1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/ramlist.h" 23 #include "qemu/queue.h" 24 #include "qemu/int128.h" 25 #include "qemu/notify.h" 26 #include "qom/object.h" 27 #include "qemu/rcu.h" 28 #include "hw/qdev-core.h" 29 30 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 31 32 #define MAX_PHYS_ADDR_SPACE_BITS 62 33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 34 35 #define TYPE_MEMORY_REGION "qemu:memory-region" 36 #define MEMORY_REGION(obj) \ 37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 38 39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 40 #define IOMMU_MEMORY_REGION(obj) \ 41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 42 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 44 TYPE_IOMMU_MEMORY_REGION) 45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 47 TYPE_IOMMU_MEMORY_REGION) 48 49 typedef struct MemoryRegionOps MemoryRegionOps; 50 typedef struct MemoryRegionMmio MemoryRegionMmio; 51 52 struct MemoryRegionMmio { 53 CPUReadMemoryFunc *read[3]; 54 CPUWriteMemoryFunc *write[3]; 55 }; 56 57 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 58 59 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 60 typedef enum { 61 IOMMU_NONE = 0, 62 IOMMU_RO = 1, 63 IOMMU_WO = 2, 64 IOMMU_RW = 3, 65 } IOMMUAccessFlags; 66 67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 68 69 struct IOMMUTLBEntry { 70 AddressSpace *target_as; 71 hwaddr iova; 72 hwaddr translated_addr; 73 hwaddr addr_mask; /* 0xfff = 4k translation */ 74 IOMMUAccessFlags perm; 75 }; 76 77 /* 78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 79 * register with one or multiple IOMMU Notifier capability bit(s). 80 */ 81 typedef enum { 82 IOMMU_NOTIFIER_NONE = 0, 83 /* Notify cache invalidations */ 84 IOMMU_NOTIFIER_UNMAP = 0x1, 85 /* Notify entry changes (newly created entries) */ 86 IOMMU_NOTIFIER_MAP = 0x2, 87 } IOMMUNotifierFlag; 88 89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 90 91 struct IOMMUNotifier; 92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 93 IOMMUTLBEntry *data); 94 95 struct IOMMUNotifier { 96 IOMMUNotify notify; 97 IOMMUNotifierFlag notifier_flags; 98 /* Notify for address space range start <= addr <= end */ 99 hwaddr start; 100 hwaddr end; 101 int iommu_idx; 102 QLIST_ENTRY(IOMMUNotifier) node; 103 }; 104 typedef struct IOMMUNotifier IOMMUNotifier; 105 106 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 107 IOMMUNotifierFlag flags, 108 hwaddr start, hwaddr end, 109 int iommu_idx) 110 { 111 n->notify = fn; 112 n->notifier_flags = flags; 113 n->start = start; 114 n->end = end; 115 n->iommu_idx = iommu_idx; 116 } 117 118 /* 119 * Memory region callbacks 120 */ 121 struct MemoryRegionOps { 122 /* Read from the memory region. @addr is relative to @mr; @size is 123 * in bytes. */ 124 uint64_t (*read)(void *opaque, 125 hwaddr addr, 126 unsigned size); 127 /* Write to the memory region. @addr is relative to @mr; @size is 128 * in bytes. */ 129 void (*write)(void *opaque, 130 hwaddr addr, 131 uint64_t data, 132 unsigned size); 133 134 MemTxResult (*read_with_attrs)(void *opaque, 135 hwaddr addr, 136 uint64_t *data, 137 unsigned size, 138 MemTxAttrs attrs); 139 MemTxResult (*write_with_attrs)(void *opaque, 140 hwaddr addr, 141 uint64_t data, 142 unsigned size, 143 MemTxAttrs attrs); 144 /* Instruction execution pre-callback: 145 * @addr is the address of the access relative to the @mr. 146 * @size is the size of the area returned by the callback. 147 * @offset is the location of the pointer inside @mr. 148 * 149 * Returns a pointer to a location which contains guest code. 150 */ 151 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size, 152 unsigned *offset); 153 154 enum device_endian endianness; 155 /* Guest-visible constraints: */ 156 struct { 157 /* If nonzero, specify bounds on access sizes beyond which a machine 158 * check is thrown. 159 */ 160 unsigned min_access_size; 161 unsigned max_access_size; 162 /* If true, unaligned accesses are supported. Otherwise unaligned 163 * accesses throw machine checks. 164 */ 165 bool unaligned; 166 /* 167 * If present, and returns #false, the transaction is not accepted 168 * by the device (and results in machine dependent behaviour such 169 * as a machine check exception). 170 */ 171 bool (*accepts)(void *opaque, hwaddr addr, 172 unsigned size, bool is_write, 173 MemTxAttrs attrs); 174 } valid; 175 /* Internal implementation constraints: */ 176 struct { 177 /* If nonzero, specifies the minimum size implemented. Smaller sizes 178 * will be rounded upwards and a partial result will be returned. 179 */ 180 unsigned min_access_size; 181 /* If nonzero, specifies the maximum size implemented. Larger sizes 182 * will be done as a series of accesses with smaller sizes. 183 */ 184 unsigned max_access_size; 185 /* If true, unaligned accesses are supported. Otherwise all accesses 186 * are converted to (possibly multiple) naturally aligned accesses. 187 */ 188 bool unaligned; 189 } impl; 190 191 /* If .read and .write are not present, old_mmio may be used for 192 * backwards compatibility with old mmio registration 193 */ 194 const MemoryRegionMmio old_mmio; 195 }; 196 197 enum IOMMUMemoryRegionAttr { 198 IOMMU_ATTR_SPAPR_TCE_FD 199 }; 200 201 /** 202 * IOMMUMemoryRegionClass: 203 * 204 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 205 * and provide an implementation of at least the @translate method here 206 * to handle requests to the memory region. Other methods are optional. 207 * 208 * The IOMMU implementation must use the IOMMU notifier infrastructure 209 * to report whenever mappings are changed, by calling 210 * memory_region_notify_iommu() (or, if necessary, by calling 211 * memory_region_notify_one() for each registered notifier). 212 * 213 * Conceptually an IOMMU provides a mapping from input address 214 * to an output TLB entry. If the IOMMU is aware of memory transaction 215 * attributes and the output TLB entry depends on the transaction 216 * attributes, we represent this using IOMMU indexes. Each index 217 * selects a particular translation table that the IOMMU has: 218 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 219 * @translate takes an input address and an IOMMU index 220 * and the mapping returned can only depend on the input address and the 221 * IOMMU index. 222 * 223 * Most IOMMUs don't care about the transaction attributes and support 224 * only a single IOMMU index. A more complex IOMMU might have one index 225 * for secure transactions and one for non-secure transactions. 226 */ 227 typedef struct IOMMUMemoryRegionClass { 228 /* private */ 229 struct DeviceClass parent_class; 230 231 /* 232 * Return a TLB entry that contains a given address. 233 * 234 * The IOMMUAccessFlags indicated via @flag are optional and may 235 * be specified as IOMMU_NONE to indicate that the caller needs 236 * the full translation information for both reads and writes. If 237 * the access flags are specified then the IOMMU implementation 238 * may use this as an optimization, to stop doing a page table 239 * walk as soon as it knows that the requested permissions are not 240 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 241 * full page table walk and report the permissions in the returned 242 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 243 * return different mappings for reads and writes.) 244 * 245 * The returned information remains valid while the caller is 246 * holding the big QEMU lock or is inside an RCU critical section; 247 * if the caller wishes to cache the mapping beyond that it must 248 * register an IOMMU notifier so it can invalidate its cached 249 * information when the IOMMU mapping changes. 250 * 251 * @iommu: the IOMMUMemoryRegion 252 * @hwaddr: address to be translated within the memory region 253 * @flag: requested access permissions 254 * @iommu_idx: IOMMU index for the translation 255 */ 256 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 257 IOMMUAccessFlags flag, int iommu_idx); 258 /* Returns minimum supported page size in bytes. 259 * If this method is not provided then the minimum is assumed to 260 * be TARGET_PAGE_SIZE. 261 * 262 * @iommu: the IOMMUMemoryRegion 263 */ 264 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 265 /* Called when IOMMU Notifier flag changes (ie when the set of 266 * events which IOMMU users are requesting notification for changes). 267 * Optional method -- need not be provided if the IOMMU does not 268 * need to know exactly which events must be notified. 269 * 270 * @iommu: the IOMMUMemoryRegion 271 * @old_flags: events which previously needed to be notified 272 * @new_flags: events which now need to be notified 273 */ 274 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 275 IOMMUNotifierFlag old_flags, 276 IOMMUNotifierFlag new_flags); 277 /* Called to handle memory_region_iommu_replay(). 278 * 279 * The default implementation of memory_region_iommu_replay() is to 280 * call the IOMMU translate method for every page in the address space 281 * with flag == IOMMU_NONE and then call the notifier if translate 282 * returns a valid mapping. If this method is implemented then it 283 * overrides the default behaviour, and must provide the full semantics 284 * of memory_region_iommu_replay(), by calling @notifier for every 285 * translation present in the IOMMU. 286 * 287 * Optional method -- an IOMMU only needs to provide this method 288 * if the default is inefficient or produces undesirable side effects. 289 * 290 * Note: this is not related to record-and-replay functionality. 