xref: /openbmc/qemu/include/exec/memory.h (revision 60e58bd9f08a3b91a35850f7501a0a1bcf912b6f)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51 
52 struct MemoryRegionMmio {
53     CPUReadMemoryFunc *read[3];
54     CPUWriteMemoryFunc *write[3];
55 };
56 
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58 
59 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
60 typedef enum {
61     IOMMU_NONE = 0,
62     IOMMU_RO   = 1,
63     IOMMU_WO   = 2,
64     IOMMU_RW   = 3,
65 } IOMMUAccessFlags;
66 
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68 
69 struct IOMMUTLBEntry {
70     AddressSpace    *target_as;
71     hwaddr           iova;
72     hwaddr           translated_addr;
73     hwaddr           addr_mask;  /* 0xfff = 4k translation */
74     IOMMUAccessFlags perm;
75 };
76 
77 /*
78  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79  * register with one or multiple IOMMU Notifier capability bit(s).
80  */
81 typedef enum {
82     IOMMU_NOTIFIER_NONE = 0,
83     /* Notify cache invalidations */
84     IOMMU_NOTIFIER_UNMAP = 0x1,
85     /* Notify entry changes (newly created entries) */
86     IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88 
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90 
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93                             IOMMUTLBEntry *data);
94 
95 struct IOMMUNotifier {
96     IOMMUNotify notify;
97     IOMMUNotifierFlag notifier_flags;
98     /* Notify for address space range start <= addr <= end */
99     hwaddr start;
100     hwaddr end;
101     QLIST_ENTRY(IOMMUNotifier) node;
102 };
103 typedef struct IOMMUNotifier IOMMUNotifier;
104 
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106                                        IOMMUNotifierFlag flags,
107                                        hwaddr start, hwaddr end)
108 {
109     n->notify = fn;
110     n->notifier_flags = flags;
111     n->start = start;
112     n->end = end;
113 }
114 
115 /*
116  * Memory region callbacks
117  */
118 struct MemoryRegionOps {
119     /* Read from the memory region. @addr is relative to @mr; @size is
120      * in bytes. */
121     uint64_t (*read)(void *opaque,
122                      hwaddr addr,
123                      unsigned size);
124     /* Write to the memory region. @addr is relative to @mr; @size is
125      * in bytes. */
126     void (*write)(void *opaque,
127                   hwaddr addr,
128                   uint64_t data,
129                   unsigned size);
130 
131     MemTxResult (*read_with_attrs)(void *opaque,
132                                    hwaddr addr,
133                                    uint64_t *data,
134                                    unsigned size,
135                                    MemTxAttrs attrs);
136     MemTxResult (*write_with_attrs)(void *opaque,
137                                     hwaddr addr,
138                                     uint64_t data,
139                                     unsigned size,
140                                     MemTxAttrs attrs);
141     /* Instruction execution pre-callback:
142      * @addr is the address of the access relative to the @mr.
143      * @size is the size of the area returned by the callback.
144      * @offset is the location of the pointer inside @mr.
145      *
146      * Returns a pointer to a location which contains guest code.
147      */
148     void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149                          unsigned *offset);
150 
151     enum device_endian endianness;
152     /* Guest-visible constraints: */
153     struct {
154         /* If nonzero, specify bounds on access sizes beyond which a machine
155          * check is thrown.
156          */
157         unsigned min_access_size;
158         unsigned max_access_size;
159         /* If true, unaligned accesses are supported.  Otherwise unaligned
160          * accesses throw machine checks.
161          */
162          bool unaligned;
163         /*
164          * If present, and returns #false, the transaction is not accepted
165          * by the device (and results in machine dependent behaviour such
166          * as a machine check exception).
167          */
168         bool (*accepts)(void *opaque, hwaddr addr,
169                         unsigned size, bool is_write);
170     } valid;
171     /* Internal implementation constraints: */
172     struct {
173         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
174          * will be rounded upwards and a partial result will be returned.
175          */
176         unsigned min_access_size;
177         /* If nonzero, specifies the maximum size implemented.  Larger sizes
178          * will be done as a series of accesses with smaller sizes.
179          */
180         unsigned max_access_size;
181         /* If true, unaligned accesses are supported.  Otherwise all accesses
182          * are converted to (possibly multiple) naturally aligned accesses.
183          */
184         bool unaligned;
185     } impl;
186 
187     /* If .read and .write are not present, old_mmio may be used for
188      * backwards compatibility with old mmio registration
189      */
190     const MemoryRegionMmio old_mmio;
191 };
192 
193 typedef struct IOMMUMemoryRegionClass {
194     /* private */
195     struct DeviceClass parent_class;
196 
197     /*
198      * Return a TLB entry that contains a given address. Flag should
199      * be the access permission of this translation operation. We can
200      * set flag to IOMMU_NONE to mean that we don't need any
201      * read/write permission checks, like, when for region replay.
