); 1330 1331 /** 1332 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1333 * in the specified dirty bitmap snapshot. 1334 * 1335 * @mr: the memory region being queried. 1336 * @snap: the dirty bitmap snapshot 1337 * @addr: the address (relative to the start of the region) being queried. 1338 * @size: the size of the range being queried. 1339 */ 1340 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1341 DirtyBitmapSnapshot *snap, 1342 hwaddr addr, hwaddr size); 1343 1344 /** 1345 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1346 * client. 1347 * 1348 * Marks a range of pages as no longer dirty. 1349 * 1350 * @mr: the region being updated. 1351 * @addr: the start of the subrange being cleaned. 1352 * @size: the size of the subrange being cleaned. 1353 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1354 * %DIRTY_MEMORY_VGA. 1355 */ 1356 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1357 hwaddr size, unsigned client); 1358 1359 /** 1360 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1361 * TBs (for self-modifying code). 1362 * 1363 * The MemoryRegionOps->write() callback of a ROM device must use this function 1364 * to mark byte ranges that have been modified internally, such as by directly 1365 * accessing the memory returned by memory_region_get_ram_ptr(). 1366 * 1367 * This function marks the range dirty and invalidates TBs so that TCG can 1368 * detect self-modifying code. 1369 * 1370 * @mr: the region being flushed. 1371 * @addr: the start, relative to the start of the region, of the range being 1372 * flushed. 1373 * @size: the size, in bytes, of the range being flushed. 1374 */ 1375 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1376 1377 /** 1378 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1379 * 1380 * Allows a memory region to be marked as read-only (turning it into a ROM). 1381 * only useful on RAM regions. 1382 * 1383 * @mr: the region being updated. 1384 * @readonly: whether rhe region is to be ROM or RAM. 1385 */ 1386 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1387 1388 /** 1389 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1390 * 1391 * Allows a memory region to be marked as non-volatile. 1392 * only useful on RAM regions. 1393 * 1394 * @mr: the region being updated. 1395 * @nonvolatile: whether rhe region is to be non-volatile. 1396 */ 1397 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1398 1399 /** 1400 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1401 * 1402 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1403 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1404 * device is mapped to guest memory and satisfies read access directly. 1405 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1406 * Writes are always handled by the #MemoryRegion.write function. 1407 * 1408 * @mr: the memory region to be updated 1409 * @romd_mode: %true to put the region into ROMD mode 1410 */ 1411 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1412 1413 /** 1414 * memory_region_set_coalescing: Enable memory coalescing for the region. 1415 * 1416 * Enabled writes to a region to be queued for later processing. MMIO ->write 1417 * callbacks may be delayed until a non-coalesced MMIO is issued. 1418 * Only useful for IO regions. Roughly similar to write-combining hardware. 1419 * 1420 * @mr: the memory region to be write coalesced 1421 */ 1422 void memory_region_set_coalescing(MemoryRegion *mr); 1423 1424 /** 1425 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1426 * a region. 1427 * 1428 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1429 * Multiple calls can be issued coalesced disjoint ranges. 1430 * 1431 * @mr: the memory region to be updated. 1432 * @offset: the start of the range within the region to be coalesced. 1433 * @size: the size of the subrange to be coalesced. 1434 */ 1435 void memory_region_add_coalescing(MemoryRegion *mr, 1436 hwaddr offset, 1437 uint64_t size); 1438 1439 /** 1440 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1441 * 1442 * Disables any coalescing caused by memory_region_set_coalescing() or 1443 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1444 * hardware. 