1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/ramlist.h" 23 #include "qemu/queue.h" 24 #include "qemu/int128.h" 25 #include "qemu/notify.h" 26 #include "qom/object.h" 27 #include "qemu/rcu.h" 28 #include "hw/qdev-core.h" 29 30 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 31 32 #define MAX_PHYS_ADDR_SPACE_BITS 62 33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 34 35 #define TYPE_MEMORY_REGION "qemu:memory-region" 36 #define MEMORY_REGION(obj) \ 37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 38 39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 40 #define IOMMU_MEMORY_REGION(obj) \ 41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 42 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 44 TYPE_IOMMU_MEMORY_REGION) 45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 47 TYPE_IOMMU_MEMORY_REGION) 48 49 typedef struct MemoryRegionOps MemoryRegionOps; 50 typedef struct MemoryRegionMmio MemoryRegionMmio; 51 52 struct MemoryRegionMmio { 53 CPUReadMemoryFunc *read[3]; 54 CPUWriteMemoryFunc *write[3]; 55 }; 56 57 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 58 59 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 60 typedef enum { 61 IOMMU_NONE = 0, 62 IOMMU_RO = 1, 63 IOMMU_WO = 2, 64 IOMMU_RW = 3, 65 } IOMMUAccessFlags; 66 67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 68 69 struct IOMMUTLBEntry { 70 AddressSpace *target_as; 71 hwaddr iova; 72 hwaddr translated_addr; 73 hwaddr addr_mask; /* 0xfff = 4k translation */ 74 IOMMUAccessFlags perm; 75 }; 76 77 /* 78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 79 * register with one or multiple IOMMU Notifier capability bit(s). 80 */ 81 typedef enum { 82 IOMMU_NOTIFIER_NONE = 0, 83 /* Notify cache invalidations */ 84 IOMMU_NOTIFIER_UNMAP = 0x1, 85 /* Notify entry changes (newly created entries) */ 86 IOMMU_NOTIFIER_MAP = 0x2, 87 } IOMMUNotifierFlag; 88 89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 90 91 struct IOMMUNotifier; 92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 93 IOMMUTLBEntry *data); 94 95 struct IOMMUNotifier { 96 IOMMUNotify notify; 97 IOMMUNotifierFlag notifier_flags; 98 /* Notify for address space range start <= addr <= end */ 99 hwaddr start; 100 hwaddr end; 101 int iommu_idx; 102 QLIST_ENTRY(IOMMUNotifier) node; 103 }; 104 typedef struct IOMMUNotifier IOMMUNotifier; 105 106 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 107 #define RAM_PREALLOC (1 << 0) 108 109 /* RAM is mmap-ed with MAP_SHARED */ 110 #define RAM_SHARED (1 << 1) 111 112 /* Only a portion of RAM (used_length) is actually used, and migrated. 113 * This used_length size can change across reboots. 114 */ 115 #define RAM_RESIZEABLE (1 << 2) 116 117 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 118 * zero the page and wake waiting processes. 119 * (Set during postcopy) 120 */ 121 #define RAM_UF_ZEROPAGE (1 << 3) 122 123 /* RAM can be migrated */ 124 #define RAM_MIGRATABLE (1 << 4) 125 126 /* RAM is a persistent kind memory */ 127 #define RAM_PMEM (1 << 5) 128 129 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 130 IOMMUNotifierFlag flags, 131 hwaddr start, hwaddr end, 132 int iommu_idx) 133 { 134 n->notify = fn; 135 n->notifier_flags = flags; 136 n->start = start; 137 n->end = end; 138 n->iommu_idx = iommu_idx; 139 } 140 141 /* 142 * Memory region callbacks 143 */ 144 struct MemoryRegionOps { 145 /* Read from the memory region. @addr is relative to @mr; @size is 146 * in bytes. */ 147 uint64_t (*read)(void *opaque, 148 hwaddr addr, 149 unsigned size); 150 /* Write to the memory region. @addr is relative to @mr; @size is 151 * in bytes. */ 152 void (*write)(void *opaque, 153 hwaddr addr, 154 uint64_t data, 155 unsigned size); 156 157 MemTxResult (*read_with_attrs)(void *opaque, 158 hwaddr addr, 159 uint64_t *data, 160 unsigned size, 161 MemTxAttrs attrs); 162 MemTxResult (*write_with_attrs)(void *opaque, 163 hwaddr addr, 164 uint64_t data, 165 unsigned size, 166 MemTxAttrs attrs); 167 168 enum device_endian endianness; 169 /* Guest-visible constraints: */ 170 struct { 171 /* If nonzero, specify bounds on access sizes beyond which a machine 172 * check is thrown. 173 */ 174 unsigned min_access_size; 175 unsigned max_access_size; 176 /* If true, unaligned accesses are supported. Otherwise unaligned 177 * accesses throw machine checks. 178 */ 179 bool unaligned; 180 /* 181 * If present, and returns #false, the transaction is not accepted 182 * by the device (and results in machine dependent behaviour such 183 * as a machine check exception). 184 */ 185 bool (*accepts)(void *opaque, hwaddr addr, 186 unsigned size, bool is_write, 187 MemTxAttrs attrs); 188 } valid; 189 /* Internal implementation constraints: */ 190 struct { 191 /* If nonzero, specifies the minimum size implemented. Smaller sizes 192 * will be rounded upwards and a partial result will be returned. 193 */ 194 unsigned min_access_size; 195 /* If nonzero, specifies the maximum size implemented. Larger sizes 196 * will be done as a series of accesses with smaller sizes. 197 */ 198 unsigned max_access_size; 199 /* If true, unaligned accesses are supported. Otherwise all accesses 200 * are converted to (possibly multiple) naturally aligned accesses. 201 */ 202 bool unaligned; 203 } impl; 204 }; 205 206 enum IOMMUMemoryRegionAttr { 207 IOMMU_ATTR_SPAPR_TCE_FD 208 }; 209 210 /** 211 * IOMMUMemoryRegionClass: 212 * 213 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 214 * and provide an implementation of at least the @translate method here 215 * to handle requests to the memory region. Other methods are optional. 216 * 217 * The IOMMU implementation must use the IOMMU notifier infrastructure 218 * to report whenever mappings are changed, by calling 219 * memory_region_notify_iommu() (or, if necessary, by calling 220 * memory_region_notify_one() for each registered notifier). 221 * 222 * Conceptually an IOMMU provides a mapping from input address 223 * to an output TLB entry. If the IOMMU is aware of memory transaction 224 * attributes and the output TLB entry depends on the transaction 225 * attributes, we represent this using IOMMU indexes. Each index 226 * selects a particular translation table that the IOMMU has: 227 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 228 * @translate takes an input address and an IOMMU index 229 * and the mapping returned can only depend on the input address and the 230 * IOMMU index. 231 * 232 * Most IOMMUs don't care about the transaction attributes and support 233 * only a single IOMMU index. A more complex IOMMU might have one index 234 * for secure transactions and one for non-secure transactions. 235 */ 236 typedef struct IOMMUMemoryRegionClass { 237 /* private */ 238 struct DeviceClass parent_class; 239 240 /* 241 * Return a TLB entry that contains a given address. 242 * 243 * The IOMMUAccessFlags indicated via @flag are optional and may 244 * be specified as IOMMU_NONE to indicate that the caller needs 245 * the full translation information for both reads and writes. If 246 * the access flags are specified then the IOMMU implementation 247 * may use this as an optimization, to stop doing a page table 248 * walk as soon as it knows that the requested permissions are not 249 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 250 * full page table walk and report the permissions in the returned 251 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 252 * return different mappings for reads and writes.) 253 * 254 * The returned information remains valid while the caller is 255 * holding the big QEMU lock or is inside an RCU critical section; 256 * if the caller wishes to cache the mapping beyond that it must 257 * register an IOMMU notifier so it can invalidate its cached 258 * information when the IOMMU mapping changes. 259 * 260 * @iommu: the IOMMUMemoryRegion 261 * @hwaddr: address to be translated within the memory region 262 * @flag: requested access permissions 263 * @iommu_idx: IOMMU index for the translation 264 */ 265 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 266 IOMMUAccessFlags flag, int iommu_idx); 267 /* Returns minimum supported page size in bytes. 268 * If this method is not provided then the minimum is assumed to 269 * be TARGET_PAGE_SIZE. 270 * 271 * @iommu: the IOMMUMemoryRegion 272 */ 273 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 274 /* Called when IOMMU Notifier flag changes (ie when the set of 275 * events which IOMMU users are requesting notification for changes). 276 * Optional method -- need not be provided if the IOMMU does not 277 * need to know exactly which events must be notified. 278 * 279 * @iommu: the IOMMUMemoryRegion 280 * @old_flags: events which previously needed to be notified 281 * @new_flags: events which now need to be notified 282 */ 283 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 284 IOMMUNotifierFlag old_flags, 285 IOMMUNotifierFlag new_flags); 286 /* Called to handle memory_region_iommu_replay(). 287 * 288 * The default implementation of memory_region_iommu_replay() is to 289 * call the IOMMU translate method for every page in the address space 290 * with flag == IOMMU_NONE and then call the notifier if translate 291 * returns a valid mapping. If this method is implemented then it 292 * overrides the default behaviour, and must provide the full semantics 293 * of memory_region_iommu_replay(), by calling @notifier for every 294 * translation present in the IOMMU. 295 * 296 * Optional method -- an IOMMU only needs to provide this method 297 * if the default is inefficient or produces undesirable side effects. 298 * 299 * Note: this is not related to record-and-replay functionality. 