291 */ 292 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 293 294 /* Get IOMMU misc attributes. This is an optional method that 295 * can be used to allow users of the IOMMU to get implementation-specific 296 * information. The IOMMU implements this method to handle calls 297 * by IOMMU users to memory_region_iommu_get_attr() by filling in 298 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 299 * the IOMMU supports. If the method is unimplemented then 300 * memory_region_iommu_get_attr() will always return -EINVAL. 301 * 302 * @iommu: the IOMMUMemoryRegion 303 * @attr: attribute being queried 304 * @data: memory to fill in with the attribute data 305 * 306 * Returns 0 on success, or a negative errno; in particular 307 * returns -EINVAL for unrecognized or unimplemented attribute types. 308 */ 309 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 310 void *data); 311 312 /* Return the IOMMU index to use for a given set of transaction attributes. 313 * 314 * Optional method: if an IOMMU only supports a single IOMMU index then 315 * the default implementation of memory_region_iommu_attrs_to_index() 316 * will return 0. 317 * 318 * The indexes supported by an IOMMU must be contiguous, starting at 0. 319 * 320 * @iommu: the IOMMUMemoryRegion 321 * @attrs: memory transaction attributes 322 */ 323 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 324 325 /* Return the number of IOMMU indexes this IOMMU supports. 326 * 327 * Optional method: if this method is not provided, then 328 * memory_region_iommu_num_indexes() will return 1, indicating that 329 * only a single IOMMU index is supported. 330 * 331 * @iommu: the IOMMUMemoryRegion 332 */ 333 int (*num_indexes)(IOMMUMemoryRegion *iommu); 334 } IOMMUMemoryRegionClass; 335 336 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 337 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 338 339 struct MemoryRegion { 340 Object parent_obj; 341 342 /* All fields are private - violators will be prosecuted */ 343 344 /* The following fields should fit in a cache line */ 345 bool romd_mode; 346 bool ram; 347 bool subpage; 348 bool readonly; /* For RAM regions */ 349 bool rom_device; 350 bool flush_coalesced_mmio; 351 bool global_locking; 352 uint8_t dirty_log_mask; 353 bool is_iommu; 354 RAMBlock *ram_block; 355 Object *owner; 356 357 const MemoryRegionOps *ops; 358 void *opaque; 359 MemoryRegion *container; 360 Int128 size; 361 hwaddr addr; 362 void (*destructor)(MemoryRegion *mr); 363 uint64_t align; 364 bool terminates; 365 bool ram_device; 366 bool enabled; 367 bool warning_printed; /* For reservations */ 368 uint8_t vga_logging_count; 369 MemoryRegion *alias; 370 hwaddr alias_offset; 371 int32_t priority; 372 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 373 QTAILQ_ENTRY(MemoryRegion) subregions_link; 374 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 375 const char *name; 376 unsigned ioeventfd_nb; 377 MemoryRegionIoeventfd *ioeventfds; 378 }; 379 380 struct IOMMUMemoryRegion { 381 MemoryRegion parent_obj; 382 383 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 384 IOMMUNotifierFlag iommu_notify_flags; 385 }; 386 387 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 388 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 389 390 /** 391 * MemoryListener: callbacks structure for updates to the physical memory map 392 * 393 * Allows a component to adjust to changes in the guest-visible memory map. 394 * Use with memory_listener_register() and memory_listener_unregister(). 395 */ 396 struct MemoryListener { 397 void (*begin)(MemoryListener *listener); 398 void (*commit)(MemoryListener *listener); 399 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 400 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 401 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 402 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 403 int old, int new); 404 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 405 int old, int new); 406 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 407 void (*log_global_start)(MemoryListener *listener); 408 void (*log_global_stop)(MemoryListener *listener); 409 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 410 bool match_data, uint64_t data, EventNotifier *e); 411 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 412 bool match_data, uint64_t data, EventNotifier *e); 413 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 414 hwaddr addr, hwaddr len); 415 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 416 hwaddr addr, hwaddr len); 417 /* Lower = earlier (during add), later (during del) */ 418 unsigned priority; 419 AddressSpace *address_space; 420 QTAILQ_ENTRY(MemoryListener) link; 421 QTAILQ_ENTRY(MemoryListener) link_as; 422 }; 423 424 /** 425 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 426 */ 427 struct AddressSpace { 428 /* All fields are private. */ 429 struct rcu_head rcu; 430 char *name; 431 MemoryRegion *root; 432 433 /* Accessed via RCU. */ 434 struct FlatView *current_map; 435 436 int ioeventfd_nb; 437 struct MemoryRegionIoeventfd *ioeventfds; 438 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 439 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 440 }; 441 442 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 443 typedef struct FlatRange FlatRange; 444 445 /* Flattened global view of current active memory hierarchy. Kept in sorted 446 * order. 447 */ 448 struct FlatView { 449 struct rcu_head rcu; 450 unsigned ref; 451 FlatRange *ranges; 452 unsigned nr; 453 unsigned nr_allocated; 454 struct AddressSpaceDispatch *dispatch; 455 MemoryRegion *root; 456 }; 457 458 static inline FlatView *address_space_to_flatview(AddressSpace *as) 459 { 460 return atomic_rcu_read(&as->current_map); 461 } 462 463 464 /** 465 * MemoryRegionSection: describes a fragment of a #MemoryRegion 466 * 467 * @mr: the region, or %NULL if empty 468 * @fv: the flat view of the address space the region is mapped in 469 * @offset_within_region: the beginning of the section, relative to @mr's start 470 * @size: the size of the section; will not exceed @mr's boundaries 471 * @offset_within_address_space: the address of the first byte of the section 472 * relative to the region's address space 473 * @readonly: writes to this section are ignored 474 */ 475 struct MemoryRegionSection { 476 MemoryRegion *mr; 477 FlatView *fv; 478 hwaddr offset_within_region; 479 Int128 size; 480 hwaddr offset_within_address_space; 481 bool readonly; 482 }; 483 484 /** 485 * memory_region_init: Initialize a memory region 486 * 487 * The region typically acts as a container for other memory regions. Use 488 * memory_region_add_subregion() to add subregions. 489 * 490 * @mr: the #MemoryRegion to be initialized 491 * @owner: the object that tracks the region's reference count 492 * @name: used for debugging; not visible to the user or ABI 493 * @size: size of the region; any subregions beyond this size will be clipped 494 */ 495 void memory_region_init(MemoryRegion *mr, 496 struct Object *owner, 497 const char *name, 498 uint64_t size); 499 500 /** 501 * memory_region_ref: Add 1 to a memory region's reference count 502 * 503 * Whenever memory regions are accessed outside the BQL, they need to be 504 * preserved against hot-unplug. MemoryRegions actually do not have their 505 * own reference count; they piggyback on a QOM object, their "owner". 506 * This function adds a reference to the owner. 507 * 508 * All MemoryRegions must have an owner if they can disappear, even if the 509 * device they belong to operates exclusively under the BQL. This is because 510 * the region could be returned at any time by memory_region_find, and this 511 * is usually under guest control. 512 * 513 * @mr: the #MemoryRegion 514 */ 515 void memory_region_ref(MemoryRegion *mr); 516 517 /** 518 * memory_region_unref: Remove 1 to a memory region's reference count 519 * 520 * Whenever memory regions are accessed outside the BQL, they need to be 521 * preserved against hot-unplug. MemoryRegions actually do not have their 522 * own reference count; they piggyback on a QOM object, their "owner". 523 * This function removes a reference to the owner and possibly destroys it. 524 * 525 * @mr: the #MemoryRegion 526 */ 527 void memory_region_unref(MemoryRegion *mr); 528 529 /** 530 * memory_region_init_io: Initialize an I/O memory region. 531 * 532 * Accesses into the region will cause the callbacks in @ops to be called. 533 * if @size is nonzero, subregions will be clipped to @size. 534 * 535 * @mr: the #MemoryRegion to be initialized. 536 * @owner: the object that tracks the region's reference count 537 * @ops: a structure containing read and write callbacks to be used when 538 * I/O is performed on the region. 539 * @opaque: passed to the read and write callbacks of the @ops structure. 540 * @name: used for debugging; not visible to the user or ABI 541 * @size: size of the region. 542 */ 543 void memory_region_init_io(MemoryRegion *mr, 544 struct Object *owner, 545 const MemoryRegionOps *ops, 546 void *opaque, 547 const char *name, 548 uint64_t size); 549 550 /** 551 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 552 * into the region will modify memory 553 * directly. 554 * 555 * @mr: the #MemoryRegion to be initialized. 556 * @owner: the object that tracks the region's reference count 557 * @name: Region name, becomes part of RAMBlock name used in migration stream 558 * must be unique within any device 559 * @size: size of the region. 560 * @errp: pointer to Error*, to store an error if it happens. 