1445 * 1446 * @mr: the memory region to be updated. 1447 */ 1448 void memory_region_clear_coalescing(MemoryRegion *mr); 1449 1450 /** 1451 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1452 * accesses. 1453 * 1454 * Ensure that pending coalesced MMIO request are flushed before the memory 1455 * region is accessed. This property is automatically enabled for all regions 1456 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1457 * 1458 * @mr: the memory region to be updated. 1459 */ 1460 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1461 1462 /** 1463 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1464 * accesses. 1465 * 1466 * Clear the automatic coalesced MMIO flushing enabled via 1467 * memory_region_set_flush_coalesced. Note that this service has no effect on 1468 * memory regions that have MMIO coalescing enabled for themselves. For them, 1469 * automatic flushing will stop once coalescing is disabled. 1470 * 1471 * @mr: the memory region to be updated. 1472 */ 1473 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1474 1475 /** 1476 * memory_region_clear_global_locking: Declares that access processing does 1477 * not depend on the QEMU global lock. 1478 * 1479 * By clearing this property, accesses to the memory region will be processed 1480 * outside of QEMU's global lock (unless the lock is held on when issuing the 1481 * access request). In this case, the device model implementing the access 1482 * handlers is responsible for synchronization of concurrency. 1483 * 1484 * @mr: the memory region to be updated. 1485 */ 1486 void memory_region_clear_global_locking(MemoryRegion *mr); 1487 1488 /** 1489 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1490 * is written to a location. 1491 * 1492 * Marks a word in an IO region (initialized with memory_region_init_io()) 1493 * as a trigger for an eventfd event. The I/O callback will not be called. 1494 * The caller must be prepared to handle failure (that is, take the required 1495 * action if the callback _is_ called). 1496 * 1497 * @mr: the memory region being updated. 1498 * @addr: the address within @mr that is to be monitored 1499 * @size: the size of the access to trigger the eventfd 1500 * @match_data: whether to match against @data, instead of just @addr 1501 * @data: the data to match against the guest write 1502 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1503 **/ 1504 void memory_region_add_eventfd(MemoryRegion *mr, 1505 hwaddr addr, 1506 unsigned size, 1507 bool match_data, 1508 uint64_t data, 1509 EventNotifier *e); 1510 1511 /** 1512 * memory_region_del_eventfd: Cancel an eventfd. 1513 * 1514 * Cancels an eventfd trigger requested by a previous 1515 * memory_region_add_eventfd() call. 1516 * 1517 * @mr: the memory region being updated. 1518 * @addr: the address within @mr that is to be monitored 1519 * @size: the size of the access to trigger the eventfd 1520 * @match_data: whether to match against @data, instead of just @addr 1521 * @data: the data to match against the guest write 1522 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1523 */ 1524 void memory_region_del_eventfd(MemoryRegion *mr, 1525 hwaddr addr, 1526 unsigned size, 1527 bool match_data, 1528 uint64_t data, 1529 EventNotifier *e); 1530 1531 /** 1532 * memory_region_add_subregion: Add a subregion to a container. 1533 * 1534 * Adds a subregion at @offset. The subregion may not overlap with other 1535 * subregions (except for those explicitly marked as overlapping). A region 1536 * may only be added once as a subregion (unless removed with 1537 * memory_region_del_subregion()); use memory_region_init_alias() if you 1538 * want a region to be a subregion in multiple locations. 1539 * 1540 * @mr: the region to contain the new subregion; must be a container 1541 * initialized with memory_region_init(). 1542 * @offset: the offset relative to @mr where @subregion is added. 1543 * @subregion: the subregion to be added. 1544 */ 1545 void memory_region_add_subregion(MemoryRegion *mr, 1546 hwaddr offset, 1547 MemoryRegion *subregion); 1548 /** 1549 * memory_region_add_subregion_overlap: Add a subregion to a container 1550 * with overlap. 