300 */ 301 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 302 303 /* Get IOMMU misc attributes. This is an optional method that 304 * can be used to allow users of the IOMMU to get implementation-specific 305 * information. The IOMMU implements this method to handle calls 306 * by IOMMU users to memory_region_iommu_get_attr() by filling in 307 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 308 * the IOMMU supports. If the method is unimplemented then 309 * memory_region_iommu_get_attr() will always return -EINVAL. 310 * 311 * @iommu: the IOMMUMemoryRegion 312 * @attr: attribute being queried 313 * @data: memory to fill in with the attribute data 314 * 315 * Returns 0 on success, or a negative errno; in particular 316 * returns -EINVAL for unrecognized or unimplemented attribute types. 317 */ 318 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 319 void *data); 320 321 /* Return the IOMMU index to use for a given set of transaction attributes. 322 * 323 * Optional method: if an IOMMU only supports a single IOMMU index then 324 * the default implementation of memory_region_iommu_attrs_to_index() 325 * will return 0. 326 * 327 * The indexes supported by an IOMMU must be contiguous, starting at 0. 328 * 329 * @iommu: the IOMMUMemoryRegion 330 * @attrs: memory transaction attributes 331 */ 332 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 333 334 /* Return the number of IOMMU indexes this IOMMU supports. 335 * 336 * Optional method: if this method is not provided, then 337 * memory_region_iommu_num_indexes() will return 1, indicating that 338 * only a single IOMMU index is supported. 339 * 340 * @iommu: the IOMMUMemoryRegion 341 */ 342 int (*num_indexes)(IOMMUMemoryRegion *iommu); 343 } IOMMUMemoryRegionClass; 344 345 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 346 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 347 348 struct MemoryRegion { 349 Object parent_obj; 350 351 /* All fields are private - violators will be prosecuted */ 352 353 /* The following fields should fit in a cache line */ 354 bool romd_mode; 355 bool ram; 356 bool subpage; 357 bool readonly; /* For RAM regions */ 358 bool nonvolatile; 359 bool rom_device; 360 bool flush_coalesced_mmio; 361 bool global_locking; 362 uint8_t dirty_log_mask; 363 bool is_iommu; 364 RAMBlock *ram_block; 365 Object *owner; 366 367 const MemoryRegionOps *ops; 368 void *opaque; 369 MemoryRegion *container; 370 Int128 size; 371 hwaddr addr; 372 void (*destructor)(MemoryRegion *mr); 373 uint64_t align; 374 bool terminates; 375 bool ram_device; 376 bool enabled; 377 bool warning_printed; /* For reservations */ 378 uint8_t vga_logging_count; 379 MemoryRegion *alias; 380 hwaddr alias_offset; 381 int32_t priority; 382 QTAILQ_HEAD(, MemoryRegion) subregions; 383 QTAILQ_ENTRY(MemoryRegion) subregions_link; 384 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 385 const char *name; 386 unsigned ioeventfd_nb; 387 MemoryRegionIoeventfd *ioeventfds; 388 }; 389 390 struct IOMMUMemoryRegion { 391 MemoryRegion parent_obj; 392 393 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 394 IOMMUNotifierFlag iommu_notify_flags; 395 }; 396 397 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 398 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 399 400 /** 401 * MemoryListener: callbacks structure for updates to the physical memory map 402 * 403 * Allows a component to adjust to changes in the guest-visible memory map. 404 * Use with memory_listener_register() and memory_listener_unregister(). 405 */ 406 struct MemoryListener { 407 void (*begin)(MemoryListener *listener); 408 void (*commit)(MemoryListener *listener); 409 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 410 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 411 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 412 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 413 int old, int new); 414 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 415 int old, int new); 416 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 417 void (*log_global_start)(MemoryListener *listener); 418 void (*log_global_stop)(MemoryListener *listener); 419 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 420 bool match_data, uint64_t data, EventNotifier *e); 421 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 422 bool match_data, uint64_t data, EventNotifier *e); 423 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 424 hwaddr addr, hwaddr len); 425 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 426 hwaddr addr, hwaddr len); 427 /* Lower = earlier (during add), later (during del) */ 428 unsigned priority; 429 AddressSpace *address_space; 430 QTAILQ_ENTRY(MemoryListener) link; 431 QTAILQ_ENTRY(MemoryListener) link_as; 432 }; 433 434 /** 435 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 436 */ 437 struct AddressSpace { 438 /* All fields are private. */ 439 struct rcu_head rcu; 440 char *name; 441 MemoryRegion *root; 442 443 /* Accessed via RCU. */ 444 struct FlatView *current_map; 445 446 int ioeventfd_nb; 447 struct MemoryRegionIoeventfd *ioeventfds; 448 QTAILQ_HEAD(, MemoryListener) listeners; 449 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 450 }; 451 452 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 453 typedef struct FlatRange FlatRange; 454 455 /* Flattened global view of current active memory hierarchy. Kept in sorted 456 * order. 457 */ 458 struct FlatView { 459 struct rcu_head rcu; 460 unsigned ref; 461 FlatRange *ranges; 462 unsigned nr; 463 unsigned nr_allocated; 464 struct AddressSpaceDispatch *dispatch; 465 MemoryRegion *root; 466 }; 467 468 static inline FlatView *address_space_to_flatview(AddressSpace *as) 469 { 470 return atomic_rcu_read(&as->current_map); 471 } 472 473 474 /** 475 * MemoryRegionSection: describes a fragment of a #MemoryRegion 476 * 477 * @mr: the region, or %NULL if empty 478 * @fv: the flat view of the address space the region is mapped in 479 * @offset_within_region: the beginning of the section, relative to @mr's start 480 * @size: the size of the section; will not exceed @mr's boundaries 481 * @offset_within_address_space: the address of the first byte of the section 482 * relative to the region's address space 483 * @readonly: writes to this section are ignored 484 * @nonvolatile: this section is non-volatile 485 */ 486 struct MemoryRegionSection { 487 MemoryRegion *mr; 488 FlatView *fv; 489 hwaddr offset_within_region; 490 Int128 size; 491 hwaddr offset_within_address_space; 492 bool readonly; 493 bool nonvolatile; 494 }; 495 496 /** 497 * memory_region_init: Initialize a memory region 498 * 499 * The region typically acts as a container for other memory regions. Use 500 * memory_region_add_subregion() to add subregions. 501 * 502 * @mr: the #MemoryRegion to be initialized 503 * @owner: the object that tracks the region's reference count 504 * @name: used for debugging; not visible to the user or ABI 505 * @size: size of the region; any subregions beyond this size will be clipped 506 */ 507 void memory_region_init(MemoryRegion *mr, 508 struct Object *owner, 509 const char *name, 510 uint64_t size); 511 512 /** 513 * memory_region_ref: Add 1 to a memory region's reference count 514 * 515 * Whenever memory regions are accessed outside the BQL, they need to be 516 * preserved against hot-unplug. MemoryRegions actually do not have their 517 * own reference count; they piggyback on a QOM object, their "owner". 518 * This function adds a reference to the owner. 519 * 520 * All MemoryRegions must have an owner if they can disappear, even if the 521 * device they belong to operates exclusively under the BQL. This is because 522 * the region could be returned at any time by memory_region_find, and this 523 * is usually under guest control. 524 * 525 * @mr: the #MemoryRegion 526 */ 527 void memory_region_ref(MemoryRegion *mr); 528 529 /** 530 * memory_region_unref: Remove 1 to a memory region's reference count 531 * 532 * Whenever memory regions are accessed outside the BQL, they need to be 533 * preserved against hot-unplug. MemoryRegions actually do not have their 534 * own reference count; they piggyback on a QOM object, their "owner". 535 * This function removes a reference to the owner and possibly destroys it. 536 * 537 * @mr: the #MemoryRegion 538 */ 539 void memory_region_unref(MemoryRegion *mr); 540 541 /** 542 * memory_region_init_io: Initialize an I/O memory region. 543 * 544 * Accesses into the region will cause the callbacks in @ops to be called. 545 * if @size is nonzero, subregions will be clipped to @size. 546 * 547 * @mr: the #MemoryRegion to be initialized. 548 * @owner: the object that tracks the region's reference count 549 * @ops: a structure containing read and write callbacks to be used when 550 * I/O is performed on the region. 551 * @opaque: passed to the read and write callbacks of the @ops structure. 552 * @name: used for debugging; not visible to the user or ABI 553 * @size: size of the region. 554 */ 555 void memory_region_init_io(MemoryRegion *mr, 556 struct Object *owner, 557 const MemoryRegionOps *ops, 558 void *opaque, 559 const char *name, 560 uint64_t size); 561 562 /** 563 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 564 * into the region will modify memory 565 * directly. 566 * 567 * @mr: the #MemoryRegion to be initialized. 568 * @owner: the object that tracks the region's reference count 569 * @name: Region name, becomes part of RAMBlock name used in migration stream 570 * must be unique within any device 571 * @size: size of the region. 572 * @errp: pointer to Error*, to store an error if it happens. 573 * 574 * Note that this function does not do anything to cause the data in the 575 * RAM memory region to be migrated; that is the responsibility of the caller. 