561 * 562 * Note that this function does not do anything to cause the data in the 563 * RAM memory region to be migrated; that is the responsibility of the caller. 564 */ 565 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 566 struct Object *owner, 567 const char *name, 568 uint64_t size, 569 Error **errp); 570 571 /** 572 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 573 * Accesses into the region will 574 * modify memory directly. 575 * 576 * @mr: the #MemoryRegion to be initialized. 577 * @owner: the object that tracks the region's reference count 578 * @name: Region name, becomes part of RAMBlock name used in migration stream 579 * must be unique within any device 580 * @size: size of the region. 581 * @share: allow remapping RAM to different addresses 582 * @errp: pointer to Error*, to store an error if it happens. 583 * 584 * Note that this function is similar to memory_region_init_ram_nomigrate. 585 * The only difference is part of the RAM region can be remapped. 586 */ 587 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 588 struct Object *owner, 589 const char *name, 590 uint64_t size, 591 bool share, 592 Error **errp); 593 594 /** 595 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 596 * RAM. Accesses into the region will 597 * modify memory directly. Only an initial 598 * portion of this RAM is actually used. 599 * The used size can change across reboots. 600 * 601 * @mr: the #MemoryRegion to be initialized. 602 * @owner: the object that tracks the region's reference count 603 * @name: Region name, becomes part of RAMBlock name used in migration stream 604 * must be unique within any device 605 * @size: used size of the region. 606 * @max_size: max size of the region. 607 * @resized: callback to notify owner about used size change. 608 * @errp: pointer to Error*, to store an error if it happens. 609 * 610 * Note that this function does not do anything to cause the data in the 611 * RAM memory region to be migrated; that is the responsibility of the caller. 612 */ 613 void memory_region_init_resizeable_ram(MemoryRegion *mr, 614 struct Object *owner, 615 const char *name, 616 uint64_t size, 617 uint64_t max_size, 618 void (*resized)(const char*, 619 uint64_t length, 620 void *host), 621 Error **errp); 622 #ifdef __linux__ 623 /** 624 * memory_region_init_ram_from_file: Initialize RAM memory region with a 625 * mmap-ed backend. 626 * 627 * @mr: the #MemoryRegion to be initialized. 628 * @owner: the object that tracks the region's reference count 629 * @name: Region name, becomes part of RAMBlock name used in migration stream 630 * must be unique within any device 631 * @size: size of the region. 632 * @align: alignment of the region base address; if 0, the default alignment 633 * (getpagesize()) will be used. 634 * @share: %true if memory must be mmaped with the MAP_SHARED flag 635 * @path: the path in which to allocate the RAM. 636 * @errp: pointer to Error*, to store an error if it happens. 637 * 638 * Note that this function does not do anything to cause the data in the 639 * RAM memory region to be migrated; that is the responsibility of the caller. 640 */ 641 void memory_region_init_ram_from_file(MemoryRegion *mr, 642 struct Object *owner, 643 const char *name, 644 uint64_t size, 645 uint64_t align, 646 bool share, 647 const char *path, 648 Error **errp); 649 650 /** 651 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 652 * mmap-ed backend. 653 * 654 * @mr: the #MemoryRegion to be initialized. 655 * @owner: the object that tracks the region's reference count 656 * @name: the name of the region. 657 * @size: size of the region. 658 * @share: %true if memory must be mmaped with the MAP_SHARED flag 659 * @fd: the fd to mmap. 660 * @errp: pointer to Error*, to store an error if it happens. 661 * 662 * Note that this function does not do anything to cause the data in the 663 * RAM memory region to be migrated; that is the responsibility of the caller. 664 */ 665 void memory_region_init_ram_from_fd(MemoryRegion *mr, 666 struct Object *owner, 667 const char *name, 668 uint64_t size, 669 bool share, 670 int fd, 671 Error **errp); 672 #endif 673 674 /** 675 * memory_region_init_ram_ptr: Initialize RAM memory region from a 676 * user-provided pointer. Accesses into the 677 * region will modify memory directly. 678 * 679 * @mr: the #MemoryRegion to be initialized. 680 * @owner: the object that tracks the region's reference count 681 * @name: Region name, becomes part of RAMBlock name used in migration stream 682 * must be unique within any device 683 * @size: size of the region. 684 * @ptr: memory to be mapped; must contain at least @size bytes. 685 * 686 * Note that this function does not do anything to cause the data in the 687 * RAM memory region to be migrated; that is the responsibility of the caller. 688 */ 689 void memory_region_init_ram_ptr(MemoryRegion *mr, 690 struct Object *owner, 691 const char *name, 692 uint64_t size, 693 void *ptr); 694 695 /** 696 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 697 * a user-provided pointer. 698 * 699 * A RAM device represents a mapping to a physical device, such as to a PCI 700 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 701 * into the VM address space and access to the region will modify memory 702 * directly. However, the memory region should not be included in a memory 703 * dump (device may not be enabled/mapped at the time of the dump), and 704 * operations incompatible with manipulating MMIO should be avoided. Replaces 705 * skip_dump flag. 706 * 707 * @mr: the #MemoryRegion to be initialized. 708 * @owner: the object that tracks the region's reference count 709 * @name: the name of the region. 710 * @size: size of the region. 711 * @ptr: memory to be mapped; must contain at least @size bytes. 712 * 713 * Note that this function does not do anything to cause the data in the 714 * RAM memory region to be migrated; that is the responsibility of the caller. 715 * (For RAM device memory regions, migrating the contents rarely makes sense.) 716 */ 717 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 718 struct Object *owner, 719 const char *name, 720 uint64_t size, 721 void *ptr); 722 723 /** 724 * memory_region_init_alias: Initialize a memory region that aliases all or a 725 * part of another memory region. 726 * 727 * @mr: the #MemoryRegion to be initialized. 728 * @owner: the object that tracks the region's reference count 729 * @name: used for debugging; not visible to the user or ABI 730 * @orig: the region to be referenced; @mr will be equivalent to 731 * @orig between @offset and @offset + @size - 1. 732 * @offset: start of the section in @orig to be referenced. 733 * @size: size of the region. 734 */ 735 void memory_region_init_alias(MemoryRegion *mr, 736 struct Object *owner, 737 const char *name, 738 MemoryRegion *orig, 739 hwaddr offset, 740 uint64_t size); 741 742 /** 743 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 744 * 745 * This has the same effect as calling memory_region_init_ram_nomigrate() 746 * and then marking the resulting region read-only with 747 * memory_region_set_readonly(). 748 * 749 * Note that this function does not do anything to cause the data in the 750 * RAM side of the memory region to be migrated; that is the responsibility 751 * of the caller. 752 * 753 * @mr: the #MemoryRegion to be initialized. 754 * @owner: the object that tracks the region's reference count 755 * @name: Region name, becomes part of RAMBlock name used in migration stream 756 * must be unique within any device 757 * @size: size of the region. 758 * @errp: pointer to Error*, to store an error if it happens. 759 */ 760 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 761 struct Object *owner, 762 const char *name, 763 uint64_t size, 764 Error **errp); 765 766 /** 767 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 768 * Writes are handled via callbacks. 769 * 770 * Note that this function does not do anything to cause the data in the 771 * RAM side of the memory region to be migrated; that is the responsibility 772 * of the caller. 773 * 774 * @mr: the #MemoryRegion to be initialized. 775 * @owner: the object that tracks the region's reference count 776 * @ops: callbacks for write access handling (must not be NULL). 777 * @opaque: passed to the read and write callbacks of the @ops structure. 778 * @name: Region name, becomes part of RAMBlock name used in migration stream 779 * must be unique within any device 780 * @size: size of the region. 781 * @errp: pointer to Error*, to store an error if it happens. 782 */ 783 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 784 struct Object *owner, 785 const MemoryRegionOps *ops, 786 void *opaque, 787 const char *name, 788 uint64_t size, 789 Error **errp); 790 791 /** 792 * memory_region_init_iommu: Initialize a memory region of a custom type 793 * that translates addresses 794 * 795 * An IOMMU region translates addresses and forwards accesses to a target 796 * memory region. 797 * 798 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 799 * @_iommu_mr should be a pointer to enough memory for an instance of 800 * that subclass, @instance_size is the size of that subclass, and 801 * @mrtypename is its name. This function will initialize @_iommu_mr as an 802 * instance of the subclass, and its methods will then be called to handle 803 * accesses to the memory region. See the documentation of 804 * #IOMMUMemoryRegionClass for further details. 