1551 * 1552 * Adds a subregion at @offset. The subregion may overlap with other 1553 * subregions. Conflicts are resolved by having a higher @priority hide a 1554 * lower @priority. Subregions without priority are taken as @priority 0. 1555 * A region may only be added once as a subregion (unless removed with 1556 * memory_region_del_subregion()); use memory_region_init_alias() if you 1557 * want a region to be a subregion in multiple locations. 1558 * 1559 * @mr: the region to contain the new subregion; must be a container 1560 * initialized with memory_region_init(). 1561 * @offset: the offset relative to @mr where @subregion is added. 1562 * @subregion: the subregion to be added. 1563 * @priority: used for resolving overlaps; highest priority wins. 1564 */ 1565 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1566 hwaddr offset, 1567 MemoryRegion *subregion, 1568 int priority); 1569 1570 /** 1571 * memory_region_get_ram_addr: Get the ram address associated with a memory 1572 * region 1573 */ 1574 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1575 1576 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1577 /** 1578 * memory_region_del_subregion: Remove a subregion. 1579 * 1580 * Removes a subregion from its container. 1581 * 1582 * @mr: the container to be updated. 1583 * @subregion: the region being removed; must be a current subregion of @mr. 1584 */ 1585 void memory_region_del_subregion(MemoryRegion *mr, 1586 MemoryRegion *subregion); 1587 1588 /* 1589 * memory_region_set_enabled: dynamically enable or disable a region 1590 * 1591 * Enables or disables a memory region. A disabled memory region 1592 * ignores all accesses to itself and its subregions. It does not 1593 * obscure sibling subregions with lower priority - it simply behaves as 1594 * if it was removed from the hierarchy. 1595 * 1596 * Regions default to being enabled. 1597 * 1598 * @mr: the region to be updated 1599 * @enabled: whether to enable or disable the region 1600 */ 1601 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1602 1603 /* 1604 * memory_region_set_address: dynamically update the address of a region 1605 * 1606 * Dynamically updates the address of a region, relative to its container. 1607 * May be used on regions are currently part of a memory hierarchy. 1608 * 1609 * @mr: the region to be updated 1610 * @addr: new address, relative to container region 1611 */ 1612 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1613 1614 /* 1615 * memory_region_set_size: dynamically update the size of a region. 1616 * 1617 * Dynamically updates the size of a region. 1618 * 1619 * @mr: the region to be updated 1620 * @size: used size of the region. 1621 */ 1622 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1623 1624 /* 1625 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1626 * 1627 * Dynamically updates the offset into the target region that an alias points 1628 * to, as if the fourth argument to memory_region_init_alias() has changed. 1629 * 1630 * @mr: the #MemoryRegion to be updated; should be an alias. 1631 * @offset: the new offset into the target memory region 1632 */ 1633 void memory_region_set_alias_offset(MemoryRegion *mr, 1634 hwaddr offset); 1635 1636 /** 1637 * memory_region_present: checks if an address relative to a @container 1638 * translates into #MemoryRegion within @container 1639 * 1640 * Answer whether a #MemoryRegion within @container covers the address 1641 * @addr. 1642 * 1643 * @container: a #MemoryRegion within which @addr is a relative address 1644 * @addr: the area within @container to be searched 1645 */ 1646 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1647 1648 /** 1649 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1650 * into any address space. 1651 * 1652 * @mr: a #MemoryRegion which should be checked if it's mapped 1653 */ 1654 bool memory_region_is_mapped(MemoryRegion *mr); 1655 1656 /** 1657 * memory_region_find: translate an address/size relative to a 1658 * MemoryRegion into a #MemoryRegionSection. 