576 */ 577 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 578 struct Object *owner, 579 const char *name, 580 uint64_t size, 581 Error **errp); 582 583 /** 584 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 585 * Accesses into the region will 586 * modify memory directly. 587 * 588 * @mr: the #MemoryRegion to be initialized. 589 * @owner: the object that tracks the region's reference count 590 * @name: Region name, becomes part of RAMBlock name used in migration stream 591 * must be unique within any device 592 * @size: size of the region. 593 * @share: allow remapping RAM to different addresses 594 * @errp: pointer to Error*, to store an error if it happens. 595 * 596 * Note that this function is similar to memory_region_init_ram_nomigrate. 597 * The only difference is part of the RAM region can be remapped. 598 */ 599 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 600 struct Object *owner, 601 const char *name, 602 uint64_t size, 603 bool share, 604 Error **errp); 605 606 /** 607 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 608 * RAM. Accesses into the region will 609 * modify memory directly. Only an initial 610 * portion of this RAM is actually used. 611 * The used size can change across reboots. 612 * 613 * @mr: the #MemoryRegion to be initialized. 614 * @owner: the object that tracks the region's reference count 615 * @name: Region name, becomes part of RAMBlock name used in migration stream 616 * must be unique within any device 617 * @size: used size of the region. 618 * @max_size: max size of the region. 619 * @resized: callback to notify owner about used size change. 620 * @errp: pointer to Error*, to store an error if it happens. 621 * 622 * Note that this function does not do anything to cause the data in the 623 * RAM memory region to be migrated; that is the responsibility of the caller. 624 */ 625 void memory_region_init_resizeable_ram(MemoryRegion *mr, 626 struct Object *owner, 627 const char *name, 628 uint64_t size, 629 uint64_t max_size, 630 void (*resized)(const char*, 631 uint64_t length, 632 void *host), 633 Error **errp); 634 #ifdef CONFIG_POSIX 635 636 /** 637 * memory_region_init_ram_from_file: Initialize RAM memory region with a 638 * mmap-ed backend. 639 * 640 * @mr: the #MemoryRegion to be initialized. 641 * @owner: the object that tracks the region's reference count 642 * @name: Region name, becomes part of RAMBlock name used in migration stream 643 * must be unique within any device 644 * @size: size of the region. 645 * @align: alignment of the region base address; if 0, the default alignment 646 * (getpagesize()) will be used. 647 * @ram_flags: Memory region features: 648 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 649 * - RAM_PMEM: the memory is persistent memory 650 * Other bits are ignored now. 651 * @path: the path in which to allocate the RAM. 652 * @errp: pointer to Error*, to store an error if it happens. 653 * 654 * Note that this function does not do anything to cause the data in the 655 * RAM memory region to be migrated; that is the responsibility of the caller. 656 */ 657 void memory_region_init_ram_from_file(MemoryRegion *mr, 658 struct Object *owner, 659 const char *name, 660 uint64_t size, 661 uint64_t align, 662 uint32_t ram_flags, 663 const char *path, 664 Error **errp); 665 666 /** 667 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 668 * mmap-ed backend. 669 * 670 * @mr: the #MemoryRegion to be initialized. 671 * @owner: the object that tracks the region's reference count 672 * @name: the name of the region. 673 * @size: size of the region. 674 * @share: %true if memory must be mmaped with the MAP_SHARED flag 675 * @fd: the fd to mmap. 676 * @errp: pointer to Error*, to store an error if it happens. 677 * 678 * Note that this function does not do anything to cause the data in the 679 * RAM memory region to be migrated; that is the responsibility of the caller. 680 */ 681 void memory_region_init_ram_from_fd(MemoryRegion *mr, 682 struct Object *owner, 683 const char *name, 684 uint64_t size, 685 bool share, 686 int fd, 687 Error **errp); 688 #endif 689 690 /** 691 * memory_region_init_ram_ptr: Initialize RAM memory region from a 692 * user-provided pointer. Accesses into the 693 * region will modify memory directly. 694 * 695 * @mr: the #MemoryRegion to be initialized. 696 * @owner: the object that tracks the region's reference count 697 * @name: Region name, becomes part of RAMBlock name used in migration stream 698 * must be unique within any device 699 * @size: size of the region. 700 * @ptr: memory to be mapped; must contain at least @size bytes. 701 * 702 * Note that this function does not do anything to cause the data in the 703 * RAM memory region to be migrated; that is the responsibility of the caller. 704 */ 705 void memory_region_init_ram_ptr(MemoryRegion *mr, 706 struct Object *owner, 707 const char *name, 708 uint64_t size, 709 void *ptr); 710 711 /** 712 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 713 * a user-provided pointer. 714 * 715 * A RAM device represents a mapping to a physical device, such as to a PCI 716 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 717 * into the VM address space and access to the region will modify memory 718 * directly. However, the memory region should not be included in a memory 719 * dump (device may not be enabled/mapped at the time of the dump), and 720 * operations incompatible with manipulating MMIO should be avoided. Replaces 721 * skip_dump flag. 722 * 723 * @mr: the #MemoryRegion to be initialized. 724 * @owner: the object that tracks the region's reference count 725 * @name: the name of the region. 726 * @size: size of the region. 727 * @ptr: memory to be mapped; must contain at least @size bytes. 728 * 729 * Note that this function does not do anything to cause the data in the 730 * RAM memory region to be migrated; that is the responsibility of the caller. 731 * (For RAM device memory regions, migrating the contents rarely makes sense.) 732 */ 733 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 734 struct Object *owner, 735 const char *name, 736 uint64_t size, 737 void *ptr); 738 739 /** 740 * memory_region_init_alias: Initialize a memory region that aliases all or a 741 * part of another memory region. 742 * 743 * @mr: the #MemoryRegion to be initialized. 744 * @owner: the object that tracks the region's reference count 745 * @name: used for debugging; not visible to the user or ABI 746 * @orig: the region to be referenced; @mr will be equivalent to 747 * @orig between @offset and @offset + @size - 1. 748 * @offset: start of the section in @orig to be referenced. 749 * @size: size of the region. 750 */ 751 void memory_region_init_alias(MemoryRegion *mr, 752 struct Object *owner, 753 const char *name, 754 MemoryRegion *orig, 755 hwaddr offset, 756 uint64_t size); 757 758 /** 759 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 760 * 761 * This has the same effect as calling memory_region_init_ram_nomigrate() 762 * and then marking the resulting region read-only with 763 * memory_region_set_readonly(). 764 * 765 * Note that this function does not do anything to cause the data in the 766 * RAM side of the memory region to be migrated; that is the responsibility 767 * of the caller. 768 * 769 * @mr: the #MemoryRegion to be initialized. 770 * @owner: the object that tracks the region's reference count 771 * @name: Region name, becomes part of RAMBlock name used in migration stream 772 * must be unique within any device 773 * @size: size of the region. 774 * @errp: pointer to Error*, to store an error if it happens. 775 */ 776 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 777 struct Object *owner, 778 const char *name, 779 uint64_t size, 780 Error **errp); 781 782 /** 783 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 784 * Writes are handled via callbacks. 785 * 786 * Note that this function does not do anything to cause the data in the 787 * RAM side of the memory region to be migrated; that is the responsibility 788 * of the caller. 789 * 790 * @mr: the #MemoryRegion to be initialized. 791 * @owner: the object that tracks the region's reference count 792 * @ops: callbacks for write access handling (must not be NULL). 793 * @opaque: passed to the read and write callbacks of the @ops structure. 794 * @name: Region name, becomes part of RAMBlock name used in migration stream 795 * must be unique within any device 796 * @size: size of the region. 797 * @errp: pointer to Error*, to store an error if it happens. 798 */ 799 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 800 struct Object *owner, 801 const MemoryRegionOps *ops, 802 void *opaque, 803 const char *name, 804 uint64_t size, 805 Error **errp); 806 807 /** 808 * memory_region_init_iommu: Initialize a memory region of a custom type 809 * that translates addresses 810 * 811 * An IOMMU region translates addresses and forwards accesses to a target 812 * memory region. 813 * 814 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 815 * @_iommu_mr should be a pointer to enough memory for an instance of 816 * that subclass, @instance_size is the size of that subclass, and 817 * @mrtypename is its name. This function will initialize @_iommu_mr as an 818 * instance of the subclass, and its methods will then be called to handle 819 * accesses to the memory region. See the documentation of 820 * #IOMMUMemoryRegionClass for further details. 821 * 822 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 823 * @instance_size: the IOMMUMemoryRegion subclass instance size 824 * @mrtypename: the type name of the #IOMMUMemoryRegion 825 * @owner: the object that tracks the region's reference count 826 * @name: used for debugging; not visible to the user or ABI 827 * @size: size of the region. 