805 * 806 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 807 * @instance_size: the IOMMUMemoryRegion subclass instance size 808 * @mrtypename: the type name of the #IOMMUMemoryRegion 809 * @owner: the object that tracks the region's reference count 810 * @name: used for debugging; not visible to the user or ABI 811 * @size: size of the region. 812 */ 813 void memory_region_init_iommu(void *_iommu_mr, 814 size_t instance_size, 815 const char *mrtypename, 816 Object *owner, 817 const char *name, 818 uint64_t size); 819 820 /** 821 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 822 * region will modify memory directly. 823 * 824 * @mr: the #MemoryRegion to be initialized 825 * @owner: the object that tracks the region's reference count (must be 826 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 827 * @name: name of the memory region 828 * @size: size of the region in bytes 829 * @errp: pointer to Error*, to store an error if it happens. 830 * 831 * This function allocates RAM for a board model or device, and 832 * arranges for it to be migrated (by calling vmstate_register_ram() 833 * if @owner is a DeviceState, or vmstate_register_ram_global() if 834 * @owner is NULL). 835 * 836 * TODO: Currently we restrict @owner to being either NULL (for 837 * global RAM regions with no owner) or devices, so that we can 838 * give the RAM block a unique name for migration purposes. 839 * We should lift this restriction and allow arbitrary Objects. 840 * If you pass a non-NULL non-device @owner then we will assert. 841 */ 842 void memory_region_init_ram(MemoryRegion *mr, 843 struct Object *owner, 844 const char *name, 845 uint64_t size, 846 Error **errp); 847 848 /** 849 * memory_region_init_rom: Initialize a ROM memory region. 850 * 851 * This has the same effect as calling memory_region_init_ram() 852 * and then marking the resulting region read-only with 853 * memory_region_set_readonly(). This includes arranging for the 854 * contents to be migrated. 855 * 856 * TODO: Currently we restrict @owner to being either NULL (for 857 * global RAM regions with no owner) or devices, so that we can 858 * give the RAM block a unique name for migration purposes. 859 * We should lift this restriction and allow arbitrary Objects. 860 * If you pass a non-NULL non-device @owner then we will assert. 861 * 862 * @mr: the #MemoryRegion to be initialized. 863 * @owner: the object that tracks the region's reference count 864 * @name: Region name, becomes part of RAMBlock name used in migration stream 865 * must be unique within any device 866 * @size: size of the region. 867 * @errp: pointer to Error*, to store an error if it happens. 868 */ 869 void memory_region_init_rom(MemoryRegion *mr, 870 struct Object *owner, 871 const char *name, 872 uint64_t size, 873 Error **errp); 874 875 /** 876 * memory_region_init_rom_device: Initialize a ROM memory region. 877 * Writes are handled via callbacks. 878 * 879 * This function initializes a memory region backed by RAM for reads 880 * and callbacks for writes, and arranges for the RAM backing to 881 * be migrated (by calling vmstate_register_ram() 882 * if @owner is a DeviceState, or vmstate_register_ram_global() if 883 * @owner is NULL). 884 * 885 * TODO: Currently we restrict @owner to being either NULL (for 886 * global RAM regions with no owner) or devices, so that we can 887 * give the RAM block a unique name for migration purposes. 888 * We should lift this restriction and allow arbitrary Objects. 889 * If you pass a non-NULL non-device @owner then we will assert. 890 * 891 * @mr: the #MemoryRegion to be initialized. 892 * @owner: the object that tracks the region's reference count 893 * @ops: callbacks for write access handling (must not be NULL). 894 * @name: Region name, becomes part of RAMBlock name used in migration stream 895 * must be unique within any device 896 * @size: size of the region. 897 * @errp: pointer to Error*, to store an error if it happens. 898 */ 899 void memory_region_init_rom_device(MemoryRegion *mr, 900 struct Object *owner, 901 const MemoryRegionOps *ops, 902 void *opaque, 903 const char *name, 904 uint64_t size, 905 Error **errp); 906 907 908 /** 909 * memory_region_owner: get a memory region's owner. 910 * 911 * @mr: the memory region being queried. 912 */ 913 struct Object *memory_region_owner(MemoryRegion *mr); 914 915 /** 916 * memory_region_size: get a memory region's size. 917 * 918 * @mr: the memory region being queried. 919 */ 920 uint64_t memory_region_size(MemoryRegion *mr); 921 922 /** 923 * memory_region_is_ram: check whether a memory region is random access 924 * 925 * Returns %true is a memory region is random access. 926 * 927 * @mr: the memory region being queried 928 */ 929 static inline bool memory_region_is_ram(MemoryRegion *mr) 930 { 931 return mr->ram; 932 } 933 934 /** 935 * memory_region_is_ram_device: check whether a memory region is a ram device 936 * 937 * Returns %true is a memory region is a device backed ram region 938 * 939 * @mr: the memory region being queried 940 */ 941 bool memory_region_is_ram_device(MemoryRegion *mr); 942 943 /** 944 * memory_region_is_romd: check whether a memory region is in ROMD mode 945 * 946 * Returns %true if a memory region is a ROM device and currently set to allow 947 * direct reads. 948 * 949 * @mr: the memory region being queried 950 */ 951 static inline bool memory_region_is_romd(MemoryRegion *mr) 952 { 953 return mr->rom_device && mr->romd_mode; 954 } 955 956 /** 957 * memory_region_get_iommu: check whether a memory region is an iommu 958 * 959 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 960 * otherwise NULL. 961 * 962 * @mr: the memory region being queried 963 */ 964 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 965 { 966 if (mr->alias) { 967 return memory_region_get_iommu(mr->alias); 968 } 969 if (mr->is_iommu) { 970 return (IOMMUMemoryRegion *) mr; 971 } 972 return NULL; 973 } 974 975 /** 976 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 977 * if an iommu or NULL if not 978 * 979 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 980 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 981 * 982 * @mr: the memory region being queried 983 */ 984 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 985 IOMMUMemoryRegion *iommu_mr) 986 { 987 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 988 } 989 990 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 991 992 /** 993 * memory_region_iommu_get_min_page_size: get minimum supported page size 994 * for an iommu 995 * 996 * Returns minimum supported page size for an iommu. 997 * 998 * @iommu_mr: the memory region being queried 999 */ 1000 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1001 1002 /** 1003 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1004 * 1005 * The notification type will be decided by entry.perm bits: 1006 * 1007 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1008 * - For MAP (newly added entry) notifies: set entry.perm to the 1009 * permission of the page (which is definitely !IOMMU_NONE). 1010 * 1011 * Note: for any IOMMU implementation, an in-place mapping change 1012 * should be notified with an UNMAP followed by a MAP. 1013 * 1014 * @iommu_mr: the memory region that was changed 1015 * @iommu_idx: the IOMMU index for the translation table which has changed 1016 * @entry: the new entry in the IOMMU translation table. The entry 1017 * replaces all old entries for the same virtual I/O address range. 1018 * Deleted entries have .@perm == 0. 1019 */ 1020 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1021 int iommu_idx, 1022 IOMMUTLBEntry entry); 1023 1024 /** 1025 * memory_region_notify_one: notify a change in an IOMMU translation 1026 * entry to a single notifier 1027 * 1028 * This works just like memory_region_notify_iommu(), but it only 1029 * notifies a specific notifier, not all of them. 1030 * 1031 * @notifier: the notifier to be notified 1032 * @entry: the new entry in the IOMMU translation table. The entry 1033 * replaces all old entries for the same virtual I/O address range. 1034 * Deleted entries have .@perm == 0. 1035 */ 1036 void memory_region_notify_one(IOMMUNotifier *notifier, 1037 IOMMUTLBEntry *entry); 1038 1039 /** 1040 * memory_region_register_iommu_notifier: register a notifier for changes to 1041 * IOMMU translation entries. 1042 * 1043 * @mr: the memory region to observe 1044 * @n: the IOMMUNotifier to be added; the notify callback receives a 1045 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1046 * ceases to be valid on exit from the notifier. 1047 */ 1048 void memory_region_register_iommu_notifier(MemoryRegion *mr, 1049 IOMMUNotifier *n); 1050 1051 /** 1052 * memory_region_iommu_replay: replay existing IOMMU translations to 1053 * a notifier with the minimum page granularity returned by 1054 * mr->iommu_ops->get_page_size(). 1055 * 1056 * Note: this is not related to record-and-replay functionality. 1057 * 1058 * @iommu_mr: the memory region to observe 1059 * @n: the notifier to which to replay iommu mappings 1060 */ 1061 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1062 1063 /** 1064 * memory_region_iommu_replay_all: replay existing IOMMU translations 1065 * to all the notifiers registered. 1066 * 1067 * Note: this is not related to record-and-replay functionality. 1068 * 1069 * @iommu_mr: the memory region to observe 1070 */ 1071 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 1072 1073 /** 1074 * memory_region_unregister_iommu_notifier: unregister a notifier for 1075 * changes to IOMMU translation entries. 