1659 * 1660 * Locates the first #MemoryRegion within @mr that overlaps the range 1661 * given by @addr and @size. 1662 * 1663 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1664 * It will have the following characteristics: 1665 * .@size = 0 iff no overlap was found 1666 * .@mr is non-%NULL iff an overlap was found 1667 * 1668 * Remember that in the return value the @offset_within_region is 1669 * relative to the returned region (in the .@mr field), not to the 1670 * @mr argument. 1671 * 1672 * Similarly, the .@offset_within_address_space is relative to the 1673 * address space that contains both regions, the passed and the 1674 * returned one. However, in the special case where the @mr argument 1675 * has no container (and thus is the root of the address space), the 1676 * following will hold: 1677 * .@offset_within_address_space >= @addr 1678 * .@offset_within_address_space + .@size <= @addr + @size 1679 * 1680 * @mr: a MemoryRegion within which @addr is a relative address 1681 * @addr: start of the area within @as to be searched 1682 * @size: size of the area to be searched 1683 */ 1684 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1685 hwaddr addr, uint64_t size); 1686 1687 /** 1688 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1689 * 1690 * Synchronizes the dirty page log for all address spaces. 1691 */ 1692 void memory_global_dirty_log_sync(void); 1693 1694 /** 1695 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1696 * 1697 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 1698 * This function must be called after the dirty log bitmap is cleared, and 1699 * before dirty guest memory pages are read. If you are using 1700 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 1701 * care of doing this. 1702 */ 1703 void memory_global_after_dirty_log_sync(void); 1704 1705 /** 1706 * memory_region_transaction_begin: Start a transaction. 1707 * 1708 * During a transaction, changes will be accumulated and made visible 1709 * only when the transaction ends (is committed). 1710 */ 1711 void memory_region_transaction_begin(void); 1712 1713 /** 1714 * memory_region_transaction_commit: Commit a transaction and make changes 1715 * visible to the guest. 1716 */ 1717 void memory_region_transaction_commit(void); 1718 1719 /** 1720 * memory_listener_register: register callbacks to be called when memory 1721 * sections are mapped or unmapped into an address 1722 * space 1723 * 1724 * @listener: an object containing the callbacks to be called 1725 * @filter: if non-%NULL, only regions in this address space will be observed 1726 */ 1727 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1728 1729 /** 1730 * memory_listener_unregister: undo the effect of memory_listener_register() 1731 * 1732 * @listener: an object containing the callbacks to be removed 1733 */ 1734 void memory_listener_unregister(MemoryListener *listener); 1735 1736 /** 1737 * memory_global_dirty_log_start: begin dirty logging for all regions 1738 */ 1739 void memory_global_dirty_log_start(void); 1740 1741 /** 1742 * memory_global_dirty_log_stop: end dirty logging for all regions 1743 */ 1744 void memory_global_dirty_log_stop(void); 1745 1746 void mtree_info(bool flatview, bool dispatch_tree, bool owner); 1747 1748 /** 1749 * memory_region_dispatch_read: perform a read directly to the specified 1750 * MemoryRegion. 1751 * 1752 * @mr: #MemoryRegion to access 1753 * @addr: address within that region 1754 * @pval: pointer to uint64_t which the data is written to 1755 * @op: size, sign, and endianness of the memory operation 1756 * @attrs: memory transaction attributes to use for the access 1757 */ 1758 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1759 hwaddr addr, 1760 uint64_t *pval, 1761 MemOp op, 1762 MemTxAttrs attrs); 1763 /** 1764 * memory_region_dispatch_write: perform a write directly to the specified 1765 * MemoryRegion. 