828 */ 829 void memory_region_init_iommu(void *_iommu_mr, 830 size_t instance_size, 831 const char *mrtypename, 832 Object *owner, 833 const char *name, 834 uint64_t size); 835 836 /** 837 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 838 * region will modify memory directly. 839 * 840 * @mr: the #MemoryRegion to be initialized 841 * @owner: the object that tracks the region's reference count (must be 842 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 843 * @name: name of the memory region 844 * @size: size of the region in bytes 845 * @errp: pointer to Error*, to store an error if it happens. 846 * 847 * This function allocates RAM for a board model or device, and 848 * arranges for it to be migrated (by calling vmstate_register_ram() 849 * if @owner is a DeviceState, or vmstate_register_ram_global() if 850 * @owner is NULL). 851 * 852 * TODO: Currently we restrict @owner to being either NULL (for 853 * global RAM regions with no owner) or devices, so that we can 854 * give the RAM block a unique name for migration purposes. 855 * We should lift this restriction and allow arbitrary Objects. 856 * If you pass a non-NULL non-device @owner then we will assert. 857 */ 858 void memory_region_init_ram(MemoryRegion *mr, 859 struct Object *owner, 860 const char *name, 861 uint64_t size, 862 Error **errp); 863 864 /** 865 * memory_region_init_rom: Initialize a ROM memory region. 866 * 867 * This has the same effect as calling memory_region_init_ram() 868 * and then marking the resulting region read-only with 869 * memory_region_set_readonly(). This includes arranging for the 870 * contents to be migrated. 871 * 872 * TODO: Currently we restrict @owner to being either NULL (for 873 * global RAM regions with no owner) or devices, so that we can 874 * give the RAM block a unique name for migration purposes. 875 * We should lift this restriction and allow arbitrary Objects. 876 * If you pass a non-NULL non-device @owner then we will assert. 877 * 878 * @mr: the #MemoryRegion to be initialized. 879 * @owner: the object that tracks the region's reference count 880 * @name: Region name, becomes part of RAMBlock name used in migration stream 881 * must be unique within any device 882 * @size: size of the region. 883 * @errp: pointer to Error*, to store an error if it happens. 884 */ 885 void memory_region_init_rom(MemoryRegion *mr, 886 struct Object *owner, 887 const char *name, 888 uint64_t size, 889 Error **errp); 890 891 /** 892 * memory_region_init_rom_device: Initialize a ROM memory region. 893 * Writes are handled via callbacks. 894 * 895 * This function initializes a memory region backed by RAM for reads 896 * and callbacks for writes, and arranges for the RAM backing to 897 * be migrated (by calling vmstate_register_ram() 898 * if @owner is a DeviceState, or vmstate_register_ram_global() if 899 * @owner is NULL). 900 * 901 * TODO: Currently we restrict @owner to being either NULL (for 902 * global RAM regions with no owner) or devices, so that we can 903 * give the RAM block a unique name for migration purposes. 904 * We should lift this restriction and allow arbitrary Objects. 905 * If you pass a non-NULL non-device @owner then we will assert. 906 * 907 * @mr: the #MemoryRegion to be initialized. 908 * @owner: the object that tracks the region's reference count 909 * @ops: callbacks for write access handling (must not be NULL). 910 * @name: Region name, becomes part of RAMBlock name used in migration stream 911 * must be unique within any device 912 * @size: size of the region. 913 * @errp: pointer to Error*, to store an error if it happens. 914 */ 915 void memory_region_init_rom_device(MemoryRegion *mr, 916 struct Object *owner, 917 const MemoryRegionOps *ops, 918 void *opaque, 919 const char *name, 920 uint64_t size, 921 Error **errp); 922 923 924 /** 925 * memory_region_owner: get a memory region's owner. 926 * 927 * @mr: the memory region being queried. 928 */ 929 struct Object *memory_region_owner(MemoryRegion *mr); 930 931 /** 932 * memory_region_size: get a memory region's size. 933 * 934 * @mr: the memory region being queried. 935 */ 936 uint64_t memory_region_size(MemoryRegion *mr); 937 938 /** 939 * memory_region_is_ram: check whether a memory region is random access 940 * 941 * Returns %true if a memory region is random access. 942 * 943 * @mr: the memory region being queried 944 */ 945 static inline bool memory_region_is_ram(MemoryRegion *mr) 946 { 947 return mr->ram; 948 } 949 950 /** 951 * memory_region_is_ram_device: check whether a memory region is a ram device 952 * 953 * Returns %true if a memory region is a device backed ram region 954 * 955 * @mr: the memory region being queried 956 */ 957 bool memory_region_is_ram_device(MemoryRegion *mr); 958 959 /** 960 * memory_region_is_romd: check whether a memory region is in ROMD mode 961 * 962 * Returns %true if a memory region is a ROM device and currently set to allow 963 * direct reads. 964 * 965 * @mr: the memory region being queried 966 */ 967 static inline bool memory_region_is_romd(MemoryRegion *mr) 968 { 969 return mr->rom_device && mr->romd_mode; 970 } 971 972 /** 973 * memory_region_get_iommu: check whether a memory region is an iommu 974 * 975 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 976 * otherwise NULL. 977 * 978 * @mr: the memory region being queried 979 */ 980 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 981 { 982 if (mr->alias) { 983 return memory_region_get_iommu(mr->alias); 984 } 985 if (mr->is_iommu) { 986 return (IOMMUMemoryRegion *) mr; 987 } 988 return NULL; 989 } 990 991 /** 992 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 993 * if an iommu or NULL if not 994 * 995 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 996 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 997 * 998 * @mr: the memory region being queried 999 */ 1000 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1001 IOMMUMemoryRegion *iommu_mr) 1002 { 1003 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1004 } 1005 1006 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1007 1008 /** 1009 * memory_region_iommu_get_min_page_size: get minimum supported page size 1010 * for an iommu 1011 * 1012 * Returns minimum supported page size for an iommu. 1013 * 1014 * @iommu_mr: the memory region being queried 1015 */ 1016 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1017 1018 /** 1019 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1020 * 1021 * The notification type will be decided by entry.perm bits: 1022 * 1023 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1024 * - For MAP (newly added entry) notifies: set entry.perm to the 1025 * permission of the page (which is definitely !IOMMU_NONE). 1026 * 1027 * Note: for any IOMMU implementation, an in-place mapping change 1028 * should be notified with an UNMAP followed by a MAP. 1029 * 1030 * @iommu_mr: the memory region that was changed 1031 * @iommu_idx: the IOMMU index for the translation table which has changed 1032 * @entry: the new entry in the IOMMU translation table. The entry 1033 * replaces all old entries for the same virtual I/O address range. 1034 * Deleted entries have .@perm == 0. 1035 */ 1036 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1037 int iommu_idx, 1038 IOMMUTLBEntry entry); 1039 1040 /** 1041 * memory_region_notify_one: notify a change in an IOMMU translation 1042 * entry to a single notifier 1043 * 1044 * This works just like memory_region_notify_iommu(), but it only 1045 * notifies a specific notifier, not all of them. 1046 * 1047 * @notifier: the notifier to be notified 1048 * @entry: the new entry in the IOMMU translation table. The entry 1049 * replaces all old entries for the same virtual I/O address range. 1050 * Deleted entries have .@perm == 0. 1051 */ 1052 void memory_region_notify_one(IOMMUNotifier *notifier, 1053 IOMMUTLBEntry *entry); 1054 1055 /** 1056 * memory_region_register_iommu_notifier: register a notifier for changes to 1057 * IOMMU translation entries. 1058 * 1059 * @mr: the memory region to observe 1060 * @n: the IOMMUNotifier to be added; the notify callback receives a 1061 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1062 * ceases to be valid on exit from the notifier. 1063 */ 1064 void memory_region_register_iommu_notifier(MemoryRegion *mr, 1065 IOMMUNotifier *n); 1066 1067 /** 1068 * memory_region_iommu_replay: replay existing IOMMU translations to 1069 * a notifier with the minimum page granularity returned by 1070 * mr->iommu_ops->get_page_size(). 1071 * 1072 * Note: this is not related to record-and-replay functionality. 1073 * 1074 * @iommu_mr: the memory region to observe 1075 * @n: the notifier to which to replay iommu mappings 1076 */ 1077 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1078 1079 /** 1080 * memory_region_iommu_replay_all: replay existing IOMMU translations 1081 * to all the notifiers registered. 1082 * 1083 * Note: this is not related to record-and-replay functionality. 1084 * 1085 * @iommu_mr: the memory region to observe 1086 */ 1087 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 1088 1089 /** 1090 * memory_region_unregister_iommu_notifier: unregister a notifier for 1091 * changes to IOMMU translation entries. 1092 * 1093 * @mr: the memory region which was observed and for which notity_stopped() 1094 * needs to be called 1095 * @n: the notifier to be removed. 1096 */ 1097 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1098 IOMMUNotifier *n); 1099 1100 /** 1101 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1102 * defined on the IOMMU. 1103 * 1104 * Returns 0 on success, or a negative errno otherwise. In particular, 1105 * -EINVAL indicates that the IOMMU does not support the requested 1106 * attribute. 