1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #define DIRTY_MEMORY_VGA 0 20 #define DIRTY_MEMORY_CODE 1 21 #define DIRTY_MEMORY_MIGRATION 2 22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */ 23 24 #include <stdint.h> 25 #include <stdbool.h> 26 #include "exec/cpu-common.h" 27 #ifndef CONFIG_USER_ONLY 28 #include "exec/hwaddr.h" 29 #endif 30 #include "exec/memattrs.h" 31 #include "qemu/queue.h" 32 #include "qemu/int128.h" 33 #include "qemu/notify.h" 34 #include "qapi/error.h" 35 #include "qom/object.h" 36 #include "qemu/rcu.h" 37 38 #define MAX_PHYS_ADDR_SPACE_BITS 62 39 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 40 41 #define TYPE_MEMORY_REGION "qemu:memory-region" 42 #define MEMORY_REGION(obj) \ 43 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 44 45 typedef struct MemoryRegionOps MemoryRegionOps; 46 typedef struct MemoryRegionMmio MemoryRegionMmio; 47 48 struct MemoryRegionMmio { 49 CPUReadMemoryFunc *read[3]; 50 CPUWriteMemoryFunc *write[3]; 51 }; 52 53 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 54 55 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 56 typedef enum { 57 IOMMU_NONE = 0, 58 IOMMU_RO = 1, 59 IOMMU_WO = 2, 60 IOMMU_RW = 3, 61 } IOMMUAccessFlags; 62 63 struct IOMMUTLBEntry { 64 AddressSpace *target_as; 65 hwaddr iova; 66 hwaddr translated_addr; 67 hwaddr addr_mask; /* 0xfff = 4k translation */ 68 IOMMUAccessFlags perm; 69 }; 70 71 /* New-style MMIO accessors can indicate that the transaction failed. 72 * A zero (MEMTX_OK) response means success; anything else is a failure 73 * of some kind. The memory subsystem will bitwise-OR together results 74 * if it is synthesizing an operation from multiple smaller accesses. 75 */ 76 #define MEMTX_OK 0 77 #define MEMTX_ERROR (1U << 0) /* device returned an error */ 78 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ 79 typedef uint32_t MemTxResult; 80 81 /* 82 * Memory region callbacks 83 */ 84 struct MemoryRegionOps { 85 /* Read from the memory region. @addr is relative to @mr; @size is 86 * in bytes. */ 87 uint64_t (*read)(void *opaque, 88 hwaddr addr, 89 unsigned size); 90 /* Write to the memory region. @addr is relative to @mr; @size is 91 * in bytes. */ 92 void (*write)(void *opaque, 93 hwaddr addr, 94 uint64_t data, 95 unsigned size); 96 97 MemTxResult (*read_with_attrs)(void *opaque, 98 hwaddr addr, 99 uint64_t *data, 100 unsigned size, 101 MemTxAttrs attrs); 102 MemTxResult (*write_with_attrs)(void *opaque, 103 hwaddr addr, 104 uint64_t data, 105 unsigned size, 106 MemTxAttrs attrs); 107 108 enum device_endian endianness; 109 /* Guest-visible constraints: */ 110 struct { 111 /* If nonzero, specify bounds on access sizes beyond which a machine 112 * check is thrown. 113 */ 114 unsigned min_access_size; 115 unsigned max_access_size; 116 /* If true, unaligned accesses are supported. Otherwise unaligned 117 * accesses throw machine checks. 118 */ 119 bool unaligned; 120 /* 121 * If present, and returns #false, the transaction is not accepted 122 * by the device (and results in machine dependent behaviour such 123 * as a machine check exception). 124 */ 125 bool (*accepts)(void *opaque, hwaddr addr, 126 unsigned size, bool is_write); 127 } valid; 128 /* Internal implementation constraints: */ 129 struct { 130 /* If nonzero, specifies the minimum size implemented. Smaller sizes 131 * will be rounded upwards and a partial result will be returned. 132 */ 133 unsigned min_access_size; 134 /* If nonzero, specifies the maximum size implemented. Larger sizes 135 * will be done as a series of accesses with smaller sizes. 136 */ 137 unsigned max_access_size; 138 /* If true, unaligned accesses are supported. Otherwise all accesses 139 * are converted to (possibly multiple) naturally aligned accesses. 140 */ 141 bool unaligned; 142 } impl; 143 144 /* If .read and .write are not present, old_mmio may be used for 145 * backwards compatibility with old mmio registration 146 */ 147 const MemoryRegionMmio old_mmio; 148 }; 149 150 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 151 152 struct MemoryRegionIOMMUOps { 153 /* Return a TLB entry that contains a given address. */ 154 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); 155 }; 156 157 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 158 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 159 160 struct MemoryRegion { 161 Object parent_obj; 162 /* All fields are private - violators will be prosecuted */ 163 const MemoryRegionOps *ops; 164 const MemoryRegionIOMMUOps *iommu_ops; 165 void *opaque; 166 MemoryRegion *container; 167 Int128 size; 168 hwaddr addr; 169 void (*destructor)(MemoryRegion *mr); 170 ram_addr_t ram_addr; 171 uint64_t align; 172 bool subpage; 173 bool terminates; 174 bool romd_mode; 175 bool ram; 176 bool skip_dump; 177 bool readonly; /* For RAM regions */ 178 bool enabled; 179 bool rom_device; 180 bool warning_printed; /* For reservations */ 181 bool flush_coalesced_mmio; 182 bool global_locking; 183 uint8_t vga_logging_count; 184 MemoryRegion *alias; 185 hwaddr alias_offset; 186 int32_t priority; 187 bool may_overlap; 188 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 189 QTAILQ_ENTRY(MemoryRegion) subregions_link; 190 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 191 const char *name; 192 uint8_t dirty_log_mask; 193 unsigned ioeventfd_nb; 194 MemoryRegionIoeventfd *ioeventfds; 195 NotifierList iommu_notify; 196 }; 197 198 /** 199 * MemoryListener: callbacks structure for updates to the physical memory map 200 * 201 * Allows a component to adjust to changes in the guest-visible memory map. 202 * Use with memory_listener_register() and memory_listener_unregister(). 