1766 * 1767 * @mr: #MemoryRegion to access 1768 * @addr: address within that region 1769 * @data: data to write 1770 * @op: size, sign, and endianness of the memory operation 1771 * @attrs: memory transaction attributes to use for the access 1772 */ 1773 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1774 hwaddr addr, 1775 uint64_t data, 1776 MemOp op, 1777 MemTxAttrs attrs); 1778 1779 /** 1780 * address_space_init: initializes an address space 1781 * 1782 * @as: an uninitialized #AddressSpace 1783 * @root: a #MemoryRegion that routes addresses for the address space 1784 * @name: an address space name. The name is only used for debugging 1785 * output. 1786 */ 1787 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1788 1789 /** 1790 * address_space_destroy: destroy an address space 1791 * 1792 * Releases all resources associated with an address space. After an address space 1793 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1794 * as well. 1795 * 1796 * @as: address space to be destroyed 1797 */ 1798 void address_space_destroy(AddressSpace *as); 1799 1800 /** 1801 * address_space_remove_listeners: unregister all listeners of an address space 1802 * 1803 * Removes all callbacks previously registered with memory_listener_register() 1804 * for @as. 1805 * 1806 * @as: an initialized #AddressSpace 1807 */ 1808 void address_space_remove_listeners(AddressSpace *as); 1809 1810 /** 1811 * address_space_rw: read from or write to an address space. 1812 * 1813 * Return a MemTxResult indicating whether the operation succeeded 1814 * or failed (eg unassigned memory, device rejected the transaction, 1815 * IOMMU fault). 1816 * 1817 * @as: #AddressSpace to be accessed 1818 * @addr: address within that address space 1819 * @attrs: memory transaction attributes 1820 * @buf: buffer with the data transferred 1821 * @len: the number of bytes to read or write 1822 * @is_write: indicates the transfer direction 1823 */ 1824 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1825 MemTxAttrs attrs, uint8_t *buf, 1826 hwaddr len, bool is_write); 1827 1828 /** 1829 * address_space_write: write to address space. 1830 * 1831 * Return a MemTxResult indicating whether the operation succeeded 1832 * or failed (eg unassigned memory, device rejected the transaction, 1833 * IOMMU fault). 1834 * 1835 * @as: #AddressSpace to be accessed 1836 * @addr: address within that address space 1837 * @attrs: memory transaction attributes 1838 * @buf: buffer with the data transferred 1839 * @len: the number of bytes to write 1840 */ 1841 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1842 MemTxAttrs attrs, 1843 const uint8_t *buf, hwaddr len); 1844 1845 /** 1846 * address_space_write_rom: write to address space, including ROM. 1847 * 1848 * This function writes to the specified address space, but will 1849 * write data to both ROM and RAM. This is used for non-guest 1850 * writes like writes from the gdb debug stub or initial loading 1851 * of ROM contents. 1852 * 1853 * Note that portions of the write which attempt to write data to 1854 * a device will be silently ignored -- only real RAM and ROM will 1855 * be written to. 1856 * 1857 * Return a MemTxResult indicating whether the operation succeeded 1858 * or failed (eg unassigned memory, device rejected the transaction, 1859 * IOMMU fault). 1860 * 1861 * @as: #AddressSpace to be accessed 1862 * @addr: address within that address space 1863 * @attrs: memory transaction attributes 1864 * @buf: buffer with the data transferred 1865 * @len: the number of bytes to write 1866 */ 1867 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 1868 MemTxAttrs attrs, 1869 const uint8_t *buf, hwaddr len); 1870 1871 /* address_space_ld*: load from an address space 1872 * address_space_st*: store to an address space 1873 * 1874 * These functions perform a load or store of the byte, word, 1875 * longword or quad to the specified address within the AddressSpace. 1876 * The _le suffixed functions treat the data as little endian; 1877 * _be indicates big endian; no suffix indicates "same endianness 1878 * as guest CPU". 1879 * 1880 * The "guest CPU endianness" accessors are deprecated for use outside 1881 * target-* code; devices should be CPU-agnostic and use either the LE 1882 * or the BE accessors. 