1107 * 1108 * @iommu_mr: the memory region 1109 * @attr: the requested attribute 1110 * @data: a pointer to the requested attribute data 1111 */ 1112 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1113 enum IOMMUMemoryRegionAttr attr, 1114 void *data); 1115 1116 /** 1117 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1118 * use for translations with the given memory transaction attributes. 1119 * 1120 * @iommu_mr: the memory region 1121 * @attrs: the memory transaction attributes 1122 */ 1123 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1124 MemTxAttrs attrs); 1125 1126 /** 1127 * memory_region_iommu_num_indexes: return the total number of IOMMU 1128 * indexes that this IOMMU supports. 1129 * 1130 * @iommu_mr: the memory region 1131 */ 1132 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1133 1134 /** 1135 * memory_region_name: get a memory region's name 1136 * 1137 * Returns the string that was used to initialize the memory region. 1138 * 1139 * @mr: the memory region being queried 1140 */ 1141 const char *memory_region_name(const MemoryRegion *mr); 1142 1143 /** 1144 * memory_region_is_logging: return whether a memory region is logging writes 1145 * 1146 * Returns %true if the memory region is logging writes for the given client 1147 * 1148 * @mr: the memory region being queried 1149 * @client: the client being queried 1150 */ 1151 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1152 1153 /** 1154 * memory_region_get_dirty_log_mask: return the clients for which a 1155 * memory region is logging writes. 1156 * 1157 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1158 * are the bit indices. 1159 * 1160 * @mr: the memory region being queried 1161 */ 1162 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1163 1164 /** 1165 * memory_region_is_rom: check whether a memory region is ROM 1166 * 1167 * Returns %true if a memory region is read-only memory. 1168 * 1169 * @mr: the memory region being queried 1170 */ 1171 static inline bool memory_region_is_rom(MemoryRegion *mr) 1172 { 1173 return mr->ram && mr->readonly; 1174 } 1175 1176 /** 1177 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1178 * 1179 * Returns %true is a memory region is non-volatile memory. 1180 * 1181 * @mr: the memory region being queried 1182 */ 1183 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1184 { 1185 return mr->nonvolatile; 1186 } 1187 1188 /** 1189 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1190 * 1191 * Returns a file descriptor backing a file-based RAM memory region, 1192 * or -1 if the region is not a file-based RAM memory region. 1193 * 1194 * @mr: the RAM or alias memory region being queried. 1195 */ 1196 int memory_region_get_fd(MemoryRegion *mr); 1197 1198 /** 1199 * memory_region_from_host: Convert a pointer into a RAM memory region 1200 * and an offset within it. 1201 * 1202 * Given a host pointer inside a RAM memory region (created with 1203 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1204 * the MemoryRegion and the offset within it. 1205 * 1206 * Use with care; by the time this function returns, the returned pointer is 1207 * not protected by RCU anymore. If the caller is not within an RCU critical 1208 * section and does not hold the iothread lock, it must have other means of 1209 * protecting the pointer, such as a reference to the region that includes 1210 * the incoming ram_addr_t. 1211 * 1212 * @ptr: the host pointer to be converted 1213 * @offset: the offset within memory region 1214 */ 1215 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1216 1217 /** 1218 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1219 * 1220 * Returns a host pointer to a RAM memory region (created with 1221 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1222 * 1223 * Use with care; by the time this function returns, the returned pointer is 1224 * not protected by RCU anymore. If the caller is not within an RCU critical 1225 * section and does not hold the iothread lock, it must have other means of 1226 * protecting the pointer, such as a reference to the region that includes 1227 * the incoming ram_addr_t. 1228 * 1229 * @mr: the memory region being queried. 1230 */ 1231 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1232 1233 /* memory_region_ram_resize: Resize a RAM region. 1234 * 1235 * Only legal before guest might have detected the memory size: e.g. on 1236 * incoming migration, or right after reset. 1237 * 1238 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1239 * @newsize: the new size the region 1240 * @errp: pointer to Error*, to store an error if it happens. 1241 */ 1242 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1243 Error **errp); 1244 1245 /** 1246 * memory_region_set_log: Turn dirty logging on or off for a region. 1247 * 1248 * Turns dirty logging on or off for a specified client (display, migration). 1249 * Only meaningful for RAM regions. 1250 * 1251 * @mr: the memory region being updated. 1252 * @log: whether dirty logging is to be enabled or disabled. 1253 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1254 */ 1255 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1256 1257 /** 1258 * memory_region_get_dirty: Check whether a range of bytes is dirty 1259 * for a specified client. 1260 * 1261 * Checks whether a range of bytes has been written to since the last 1262 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1263 * must be enabled. 1264 * 1265 * @mr: the memory region being queried. 1266 * @addr: the address (relative to the start of the region) being queried. 1267 * @size: the size of the range being queried. 1268 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1269 * %DIRTY_MEMORY_VGA. 1270 */ 1271 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 1272 hwaddr size, unsigned client); 1273 1274 /** 1275 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1276 * 1277 * Marks a range of bytes as dirty, after it has been dirtied outside 1278 * guest code. 1279 * 1280 * @mr: the memory region being dirtied. 1281 * @addr: the address (relative to the start of the region) being dirtied. 1282 * @size: size of the range being dirtied. 1283 */ 1284 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1285 hwaddr size); 1286 1287 /** 1288 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1289 * bitmap and clear it. 1290 * 1291 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1292 * returns the snapshot. The snapshot can then be used to query dirty 1293 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1294 * querying the same page multiple times, which is especially useful for 1295 * display updates where the scanlines often are not page aligned. 1296 * 1297 * The dirty bitmap region which gets copyed into the snapshot (and 1298 * cleared afterwards) can be larger than requested. The boundaries 1299 * are rounded up/down so complete bitmap longs (covering 64 pages on 1300 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1301 * isn't a problem for display updates as the extra pages are outside 1302 * the visible area, and in case the visible area changes a full 1303 * display redraw is due anyway. Should other use cases for this 1304 * function emerge we might have to revisit this implementation 1305 * detail. 1306 * 1307 * Use g_free to release DirtyBitmapSnapshot. 1308 * 1309 * @mr: the memory region being queried. 1310 * @addr: the address (relative to the start of the region) being queried. 1311 * @size: the size of the range being queried. 1312 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1313 */ 1314 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1315 hwaddr addr, 1316 hwaddr size, 1317 unsigned client); 1318 1319 /** 1320 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1321 * in the specified dirty bitmap snapshot. 1322 * 1323 * @mr: the memory region being queried. 1324 * @snap: the dirty bitmap snapshot 1325 * @addr: the address (relative to the start of the region) being queried. 1326 * @size: the size of the range being queried. 1327 */ 1328 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1329 DirtyBitmapSnapshot *snap, 1330 hwaddr addr, hwaddr size); 1331 1332 /** 1333 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1334 * client. 1335 * 1336 * Marks a range of pages as no longer dirty. 1337 * 1338 * @mr: the region being updated. 1339 * @addr: the start of the subrange being cleaned. 1340 * @size: the size of the subrange being cleaned. 1341 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1342 * %DIRTY_MEMORY_VGA. 1343 */ 1344 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1345 hwaddr size, unsigned client); 1346 1347 /** 1348 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1349 * TBs (for self-modifying code). 1350 * 1351 * The MemoryRegionOps->write() callback of a ROM device must use this function 1352 * to mark byte ranges that have been modified internally, such as by directly 1353 * accessing the memory returned by memory_region_get_ram_ptr(). 1354 * 1355 * This function marks the range dirty and invalidates TBs so that TCG can 1356 * detect self-modifying code. 1357 * 1358 * @mr: the region being flushed. 1359 * @addr: the start, relative to the start of the region, of the range being 1360 * flushed. 1361 * @size: the size, in bytes, of the range being flushed. 1362 */ 1363 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1364 1365 /** 1366 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1367 * 1368 * Allows a memory region to be marked as read-only (turning it into a ROM). 1369 * only useful on RAM regions. 1370 * 1371 * @mr: the region being updated. 1372 * @readonly: whether rhe region is to be ROM or RAM. 1373 */ 1374 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1375 1376 /** 1377 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1378 * 1379 * Allows a memory region to be marked as non-volatile. 1380 * only useful on RAM regions. 