202      */
203     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
204                                IOMMUAccessFlags flag);
205     /* Returns minimum supported page size */
206     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
207     /* Called when IOMMU Notifier flag changed */
208     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
209                                 IOMMUNotifierFlag old_flags,
210                                 IOMMUNotifierFlag new_flags);
211     /* Set this up to provide customized IOMMU replay function */
212     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
213 } IOMMUMemoryRegionClass;
214 
215 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
216 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
217 
218 struct MemoryRegion {
219     Object parent_obj;
220 
221     /* All fields are private - violators will be prosecuted */
222 
223     /* The following fields should fit in a cache line */
224     bool romd_mode;
225     bool ram;
226     bool subpage;
227     bool readonly; /* For RAM regions */
228     bool rom_device;
229     bool flush_coalesced_mmio;
230     bool global_locking;
231     uint8_t dirty_log_mask;
232     bool is_iommu;
233     RAMBlock *ram_block;
234     Object *owner;
235 
236     const MemoryRegionOps *ops;
237     void *opaque;
238     MemoryRegion *container;
239     Int128 size;
240     hwaddr addr;
241     void (*destructor)(MemoryRegion *mr);
242     uint64_t align;
243     bool terminates;
244     bool ram_device;
245     bool enabled;
246     bool warning_printed; /* For reservations */
247     uint8_t vga_logging_count;
248     MemoryRegion *alias;
249     hwaddr alias_offset;
250     int32_t priority;
251     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
252     QTAILQ_ENTRY(MemoryRegion) subregions_link;
253     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
254     const char *name;
255     unsigned ioeventfd_nb;
256     MemoryRegionIoeventfd *ioeventfds;
257 };
258 
259 struct IOMMUMemoryRegion {
260     MemoryRegion parent_obj;
261 
262     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
263     IOMMUNotifierFlag iommu_notify_flags;
264 };
265 
266 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
267     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
268 
269 /**
270  * MemoryListener: callbacks structure for updates to the physical memory map
271  *
272  * Allows a component to adjust to changes in the guest-visible memory map.
273  * Use with memory_listener_register() and memory_listener_unregister().
274  */
275 struct MemoryListener {
276     void (*begin)(MemoryListener *listener);
277     void (*commit)(MemoryListener *listener);
278     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
279     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
280     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
281     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
282                       int old, int new);
283     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
284                      int old, int new);
285     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
286     void (*log_global_start)(MemoryListener *listener);
287     void (*log_global_stop)(MemoryListener *listener);
288     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
289                         bool match_data, uint64_t data, EventNotifier *e);
290     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
291                         bool match_data, uint64_t data, EventNotifier *e);
292     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
293                                hwaddr addr, hwaddr len);
294     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
295                                hwaddr addr, hwaddr len);
296     /* Lower = earlier (during add), later (during del) */
297     unsigned priority;
298     AddressSpace *address_space;
299     QTAILQ_ENTRY(MemoryListener) link;
300     QTAILQ_ENTRY(MemoryListener) link_as;
301 };
302 
303 /**
304  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
305  */
306 struct AddressSpace {
307     /* All fields are private. */
308     struct rcu_head rcu;
309     char *name;
310     MemoryRegion *root;
311 
312     /* Accessed via RCU.  */
313     struct FlatView *current_map;
314 
315     int ioeventfd_nb;
316     struct MemoryRegionIoeventfd *ioeventfds;
317     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
318     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
319 };
320 
321 FlatView *address_space_to_flatview(AddressSpace *as);
322 
323 /**
324  * MemoryRegionSection: describes a fragment of a #MemoryRegion
325  *
326  * @mr: the region, or %NULL if empty
327  * @address_space: the address space the region is mapped in
328  * @offset_within_region: the beginning of the section, relative to @mr's start
329  * @size: the size of the section; will not exceed @mr's boundaries
330  * @offset_within_address_space: the address of the first byte of the section
331  *     relative to the region's address space
332  * @readonly: writes to this section are ignored
333  */
334 struct MemoryRegionSection {
335     MemoryRegion *mr;
336     FlatView *fv;
337     hwaddr offset_within_region;
338     Int128 size;
339     hwaddr offset_within_address_space;
340     bool readonly;
341 };
342 
343 /**
344  * memory_region_init: Initialize a memory region
345  *
346  * The region typically acts as a container for other memory regions.  Use
347  * memory_region_add_subregion() to add subregions.
348  *
349  * @mr: the #MemoryRegion to be initialized
350  * @owner: the object that tracks the region's reference count
351  * @name: used for debugging; not visible to the user or ABI
352  * @size: size of the region; any subregions beyond this size will be clipped
353  */
354 void memory_region_init(MemoryRegion *mr,
355                         struct Object *owner,
356                         const char *name,
357                         uint64_t size);
358 
359 /**
360  * memory_region_ref: Add 1 to a memory region's reference count
361  *
362  * Whenever memory regions are accessed outside the BQL, they need to be
363  * preserved against hot-unplug.  MemoryRegions actually do not have their
364  * own reference count; they piggyback on a QOM object, their "owner".