1883 * 1884 * @as #AddressSpace to be accessed 1885 * @addr: address within that address space 1886 * @val: data value, for stores 1887 * @attrs: memory transaction attributes 1888 * @result: location to write the success/failure of the transaction; 1889 * if NULL, this information is discarded 1890 */ 1891 1892 #define SUFFIX 1893 #define ARG1 as 1894 #define ARG1_DECL AddressSpace *as 1895 #include "exec/memory_ldst.inc.h" 1896 1897 #define SUFFIX 1898 #define ARG1 as 1899 #define ARG1_DECL AddressSpace *as 1900 #include "exec/memory_ldst_phys.inc.h" 1901 1902 struct MemoryRegionCache { 1903 void *ptr; 1904 hwaddr xlat; 1905 hwaddr len; 1906 FlatView *fv; 1907 MemoryRegionSection mrs; 1908 bool is_write; 1909 }; 1910 1911 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 1912 1913 1914 /* address_space_ld*_cached: load from a cached #MemoryRegion 1915 * address_space_st*_cached: store into a cached #MemoryRegion 1916 * 1917 * These functions perform a load or store of the byte, word, 1918 * longword or quad to the specified address. The address is 1919 * a physical address in the AddressSpace, but it must lie within 1920 * a #MemoryRegion that was mapped with address_space_cache_init. 1921 * 1922 * The _le suffixed functions treat the data as little endian; 1923 * _be indicates big endian; no suffix indicates "same endianness 1924 * as guest CPU". 1925 * 1926 * The "guest CPU endianness" accessors are deprecated for use outside 1927 * target-* code; devices should be CPU-agnostic and use either the LE 1928 * or the BE accessors. 1929 * 1930 * @cache: previously initialized #MemoryRegionCache to be accessed 1931 * @addr: address within the address space 1932 * @val: data value, for stores 1933 * @attrs: memory transaction attributes 1934 * @result: location to write the success/failure of the transaction; 1935 * if NULL, this information is discarded 1936 */ 1937 1938 #define SUFFIX _cached_slow 1939 #define ARG1 cache 1940 #define ARG1_DECL MemoryRegionCache *cache 1941 #include "exec/memory_ldst.inc.h" 1942 1943 /* Inline fast path for direct RAM access. */ 1944 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 1945 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 1946 { 1947 assert(addr < cache->len); 1948 if (likely(cache->ptr)) { 1949 return ldub_p(cache->ptr + addr); 1950 } else { 1951 return address_space_ldub_cached_slow(cache, addr, attrs, result); 1952 } 1953 } 1954 1955 static inline void address_space_stb_cached(MemoryRegionCache *cache, 1956 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 1957 { 1958 assert(addr < cache->len); 1959 if (likely(cache->ptr)) { 1960 stb_p(cache->ptr + addr, val); 1961 } else { 1962 address_space_stb_cached_slow(cache, addr, val, attrs, result); 1963 } 1964 } 1965 1966 #define ENDIANNESS _le 1967 #include "exec/memory_ldst_cached.inc.h" 1968 1969 #define ENDIANNESS _be 1970 #include "exec/memory_ldst_cached.inc.h" 1971 1972 #define SUFFIX _cached 1973 #define ARG1 cache 1974 #define ARG1_DECL MemoryRegionCache *cache 1975 #include "exec/memory_ldst_phys.inc.h" 1976 1977 /* address_space_cache_init: prepare for repeated access to a physical 1978 * memory region 1979 * 1980 * @cache: #MemoryRegionCache to be filled 1981 * @as: #AddressSpace to be accessed 1982 * @addr: address within that address space 1983 * @len: length of buffer 1984 * @is_write: indicates the transfer direction 1985 * 1986 * Will only work with RAM, and may map a subset of the requested range by 1987 * returning a value that is less than @len. On failure, return a negative 1988 * errno value. 1989 * 1990 * Because it only works with RAM, this function can be used for 1991 * read-modify-write operations. In this case, is_write should be %true. 1992 * 1993 * Note that addresses passed to the address_space_*_cached functions 1994 * are relative to @addr. 1995 */ 1996 int64_t address_space_cache_init(MemoryRegionCache *cache, 1997 AddressSpace *as, 1998 hwaddr addr, 1999 hwaddr len, 2000 bool is_write); 2001 2002 /** 2003 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2004 * 2005 * @cache: The #MemoryRegionCache to operate on. 2006 * @addr: The first physical address that was written, relative to the 2007 * address that was passed to @address_space_cache_init. 2008 * @access_len: The number of bytes that were written starting at @addr. 2009 */ 2010 void address_space_cache_invalidate(MemoryRegionCache *cache, 2011 hwaddr addr, 2012 hwaddr access_len); 2013 2014 /** 2015 * address_space_cache_destroy: free a #MemoryRegionCache 2016 * 2017 * @cache: The #MemoryRegionCache whose memory should be released. 