203 */ 204 struct MemoryListener { 205 void (*begin)(MemoryListener *listener); 206 void (*commit)(MemoryListener *listener); 207 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 208 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 209 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 210 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 211 int old, int new); 212 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 213 int old, int new); 214 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 215 void (*log_global_start)(MemoryListener *listener); 216 void (*log_global_stop)(MemoryListener *listener); 217 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 218 bool match_data, uint64_t data, EventNotifier *e); 219 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 220 bool match_data, uint64_t data, EventNotifier *e); 221 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 222 hwaddr addr, hwaddr len); 223 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 224 hwaddr addr, hwaddr len); 225 /* Lower = earlier (during add), later (during del) */ 226 unsigned priority; 227 AddressSpace *address_space_filter; 228 QTAILQ_ENTRY(MemoryListener) link; 229 }; 230 231 /** 232 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 233 */ 234 struct AddressSpace { 235 /* All fields are private. */ 236 struct rcu_head rcu; 237 char *name; 238 MemoryRegion *root; 239 240 /* Accessed via RCU. */ 241 struct FlatView *current_map; 242 243 int ioeventfd_nb; 244 struct MemoryRegionIoeventfd *ioeventfds; 245 struct AddressSpaceDispatch *dispatch; 246 struct AddressSpaceDispatch *next_dispatch; 247 MemoryListener dispatch_listener; 248 249 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 250 }; 251 252 /** 253 * MemoryRegionSection: describes a fragment of a #MemoryRegion 254 * 255 * @mr: the region, or %NULL if empty 256 * @address_space: the address space the region is mapped in 257 * @offset_within_region: the beginning of the section, relative to @mr's start 258 * @size: the size of the section; will not exceed @mr's boundaries 259 * @offset_within_address_space: the address of the first byte of the section 260 * relative to the region's address space 261 * @readonly: writes to this section are ignored 262 */ 263 struct MemoryRegionSection { 264 MemoryRegion *mr; 265 AddressSpace *address_space; 266 hwaddr offset_within_region; 267 Int128 size; 268 hwaddr offset_within_address_space; 269 bool readonly; 270 }; 271 272 /** 273 * memory_region_init: Initialize a memory region 274 * 275 * The region typically acts as a container for other memory regions. Use 276 * memory_region_add_subregion() to add subregions. 277 * 278 * @mr: the #MemoryRegion to be initialized 279 * @owner: the object that tracks the region's reference count 280 * @name: used for debugging; not visible to the user or ABI 281 * @size: size of the region; any subregions beyond this size will be clipped 282 */ 283 void memory_region_init(MemoryRegion *mr, 284 struct Object *owner, 285 const char *name, 286 uint64_t size); 287 288 /** 289 * memory_region_ref: Add 1 to a memory region's reference count 290 * 291 * Whenever memory regions are accessed outside the BQL, they need to be 292 * preserved against hot-unplug. MemoryRegions actually do not have their 293 * own reference count; they piggyback on a QOM object, their "owner". 294 * This function adds a reference to the owner. 295 * 296 * All MemoryRegions must have an owner if they can disappear, even if the 297 * device they belong to operates exclusively under the BQL. This is because 298 * the region could be returned at any time by memory_region_find, and this 299 * is usually under guest control. 300 * 301 * @mr: the #MemoryRegion 302 */ 303 void memory_region_ref(MemoryRegion *mr); 304 305 /** 306 * memory_region_unref: Remove 1 to a memory region's reference count 307 * 308 * Whenever memory regions are accessed outside the BQL, they need to be 309 * preserved against hot-unplug. MemoryRegions actually do not have their 310 * own reference count; they piggyback on a QOM object, their "owner". 311 * This function removes a reference to the owner and possibly destroys it. 312 * 313 * @mr: the #MemoryRegion 314 */ 315 void memory_region_unref(MemoryRegion *mr); 316 317 /** 318 * memory_region_init_io: Initialize an I/O memory region. 319 * 320 * Accesses into the region will cause the callbacks in @ops to be called. 321 * if @size is nonzero, subregions will be clipped to @size. 322 * 323 * @mr: the #MemoryRegion to be initialized. 324 * @owner: the object that tracks the region's reference count 325 * @ops: a structure containing read and write callbacks to be used when 326 * I/O is performed on the region. 327 * @opaque: passed to to the read and write callbacks of the @ops structure. 328 * @name: used for debugging; not visible to the user or ABI 329 * @size: size of the region. 330 */ 331 void memory_region_init_io(MemoryRegion *mr, 332 struct Object *owner, 333 const MemoryRegionOps *ops, 334 void *opaque, 335 const char *name, 336 uint64_t size); 337 338 /** 339 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 340 * region will modify memory directly. 341 * 342 * @mr: the #MemoryRegion to be initialized. 343 * @owner: the object that tracks the region's reference count 344 * @name: the name of the region. 345 * @size: size of the region. 346 * @errp: pointer to Error*, to store an error if it happens. 347 */ 348 void memory_region_init_ram(MemoryRegion *mr, 349 struct Object *owner, 350 const char *name, 351 uint64_t size, 352 Error **errp); 353 354 /** 355 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 356 * RAM. Accesses into the region will 357 * modify memory directly. Only an initial 358 * portion of this RAM is actually used. 359 * The used size can change across reboots. 360 * 361 * @mr: the #MemoryRegion to be initialized. 362 * @owner: the object that tracks the region's reference count 363 * @name: the name of the region. 364 * @size: used size of the region. 365 * @max_size: max size of the region. 