365  * This function adds a reference to the owner.
366  *
367  * All MemoryRegions must have an owner if they can disappear, even if the
368  * device they belong to operates exclusively under the BQL.  This is because
369  * the region could be returned at any time by memory_region_find, and this
370  * is usually under guest control.
371  *
372  * @mr: the #MemoryRegion
373  */
374 void memory_region_ref(MemoryRegion *mr);
375 
376 /**
377  * memory_region_unref: Remove 1 to a memory region's reference count
378  *
379  * Whenever memory regions are accessed outside the BQL, they need to be
380  * preserved against hot-unplug.  MemoryRegions actually do not have their
381  * own reference count; they piggyback on a QOM object, their "owner".
382  * This function removes a reference to the owner and possibly destroys it.
383  *
384  * @mr: the #MemoryRegion
385  */
386 void memory_region_unref(MemoryRegion *mr);
387 
388 /**
389  * memory_region_init_io: Initialize an I/O memory region.
390  *
391  * Accesses into the region will cause the callbacks in @ops to be called.
392  * if @size is nonzero, subregions will be clipped to @size.
393  *
394  * @mr: the #MemoryRegion to be initialized.
395  * @owner: the object that tracks the region's reference count
396  * @ops: a structure containing read and write callbacks to be used when
397  *       I/O is performed on the region.
398  * @opaque: passed to the read and write callbacks of the @ops structure.
399  * @name: used for debugging; not visible to the user or ABI
400  * @size: size of the region.
401  */
402 void memory_region_init_io(MemoryRegion *mr,
403                            struct Object *owner,
404                            const MemoryRegionOps *ops,
405                            void *opaque,
406                            const char *name,
407                            uint64_t size);
408 
409 /**
410  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
411  *                                    into the region will modify memory
412  *                                    directly.
413  *
414  * @mr: the #MemoryRegion to be initialized.
415  * @owner: the object that tracks the region's reference count
416  * @name: Region name, becomes part of RAMBlock name used in migration stream
417  *        must be unique within any device
418  * @size: size of the region.
419  * @errp: pointer to Error*, to store an error if it happens.
420  *
421  * Note that this function does not do anything to cause the data in the
422  * RAM memory region to be migrated; that is the responsibility of the caller.
423  */
424 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
425                                       struct Object *owner,
426                                       const char *name,
427                                       uint64_t size,
428                                       Error **errp);
429 
430 /**
431  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
432  *                                     RAM.  Accesses into the region will
433  *                                     modify memory directly.  Only an initial
434  *                                     portion of this RAM is actually used.
435  *                                     The used size can change across reboots.
436  *
437  * @mr: the #MemoryRegion to be initialized.
438  * @owner: the object that tracks the region's reference count
439  * @name: Region name, becomes part of RAMBlock name used in migration stream
440  *        must be unique within any device
441  * @size: used size of the region.
442  * @max_size: max size of the region.
443  * @resized: callback to notify owner about used size change.
444  * @errp: pointer to Error*, to store an error if it happens.
445  *
446  * Note that this function does not do anything to cause the data in the
447  * RAM memory region to be migrated; that is the responsibility of the caller.
448  */
449 void memory_region_init_resizeable_ram(MemoryRegion *mr,
450                                        struct Object *owner,
451                                        const char *name,
452                                        uint64_t size,
453                                        uint64_t max_size,
454                                        void (*resized)(const char*,
455                                                        uint64_t length,
456                                                        void *host),
457                                        Error **errp);
458 #ifdef __linux__
459 /**
460  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
461  *                                    mmap-ed backend.
462  *
463  * @mr: the #MemoryRegion to be initialized.
464  * @owner: the object that tracks the region's reference count
465  * @name: Region name, becomes part of RAMBlock name used in migration stream
466  *        must be unique within any device
467  * @size: size of the region.
468  * @share: %true if memory must be mmaped with the MAP_SHARED flag
469  * @path: the path in which to allocate the RAM.
470  * @errp: pointer to Error*, to store an error if it happens.
471  *
472  * Note that this function does not do anything to cause the data in the
473  * RAM memory region to be migrated; that is the responsibility of the caller.
474  */
475 void memory_region_init_ram_from_file(MemoryRegion *mr,
476                                       struct Object *owner,
477                                       const char *name,
478                                       uint64_t size,
479                                       bool share,
480                                       const char *path,
481                                       Error **errp);
482 
483 /**
484  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
485  *                                  mmap-ed backend.
486  *
487  * @mr: the #MemoryRegion to be initialized.
488  * @owner: the object that tracks the region's reference count
489  * @name: the name of the region.
490  * @size: size of the region.