1076 * 1077 * @mr: the memory region which was observed and for which notity_stopped() 1078 * needs to be called 1079 * @n: the notifier to be removed. 1080 */ 1081 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1082 IOMMUNotifier *n); 1083 1084 /** 1085 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1086 * defined on the IOMMU. 1087 * 1088 * Returns 0 on success, or a negative errno otherwise. In particular, 1089 * -EINVAL indicates that the IOMMU does not support the requested 1090 * attribute. 1091 * 1092 * @iommu_mr: the memory region 1093 * @attr: the requested attribute 1094 * @data: a pointer to the requested attribute data 1095 */ 1096 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1097 enum IOMMUMemoryRegionAttr attr, 1098 void *data); 1099 1100 /** 1101 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1102 * use for translations with the given memory transaction attributes. 1103 * 1104 * @iommu_mr: the memory region 1105 * @attrs: the memory transaction attributes 1106 */ 1107 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1108 MemTxAttrs attrs); 1109 1110 /** 1111 * memory_region_iommu_num_indexes: return the total number of IOMMU 1112 * indexes that this IOMMU supports. 1113 * 1114 * @iommu_mr: the memory region 1115 */ 1116 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1117 1118 /** 1119 * memory_region_name: get a memory region's name 1120 * 1121 * Returns the string that was used to initialize the memory region. 1122 * 1123 * @mr: the memory region being queried 1124 */ 1125 const char *memory_region_name(const MemoryRegion *mr); 1126 1127 /** 1128 * memory_region_is_logging: return whether a memory region is logging writes 1129 * 1130 * Returns %true if the memory region is logging writes for the given client 1131 * 1132 * @mr: the memory region being queried 1133 * @client: the client being queried 1134 */ 1135 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1136 1137 /** 1138 * memory_region_get_dirty_log_mask: return the clients for which a 1139 * memory region is logging writes. 1140 * 1141 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1142 * are the bit indices. 1143 * 1144 * @mr: the memory region being queried 1145 */ 1146 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1147 1148 /** 1149 * memory_region_is_rom: check whether a memory region is ROM 1150 * 1151 * Returns %true is a memory region is read-only memory. 1152 * 1153 * @mr: the memory region being queried 1154 */ 1155 static inline bool memory_region_is_rom(MemoryRegion *mr) 1156 { 1157 return mr->ram && mr->readonly; 1158 } 1159 1160 1161 /** 1162 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1163 * 1164 * Returns a file descriptor backing a file-based RAM memory region, 1165 * or -1 if the region is not a file-based RAM memory region. 1166 * 1167 * @mr: the RAM or alias memory region being queried. 1168 */ 1169 int memory_region_get_fd(MemoryRegion *mr); 1170 1171 /** 1172 * memory_region_from_host: Convert a pointer into a RAM memory region 1173 * and an offset within it. 1174 * 1175 * Given a host pointer inside a RAM memory region (created with 1176 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1177 * the MemoryRegion and the offset within it. 1178 * 1179 * Use with care; by the time this function returns, the returned pointer is 1180 * not protected by RCU anymore. If the caller is not within an RCU critical 1181 * section and does not hold the iothread lock, it must have other means of 1182 * protecting the pointer, such as a reference to the region that includes 1183 * the incoming ram_addr_t. 1184 * 1185 * @ptr: the host pointer to be converted 1186 * @offset: the offset within memory region 1187 */ 1188 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1189 1190 /** 1191 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1192 * 1193 * Returns a host pointer to a RAM memory region (created with 1194 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1195 * 1196 * Use with care; by the time this function returns, the returned pointer is 1197 * not protected by RCU anymore. If the caller is not within an RCU critical 1198 * section and does not hold the iothread lock, it must have other means of 1199 * protecting the pointer, such as a reference to the region that includes 1200 * the incoming ram_addr_t. 1201 * 1202 * @mr: the memory region being queried. 1203 */ 1204 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1205 1206 /* memory_region_ram_resize: Resize a RAM region. 1207 * 1208 * Only legal before guest might have detected the memory size: e.g. on 1209 * incoming migration, or right after reset. 1210 * 1211 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1212 * @newsize: the new size the region 1213 * @errp: pointer to Error*, to store an error if it happens. 1214 */ 1215 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1216 Error **errp); 1217 1218 /** 1219 * memory_region_set_log: Turn dirty logging on or off for a region. 1220 * 1221 * Turns dirty logging on or off for a specified client (display, migration). 1222 * Only meaningful for RAM regions. 1223 * 1224 * @mr: the memory region being updated. 1225 * @log: whether dirty logging is to be enabled or disabled. 1226 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1227 */ 1228 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1229 1230 /** 1231 * memory_region_get_dirty: Check whether a range of bytes is dirty 1232 * for a specified client. 1233 * 1234 * Checks whether a range of bytes has been written to since the last 1235 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1236 * must be enabled. 1237 * 1238 * @mr: the memory region being queried. 1239 * @addr: the address (relative to the start of the region) being queried. 1240 * @size: the size of the range being queried. 1241 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1242 * %DIRTY_MEMORY_VGA. 1243 */ 1244 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 1245 hwaddr size, unsigned client); 1246 1247 /** 1248 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1249 * 1250 * Marks a range of bytes as dirty, after it has been dirtied outside 1251 * guest code. 1252 * 1253 * @mr: the memory region being dirtied. 1254 * @addr: the address (relative to the start of the region) being dirtied. 1255 * @size: size of the range being dirtied. 1256 */ 1257 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1258 hwaddr size); 1259 1260 /** 1261 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1262 * bitmap and clear it. 1263 * 1264 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1265 * returns the snapshot. The snapshot can then be used to query dirty 1266 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1267 * querying the same page multiple times, which is especially useful for 1268 * display updates where the scanlines often are not page aligned. 1269 * 1270 * The dirty bitmap region which gets copyed into the snapshot (and 1271 * cleared afterwards) can be larger than requested. The boundaries 1272 * are rounded up/down so complete bitmap longs (covering 64 pages on 1273 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1274 * isn't a problem for display updates as the extra pages are outside 1275 * the visible area, and in case the visible area changes a full 1276 * display redraw is due anyway. Should other use cases for this 1277 * function emerge we might have to revisit this implementation 1278 * detail. 1279 * 1280 * Use g_free to release DirtyBitmapSnapshot. 1281 * 1282 * @mr: the memory region being queried. 1283 * @addr: the address (relative to the start of the region) being queried. 1284 * @size: the size of the range being queried. 1285 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1286 */ 1287 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1288 hwaddr addr, 1289 hwaddr size, 1290 unsigned client); 1291 1292 /** 1293 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1294 * in the specified dirty bitmap snapshot. 1295 * 1296 * @mr: the memory region being queried. 1297 * @snap: the dirty bitmap snapshot 1298 * @addr: the address (relative to the start of the region) being queried. 1299 * @size: the size of the range being queried. 1300 */ 1301 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1302 DirtyBitmapSnapshot *snap, 1303 hwaddr addr, hwaddr size); 1304 1305 /** 1306 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1307 * client. 1308 * 1309 * Marks a range of pages as no longer dirty. 1310 * 1311 * @mr: the region being updated. 1312 * @addr: the start of the subrange being cleaned. 1313 * @size: the size of the subrange being cleaned. 1314 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1315 * %DIRTY_MEMORY_VGA. 1316 */ 1317 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1318 hwaddr size, unsigned client); 1319 1320 /** 1321 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1322 * 1323 * Allows a memory region to be marked as read-only (turning it into a ROM). 1324 * only useful on RAM regions. 1325 * 1326 * @mr: the region being updated. 1327 * @readonly: whether rhe region is to be ROM or RAM. 1328 */ 1329 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1330 1331 /** 1332 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1333 * 1334 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1335 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1336 * device is mapped to guest memory and satisfies read access directly. 1337 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1338 * Writes are always handled by the #MemoryRegion.write function. 