366 * @resized: callback to notify owner about used size change. 367 * @errp: pointer to Error*, to store an error if it happens. 368 */ 369 void memory_region_init_resizeable_ram(MemoryRegion *mr, 370 struct Object *owner, 371 const char *name, 372 uint64_t size, 373 uint64_t max_size, 374 void (*resized)(const char*, 375 uint64_t length, 376 void *host), 377 Error **errp); 378 #ifdef __linux__ 379 /** 380 * memory_region_init_ram_from_file: Initialize RAM memory region with a 381 * mmap-ed backend. 382 * 383 * @mr: the #MemoryRegion to be initialized. 384 * @owner: the object that tracks the region's reference count 385 * @name: the name of the region. 386 * @size: size of the region. 387 * @share: %true if memory must be mmaped with the MAP_SHARED flag 388 * @path: the path in which to allocate the RAM. 389 * @errp: pointer to Error*, to store an error if it happens. 390 */ 391 void memory_region_init_ram_from_file(MemoryRegion *mr, 392 struct Object *owner, 393 const char *name, 394 uint64_t size, 395 bool share, 396 const char *path, 397 Error **errp); 398 #endif 399 400 /** 401 * memory_region_init_ram_ptr: Initialize RAM memory region from a 402 * user-provided pointer. Accesses into the 403 * region will modify memory directly. 404 * 405 * @mr: the #MemoryRegion to be initialized. 406 * @owner: the object that tracks the region's reference count 407 * @name: the name of the region. 408 * @size: size of the region. 409 * @ptr: memory to be mapped; must contain at least @size bytes. 410 */ 411 void memory_region_init_ram_ptr(MemoryRegion *mr, 412 struct Object *owner, 413 const char *name, 414 uint64_t size, 415 void *ptr); 416 417 /** 418 * memory_region_init_alias: Initialize a memory region that aliases all or a 419 * part of another memory region. 420 * 421 * @mr: the #MemoryRegion to be initialized. 422 * @owner: the object that tracks the region's reference count 423 * @name: used for debugging; not visible to the user or ABI 424 * @orig: the region to be referenced; @mr will be equivalent to 425 * @orig between @offset and @offset + @size - 1. 426 * @offset: start of the section in @orig to be referenced. 427 * @size: size of the region. 428 */ 429 void memory_region_init_alias(MemoryRegion *mr, 430 struct Object *owner, 431 const char *name, 432 MemoryRegion *orig, 433 hwaddr offset, 434 uint64_t size); 435 436 /** 437 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 438 * handled via callbacks. 439 * 440 * @mr: the #MemoryRegion to be initialized. 441 * @owner: the object that tracks the region's reference count 442 * @ops: callbacks for write access handling. 443 * @name: the name of the region. 444 * @size: size of the region. 445 * @errp: pointer to Error*, to store an error if it happens. 446 */ 447 void memory_region_init_rom_device(MemoryRegion *mr, 448 struct Object *owner, 449 const MemoryRegionOps *ops, 450 void *opaque, 451 const char *name, 452 uint64_t size, 453 Error **errp); 454 455 /** 456 * memory_region_init_reservation: Initialize a memory region that reserves 457 * I/O space. 458 * 459 * A reservation region primariy serves debugging purposes. It claims I/O 460 * space that is not supposed to be handled by QEMU itself. Any access via 461 * the memory API will cause an abort(). 462 * 463 * @mr: the #MemoryRegion to be initialized 464 * @owner: the object that tracks the region's reference count 465 * @name: used for debugging; not visible to the user or ABI 466 * @size: size of the region. 467 */ 468 void memory_region_init_reservation(MemoryRegion *mr, 469 struct Object *owner, 470 const char *name, 471 uint64_t size); 472 473 /** 474 * memory_region_init_iommu: Initialize a memory region that translates 475 * addresses 476 * 477 * An IOMMU region translates addresses and forwards accesses to a target 478 * memory region. 479 * 480 * @mr: the #MemoryRegion to be initialized 481 * @owner: the object that tracks the region's reference count 482 * @ops: a function that translates addresses into the @target region 483 * @name: used for debugging; not visible to the user or ABI 484 * @size: size of the region. 485 */ 486 void memory_region_init_iommu(MemoryRegion *mr, 487 struct Object *owner, 488 const MemoryRegionIOMMUOps *ops, 489 const char *name, 490 uint64_t size); 491 492 /** 493 * memory_region_owner: get a memory region's owner. 494 * 495 * @mr: the memory region being queried. 496 */ 497 struct Object *memory_region_owner(MemoryRegion *mr); 498 499 /** 500 * memory_region_size: get a memory region's size. 501 * 502 * @mr: the memory region being queried. 503 */ 504 uint64_t memory_region_size(MemoryRegion *mr); 505 506 /** 507 * memory_region_is_ram: check whether a memory region is random access 508 * 509 * Returns %true is a memory region is random access. 510 * 511 * @mr: the memory region being queried 512 */ 513 bool memory_region_is_ram(MemoryRegion *mr); 514 515 /** 516 * memory_region_is_skip_dump: check whether a memory region should not be 517 * dumped 518 * 519 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP). 520 * 521 * @mr: the memory region being queried 522 */ 523 bool memory_region_is_skip_dump(MemoryRegion *mr); 524 525 /** 526 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory 527 * region 528 * 529 * @mr: the memory region being queried 530 */ 531 void memory_region_set_skip_dump(MemoryRegion *mr); 532 533 /** 534 * memory_region_is_romd: check whether a memory region is in ROMD mode 535 * 536 * Returns %true if a memory region is a ROM device and currently set to allow 537 * direct reads. 538 * 539 * @mr: the memory region being queried 540 */ 541 static inline bool memory_region_is_romd(MemoryRegion *mr) 542 { 543 return mr->rom_device && mr->romd_mode; 544 } 545 546 /** 547 * memory_region_is_iommu: check whether a memory region is an iommu 548 * 549 * Returns %true is a memory region is an iommu. 