491  * @share: %true if memory must be mmaped with the MAP_SHARED flag
492  * @fd: the fd to mmap.
493  * @errp: pointer to Error*, to store an error if it happens.
494  *
495  * Note that this function does not do anything to cause the data in the
496  * RAM memory region to be migrated; that is the responsibility of the caller.
497  */
498 void memory_region_init_ram_from_fd(MemoryRegion *mr,
499                                     struct Object *owner,
500                                     const char *name,
501                                     uint64_t size,
502                                     bool share,
503                                     int fd,
504                                     Error **errp);
505 #endif
506 
507 /**
508  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
509  *                              user-provided pointer.  Accesses into the
510  *                              region will modify memory directly.
511  *
512  * @mr: the #MemoryRegion to be initialized.
513  * @owner: the object that tracks the region's reference count
514  * @name: Region name, becomes part of RAMBlock name used in migration stream
515  *        must be unique within any device
516  * @size: size of the region.
517  * @ptr: memory to be mapped; must contain at least @size bytes.
518  *
519  * Note that this function does not do anything to cause the data in the
520  * RAM memory region to be migrated; that is the responsibility of the caller.
521  */
522 void memory_region_init_ram_ptr(MemoryRegion *mr,
523                                 struct Object *owner,
524                                 const char *name,
525                                 uint64_t size,
526                                 void *ptr);
527 
528 /**
529  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
530  *                                     a user-provided pointer.
531  *
532  * A RAM device represents a mapping to a physical device, such as to a PCI
533  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
534  * into the VM address space and access to the region will modify memory
535  * directly.  However, the memory region should not be included in a memory
536  * dump (device may not be enabled/mapped at the time of the dump), and
537  * operations incompatible with manipulating MMIO should be avoided.  Replaces
538  * skip_dump flag.
539  *
540  * @mr: the #MemoryRegion to be initialized.
541  * @owner: the object that tracks the region's reference count
542  * @name: the name of the region.
543  * @size: size of the region.
544  * @ptr: memory to be mapped; must contain at least @size bytes.
545  *
546  * Note that this function does not do anything to cause the data in the
547  * RAM memory region to be migrated; that is the responsibility of the caller.
548  * (For RAM device memory regions, migrating the contents rarely makes sense.)
549  */
550 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
551                                        struct Object *owner,
552                                        const char *name,
553                                        uint64_t size,
554                                        void *ptr);
555 
556 /**
557  * memory_region_init_alias: Initialize a memory region that aliases all or a
558  *                           part of another memory region.
559  *
560  * @mr: the #MemoryRegion to be initialized.
561  * @owner: the object that tracks the region's reference count
562  * @name: used for debugging; not visible to the user or ABI
563  * @orig: the region to be referenced; @mr will be equivalent to
564  *        @orig between @offset and @offset + @size - 1.
565  * @offset: start of the section in @orig to be referenced.
566  * @size: size of the region.
567  */
568 void memory_region_init_alias(MemoryRegion *mr,
569                               struct Object *owner,
570                               const char *name,
571                               MemoryRegion *orig,
572                               hwaddr offset,
573                               uint64_t size);
574 
575 /**
576  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
577  *
578  * This has the same effect as calling memory_region_init_ram_nomigrate()
579  * and then marking the resulting region read-only with
580  * memory_region_set_readonly().
581  *
582  * Note that this function does not do anything to cause the data in the
583  * RAM side of the memory region to be migrated; that is the responsibility
584  * of the caller.
585  *
586  * @mr: the #MemoryRegion to be initialized.
587  * @owner: the object that tracks the region's reference count
588  * @name: Region name, becomes part of RAMBlock name used in migration stream
589  *        must be unique within any device
590  * @size: size of the region.
591  * @errp: pointer to Error*, to store an error if it happens.
592  */
593 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
594                                       struct Object *owner,
595                                       const char *name,
596                                       uint64_t size,
597                                       Error **errp);
598 
599 /**
600  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
601  *                                 Writes are handled via callbacks.
602  *
603  * Note that this function does not do anything to cause the data in the
604  * RAM side of the memory region to be migrated; that is the responsibility
605  * of the caller.
606  *
607  * @mr: the #MemoryRegion to be initialized.
608  * @owner: the object that tracks the region's reference count
609  * @ops: callbacks for write access handling (must not be NULL).
610  * @name: Region name, becomes part of RAMBlock name used in migration stream
611  *        must be unique within any device
612  * @size: size of the region.
613  * @errp: pointer to Error*, to store an error if it happens.
614  */
615 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
616                                              struct Object *owner,
617                                              const MemoryRegionOps *ops,
618                                              void *opaque,
619                                              const char *name,
620                                              uint64_t size,
621                                              Error **errp);
622 
623 /**
624  * memory_region_init_reservation: Initialize a memory region that reserves
625  *                                 I/O space.