2018 */ 2019 void address_space_cache_destroy(MemoryRegionCache *cache); 2020 2021 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2022 * entry. Should be called from an RCU critical section. 2023 */ 2024 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2025 bool is_write, MemTxAttrs attrs); 2026 2027 /* address_space_translate: translate an address range into an address space 2028 * into a MemoryRegion and an address range into that section. Should be 2029 * called from an RCU critical section, to avoid that the last reference 2030 * to the returned region disappears after address_space_translate returns. 2031 * 2032 * @fv: #FlatView to be accessed 2033 * @addr: address within that address space 2034 * @xlat: pointer to address within the returned memory region section's 2035 * #MemoryRegion. 2036 * @len: pointer to length 2037 * @is_write: indicates the transfer direction 2038 * @attrs: memory attributes 2039 */ 2040 MemoryRegion *flatview_translate(FlatView *fv, 2041 hwaddr addr, hwaddr *xlat, 2042 hwaddr *len, bool is_write, 2043 MemTxAttrs attrs); 2044 2045 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2046 hwaddr addr, hwaddr *xlat, 2047 hwaddr *len, bool is_write, 2048 MemTxAttrs attrs) 2049 { 2050 return flatview_translate(address_space_to_flatview(as), 2051 addr, xlat, len, is_write, attrs); 2052 } 2053 2054 /* address_space_access_valid: check for validity of accessing an address 2055 * space range 2056 * 2057 * Check whether memory is assigned to the given address space range, and 2058 * access is permitted by any IOMMU regions that are active for the address 2059 * space. 2060 * 2061 * For now, addr and len should be aligned to a page size. This limitation 2062 * will be lifted in the future. 2063 * 2064 * @as: #AddressSpace to be accessed 2065 * @addr: address within that address space 2066 * @len: length of the area to be checked 2067 * @is_write: indicates the transfer direction 2068 * @attrs: memory attributes 2069 */ 2070 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2071 bool is_write, MemTxAttrs attrs); 2072 2073 /* address_space_map: map a physical memory region into a host virtual address 2074 * 2075 * May map a subset of the requested range, given by and returned in @plen. 2076 * May return %NULL if resources needed to perform the mapping are exhausted. 2077 * Use only for reads OR writes - not for read-modify-write operations. 2078 * Use cpu_register_map_client() to know when retrying the map operation is 2079 * likely to succeed. 2080 * 2081 * @as: #AddressSpace to be accessed 2082 * @addr: address within that address space 2083 * @plen: pointer to length of buffer; updated on return 2084 * @is_write: indicates the transfer direction 2085 * @attrs: memory attributes 2086 */ 2087 void *address_space_map(AddressSpace *as, hwaddr addr, 2088 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2089 2090 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2091 * 2092 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2093 * the amount of memory that was actually read or written by the caller. 2094 * 2095 * @as: #AddressSpace used 2096 * @buffer: host pointer as returned by address_space_map() 2097 * @len: buffer length as returned by address_space_map() 2098 * @access_len: amount of data actually transferred 2099 * @is_write: indicates the transfer direction 2100 */ 2101 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2102 int is_write, hwaddr access_len); 2103 2104 2105 /* Internal functions, part of the implementation of address_space_read. */ 2106 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2107 MemTxAttrs attrs, uint8_t *buf, hwaddr len); 2108 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2109 MemTxAttrs attrs, uint8_t *buf, 