550 * 551 * @mr: the memory region being queried 552 */ 553 bool memory_region_is_iommu(MemoryRegion *mr); 554 555 /** 556 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 557 * 558 * @mr: the memory region that was changed 559 * @entry: the new entry in the IOMMU translation table. The entry 560 * replaces all old entries for the same virtual I/O address range. 561 * Deleted entries have .@perm == 0. 562 */ 563 void memory_region_notify_iommu(MemoryRegion *mr, 564 IOMMUTLBEntry entry); 565 566 /** 567 * memory_region_register_iommu_notifier: register a notifier for changes to 568 * IOMMU translation entries. 569 * 570 * @mr: the memory region to observe 571 * @n: the notifier to be added; the notifier receives a pointer to an 572 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be 573 * valid on exit from the notifier. 574 */ 575 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n); 576 577 /** 578 * memory_region_unregister_iommu_notifier: unregister a notifier for 579 * changes to IOMMU translation entries. 580 * 581 * @n: the notifier to be removed. 582 */ 583 void memory_region_unregister_iommu_notifier(Notifier *n); 584 585 /** 586 * memory_region_name: get a memory region's name 587 * 588 * Returns the string that was used to initialize the memory region. 589 * 590 * @mr: the memory region being queried 591 */ 592 const char *memory_region_name(const MemoryRegion *mr); 593 594 /** 595 * memory_region_is_logging: return whether a memory region is logging writes 596 * 597 * Returns %true if the memory region is logging writes for the given client 598 * 599 * @mr: the memory region being queried 600 * @client: the client being queried 601 */ 602 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 603 604 /** 605 * memory_region_get_dirty_log_mask: return the clients for which a 606 * memory region is logging writes. 607 * 608 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 609 * are the bit indices. 610 * 611 * @mr: the memory region being queried 612 */ 613 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 614 615 /** 616 * memory_region_is_rom: check whether a memory region is ROM 617 * 618 * Returns %true is a memory region is read-only memory. 619 * 620 * @mr: the memory region being queried 621 */ 622 bool memory_region_is_rom(MemoryRegion *mr); 623 624 /** 625 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 626 * 627 * Returns a file descriptor backing a file-based RAM memory region, 628 * or -1 if the region is not a file-based RAM memory region. 629 * 630 * @mr: the RAM or alias memory region being queried. 631 */ 632 int memory_region_get_fd(MemoryRegion *mr); 633 634 /** 635 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 636 * 637 * Returns a host pointer to a RAM memory region (created with 638 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with 639 * care. 640 * 641 * @mr: the memory region being queried. 642 */ 643 void *memory_region_get_ram_ptr(MemoryRegion *mr); 644 645 /* memory_region_ram_resize: Resize a RAM region. 646 * 647 * Only legal before guest might have detected the memory size: e.g. on 648 * incoming migration, or right after reset. 649 * 650 * @mr: a memory region created with @memory_region_init_resizeable_ram. 651 * @newsize: the new size the region 652 * @errp: pointer to Error*, to store an error if it happens. 653 */ 654 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 655 Error **errp); 656 657 /** 658 * memory_region_set_log: Turn dirty logging on or off for a region. 659 * 660 * Turns dirty logging on or off for a specified client (display, migration). 661 * Only meaningful for RAM regions. 662 * 663 * @mr: the memory region being updated. 664 * @log: whether dirty logging is to be enabled or disabled. 665 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 666 */ 667 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 668 669 /** 670 * memory_region_get_dirty: Check whether a range of bytes is dirty 671 * for a specified client. 672 * 673 * Checks whether a range of bytes has been written to since the last 674 * call to memory_region_reset_dirty() with the same @client. Dirty logging 675 * must be enabled. 676 * 677 * @mr: the memory region being queried. 678 * @addr: the address (relative to the start of the region) being queried. 679 * @size: the size of the range being queried. 680 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 681 * %DIRTY_MEMORY_VGA. 682 */ 683 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 684 hwaddr size, unsigned client); 685 686 /** 687 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 688 * 689 * Marks a range of bytes as dirty, after it has been dirtied outside 690 * guest code. 691 * 692 * @mr: the memory region being dirtied. 693 * @addr: the address (relative to the start of the region) being dirtied. 694 * @size: size of the range being dirtied. 695 */ 696 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 697 hwaddr size); 698 699 /** 700 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 701 * for a specified client. It clears them. 702 * 703 * Checks whether a range of bytes has been written to since the last 704 * call to memory_region_reset_dirty() with the same @client. Dirty logging 705 * must be enabled. 706 * 707 * @mr: the memory region being queried. 708 * @addr: the address (relative to the start of the region) being queried. 709 * @size: the size of the range being queried. 710 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 711 * %DIRTY_MEMORY_VGA. 712 */ 713 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 714 hwaddr size, unsigned client); 715 /** 716 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 717 * any external TLBs (e.g. kvm) 718 * 719 * Flushes dirty information from accelerators such as kvm and vhost-net 720 * and makes it available to users of the memory API. 721 * 722 * @mr: the region being flushed. 