626  *
627  * A reservation region primariy serves debugging purposes.  It claims I/O
628  * space that is not supposed to be handled by QEMU itself.  Any access via
629  * the memory API will cause an abort().
630  * This function is deprecated. Use memory_region_init_io() with NULL
631  * callbacks instead.
632  *
633  * @mr: the #MemoryRegion to be initialized
634  * @owner: the object that tracks the region's reference count
635  * @name: used for debugging; not visible to the user or ABI
636  * @size: size of the region.
637  */
638 static inline void memory_region_init_reservation(MemoryRegion *mr,
639                                     Object *owner,
640                                     const char *name,
641                                     uint64_t size)
642 {
643     memory_region_init_io(mr, owner, NULL, mr, name, size);
644 }
645 
646 /**
647  * memory_region_init_iommu: Initialize a memory region of a custom type
648  * that translates addresses
649  *
650  * An IOMMU region translates addresses and forwards accesses to a target
651  * memory region.
652  *
653  * @typename: QOM class name
654  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
655  * @instance_size: the IOMMUMemoryRegion subclass instance size
656  * @owner: the object that tracks the region's reference count
657  * @ops: a function that translates addresses into the @target region
658  * @name: used for debugging; not visible to the user or ABI
659  * @size: size of the region.
660  */
661 void memory_region_init_iommu(void *_iommu_mr,
662                               size_t instance_size,
663                               const char *mrtypename,
664                               Object *owner,
665                               const char *name,
666                               uint64_t size);
667 
668 /**
669  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
670  *                          region will modify memory directly.
671  *
672  * @mr: the #MemoryRegion to be initialized
673  * @owner: the object that tracks the region's reference count (must be
674  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
675  * @name: name of the memory region
676  * @size: size of the region in bytes
677  * @errp: pointer to Error*, to store an error if it happens.
678  *
679  * This function allocates RAM for a board model or device, and
680  * arranges for it to be migrated (by calling vmstate_register_ram()
681  * if @owner is a DeviceState, or vmstate_register_ram_global() if
682  * @owner is NULL).
683  *
684  * TODO: Currently we restrict @owner to being either NULL (for
685  * global RAM regions with no owner) or devices, so that we can
686  * give the RAM block a unique name for migration purposes.
687  * We should lift this restriction and allow arbitrary Objects.
688  * If you pass a non-NULL non-device @owner then we will assert.
689  */
690 void memory_region_init_ram(MemoryRegion *mr,
691                             struct Object *owner,
692                             const char *name,
693                             uint64_t size,
694                             Error **errp);
695 
696 /**
697  * memory_region_init_rom: Initialize a ROM memory region.
698  *
699  * This has the same effect as calling memory_region_init_ram()
700  * and then marking the resulting region read-only with
701  * memory_region_set_readonly(). This includes arranging for the
702  * contents to be migrated.
703  *
704  * TODO: Currently we restrict @owner to being either NULL (for
705  * global RAM regions with no owner) or devices, so that we can
706  * give the RAM block a unique name for migration purposes.
707  * We should lift this restriction and allow arbitrary Objects.
708  * If you pass a non-NULL non-device @owner then we will assert.
709  *
710  * @mr: the #MemoryRegion to be initialized.
711  * @owner: the object that tracks the region's reference count
712  * @name: Region name, becomes part of RAMBlock name used in migration stream
713  *        must be unique within any device
714  * @size: size of the region.
715  * @errp: pointer to Error*, to store an error if it happens.
716  */
717 void memory_region_init_rom(MemoryRegion *mr,
718                             struct Object *owner,
719                             const char *name,
720                             uint64_t size,
721                             Error **errp);
722 
723 /**
724  * memory_region_init_rom_device:  Initialize a ROM memory region.
725  *                                 Writes are handled via callbacks.
726  *
727  * This function initializes a memory region backed by RAM for reads
728  * and callbacks for writes, and arranges for the RAM backing to
729  * be migrated (by calling vmstate_register_ram()
730  * if @owner is a DeviceState, or vmstate_register_ram_global() if
731  * @owner is NULL).
732  *
733  * TODO: Currently we restrict @owner to being either NULL (for
734  * global RAM regions with no owner) or devices, so that we can
735  * give the RAM block a unique name for migration purposes.
736  * We should lift this restriction and allow arbitrary Objects.
737  * If you pass a non-NULL non-device @owner then we will assert.
738  *
739  * @mr: the #MemoryRegion to be initialized.
740  * @owner: the object that tracks the region's reference count
741  * @ops: callbacks for write access handling (must not be NULL).
742  * @name: Region name, becomes part of RAMBlock name used in migration stream
743  *        must be unique within any device
744  * @size: size of the region.
745  * @errp: pointer to Error*, to store an error if it happens.
746  */
747 void memory_region_init_rom_device(MemoryRegion *mr,
748                                    struct Object *owner,
749                                    const MemoryRegionOps *ops,
750                                    void *opaque,
751                                    const char *name,
752                                    uint64_t size,
753                                    Error **errp);
754 
755 
756 /**
757  * memory_region_owner: get a memory region's owner.