1381 * 1382 * @mr: the region being updated. 1383 * @nonvolatile: whether rhe region is to be non-volatile. 1384 */ 1385 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1386 1387 /** 1388 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1389 * 1390 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1391 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1392 * device is mapped to guest memory and satisfies read access directly. 1393 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1394 * Writes are always handled by the #MemoryRegion.write function. 1395 * 1396 * @mr: the memory region to be updated 1397 * @romd_mode: %true to put the region into ROMD mode 1398 */ 1399 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1400 1401 /** 1402 * memory_region_set_coalescing: Enable memory coalescing for the region. 1403 * 1404 * Enabled writes to a region to be queued for later processing. MMIO ->write 1405 * callbacks may be delayed until a non-coalesced MMIO is issued. 1406 * Only useful for IO regions. Roughly similar to write-combining hardware. 1407 * 1408 * @mr: the memory region to be write coalesced 1409 */ 1410 void memory_region_set_coalescing(MemoryRegion *mr); 1411 1412 /** 1413 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1414 * a region. 1415 * 1416 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1417 * Multiple calls can be issued coalesced disjoint ranges. 1418 * 1419 * @mr: the memory region to be updated. 1420 * @offset: the start of the range within the region to be coalesced. 1421 * @size: the size of the subrange to be coalesced. 1422 */ 1423 void memory_region_add_coalescing(MemoryRegion *mr, 1424 hwaddr offset, 1425 uint64_t size); 1426 1427 /** 1428 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1429 * 1430 * Disables any coalescing caused by memory_region_set_coalescing() or 1431 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1432 * hardware. 1433 * 1434 * @mr: the memory region to be updated. 1435 */ 1436 void memory_region_clear_coalescing(MemoryRegion *mr); 1437 1438 /** 1439 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1440 * accesses. 1441 * 1442 * Ensure that pending coalesced MMIO request are flushed before the memory 1443 * region is accessed. This property is automatically enabled for all regions 1444 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1445 * 1446 * @mr: the memory region to be updated. 1447 */ 1448 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1449 1450 /** 1451 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1452 * accesses. 1453 * 1454 * Clear the automatic coalesced MMIO flushing enabled via 1455 * memory_region_set_flush_coalesced. Note that this service has no effect on 1456 * memory regions that have MMIO coalescing enabled for themselves. For them, 1457 * automatic flushing will stop once coalescing is disabled. 1458 * 1459 * @mr: the memory region to be updated. 1460 */ 1461 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1462 1463 /** 1464 * memory_region_clear_global_locking: Declares that access processing does 1465 * not depend on the QEMU global lock. 1466 * 1467 * By clearing this property, accesses to the memory region will be processed 1468 * outside of QEMU's global lock (unless the lock is held on when issuing the 1469 * access request). In this case, the device model implementing the access 1470 * handlers is responsible for synchronization of concurrency. 1471 * 1472 * @mr: the memory region to be updated. 1473 */ 1474 void memory_region_clear_global_locking(MemoryRegion *mr); 1475 1476 /** 1477 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1478 * is written to a location. 1479 * 1480 * Marks a word in an IO region (initialized with memory_region_init_io()) 1481 * as a trigger for an eventfd event. The I/O callback will not be called. 1482 * The caller must be prepared to handle failure (that is, take the required 1483 * action if the callback _is_ called). 1484 * 1485 * @mr: the memory region being updated. 1486 * @addr: the address within @mr that is to be monitored 1487 * @size: the size of the access to trigger the eventfd 1488 * @match_data: whether to match against @data, instead of just @addr 1489 * @data: the data to match against the guest write 1490 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1491 **/ 1492 void memory_region_add_eventfd(MemoryRegion *mr, 1493 hwaddr addr, 1494 unsigned size, 1495 bool match_data, 1496 uint64_t data, 1497 EventNotifier *e); 1498 1499 /** 1500 * memory_region_del_eventfd: Cancel an eventfd. 1501 * 1502 * Cancels an eventfd trigger requested by a previous 1503 * memory_region_add_eventfd() call. 1504 * 1505 * @mr: the memory region being updated. 1506 * @addr: the address within @mr that is to be monitored 1507 * @size: the size of the access to trigger the eventfd 1508 * @match_data: whether to match against @data, instead of just @addr 1509 * @data: the data to match against the guest write 1510 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1511 */ 1512 void memory_region_del_eventfd(MemoryRegion *mr, 1513 hwaddr addr, 1514 unsigned size, 1515 bool match_data, 1516 uint64_t data, 1517 EventNotifier *e); 1518 1519 /** 1520 * memory_region_add_subregion: Add a subregion to a container. 1521 * 1522 * Adds a subregion at @offset. The subregion may not overlap with other 1523 * subregions (except for those explicitly marked as overlapping). A region 1524 * may only be added once as a subregion (unless removed with 1525 * memory_region_del_subregion()); use memory_region_init_alias() if you 1526 * want a region to be a subregion in multiple locations. 1527 * 1528 * @mr: the region to contain the new subregion; must be a container 1529 * initialized with memory_region_init(). 1530 * @offset: the offset relative to @mr where @subregion is added. 1531 * @subregion: the subregion to be added. 1532 */ 1533 void memory_region_add_subregion(MemoryRegion *mr, 1534 hwaddr offset, 1535 MemoryRegion *subregion); 1536 /** 1537 * memory_region_add_subregion_overlap: Add a subregion to a container 1538 * with overlap. 1539 * 1540 * Adds a subregion at @offset. The subregion may overlap with other 1541 * subregions. Conflicts are resolved by having a higher @priority hide a 1542 * lower @priority. Subregions without priority are taken as @priority 0. 1543 * A region may only be added once as a subregion (unless removed with 1544 * memory_region_del_subregion()); use memory_region_init_alias() if you 1545 * want a region to be a subregion in multiple locations. 1546 * 1547 * @mr: the region to contain the new subregion; must be a container 1548 * initialized with memory_region_init(). 1549 * @offset: the offset relative to @mr where @subregion is added. 1550 * @subregion: the subregion to be added. 1551 * @priority: used for resolving overlaps; highest priority wins. 1552 */ 1553 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1554 hwaddr offset, 1555 MemoryRegion *subregion, 1556 int priority); 1557 1558 /** 1559 * memory_region_get_ram_addr: Get the ram address associated with a memory 1560 * region 1561 */ 1562 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1563 1564 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1565 /** 1566 * memory_region_del_subregion: Remove a subregion. 1567 * 1568 * Removes a subregion from its container. 1569 * 1570 * @mr: the container to be updated. 1571 * @subregion: the region being removed; must be a current subregion of @mr. 1572 */ 1573 void memory_region_del_subregion(MemoryRegion *mr, 1574 MemoryRegion *subregion); 1575 1576 /* 1577 * memory_region_set_enabled: dynamically enable or disable a region 1578 * 1579 * Enables or disables a memory region. A disabled memory region 1580 * ignores all accesses to itself and its subregions. It does not 1581 * obscure sibling subregions with lower priority - it simply behaves as 1582 * if it was removed from the hierarchy. 1583 * 1584 * Regions default to being enabled. 1585 * 1586 * @mr: the region to be updated 1587 * @enabled: whether to enable or disable the region 1588 */ 1589 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1590 1591 /* 1592 * memory_region_set_address: dynamically update the address of a region 1593 * 1594 * Dynamically updates the address of a region, relative to its container. 1595 * May be used on regions are currently part of a memory hierarchy. 1596 * 1597 * @mr: the region to be updated 1598 * @addr: new address, relative to container region 1599 */ 1600 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1601 1602 /* 1603 * memory_region_set_size: dynamically update the size of a region. 1604 * 1605 * Dynamically updates the size of a region. 1606 * 1607 * @mr: the region to be updated 1608 * @size: used size of the region. 1609 */ 1610 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1611 1612 /* 1613 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1614 * 1615 * Dynamically updates the offset into the target region that an alias points 1616 * to, as if the fourth argument to memory_region_init_alias() has changed. 1617 * 1618 * @mr: the #MemoryRegion to be updated; should be an alias. 1619 * @offset: the new offset into the target memory region 1620 */ 1621 void memory_region_set_alias_offset(MemoryRegion *mr, 1622 hwaddr offset); 1623 1624 /** 1625 * memory_region_present: checks if an address relative to a @container 1626 * translates into #MemoryRegion within @container 1627 * 1628 * Answer whether a #MemoryRegion within @container covers the address 1629 * @addr. 1630 * 1631 * @container: a #MemoryRegion within which @addr is a relative address 1632 * @addr: the area within @container to be searched 1633 */ 1634 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1635 1636 /** 1637 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1638 * into any address space. 