723 */ 724 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 725 726 /** 727 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 728 * client. 729 * 730 * Marks a range of pages as no longer dirty. 731 * 732 * @mr: the region being updated. 733 * @addr: the start of the subrange being cleaned. 734 * @size: the size of the subrange being cleaned. 735 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 736 * %DIRTY_MEMORY_VGA. 737 */ 738 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 739 hwaddr size, unsigned client); 740 741 /** 742 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 743 * 744 * Allows a memory region to be marked as read-only (turning it into a ROM). 745 * only useful on RAM regions. 746 * 747 * @mr: the region being updated. 748 * @readonly: whether rhe region is to be ROM or RAM. 749 */ 750 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 751 752 /** 753 * memory_region_rom_device_set_romd: enable/disable ROMD mode 754 * 755 * Allows a ROM device (initialized with memory_region_init_rom_device() to 756 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 757 * device is mapped to guest memory and satisfies read access directly. 758 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 759 * Writes are always handled by the #MemoryRegion.write function. 760 * 761 * @mr: the memory region to be updated 762 * @romd_mode: %true to put the region into ROMD mode 763 */ 764 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 765 766 /** 767 * memory_region_set_coalescing: Enable memory coalescing for the region. 768 * 769 * Enabled writes to a region to be queued for later processing. MMIO ->write 770 * callbacks may be delayed until a non-coalesced MMIO is issued. 771 * Only useful for IO regions. Roughly similar to write-combining hardware. 772 * 773 * @mr: the memory region to be write coalesced 774 */ 775 void memory_region_set_coalescing(MemoryRegion *mr); 776 777 /** 778 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 779 * a region. 780 * 781 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 782 * Multiple calls can be issued coalesced disjoint ranges. 783 * 784 * @mr: the memory region to be updated. 785 * @offset: the start of the range within the region to be coalesced. 786 * @size: the size of the subrange to be coalesced. 787 */ 788 void memory_region_add_coalescing(MemoryRegion *mr, 789 hwaddr offset, 790 uint64_t size); 791 792 /** 793 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 794 * 795 * Disables any coalescing caused by memory_region_set_coalescing() or 796 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 797 * hardware. 798 * 799 * @mr: the memory region to be updated. 800 */ 801 void memory_region_clear_coalescing(MemoryRegion *mr); 802 803 /** 804 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 805 * accesses. 806 * 807 * Ensure that pending coalesced MMIO request are flushed before the memory 808 * region is accessed. This property is automatically enabled for all regions 809 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 810 * 811 * @mr: the memory region to be updated. 812 */ 813 void memory_region_set_flush_coalesced(MemoryRegion *mr); 814 815 /** 816 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 817 * accesses. 818 * 819 * Clear the automatic coalesced MMIO flushing enabled via 820 * memory_region_set_flush_coalesced. Note that this service has no effect on 821 * memory regions that have MMIO coalescing enabled for themselves. For them, 822 * automatic flushing will stop once coalescing is disabled. 823 * 824 * @mr: the memory region to be updated. 825 */ 826 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 827 828 /** 829 * memory_region_set_global_locking: Declares the access processing requires 830 * QEMU's global lock. 831 * 832 * When this is invoked, accesses to the memory region will be processed while 833 * holding the global lock of QEMU. This is the default behavior of memory 834 * regions. 835 * 836 * @mr: the memory region to be updated. 837 */ 838 void memory_region_set_global_locking(MemoryRegion *mr); 839 840 /** 841 * memory_region_clear_global_locking: Declares that access processing does 842 * not depend on the QEMU global lock. 843 * 844 * By clearing this property, accesses to the memory region will be processed 845 * outside of QEMU's global lock (unless the lock is held on when issuing the 846 * access request). In this case, the device model implementing the access 847 * handlers is responsible for synchronization of concurrency. 848 * 849 * @mr: the memory region to be updated. 850 */ 851 void memory_region_clear_global_locking(MemoryRegion *mr); 852 853 /** 854 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 855 * is written to a location. 856 * 857 * Marks a word in an IO region (initialized with memory_region_init_io()) 858 * as a trigger for an eventfd event. The I/O callback will not be called. 859 * The caller must be prepared to handle failure (that is, take the required 860 * action if the callback _is_ called). 861 * 862 * @mr: the memory region being updated. 863 * @addr: the address within @mr that is to be monitored 864 * @size: the size of the access to trigger the eventfd 865 * @match_data: whether to match against @data, instead of just @addr 866 * @data: the data to match against the guest write 867 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 868 **/ 869 void memory_region_add_eventfd(MemoryRegion *mr, 870 hwaddr addr, 871 unsigned size, 872 bool match_data, 873 uint64_t data, 874 EventNotifier *e); 875 876 /** 877 * memory_region_del_eventfd: Cancel an eventfd. 878 * 879 * Cancels an eventfd trigger requested by a previous 880 * memory_region_add_eventfd() call. 881 * 882 * @mr: the memory region being updated. 