758  *
759  * @mr: the memory region being queried.
760  */
761 struct Object *memory_region_owner(MemoryRegion *mr);
762 
763 /**
764  * memory_region_size: get a memory region's size.
765  *
766  * @mr: the memory region being queried.
767  */
768 uint64_t memory_region_size(MemoryRegion *mr);
769 
770 /**
771  * memory_region_is_ram: check whether a memory region is random access
772  *
773  * Returns %true is a memory region is random access.
774  *
775  * @mr: the memory region being queried
776  */
777 static inline bool memory_region_is_ram(MemoryRegion *mr)
778 {
779     return mr->ram;
780 }
781 
782 /**
783  * memory_region_is_ram_device: check whether a memory region is a ram device
784  *
785  * Returns %true is a memory region is a device backed ram region
786  *
787  * @mr: the memory region being queried
788  */
789 bool memory_region_is_ram_device(MemoryRegion *mr);
790 
791 /**
792  * memory_region_is_romd: check whether a memory region is in ROMD mode
793  *
794  * Returns %true if a memory region is a ROM device and currently set to allow
795  * direct reads.
796  *
797  * @mr: the memory region being queried
798  */
799 static inline bool memory_region_is_romd(MemoryRegion *mr)
800 {
801     return mr->rom_device && mr->romd_mode;
802 }
803 
804 /**
805  * memory_region_get_iommu: check whether a memory region is an iommu
806  *
807  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
808  * otherwise NULL.
809  *
810  * @mr: the memory region being queried
811  */
812 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
813 {
814     if (mr->alias) {
815         return memory_region_get_iommu(mr->alias);
816     }
817     if (mr->is_iommu) {
818         return (IOMMUMemoryRegion *) mr;
819     }
820     return NULL;
821 }
822 
823 /**
824  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
825  *   if an iommu or NULL if not
826  *
827  * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu,
828  * otherwise NULL. This is fast path avoinding QOM checking, use with caution.
829  *
830  * @mr: the memory region being queried
831  */
832 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
833         IOMMUMemoryRegion *iommu_mr)
834 {
835     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
836 }
837 
838 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
839 
840 /**
841  * memory_region_iommu_get_min_page_size: get minimum supported page size
842  * for an iommu
843  *
844  * Returns minimum supported page size for an iommu.
845  *
846  * @iommu_mr: the memory region being queried
847  */
848 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
849 
850 /**
851  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
852  *
853  * The notification type will be decided by entry.perm bits:
854  *
855  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
856  * - For MAP (newly added entry) notifies: set entry.perm to the
857  *   permission of the page (which is definitely !IOMMU_NONE).
858  *
859  * Note: for any IOMMU implementation, an in-place mapping change
860  * should be notified with an UNMAP followed by a MAP.
861  *
862  * @iommu_mr: the memory region that was changed
863  * @entry: the new entry in the IOMMU translation table.  The entry
864  *         replaces all old entries for the same virtual I/O address range.
865  *         Deleted entries have .@perm == 0.
866  */
867 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
868                                 IOMMUTLBEntry entry);
869 
870 /**
871  * memory_region_notify_one: notify a change in an IOMMU translation
872  *                           entry to a single notifier
873  *
874  * This works just like memory_region_notify_iommu(), but it only
875  * notifies a specific notifier, not all of them.
876  *
877  * @notifier: the notifier to be notified
878  * @entry: the new entry in the IOMMU translation table.  The entry
879  *         replaces all old entries for the same virtual I/O address range.
880  *         Deleted entries have .@perm == 0.
881  */
882 void memory_region_notify_one(IOMMUNotifier *notifier,
883                               IOMMUTLBEntry *entry);
884 
885 /**
886  * memory_region_register_iommu_notifier: register a notifier for changes to
887  * IOMMU translation entries.
888  *
889  * @mr: the memory region to observe
890  * @n: the IOMMUNotifier to be added; the notify callback receives a
891  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
892  *     ceases to be valid on exit from the notifier.
893  */
894 void memory_region_register_iommu_notifier(MemoryRegion *mr,
895                                            IOMMUNotifier *n);
896 
897 /**
898  * memory_region_iommu_replay: replay existing IOMMU translations to
899  * a notifier with the minimum page granularity returned by
900  * mr->iommu_ops->get_page_size().
901  *
902  * @iommu_mr: the memory region to observe
903  * @n: the notifier to which to replay iommu mappings
904  */
905 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
906 
907 /**
908  * memory_region_iommu_replay_all: replay existing IOMMU translations
909  * to all the notifiers registered.
910  *
911  * @iommu_mr: the memory region to observe
912  */
913 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
914 
915 /**
916  * memory_region_unregister_iommu_notifier: unregister a notifier for
917  * changes to IOMMU translation entries.