2110 hwaddr len, hwaddr addr1, hwaddr l, 2111 MemoryRegion *mr); 2112 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2113 2114 /* Internal functions, part of the implementation of address_space_read_cached 2115 * and address_space_write_cached. */ 2116 void address_space_read_cached_slow(MemoryRegionCache *cache, 2117 hwaddr addr, void *buf, hwaddr len); 2118 void address_space_write_cached_slow(MemoryRegionCache *cache, 2119 hwaddr addr, const void *buf, hwaddr len); 2120 2121 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2122 { 2123 if (is_write) { 2124 return memory_region_is_ram(mr) && 2125 !mr->readonly && !memory_region_is_ram_device(mr); 2126 } else { 2127 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2128 memory_region_is_romd(mr); 2129 } 2130 } 2131 2132 /** 2133 * address_space_read: read from an address space. 2134 * 2135 * Return a MemTxResult indicating whether the operation succeeded 2136 * or failed (eg unassigned memory, device rejected the transaction, 2137 * IOMMU fault). Called within RCU critical section. 2138 * 2139 * @as: #AddressSpace to be accessed 2140 * @addr: address within that address space 2141 * @attrs: memory transaction attributes 2142 * @buf: buffer with the data transferred 2143 */ 2144 static inline __attribute__((__always_inline__)) 2145 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2146 MemTxAttrs attrs, uint8_t *buf, 2147 hwaddr len) 2148 { 2149 MemTxResult result = MEMTX_OK; 2150 hwaddr l, addr1; 2151 void *ptr; 2152 MemoryRegion *mr; 2153 FlatView *fv; 2154 2155 if (__builtin_constant_p(len)) { 2156 if (len) { 2157 rcu_read_lock(); 2158 fv = address_space_to_flatview(as); 2159 l = len; 2160 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2161 if (len == l && memory_access_is_direct(mr, false)) { 2162 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2163 memcpy(buf, ptr, len); 2164 } else { 2165 result = flatview_read_continue(fv, addr, attrs, buf, len, 2166 addr1, l, mr); 2167 } 2168 rcu_read_unlock(); 2169 } 2170 } else { 2171 result = address_space_read_full(as, addr, attrs, buf, len); 2172 } 2173 return result; 2174 } 2175 2176 /** 2177 * address_space_read_cached: read from a cached RAM region 2178 * 2179 * @cache: Cached region to be addressed 2180 * @addr: address relative to the base of the RAM region 2181 * @buf: buffer with the data transferred 2182 * @len: length of the data transferred 2183 */ 2184 static inline void 2185 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2186 void *buf, hwaddr len) 2187 { 2188 assert(addr < cache->len && len <= cache->len - addr); 2189 if (likely(cache->ptr)) { 2190 memcpy(buf, cache->ptr + addr, len); 2191 } else { 2192 address_space_read_cached_slow(cache, addr, buf, len); 2193 } 2194 } 2195 2196 /** 2197 * address_space_write_cached: write to a cached RAM region 2198 * 2199 * @cache: Cached region to be addressed 2200 * @addr: address relative to the base of the RAM region 2201 * @buf: buffer with the data transferred 2202 * @len: length of the data transferred 2203 */ 2204 static inline void 2205 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2206 void *buf, hwaddr len) 2207 { 2208 assert(addr < cache->len && len <= cache->len - addr); 2209 if (likely(cache->ptr)) { 2210 memcpy(cache->ptr + addr, buf, len); 2211 } else { 2212 address_space_write_cached_slow(cache, addr, buf, len); 2213 } 2214 } 2215 2216 #ifdef NEED_CPU_H 2217 /* enum device_endian to MemOp. */ 2218 static inline MemOp devend_memop(enum device_endian end) 2219 { 2220 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2221 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2222 2223 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 2224 /* Swap if non-host endianness or native (target) endianness */ 2225 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2226 #else 2227 const int non_host_endianness = 2228 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2229 2230 /* In this case, native (target) endianness needs no swap. */ 2231 return (end == non_host_endianness) ? MO_BSWAP : 0; 2232 #endif 2233 } 2234 #endif 2235 2236 #endif 2237 2238 #endif 2239