883 * @addr: the address within @mr that is to be monitored 884 * @size: the size of the access to trigger the eventfd 885 * @match_data: whether to match against @data, instead of just @addr 886 * @data: the data to match against the guest write 887 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 888 */ 889 void memory_region_del_eventfd(MemoryRegion *mr, 890 hwaddr addr, 891 unsigned size, 892 bool match_data, 893 uint64_t data, 894 EventNotifier *e); 895 896 /** 897 * memory_region_add_subregion: Add a subregion to a container. 898 * 899 * Adds a subregion at @offset. The subregion may not overlap with other 900 * subregions (except for those explicitly marked as overlapping). A region 901 * may only be added once as a subregion (unless removed with 902 * memory_region_del_subregion()); use memory_region_init_alias() if you 903 * want a region to be a subregion in multiple locations. 904 * 905 * @mr: the region to contain the new subregion; must be a container 906 * initialized with memory_region_init(). 907 * @offset: the offset relative to @mr where @subregion is added. 908 * @subregion: the subregion to be added. 909 */ 910 void memory_region_add_subregion(MemoryRegion *mr, 911 hwaddr offset, 912 MemoryRegion *subregion); 913 /** 914 * memory_region_add_subregion_overlap: Add a subregion to a container 915 * with overlap. 916 * 917 * Adds a subregion at @offset. The subregion may overlap with other 918 * subregions. Conflicts are resolved by having a higher @priority hide a 919 * lower @priority. Subregions without priority are taken as @priority 0. 920 * A region may only be added once as a subregion (unless removed with 921 * memory_region_del_subregion()); use memory_region_init_alias() if you 922 * want a region to be a subregion in multiple locations. 923 * 924 * @mr: the region to contain the new subregion; must be a container 925 * initialized with memory_region_init(). 926 * @offset: the offset relative to @mr where @subregion is added. 927 * @subregion: the subregion to be added. 928 * @priority: used for resolving overlaps; highest priority wins. 929 */ 930 void memory_region_add_subregion_overlap(MemoryRegion *mr, 931 hwaddr offset, 932 MemoryRegion *subregion, 933 int priority); 934 935 /** 936 * memory_region_get_ram_addr: Get the ram address associated with a memory 937 * region 938 * 939 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 940 * code is being reworked. 941 */ 942 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 943 944 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 945 /** 946 * memory_region_del_subregion: Remove a subregion. 947 * 948 * Removes a subregion from its container. 949 * 950 * @mr: the container to be updated. 951 * @subregion: the region being removed; must be a current subregion of @mr. 952 */ 953 void memory_region_del_subregion(MemoryRegion *mr, 954 MemoryRegion *subregion); 955 956 /* 957 * memory_region_set_enabled: dynamically enable or disable a region 958 * 959 * Enables or disables a memory region. A disabled memory region 960 * ignores all accesses to itself and its subregions. It does not 961 * obscure sibling subregions with lower priority - it simply behaves as 962 * if it was removed from the hierarchy. 963 * 964 * Regions default to being enabled. 965 * 966 * @mr: the region to be updated 967 * @enabled: whether to enable or disable the region 968 */ 969 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 970 971 /* 972 * memory_region_set_address: dynamically update the address of a region 973 * 974 * Dynamically updates the address of a region, relative to its container. 975 * May be used on regions are currently part of a memory hierarchy. 976 * 977 * @mr: the region to be updated 978 * @addr: new address, relative to container region 979 */ 980 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 981 982 /* 983 * memory_region_set_size: dynamically update the size of a region. 984 * 985 * Dynamically updates the size of a region. 986 * 987 * @mr: the region to be updated 988 * @size: used size of the region. 989 */ 990 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 991 992 /* 993 * memory_region_set_alias_offset: dynamically update a memory alias's offset 994 * 995 * Dynamically updates the offset into the target region that an alias points 996 * to, as if the fourth argument to memory_region_init_alias() has changed. 997 * 998 * @mr: the #MemoryRegion to be updated; should be an alias. 999 * @offset: the new offset into the target memory region 1000 */ 1001 void memory_region_set_alias_offset(MemoryRegion *mr, 1002 hwaddr offset); 1003 1004 /** 1005 * memory_region_present: checks if an address relative to a @container 1006 * translates into #MemoryRegion within @container 1007 * 1008 * Answer whether a #MemoryRegion within @container covers the address 1009 * @addr. 1010 * 1011 * @container: a #MemoryRegion within which @addr is a relative address 1012 * @addr: the area within @container to be searched 1013 */ 1014 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1015 1016 /** 1017 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1018 * into any address space. 1019 * 1020 * @mr: a #MemoryRegion which should be checked if it's mapped 1021 */ 1022 bool memory_region_is_mapped(MemoryRegion *mr); 1023 1024 /** 1025 * memory_region_find: translate an address/size relative to a 1026 * MemoryRegion into a #MemoryRegionSection. 1027 * 1028 * Locates the first #MemoryRegion within @mr that overlaps the range 1029 * given by @addr and @size. 1030 * 1031 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1032 * It will have the following characteristics: 1033 * .@size = 0 iff no overlap was found 1034 * .@mr is non-%NULL iff an overlap was found 1035 * 1036 * Remember that in the return value the @offset_within_region is 1037 * relative to the returned region (in the .