918  *
919  * @mr: the memory region which was observed and for which notity_stopped()
920  *      needs to be called
921  * @n: the notifier to be removed.
922  */
923 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
924                                              IOMMUNotifier *n);
925 
926 /**
927  * memory_region_name: get a memory region's name
928  *
929  * Returns the string that was used to initialize the memory region.
930  *
931  * @mr: the memory region being queried
932  */
933 const char *memory_region_name(const MemoryRegion *mr);
934 
935 /**
936  * memory_region_is_logging: return whether a memory region is logging writes
937  *
938  * Returns %true if the memory region is logging writes for the given client
939  *
940  * @mr: the memory region being queried
941  * @client: the client being queried
942  */
943 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
944 
945 /**
946  * memory_region_get_dirty_log_mask: return the clients for which a
947  * memory region is logging writes.
948  *
949  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
950  * are the bit indices.
951  *
952  * @mr: the memory region being queried
953  */
954 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
955 
956 /**
957  * memory_region_is_rom: check whether a memory region is ROM
958  *
959  * Returns %true is a memory region is read-only memory.
960  *
961  * @mr: the memory region being queried
962  */
963 static inline bool memory_region_is_rom(MemoryRegion *mr)
964 {
965     return mr->ram && mr->readonly;
966 }
967 
968 
969 /**
970  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
971  *
972  * Returns a file descriptor backing a file-based RAM memory region,
973  * or -1 if the region is not a file-based RAM memory region.
974  *
975  * @mr: the RAM or alias memory region being queried.
976  */
977 int memory_region_get_fd(MemoryRegion *mr);
978 
979 /**
980  * memory_region_from_host: Convert a pointer into a RAM memory region
981  * and an offset within it.
982  *
983  * Given a host pointer inside a RAM memory region (created with
984  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
985  * the MemoryRegion and the offset within it.
986  *
987  * Use with care; by the time this function returns, the returned pointer is
988  * not protected by RCU anymore.  If the caller is not within an RCU critical
989  * section and does not hold the iothread lock, it must have other means of
990  * protecting the pointer, such as a reference to the region that includes
991  * the incoming ram_addr_t.
992  *
993  * @mr: the memory region being queried.
994  */
995 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
996 
997 /**
998  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
999  *
1000  * Returns a host pointer to a RAM memory region (created with
1001  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1002  *
1003  * Use with care; by the time this function returns, the returned pointer is
1004  * not protected by RCU anymore.  If the caller is not within an RCU critical
1005  * section and does not hold the iothread lock, it must have other means of
1006  * protecting the pointer, such as a reference to the region that includes
1007  * the incoming ram_addr_t.
1008  *
1009  * @mr: the memory region being queried.
1010  */
1011 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1012 
1013 /* memory_region_ram_resize: Resize a RAM region.
1014  *
1015  * Only legal before guest might have detected the memory size: e.g. on
1016  * incoming migration, or right after reset.
1017  *
1018  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1019  * @newsize: the new size the region
1020  * @errp: pointer to Error*, to store an error if it happens.
1021  */
1022 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1023                               Error **errp);
1024 
1025 /**
1026  * memory_region_set_log: Turn dirty logging on or off for a region.
1027  *
1028  * Turns dirty logging on or off for a specified client (display, migration).
1029  * Only meaningful for RAM regions.
1030  *
1031  * @mr: the memory region being updated.
1032  * @log: whether dirty logging is to be enabled or disabled.
1033  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1034  */
1035 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1036 
1037 /**
1038  * memory_region_get_dirty: Check whether a range of bytes is dirty
1039  *                          for a specified client.
1040  *
1041  * Checks whether a range of bytes has been written to since the last
1042  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1043  * must be enabled.
1044  *
1045  * @mr: the memory region being queried.
1046  * @addr: the address (relative to the start of the region) being queried.
1047  * @size: the size of the range being queried.
1048  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1049  *          %DIRTY_MEMORY_VGA.
1050  */
1051 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1052                              hwaddr size, unsigned client);
1053 
1054 /**
1055  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1056  *
1057  * Marks a range of bytes as dirty, after it has been dirtied outside
1058  * guest code.
1059  *
1060  * @mr: the memory region being dirtied.
1061  * @addr: the address (relative to the start of the region) being dirtied.
1062  * @size: size of the range being dirtied.
1063  */
1064 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1065                              hwaddr size);
1066 
1067 /**
1068  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1069  *                                     for a specified client. It clears them.
1070  *
1071  * Checks whether a range of bytes has been written to since the last
1072  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1073  * must be enabled.
1074  *
1075  * @mr: the memory region being queried.
1076  * @addr: the address (relative to the start of the region) being queried.
1077  * @size: the size of the range being queried.
1078  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1079  *          %DIRTY_MEMORY_VGA.