1339 * 1340 * @mr: the memory region to be updated 1341 * @romd_mode: %true to put the region into ROMD mode 1342 */ 1343 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1344 1345 /** 1346 * memory_region_set_coalescing: Enable memory coalescing for the region. 1347 * 1348 * Enabled writes to a region to be queued for later processing. MMIO ->write 1349 * callbacks may be delayed until a non-coalesced MMIO is issued. 1350 * Only useful for IO regions. Roughly similar to write-combining hardware. 1351 * 1352 * @mr: the memory region to be write coalesced 1353 */ 1354 void memory_region_set_coalescing(MemoryRegion *mr); 1355 1356 /** 1357 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1358 * a region. 1359 * 1360 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1361 * Multiple calls can be issued coalesced disjoint ranges. 1362 * 1363 * @mr: the memory region to be updated. 1364 * @offset: the start of the range within the region to be coalesced. 1365 * @size: the size of the subrange to be coalesced. 1366 */ 1367 void memory_region_add_coalescing(MemoryRegion *mr, 1368 hwaddr offset, 1369 uint64_t size); 1370 1371 /** 1372 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1373 * 1374 * Disables any coalescing caused by memory_region_set_coalescing() or 1375 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1376 * hardware. 1377 * 1378 * @mr: the memory region to be updated. 1379 */ 1380 void memory_region_clear_coalescing(MemoryRegion *mr); 1381 1382 /** 1383 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1384 * accesses. 1385 * 1386 * Ensure that pending coalesced MMIO request are flushed before the memory 1387 * region is accessed. This property is automatically enabled for all regions 1388 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1389 * 1390 * @mr: the memory region to be updated. 1391 */ 1392 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1393 1394 /** 1395 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1396 * accesses. 1397 * 1398 * Clear the automatic coalesced MMIO flushing enabled via 1399 * memory_region_set_flush_coalesced. Note that this service has no effect on 1400 * memory regions that have MMIO coalescing enabled for themselves. For them, 1401 * automatic flushing will stop once coalescing is disabled. 1402 * 1403 * @mr: the memory region to be updated. 1404 */ 1405 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1406 1407 /** 1408 * memory_region_clear_global_locking: Declares that access processing does 1409 * not depend on the QEMU global lock. 1410 * 1411 * By clearing this property, accesses to the memory region will be processed 1412 * outside of QEMU's global lock (unless the lock is held on when issuing the 1413 * access request). In this case, the device model implementing the access 1414 * handlers is responsible for synchronization of concurrency. 1415 * 1416 * @mr: the memory region to be updated. 1417 */ 1418 void memory_region_clear_global_locking(MemoryRegion *mr); 1419 1420 /** 1421 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1422 * is written to a location. 1423 * 1424 * Marks a word in an IO region (initialized with memory_region_init_io()) 1425 * as a trigger for an eventfd event. The I/O callback will not be called. 1426 * The caller must be prepared to handle failure (that is, take the required 1427 * action if the callback _is_ called). 1428 * 1429 * @mr: the memory region being updated. 1430 * @addr: the address within @mr that is to be monitored 1431 * @size: the size of the access to trigger the eventfd 1432 * @match_data: whether to match against @data, instead of just @addr 1433 * @data: the data to match against the guest write 1434 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1435 **/ 1436 void memory_region_add_eventfd(MemoryRegion *mr, 1437 hwaddr addr, 1438 unsigned size, 1439 bool match_data, 1440 uint64_t data, 1441 EventNotifier *e); 1442 1443 /** 1444 * memory_region_del_eventfd: Cancel an eventfd. 1445 * 1446 * Cancels an eventfd trigger requested by a previous 1447 * memory_region_add_eventfd() call. 1448 * 1449 * @mr: the memory region being updated. 1450 * @addr: the address within @mr that is to be monitored 1451 * @size: the size of the access to trigger the eventfd 1452 * @match_data: whether to match against @data, instead of just @addr 1453 * @data: the data to match against the guest write 1454 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1455 */ 1456 void memory_region_del_eventfd(MemoryRegion *mr, 1457 hwaddr addr, 1458 unsigned size, 1459 bool match_data, 1460 uint64_t data, 1461 EventNotifier *e); 1462 1463 /** 1464 * memory_region_add_subregion: Add a subregion to a container. 1465 * 1466 * Adds a subregion at @offset. The subregion may not overlap with other 1467 * subregions (except for those explicitly marked as overlapping). A region 1468 * may only be added once as a subregion (unless removed with 1469 * memory_region_del_subregion()); use memory_region_init_alias() if you 1470 * want a region to be a subregion in multiple locations. 1471 * 1472 * @mr: the region to contain the new subregion; must be a container 1473 * initialized with memory_region_init(). 1474 * @offset: the offset relative to @mr where @subregion is added. 1475 * @subregion: the subregion to be added. 1476 */ 1477 void memory_region_add_subregion(MemoryRegion *mr, 1478 hwaddr offset, 1479 MemoryRegion *subregion); 1480 /** 1481 * memory_region_add_subregion_overlap: Add a subregion to a container 1482 * with overlap. 1483 * 1484 * Adds a subregion at @offset. The subregion may overlap with other 1485 * subregions. Conflicts are resolved by having a higher @priority hide a 1486 * lower @priority. Subregions without priority are taken as @priority 0. 1487 * A region may only be added once as a subregion (unless removed with 1488 * memory_region_del_subregion()); use memory_region_init_alias() if you 1489 * want a region to be a subregion in multiple locations. 1490 * 1491 * @mr: the region to contain the new subregion; must be a container 1492 * initialized with memory_region_init(). 1493 * @offset: the offset relative to @mr where @subregion is added. 1494 * @subregion: the subregion to be added. 1495 * @priority: used for resolving overlaps; highest priority wins. 1496 */ 1497 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1498 hwaddr offset, 1499 MemoryRegion *subregion, 1500 int priority); 1501 1502 /** 1503 * memory_region_get_ram_addr: Get the ram address associated with a memory 1504 * region 1505 */ 1506 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1507 1508 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1509 /** 1510 * memory_region_del_subregion: Remove a subregion. 1511 * 1512 * Removes a subregion from its container. 1513 * 1514 * @mr: the container to be updated. 1515 * @subregion: the region being removed; must be a current subregion of @mr. 1516 */ 1517 void memory_region_del_subregion(MemoryRegion *mr, 1518 MemoryRegion *subregion); 1519 1520 /* 1521 * memory_region_set_enabled: dynamically enable or disable a region 1522 * 1523 * Enables or disables a memory region. A disabled memory region 1524 * ignores all accesses to itself and its subregions. It does not 1525 * obscure sibling subregions with lower priority - it simply behaves as 1526 * if it was removed from the hierarchy. 1527 * 1528 * Regions default to being enabled. 1529 * 1530 * @mr: the region to be updated 1531 * @enabled: whether to enable or disable the region 1532 */ 1533 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1534 1535 /* 1536 * memory_region_set_address: dynamically update the address of a region 1537 * 1538 * Dynamically updates the address of a region, relative to its container. 1539 * May be used on regions are currently part of a memory hierarchy. 1540 * 1541 * @mr: the region to be updated 1542 * @addr: new address, relative to container region 1543 */ 1544 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1545 1546 /* 1547 * memory_region_set_size: dynamically update the size of a region. 1548 * 1549 * Dynamically updates the size of a region. 1550 * 1551 * @mr: the region to be updated 1552 * @size: used size of the region. 1553 */ 1554 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1555 1556 /* 1557 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1558 * 1559 * Dynamically updates the offset into the target region that an alias points 1560 * to, as if the fourth argument to memory_region_init_alias() has changed. 1561 * 1562 * @mr: the #MemoryRegion to be updated; should be an alias. 1563 * @offset: the new offset into the target memory region 1564 */ 1565 void memory_region_set_alias_offset(MemoryRegion *mr, 1566 hwaddr offset); 1567 1568 /** 1569 * memory_region_present: checks if an address relative to a @container 1570 * translates into #MemoryRegion within @container 1571 * 1572 * Answer whether a #MemoryRegion within @container covers the address 1573 * @addr. 1574 * 1575 * @container: a #MemoryRegion within which @addr is a relative address 1576 * @addr: the area within @container to be searched 1577 */ 1578 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1579 1580 /** 1581 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1582 * into any address space. 1583 * 1584 * @mr: a #MemoryRegion which should be checked if it's mapped 1585 */ 1586 bool memory_region_is_mapped(MemoryRegion *mr); 1587 1588 /** 1589 * memory_region_find: translate an address/size relative to a 1590 * MemoryRegion into a #MemoryRegionSection. 