1639 * 1640 * @mr: a #MemoryRegion which should be checked if it's mapped 1641 */ 1642 bool memory_region_is_mapped(MemoryRegion *mr); 1643 1644 /** 1645 * memory_region_find: translate an address/size relative to a 1646 * MemoryRegion into a #MemoryRegionSection. 1647 * 1648 * Locates the first #MemoryRegion within @mr that overlaps the range 1649 * given by @addr and @size. 1650 * 1651 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1652 * It will have the following characteristics: 1653 * .@size = 0 iff no overlap was found 1654 * .@mr is non-%NULL iff an overlap was found 1655 * 1656 * Remember that in the return value the @offset_within_region is 1657 * relative to the returned region (in the .@mr field), not to the 1658 * @mr argument. 1659 * 1660 * Similarly, the .@offset_within_address_space is relative to the 1661 * address space that contains both regions, the passed and the 1662 * returned one. However, in the special case where the @mr argument 1663 * has no container (and thus is the root of the address space), the 1664 * following will hold: 1665 * .@offset_within_address_space >= @addr 1666 * .@offset_within_address_space + .@size <= @addr + @size 1667 * 1668 * @mr: a MemoryRegion within which @addr is a relative address 1669 * @addr: start of the area within @as to be searched 1670 * @size: size of the area to be searched 1671 */ 1672 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1673 hwaddr addr, uint64_t size); 1674 1675 /** 1676 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1677 * 1678 * Synchronizes the dirty page log for all address spaces. 1679 */ 1680 void memory_global_dirty_log_sync(void); 1681 1682 /** 1683 * memory_region_transaction_begin: Start a transaction. 1684 * 1685 * During a transaction, changes will be accumulated and made visible 1686 * only when the transaction ends (is committed). 1687 */ 1688 void memory_region_transaction_begin(void); 1689 1690 /** 1691 * memory_region_transaction_commit: Commit a transaction and make changes 1692 * visible to the guest. 1693 */ 1694 void memory_region_transaction_commit(void); 1695 1696 /** 1697 * memory_listener_register: register callbacks to be called when memory 1698 * sections are mapped or unmapped into an address 1699 * space 1700 * 1701 * @listener: an object containing the callbacks to be called 1702 * @filter: if non-%NULL, only regions in this address space will be observed 1703 */ 1704 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1705 1706 /** 1707 * memory_listener_unregister: undo the effect of memory_listener_register() 1708 * 1709 * @listener: an object containing the callbacks to be removed 1710 */ 1711 void memory_listener_unregister(MemoryListener *listener); 1712 1713 /** 1714 * memory_global_dirty_log_start: begin dirty logging for all regions 1715 */ 1716 void memory_global_dirty_log_start(void); 1717 1718 /** 1719 * memory_global_dirty_log_stop: end dirty logging for all regions 1720 */ 1721 void memory_global_dirty_log_stop(void); 1722 1723 void mtree_info(bool flatview, bool dispatch_tree, bool owner); 1724 1725 /** 1726 * memory_region_dispatch_read: perform a read directly to the specified 1727 * MemoryRegion. 1728 * 1729 * @mr: #MemoryRegion to access 1730 * @addr: address within that region 1731 * @pval: pointer to uint64_t which the data is written to 1732 * @size: size of the access in bytes 1733 * @attrs: memory transaction attributes to use for the access 1734 */ 1735 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1736 hwaddr addr, 1737 uint64_t *pval, 1738 unsigned size, 1739 MemTxAttrs attrs); 1740 /** 1741 * memory_region_dispatch_write: perform a write directly to the specified 1742 * MemoryRegion. 1743 * 1744 * @mr: #MemoryRegion to access 1745 * @addr: address within that region 1746 * @data: data to write 1747 * @size: size of the access in bytes 1748 * @attrs: memory transaction attributes to use for the access 1749 */ 1750 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1751 hwaddr addr, 1752 uint64_t data, 1753 unsigned size, 1754 MemTxAttrs attrs); 1755 1756 /** 1757 * address_space_init: initializes an address space 1758 * 1759 * @as: an uninitialized #AddressSpace 1760 * @root: a #MemoryRegion that routes addresses for the address space 1761 * @name: an address space name. The name is only used for debugging 1762 * output. 1763 */ 1764 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1765 1766 /** 1767 * address_space_destroy: destroy an address space 1768 * 1769 * Releases all resources associated with an address space. After an address space 1770 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1771 * as well. 1772 * 1773 * @as: address space to be destroyed 1774 */ 1775 void address_space_destroy(AddressSpace *as); 1776 1777 /** 1778 * address_space_rw: read from or write to an address space. 1779 * 1780 * Return a MemTxResult indicating whether the operation succeeded 1781 * or failed (eg unassigned memory, device rejected the transaction, 1782 * IOMMU fault). 1783 * 1784 * @as: #AddressSpace to be accessed 1785 * @addr: address within that address space 1786 * @attrs: memory transaction attributes 1787 * @buf: buffer with the data transferred 1788 * @len: the number of bytes to read or write 1789 * @is_write: indicates the transfer direction 1790 */ 1791 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1792 MemTxAttrs attrs, uint8_t *buf, 1793 hwaddr len, bool is_write); 1794 1795 /** 1796 * address_space_write: write to address space. 1797 * 1798 * Return a MemTxResult indicating whether the operation succeeded 1799 * or failed (eg unassigned memory, device rejected the transaction, 1800 * IOMMU fault). 1801 * 1802 * @as: #AddressSpace to be accessed 1803 * @addr: address within that address space 1804 * @attrs: memory transaction attributes 1805 * @buf: buffer with the data transferred 1806 * @len: the number of bytes to write 1807 */ 1808 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1809 MemTxAttrs attrs, 1810 const uint8_t *buf, hwaddr len); 1811 1812 /** 1813 * address_space_write_rom: write to address space, including ROM. 1814 * 1815 * This function writes to the specified address space, but will 1816 * write data to both ROM and RAM. This is used for non-guest 1817 * writes like writes from the gdb debug stub or initial loading 1818 * of ROM contents. 1819 * 1820 * Note that portions of the write which attempt to write data to 1821 * a device will be silently ignored -- only real RAM and ROM will 1822 * be written to. 1823 * 1824 * Return a MemTxResult indicating whether the operation succeeded 1825 * or failed (eg unassigned memory, device rejected the transaction, 1826 * IOMMU fault). 1827 * 1828 * @as: #AddressSpace to be accessed 1829 * @addr: address within that address space 1830 * @attrs: memory transaction attributes 1831 * @buf: buffer with the data transferred 1832 * @len: the number of bytes to write 1833 */ 1834 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 1835 MemTxAttrs attrs, 1836 const uint8_t *buf, hwaddr len); 1837 1838 /* address_space_ld*: load from an address space 1839 * address_space_st*: store to an address space 1840 * 1841 * These functions perform a load or store of the byte, word, 1842 * longword or quad to the specified address within the AddressSpace. 1843 * The _le suffixed functions treat the data as little endian; 1844 * _be indicates big endian; no suffix indicates "same endianness 1845 * as guest CPU". 1846 * 1847 * The "guest CPU endianness" accessors are deprecated for use outside 1848 * target-* code; devices should be CPU-agnostic and use either the LE 1849 * or the BE accessors. 1850 * 1851 * @as #AddressSpace to be accessed 1852 * @addr: address within that address space 1853 * @val: data value, for stores 1854 * @attrs: memory transaction attributes 1855 * @result: location to write the success/failure of the transaction; 1856 * if NULL, this information is discarded 1857 */ 1858 1859 #define SUFFIX 1860 #define ARG1 as 1861 #define ARG1_DECL AddressSpace *as 1862 #include "exec/memory_ldst.inc.h" 1863 1864 #define SUFFIX 1865 #define ARG1 as 1866 #define ARG1_DECL AddressSpace *as 1867 #include "exec/memory_ldst_phys.inc.h" 1868 1869 struct MemoryRegionCache { 1870 void *ptr; 1871 hwaddr xlat; 1872 hwaddr len; 1873 FlatView *fv; 1874 MemoryRegionSection mrs; 1875 bool is_write; 1876 }; 1877 1878 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 1879 1880 1881 /* address_space_ld*_cached: load from a cached #MemoryRegion 1882 * address_space_st*_cached: store into a cached #MemoryRegion 1883 * 1884 * These functions perform a load or store of the byte, word, 1885 * longword or quad to the specified address. The address is 1886 * a physical address in the AddressSpace, but it must lie within 1887 * a #MemoryRegion that was mapped with address_space_cache_init. 1888 * 1889 * The _le suffixed functions treat the data as little endian; 1890 * _be indicates big endian; no suffix indicates "same endianness 1891 * as guest CPU". 1892 * 1893 * The "guest CPU endianness" accessors are deprecated for use outside 1894 * target-* code; devices should be CPU-agnostic and use either the LE 1895 * or the BE accessors. 