@mr field), not to the 1038 * @mr argument. 1039 * 1040 * Similarly, the .@offset_within_address_space is relative to the 1041 * address space that contains both regions, the passed and the 1042 * returned one. However, in the special case where the @mr argument 1043 * has no container (and thus is the root of the address space), the 1044 * following will hold: 1045 * .@offset_within_address_space >= @addr 1046 * .@offset_within_address_space + .@size <= @addr + @size 1047 * 1048 * @mr: a MemoryRegion within which @addr is a relative address 1049 * @addr: start of the area within @as to be searched 1050 * @size: size of the area to be searched 1051 */ 1052 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1053 hwaddr addr, uint64_t size); 1054 1055 /** 1056 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory 1057 * 1058 * Synchronizes the dirty page log for an entire address space. 1059 * @as: the address space that contains the memory being synchronized 1060 */ 1061 void address_space_sync_dirty_bitmap(AddressSpace *as); 1062 1063 /** 1064 * memory_region_transaction_begin: Start a transaction. 1065 * 1066 * During a transaction, changes will be accumulated and made visible 1067 * only when the transaction ends (is committed). 1068 */ 1069 void memory_region_transaction_begin(void); 1070 1071 /** 1072 * memory_region_transaction_commit: Commit a transaction and make changes 1073 * visible to the guest. 1074 */ 1075 void memory_region_transaction_commit(void); 1076 1077 /** 1078 * memory_listener_register: register callbacks to be called when memory 1079 * sections are mapped or unmapped into an address 1080 * space 1081 * 1082 * @listener: an object containing the callbacks to be called 1083 * @filter: if non-%NULL, only regions in this address space will be observed 1084 */ 1085 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1086 1087 /** 1088 * memory_listener_unregister: undo the effect of memory_listener_register() 1089 * 1090 * @listener: an object containing the callbacks to be removed 1091 */ 1092 void memory_listener_unregister(MemoryListener *listener); 1093 1094 /** 1095 * memory_global_dirty_log_start: begin dirty logging for all regions 1096 */ 1097 void memory_global_dirty_log_start(void); 1098 1099 /** 1100 * memory_global_dirty_log_stop: end dirty logging for all regions 1101 */ 1102 void memory_global_dirty_log_stop(void); 1103 1104 void mtree_info(fprintf_function mon_printf, void *f); 1105 1106 /** 1107 * memory_region_dispatch_read: perform a read directly to the specified 1108 * MemoryRegion. 1109 * 1110 * @mr: #MemoryRegion to access 1111 * @addr: address within that region 1112 * @pval: pointer to uint64_t which the data is written to 1113 * @size: size of the access in bytes 1114 * @attrs: memory transaction attributes to use for the access 1115 */ 1116 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1117 hwaddr addr, 1118 uint64_t *pval, 1119 unsigned size, 1120 MemTxAttrs attrs); 1121 /** 1122 * memory_region_dispatch_write: perform a write directly to the specified 1123 * MemoryRegion. 1124 * 1125 * @mr: #MemoryRegion to access 1126 * @addr: address within that region 1127 * @data: data to write 1128 * @size: size of the access in bytes 1129 * @attrs: memory transaction attributes to use for the access 1130 */ 1131 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1132 hwaddr addr, 1133 uint64_t data, 1134 unsigned size, 1135 MemTxAttrs attrs); 1136 1137 /** 1138 * address_space_init: initializes an address space 1139 * 1140 * @as: an uninitialized #AddressSpace 1141 * @root: a #MemoryRegion that routes addesses for the address space 1142 * @name: an address space name. The name is only used for debugging 1143 * output. 1144 */ 1145 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1146 1147 1148 /** 1149 * address_space_destroy: destroy an address space 1150 * 1151 * Releases all resources associated with an address space. After an address space 1152 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1153 * as well. 1154 * 1155 * @as: address space to be destroyed 1156 */ 1157 void address_space_destroy(AddressSpace *as); 1158 1159 /** 1160 * address_space_rw: read from or write to an address space. 1161 * 1162 * Return a MemTxResult indicating whether the operation succeeded 1163 * or failed (eg unassigned memory, device rejected the transaction, 1164 * IOMMU fault). 1165 * 1166 * @as: #AddressSpace to be accessed 1167 * @addr: address within that address space 1168 * @attrs: memory transaction attributes 1169 * @buf: buffer with the data transferred 1170 * @is_write: indicates the transfer direction 1171 */ 1172 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1173 MemTxAttrs attrs, uint8_t *buf, 1174 int len, bool is_write); 1175 1176 /** 1177 * address_space_write: write to address space. 1178 * 1179 * Return a MemTxResult indicating whether the operation succeeded 1180 * or failed (eg unassigned memory, device rejected the transaction, 1181 * IOMMU fault). 1182 * 1183 * @as: #AddressSpace to be accessed 1184 * @addr: address within that address space 1185 * @attrs: memory transaction attributes 1186 * @buf: buffer with the data transferred 1187 */ 1188 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1189 MemTxAttrs attrs, 1190 const uint8_t *buf, int len); 1191 1192 /** 1193 * address_space_read: read from an address space. 1194 * 1195 * Return a MemTxResult indicating whether the operation succeeded 1196 * or failed (eg unassigned memory, device rejected the transaction, 1197 * IOMMU fault). 1198 * 1199 * @as: #AddressSpace to be accessed 1200 * @addr: address within that address space 1201 * @attrs: memory transaction attributes 1202 * @buf: buffer with the data transferred 1203 */ 1204 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 1205 uint8_t *buf, int len); 1206 1207 /** 1208 * address_space_ld*: load from an address space 1209 * address_space_st*: store to an address space 1210 * 1211 * These functions perform a load or store of the byte, word, 1212 * longword or quad to the specified address within the AddressSpace. 