1591 * 1592 * Locates the first #MemoryRegion within @mr that overlaps the range 1593 * given by @addr and @size. 1594 * 1595 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1596 * It will have the following characteristics: 1597 * .@size = 0 iff no overlap was found 1598 * .@mr is non-%NULL iff an overlap was found 1599 * 1600 * Remember that in the return value the @offset_within_region is 1601 * relative to the returned region (in the .@mr field), not to the 1602 * @mr argument. 1603 * 1604 * Similarly, the .@offset_within_address_space is relative to the 1605 * address space that contains both regions, the passed and the 1606 * returned one. However, in the special case where the @mr argument 1607 * has no container (and thus is the root of the address space), the 1608 * following will hold: 1609 * .@offset_within_address_space >= @addr 1610 * .@offset_within_address_space + .@size <= @addr + @size 1611 * 1612 * @mr: a MemoryRegion within which @addr is a relative address 1613 * @addr: start of the area within @as to be searched 1614 * @size: size of the area to be searched 1615 */ 1616 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1617 hwaddr addr, uint64_t size); 1618 1619 /** 1620 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1621 * 1622 * Synchronizes the dirty page log for all address spaces. 1623 */ 1624 void memory_global_dirty_log_sync(void); 1625 1626 /** 1627 * memory_region_transaction_begin: Start a transaction. 1628 * 1629 * During a transaction, changes will be accumulated and made visible 1630 * only when the transaction ends (is committed). 1631 */ 1632 void memory_region_transaction_begin(void); 1633 1634 /** 1635 * memory_region_transaction_commit: Commit a transaction and make changes 1636 * visible to the guest. 1637 */ 1638 void memory_region_transaction_commit(void); 1639 1640 /** 1641 * memory_listener_register: register callbacks to be called when memory 1642 * sections are mapped or unmapped into an address 1643 * space 1644 * 1645 * @listener: an object containing the callbacks to be called 1646 * @filter: if non-%NULL, only regions in this address space will be observed 1647 */ 1648 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1649 1650 /** 1651 * memory_listener_unregister: undo the effect of memory_listener_register() 1652 * 1653 * @listener: an object containing the callbacks to be removed 1654 */ 1655 void memory_listener_unregister(MemoryListener *listener); 1656 1657 /** 1658 * memory_global_dirty_log_start: begin dirty logging for all regions 1659 */ 1660 void memory_global_dirty_log_start(void); 1661 1662 /** 1663 * memory_global_dirty_log_stop: end dirty logging for all regions 1664 */ 1665 void memory_global_dirty_log_stop(void); 1666 1667 void mtree_info(fprintf_function mon_printf, void *f, bool flatview, 1668 bool dispatch_tree, bool owner); 1669 1670 /** 1671 * memory_region_request_mmio_ptr: request a pointer to an mmio 1672 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer. 1673 * When the device wants to invalidate the pointer it will call 1674 * memory_region_invalidate_mmio_ptr. 1675 * 1676 * @mr: #MemoryRegion to check 1677 * @addr: address within that region 1678 * 1679 * Returns true on success, false otherwise. 1680 */ 1681 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr); 1682 1683 /** 1684 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio 1685 * previously requested. 1686 * In the end that means that if something wants to execute from this area it 1687 * will need to request the pointer again. 1688 * 1689 * @mr: #MemoryRegion associated to the pointer. 1690 * @offset: offset within the memory region 1691 * @size: size of that area. 1692 */ 1693 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset, 1694 unsigned size); 1695 1696 /** 1697 * memory_region_dispatch_read: perform a read directly to the specified 1698 * MemoryRegion. 1699 * 1700 * @mr: #MemoryRegion to access 1701 * @addr: address within that region 1702 * @pval: pointer to uint64_t which the data is written to 1703 * @size: size of the access in bytes 1704 * @attrs: memory transaction attributes to use for the access 1705 */ 1706 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1707 hwaddr addr, 1708 uint64_t *pval, 1709 unsigned size, 1710 MemTxAttrs attrs); 1711 /** 1712 * memory_region_dispatch_write: perform a write directly to the specified 1713 * MemoryRegion. 1714 * 1715 * @mr: #MemoryRegion to access 1716 * @addr: address within that region 1717 * @data: data to write 1718 * @size: size of the access in bytes 1719 * @attrs: memory transaction attributes to use for the access 1720 */ 1721 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1722 hwaddr addr, 1723 uint64_t data, 1724 unsigned size, 1725 MemTxAttrs attrs); 1726 1727 /** 1728 * address_space_init: initializes an address space 1729 * 1730 * @as: an uninitialized #AddressSpace 1731 * @root: a #MemoryRegion that routes addresses for the address space 1732 * @name: an address space name. The name is only used for debugging 1733 * output. 1734 */ 1735 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1736 1737 /** 1738 * address_space_destroy: destroy an address space 1739 * 1740 * Releases all resources associated with an address space. After an address space 1741 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1742 * as well. 1743 * 1744 * @as: address space to be destroyed 1745 */ 1746 void address_space_destroy(AddressSpace *as); 1747 1748 /** 1749 * address_space_rw: read from or write to an address space. 1750 * 1751 * Return a MemTxResult indicating whether the operation succeeded 1752 * or failed (eg unassigned memory, device rejected the transaction, 1753 * IOMMU fault). 1754 * 1755 * @as: #AddressSpace to be accessed 1756 * @addr: address within that address space 1757 * @attrs: memory transaction attributes 1758 * @buf: buffer with the data transferred 1759 * @len: the number of bytes to read or write 1760 * @is_write: indicates the transfer direction 1761 */ 1762 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1763 MemTxAttrs attrs, uint8_t *buf, 1764 int len, bool is_write); 1765 1766 /** 1767 * address_space_write: write to address space. 1768 * 1769 * Return a MemTxResult indicating whether the operation succeeded 1770 * or failed (eg unassigned memory, device rejected the transaction, 1771 * IOMMU fault). 1772 * 1773 * @as: #AddressSpace to be accessed 1774 * @addr: address within that address space 1775 * @attrs: memory transaction attributes 1776 * @buf: buffer with the data transferred 1777 * @len: the number of bytes to write 1778 */ 1779 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1780 MemTxAttrs attrs, 1781 const uint8_t *buf, int len); 1782 1783 /* address_space_ld*: load from an address space 1784 * address_space_st*: store to an address space 1785 * 1786 * These functions perform a load or store of the byte, word, 1787 * longword or quad to the specified address within the AddressSpace. 1788 * The _le suffixed functions treat the data as little endian; 1789 * _be indicates big endian; no suffix indicates "same endianness 1790 * as guest CPU". 1791 * 1792 * The "guest CPU endianness" accessors are deprecated for use outside 1793 * target-* code; devices should be CPU-agnostic and use either the LE 1794 * or the BE accessors. 1795 * 1796 * @as #AddressSpace to be accessed 1797 * @addr: address within that address space 1798 * @val: data value, for stores 1799 * @attrs: memory transaction attributes 1800 * @result: location to write the success/failure of the transaction; 1801 * if NULL, this information is discarded 1802 */ 1803 1804 #define SUFFIX 1805 #define ARG1 as 1806 #define ARG1_DECL AddressSpace *as 1807 #include "exec/memory_ldst.inc.h" 1808 1809 #define SUFFIX 1810 #define ARG1 as 1811 #define ARG1_DECL AddressSpace *as 1812 #include "exec/memory_ldst_phys.inc.h" 1813 1814 struct MemoryRegionCache { 1815 void *ptr; 1816 hwaddr xlat; 1817 hwaddr len; 1818 FlatView *fv; 1819 MemoryRegionSection mrs; 1820 bool is_write; 1821 }; 1822 1823 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 1824 1825 1826 /* address_space_ld*_cached: load from a cached #MemoryRegion 1827 * address_space_st*_cached: store into a cached #MemoryRegion 1828 * 1829 * These functions perform a load or store of the byte, word, 1830 * longword or quad to the specified address. The address is 1831 * a physical address in the AddressSpace, but it must lie within 1832 * a #MemoryRegion that was mapped with address_space_cache_init. 1833 * 1834 * The _le suffixed functions treat the data as little endian; 1835 * _be indicates big endian; no suffix indicates "same endianness 1836 * as guest CPU". 1837 * 1838 * The "guest CPU endianness" accessors are deprecated for use outside 1839 * target-* code; devices should be CPU-agnostic and use either the LE 1840 * or the BE accessors. 