1896 * 1897 * @cache: previously initialized #MemoryRegionCache to be accessed 1898 * @addr: address within the address space 1899 * @val: data value, for stores 1900 * @attrs: memory transaction attributes 1901 * @result: location to write the success/failure of the transaction; 1902 * if NULL, this information is discarded 1903 */ 1904 1905 #define SUFFIX _cached_slow 1906 #define ARG1 cache 1907 #define ARG1_DECL MemoryRegionCache *cache 1908 #include "exec/memory_ldst.inc.h" 1909 1910 /* Inline fast path for direct RAM access. */ 1911 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 1912 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 1913 { 1914 assert(addr < cache->len); 1915 if (likely(cache->ptr)) { 1916 return ldub_p(cache->ptr + addr); 1917 } else { 1918 return address_space_ldub_cached_slow(cache, addr, attrs, result); 1919 } 1920 } 1921 1922 static inline void address_space_stb_cached(MemoryRegionCache *cache, 1923 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 1924 { 1925 assert(addr < cache->len); 1926 if (likely(cache->ptr)) { 1927 stb_p(cache->ptr + addr, val); 1928 } else { 1929 address_space_stb_cached_slow(cache, addr, val, attrs, result); 1930 } 1931 } 1932 1933 #define ENDIANNESS _le 1934 #include "exec/memory_ldst_cached.inc.h" 1935 1936 #define ENDIANNESS _be 1937 #include "exec/memory_ldst_cached.inc.h" 1938 1939 #define SUFFIX _cached 1940 #define ARG1 cache 1941 #define ARG1_DECL MemoryRegionCache *cache 1942 #include "exec/memory_ldst_phys.inc.h" 1943 1944 /* address_space_cache_init: prepare for repeated access to a physical 1945 * memory region 1946 * 1947 * @cache: #MemoryRegionCache to be filled 1948 * @as: #AddressSpace to be accessed 1949 * @addr: address within that address space 1950 * @len: length of buffer 1951 * @is_write: indicates the transfer direction 1952 * 1953 * Will only work with RAM, and may map a subset of the requested range by 1954 * returning a value that is less than @len. On failure, return a negative 1955 * errno value. 1956 * 1957 * Because it only works with RAM, this function can be used for 1958 * read-modify-write operations. In this case, is_write should be %true. 1959 * 1960 * Note that addresses passed to the address_space_*_cached functions 1961 * are relative to @addr. 1962 */ 1963 int64_t address_space_cache_init(MemoryRegionCache *cache, 1964 AddressSpace *as, 1965 hwaddr addr, 1966 hwaddr len, 1967 bool is_write); 1968 1969 /** 1970 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1971 * 1972 * @cache: The #MemoryRegionCache to operate on. 1973 * @addr: The first physical address that was written, relative to the 1974 * address that was passed to @address_space_cache_init. 1975 * @access_len: The number of bytes that were written starting at @addr. 1976 */ 1977 void address_space_cache_invalidate(MemoryRegionCache *cache, 1978 hwaddr addr, 1979 hwaddr access_len); 1980 1981 /** 1982 * address_space_cache_destroy: free a #MemoryRegionCache 1983 * 1984 * @cache: The #MemoryRegionCache whose memory should be released. 1985 */ 1986 void address_space_cache_destroy(MemoryRegionCache *cache); 1987 1988 /* address_space_get_iotlb_entry: translate an address into an IOTLB 1989 * entry. Should be called from an RCU critical section. 1990 */ 1991 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1992 bool is_write, MemTxAttrs attrs); 1993 1994 /* address_space_translate: translate an address range into an address space 1995 * into a MemoryRegion and an address range into that section. Should be 1996 * called from an RCU critical section, to avoid that the last reference 1997 * to the returned region disappears after address_space_translate returns. 1998 * 1999 * @fv: #FlatView to be accessed 2000 * @addr: address within that address space 2001 * @xlat: pointer to address within the returned memory region section's 2002 * #MemoryRegion. 2003 * @len: pointer to length 2004 * @is_write: indicates the transfer direction 2005 * @attrs: memory attributes 2006 */ 2007 MemoryRegion *flatview_translate(FlatView *fv, 2008 hwaddr addr, hwaddr *xlat, 2009 hwaddr *len, bool is_write, 2010 MemTxAttrs attrs); 2011 2012 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2013 hwaddr addr, hwaddr *xlat, 2014 hwaddr *len, bool is_write, 2015 MemTxAttrs attrs) 2016 { 2017 return flatview_translate(address_space_to_flatview(as), 2018 addr, xlat, len, is_write, attrs); 2019 } 2020 2021 /* address_space_access_valid: check for validity of accessing an address 2022 * space range 2023 * 2024 * Check whether memory is assigned to the given address space range, and 2025 * access is permitted by any IOMMU regions that are active for the address 2026 * space. 2027 * 2028 * For now, addr and len should be aligned to a page size. This limitation 2029 * will be lifted in the future. 2030 * 2031 * @as: #AddressSpace to be accessed 2032 * @addr: address within that address space 2033 * @len: length of the area to be checked 2034 * @is_write: indicates the transfer direction 2035 * @attrs: memory attributes 2036 */ 2037 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2038 bool is_write, MemTxAttrs attrs); 2039 2040 /* address_space_map: map a physical memory region into a host virtual address 2041 * 2042 * May map a subset of the requested range, given by and returned in @plen. 2043 * May return %NULL if resources needed to perform the mapping are exhausted. 2044 * Use only for reads OR writes - not for read-modify-write operations. 2045 * Use cpu_register_map_client() to know when retrying the map operation is 2046 * likely to succeed. 2047 * 2048 * @as: #AddressSpace to be accessed 2049 * @addr: address within that address space 2050 * @plen: pointer to length of buffer; updated on return 2051 * @is_write: indicates the transfer direction 2052 * @attrs: memory attributes 2053 */ 2054 void *address_space_map(AddressSpace *as, hwaddr addr, 2055 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2056 2057 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2058 * 2059 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2060 * the amount of memory that was actually read or written by the caller. 2061 * 2062 * @as: #AddressSpace used 2063 * @buffer: host pointer as returned by address_space_map() 2064 * @len: buffer length as returned by address_space_map() 2065 * @access_len: amount of data actually transferred 2066 * @is_write: indicates the transfer direction 2067 */ 2068 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2069 int is_write, hwaddr access_len); 2070 2071 2072 /* Internal functions, part of the implementation of address_space_read. */ 2073 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2074 MemTxAttrs attrs, uint8_t *buf, hwaddr len); 2075 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2076 MemTxAttrs attrs, uint8_t *buf, 2077 hwaddr len, hwaddr addr1, hwaddr l, 2078 MemoryRegion *mr); 2079 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2080 2081 /* Internal functions, part of the implementation of address_space_read_cached 2082 * and address_space_write_cached. */ 2083 void address_space_read_cached_slow(MemoryRegionCache *cache, 2084 hwaddr addr, void *buf, hwaddr len); 2085 void address_space_write_cached_slow(MemoryRegionCache *cache, 2086 hwaddr addr, const void *buf, hwaddr len); 2087 2088 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2089 { 2090 if (is_write) { 2091 return memory_region_is_ram(mr) && 2092 !mr->readonly && !memory_region_is_ram_device(mr); 2093 } else { 2094 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2095 memory_region_is_romd(mr); 2096 } 2097 } 2098 2099 /** 2100 * address_space_read: read from an address space. 2101 * 2102 * Return a MemTxResult indicating whether the operation succeeded 2103 * or failed (eg unassigned memory, device rejected the transaction, 2104 * IOMMU fault). Called within RCU critical section. 2105 * 2106 * @as: #AddressSpace to be accessed 2107 * @addr: address within that address space 2108 * @attrs: memory transaction attributes 2109 * @buf: buffer with the data transferred 2110 */ 2111 static inline __attribute__((__always_inline__)) 2112 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2113 MemTxAttrs attrs, uint8_t *buf, 2114 hwaddr len) 2115 { 2116 MemTxResult result = MEMTX_OK; 2117 hwaddr l, addr1; 2118 void *ptr; 2119 MemoryRegion *mr; 2120 FlatView *fv; 2121 2122 if (__builtin_constant_p(len)) { 2123 if (len) { 2124 rcu_read_lock(); 2125 fv = address_space_to_flatview(as); 2126 l = len; 2127 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2128 if (len == l && memory_access_is_direct(mr, false)) { 2129 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2130 memcpy(buf, ptr, len); 2131 } else { 2132 result = flatview_read_continue(fv, addr, attrs, buf, len, 2133 addr1, l, mr); 2134 } 2135 rcu_read_unlock(); 2136 } 2137 } else { 2138 result = address_space_read_full(as, addr, attrs, buf, len); 2139 } 2140 return result; 2141 } 2142 2143 /** 2144 * address_space_read_cached: read from a cached RAM region 2145 * 2146 * @cache: Cached region to be addressed 2147 * @addr: address relative to the base of the RAM region 2148 * @buf: buffer with the data transferred 2149 * @len: length of the data transferred 2150 */ 2151 static inline void 2152 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2153 void *buf, hwaddr len) 2154 { 2155 assert(addr < cache->len && len <= cache->len - addr); 2156 if (likely(cache->ptr)) { 2157 memcpy(buf, cache->ptr + addr, len); 2158 } else { 2159 address_space_read_cached_slow(cache, addr, buf, len); 2160 } 2161 } 2162 2163 /** 2164 * address_space_write_cached: write to a cached RAM region 2165 * 2166 * @cache: Cached region to be addressed 2167 * @addr: address relative to the base of the RAM region 2168 * @buf: buffer with the data transferred 2169 * @len: length of the data transferred 2170 */ 2171 static inline void 2172 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2173 void *buf, hwaddr len) 2174 { 2175 assert(addr < cache->len && len <= cache->len - addr); 2176 if (likely(cache->ptr)) { 2177 memcpy(cache->ptr + addr, buf, len); 2178 } else { 2179 address_space_write_cached_slow(cache, addr, buf, len); 2180 } 2181 } 2182 2183 #endif 2184 2185 #endif 2186