1213 * The _le suffixed functions treat the data as little endian; 1214 * _be indicates big endian; no suffix indicates "same endianness 1215 * as guest CPU". 1216 * 1217 * The "guest CPU endianness" accessors are deprecated for use outside 1218 * target-* code; devices should be CPU-agnostic and use either the LE 1219 * or the BE accessors. 1220 * 1221 * @as #AddressSpace to be accessed 1222 * @addr: address within that address space 1223 * @val: data value, for stores 1224 * @attrs: memory transaction attributes 1225 * @result: location to write the success/failure of the transaction; 1226 * if NULL, this information is discarded 1227 */ 1228 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1229 MemTxAttrs attrs, MemTxResult *result); 1230 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1231 MemTxAttrs attrs, MemTxResult *result); 1232 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1233 MemTxAttrs attrs, MemTxResult *result); 1234 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1235 MemTxAttrs attrs, MemTxResult *result); 1236 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1237 MemTxAttrs attrs, MemTxResult *result); 1238 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1239 MemTxAttrs attrs, MemTxResult *result); 1240 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1241 MemTxAttrs attrs, MemTxResult *result); 1242 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1243 MemTxAttrs attrs, MemTxResult *result); 1244 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1245 MemTxAttrs attrs, MemTxResult *result); 1246 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1247 MemTxAttrs attrs, MemTxResult *result); 1248 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1249 MemTxAttrs attrs, MemTxResult *result); 1250 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1251 MemTxAttrs attrs, MemTxResult *result); 1252 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1253 MemTxAttrs attrs, MemTxResult *result); 1254 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1255 MemTxAttrs attrs, MemTxResult *result); 1256 1257 #ifdef NEED_CPU_H 1258 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, 1259 MemTxAttrs attrs, MemTxResult *result); 1260 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, 1261 MemTxAttrs attrs, MemTxResult *result); 1262 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, 1263 MemTxAttrs attrs, MemTxResult *result); 1264 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, 1265 MemTxAttrs attrs, MemTxResult *result); 1266 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, 1267 MemTxAttrs attrs, MemTxResult *result); 1268 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, 1269 MemTxAttrs attrs, MemTxResult *result); 1270 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, 1271 MemTxAttrs attrs, MemTxResult *result); 1272 #endif 1273 1274 /* address_space_translate: translate an address range into an address space 1275 * into a MemoryRegion and an address range into that section. Should be 1276 * called from an RCU critical section, to avoid that the last reference 1277 * to the returned region disappears after address_space_translate returns. 1278 * 1279 * @as: #AddressSpace to be accessed 1280 * @addr: address within that address space 1281 * @xlat: pointer to address within the returned memory region section's 1282 * #MemoryRegion. 1283 * @len: pointer to length 1284 * @is_write: indicates the transfer direction 1285 */ 1286 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1287 hwaddr *xlat, hwaddr *len, 1288 bool is_write); 1289 1290 /* address_space_access_valid: check for validity of accessing an address 1291 * space range 1292 * 1293 * Check whether memory is assigned to the given address space range, and 1294 * access is permitted by any IOMMU regions that are active for the address 1295 * space. 1296 * 1297 * For now, addr and len should be aligned to a page size. This limitation 1298 * will be lifted in the future. 1299 * 1300 * @as: #AddressSpace to be accessed 1301 * @addr: address within that address space 1302 * @len: length of the area to be checked 1303 * @is_write: indicates the transfer direction 1304 */ 1305 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1306 1307 /* address_space_map: map a physical memory region into a host virtual address 1308 * 1309 * May map a subset of the requested range, given by and returned in @plen. 1310 * May return %NULL if resources needed to perform the mapping are exhausted. 1311 * Use only for reads OR writes - not for read-modify-write operations. 1312 * Use cpu_register_map_client() to know when retrying the map operation is 1313 * likely to succeed. 1314 * 1315 * @as: #AddressSpace to be accessed 1316 * @addr: address within that address space 1317 * @plen: pointer to length of buffer; updated on return 1318 * @is_write: indicates the transfer direction 1319 */ 1320 void *address_space_map(AddressSpace *as, hwaddr addr, 1321 hwaddr *plen, bool is_write); 1322 1323 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1324 * 1325 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1326 * the amount of memory that was actually read or written by the caller. 1327 * 1328 * @as: #AddressSpace used 1329 * @addr: address within that address space 1330 * @len: buffer length as returned by address_space_map() 1331 * @access_len: amount of data actually transferred 1332 * @is_write: indicates the transfer direction 1333 */ 1334 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1335 int is_write, hwaddr access_len); 1336 1337 1338 #endif 1339 1340 #endif 1341