1841 * 1842 * @cache: previously initialized #MemoryRegionCache to be accessed 1843 * @addr: address within the address space 1844 * @val: data value, for stores 1845 * @attrs: memory transaction attributes 1846 * @result: location to write the success/failure of the transaction; 1847 * if NULL, this information is discarded 1848 */ 1849 1850 #define SUFFIX _cached_slow 1851 #define ARG1 cache 1852 #define ARG1_DECL MemoryRegionCache *cache 1853 #include "exec/memory_ldst.inc.h" 1854 1855 /* Inline fast path for direct RAM access. */ 1856 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 1857 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 1858 { 1859 assert(addr < cache->len); 1860 if (likely(cache->ptr)) { 1861 return ldub_p(cache->ptr + addr); 1862 } else { 1863 return address_space_ldub_cached_slow(cache, addr, attrs, result); 1864 } 1865 } 1866 1867 static inline void address_space_stb_cached(MemoryRegionCache *cache, 1868 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 1869 { 1870 assert(addr < cache->len); 1871 if (likely(cache->ptr)) { 1872 stb_p(cache->ptr + addr, val); 1873 } else { 1874 address_space_stb_cached_slow(cache, addr, val, attrs, result); 1875 } 1876 } 1877 1878 #define ENDIANNESS _le 1879 #include "exec/memory_ldst_cached.inc.h" 1880 1881 #define ENDIANNESS _be 1882 #include "exec/memory_ldst_cached.inc.h" 1883 1884 #define SUFFIX _cached 1885 #define ARG1 cache 1886 #define ARG1_DECL MemoryRegionCache *cache 1887 #include "exec/memory_ldst_phys.inc.h" 1888 1889 /* address_space_cache_init: prepare for repeated access to a physical 1890 * memory region 1891 * 1892 * @cache: #MemoryRegionCache to be filled 1893 * @as: #AddressSpace to be accessed 1894 * @addr: address within that address space 1895 * @len: length of buffer 1896 * @is_write: indicates the transfer direction 1897 * 1898 * Will only work with RAM, and may map a subset of the requested range by 1899 * returning a value that is less than @len. On failure, return a negative 1900 * errno value. 1901 * 1902 * Because it only works with RAM, this function can be used for 1903 * read-modify-write operations. In this case, is_write should be %true. 1904 * 1905 * Note that addresses passed to the address_space_*_cached functions 1906 * are relative to @addr. 1907 */ 1908 int64_t address_space_cache_init(MemoryRegionCache *cache, 1909 AddressSpace *as, 1910 hwaddr addr, 1911 hwaddr len, 1912 bool is_write); 1913 1914 /** 1915 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1916 * 1917 * @cache: The #MemoryRegionCache to operate on. 1918 * @addr: The first physical address that was written, relative to the 1919 * address that was passed to @address_space_cache_init. 1920 * @access_len: The number of bytes that were written starting at @addr. 1921 */ 1922 void address_space_cache_invalidate(MemoryRegionCache *cache, 1923 hwaddr addr, 1924 hwaddr access_len); 1925 1926 /** 1927 * address_space_cache_destroy: free a #MemoryRegionCache 1928 * 1929 * @cache: The #MemoryRegionCache whose memory should be released. 1930 */ 1931 void address_space_cache_destroy(MemoryRegionCache *cache); 1932 1933 /* address_space_get_iotlb_entry: translate an address into an IOTLB 1934 * entry. Should be called from an RCU critical section. 1935 */ 1936 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1937 bool is_write, MemTxAttrs attrs); 1938 1939 /* address_space_translate: translate an address range into an address space 1940 * into a MemoryRegion and an address range into that section. Should be 1941 * called from an RCU critical section, to avoid that the last reference 1942 * to the returned region disappears after address_space_translate returns. 1943 * 1944 * @fv: #FlatView to be accessed 1945 * @addr: address within that address space 1946 * @xlat: pointer to address within the returned memory region section's 1947 * #MemoryRegion. 1948 * @len: pointer to length 1949 * @is_write: indicates the transfer direction 1950 * @attrs: memory attributes 1951 */ 1952 MemoryRegion *flatview_translate(FlatView *fv, 1953 hwaddr addr, hwaddr *xlat, 1954 hwaddr *len, bool is_write, 1955 MemTxAttrs attrs); 1956 1957 static inline MemoryRegion *address_space_translate(AddressSpace *as, 1958 hwaddr addr, hwaddr *xlat, 1959 hwaddr *len, bool is_write, 1960 MemTxAttrs attrs) 1961 { 1962 return flatview_translate(address_space_to_flatview(as), 1963 addr, xlat, len, is_write, attrs); 1964 } 1965 1966 /* address_space_access_valid: check for validity of accessing an address 1967 * space range 1968 * 1969 * Check whether memory is assigned to the given address space range, and 1970 * access is permitted by any IOMMU regions that are active for the address 1971 * space. 1972 * 1973 * For now, addr and len should be aligned to a page size. This limitation 1974 * will be lifted in the future. 1975 * 1976 * @as: #AddressSpace to be accessed 1977 * @addr: address within that address space 1978 * @len: length of the area to be checked 1979 * @is_write: indicates the transfer direction 1980 * @attrs: memory attributes 1981 */ 1982 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, 1983 bool is_write, MemTxAttrs attrs); 1984 1985 /* address_space_map: map a physical memory region into a host virtual address 1986 * 1987 * May map a subset of the requested range, given by and returned in @plen. 1988 * May return %NULL if resources needed to perform the mapping are exhausted. 1989 * Use only for reads OR writes - not for read-modify-write operations. 1990 * Use cpu_register_map_client() to know when retrying the map operation is 1991 * likely to succeed. 1992 * 1993 * @as: #AddressSpace to be accessed 1994 * @addr: address within that address space 1995 * @plen: pointer to length of buffer; updated on return 1996 * @is_write: indicates the transfer direction 1997 * @attrs: memory attributes 1998 */ 1999 void *address_space_map(AddressSpace *as, hwaddr addr, 2000 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2001 2002 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2003 * 2004 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2005 * the amount of memory that was actually read or written by the caller. 2006 * 2007 * @as: #AddressSpace used 2008 * @buffer: host pointer as returned by address_space_map() 2009 * @len: buffer length as returned by address_space_map() 2010 * @access_len: amount of data actually transferred 2011 * @is_write: indicates the transfer direction 2012 */ 2013 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2014 int is_write, hwaddr access_len); 2015 2016 2017 /* Internal functions, part of the implementation of address_space_read. */ 2018 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2019 MemTxAttrs attrs, uint8_t *buf, int len); 2020 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2021 MemTxAttrs attrs, uint8_t *buf, 2022 int len, hwaddr addr1, hwaddr l, 2023 MemoryRegion *mr); 2024 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2025 2026 /* Internal functions, part of the implementation of address_space_read_cached 2027 * and address_space_write_cached. */ 2028 void address_space_read_cached_slow(MemoryRegionCache *cache, 2029 hwaddr addr, void *buf, int len); 2030 void address_space_write_cached_slow(MemoryRegionCache *cache, 2031 hwaddr addr, const void *buf, int len); 2032 2033 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2034 { 2035 if (is_write) { 2036 return memory_region_is_ram(mr) && 2037 !mr->readonly && !memory_region_is_ram_device(mr); 2038 } else { 2039 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2040 memory_region_is_romd(mr); 2041 } 2042 } 2043 2044 /** 2045 * address_space_read: read from an address space. 2046 * 2047 * Return a MemTxResult indicating whether the operation succeeded 2048 * or failed (eg unassigned memory, device rejected the transaction, 2049 * IOMMU fault). Called within RCU critical section. 2050 * 2051 * @as: #AddressSpace to be accessed 2052 * @addr: address within that address space 2053 * @attrs: memory transaction attributes 2054 * @buf: buffer with the data transferred 2055 */ 2056 static inline __attribute__((__always_inline__)) 2057 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2058 MemTxAttrs attrs, uint8_t *buf, 2059 int len) 2060 { 2061 MemTxResult result = MEMTX_OK; 2062 hwaddr l, addr1; 2063 void *ptr; 2064 MemoryRegion *mr; 2065 FlatView *fv; 2066 2067 if (__builtin_constant_p(len)) { 2068 if (len) { 2069 rcu_read_lock(); 2070 fv = address_space_to_flatview(as); 2071 l = len; 2072 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2073 if (len == l && memory_access_is_direct(mr, false)) { 2074 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2075 memcpy(buf, ptr, len); 2076 } else { 2077 result = flatview_read_continue(fv, addr, attrs, buf, len, 2078 addr1, l, mr); 2079 } 2080 rcu_read_unlock(); 2081 } 2082 } else { 2083 result = address_space_read_full(as, addr, attrs, buf, len); 2084 } 2085 return result; 2086 } 2087 2088 /** 2089 * address_space_read_cached: read from a cached RAM region 2090 * 2091 * @cache: Cached region to be addressed 2092 * @addr: address relative to the base of the RAM region 2093 * @buf: buffer with the data transferred 2094 * @len: length of the data transferred 2095 */ 2096 static inline void 2097 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2098 void *buf, int len) 2099 { 2100 assert(addr < cache->len && len <= cache->len - addr); 2101 if (likely(cache->ptr)) { 2102 memcpy(buf, cache->ptr + addr, len); 2103 } else { 2104 address_space_read_cached_slow(cache, addr, buf, len); 2105 } 2106 } 2107 2108 /** 2109 * address_space_write_cached: write to a cached RAM region 2110 * 2111 * @cache: Cached region to be addressed 2112 * @addr: address relative to the base of the RAM region 2113 * @buf: buffer with the data transferred 2114 * @len: length of the data transferred 2115 */ 2116 static inline void 2117 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2118 void *buf, int len) 2119 { 2120 assert(addr < cache->len && len <= cache->len - addr); 2121 if (likely(cache->ptr)) { 2122 memcpy(cache->ptr + addr, buf, len); 2123 } else { 2124 address_space_write_cached_slow(cache, addr, buf, len); 2125 } 2126 } 2127 2128 #endif 2129 2130 #endif 2131