1080  */
1081 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1082                                         hwaddr size, unsigned client);
1083 
1084 /**
1085  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1086  *                                         bitmap and clear it.
1087  *
1088  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1089  * returns the snapshot.  The snapshot can then be used to query dirty
1090  * status, using memory_region_snapshot_get_dirty.  Unlike
1091  * memory_region_test_and_clear_dirty this allows to query the same
1092  * page multiple times, which is especially useful for display updates
1093  * where the scanlines often are not page aligned.
1094  *
1095  * The dirty bitmap region which gets copyed into the snapshot (and
1096  * cleared afterwards) can be larger than requested.  The boundaries
1097  * are rounded up/down so complete bitmap longs (covering 64 pages on
1098  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1099  * isn't a problem for display updates as the extra pages are outside
1100  * the visible area, and in case the visible area changes a full
1101  * display redraw is due anyway.  Should other use cases for this
1102  * function emerge we might have to revisit this implementation
1103  * detail.
1104  *
1105  * Use g_free to release DirtyBitmapSnapshot.
1106  *
1107  * @mr: the memory region being queried.
1108  * @addr: the address (relative to the start of the region) being queried.
1109  * @size: the size of the range being queried.
1110  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1111  */
1112 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1113                                                             hwaddr addr,
1114                                                             hwaddr size,
1115                                                             unsigned client);
1116 
1117 /**
1118  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1119  *                                   in the specified dirty bitmap snapshot.
1120  *
1121  * @mr: the memory region being queried.
1122  * @snap: the dirty bitmap snapshot
1123  * @addr: the address (relative to the start of the region) being queried.
1124  * @size: the size of the range being queried.
1125  */
1126 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1127                                       DirtyBitmapSnapshot *snap,
1128                                       hwaddr addr, hwaddr size);
1129 
1130 /**
1131  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1132  *                                  any external TLBs (e.g. kvm)
1133  *
1134  * Flushes dirty information from accelerators such as kvm and vhost-net
1135  * and makes it available to users of the memory API.
1136  *
1137  * @mr: the region being flushed.
1138  */
1139 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1140 
1141 /**
1142  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1143  *                            client.
1144  *
1145  * Marks a range of pages as no longer dirty.
1146  *
1147  * @mr: the region being updated.
1148  * @addr: the start of the subrange being cleaned.
1149  * @size: the size of the subrange being cleaned.
1150  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1151  *          %DIRTY_MEMORY_VGA.
1152  */
1153 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1154                                hwaddr size, unsigned client);
1155 
1156 /**
1157  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1158  *
1159  * Allows a memory region to be marked as read-only (turning it into a ROM).
1160  * only useful on RAM regions.
1161  *
1162  * @mr: the region being updated.
1163  * @readonly: whether rhe region is to be ROM or RAM.
1164  */
1165 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1166 
1167 /**
1168  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1169  *
1170  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1171  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1172  * device is mapped to guest memory and satisfies read access directly.
1173  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1174  * Writes are always handled by the #MemoryRegion.write function.
1175  *
1176  * @mr: the memory region to be updated
1177  * @romd_mode: %true to put the region into ROMD mode
1178  */
1179 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1180 
1181 /**
1182  * memory_region_set_coalescing: Enable memory coalescing for the region.
1183  *
1184  * Enabled writes to a region to be queued for later processing. MMIO ->write
1185  * callbacks may be delayed until a non-coalesced MMIO is issued.
1186  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1187  *
1188  * @mr: the memory region to be write coalesced
1189  */
1190 void memory_region_set_coalescing(MemoryRegion *mr);
1191 
1192 /**
1193  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1194  *                               a region.
1195  *
1196  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1197  * Multiple calls can be issued coalesced disjoint ranges.
1198  *
1199  * @mr: the memory region to be updated.
1200  * @offset: the start of the range within the region to be coalesced.
1201  * @size: the size of the subrange to be coalesced.
1202  */
1203 void memory_region_add_coalescing(MemoryRegion *mr,
1204                                   hwaddr offset,
1205                                   uint64_t size);
1206 
1207 /**
1208  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1209  *
1210  * Disables any coalescing caused by memory_region_set_coalescing() or
1211  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1212  * hardware.
1213  *
1214  * @mr: the memory region to be updated.
1215  */
1216 void memory_region_clear_coalescing(MemoryRegion *mr);
1217 
1218 /**
1219  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1220  *                                    accesses.
1221  *
1222  * Ensure that pending coalesced MMIO request are flushed before the memory
1223  * region is accessed. This property is automatically enabled for all regions
1224  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1225  *
1226  * @mr: the memory region to be updated.
1227  */
1228 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1229 
1230 /**
1231  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1232  *                                      accesses.
1233  *
1234  * Clear the automatic coalesced MMIO flushing enabled via
1235  * memory_region_set_flush_coalesced. Note that this service has no effect on
1236  * memory regions that have MMIO coalescing enabled for themselves. For them,
1237  * automatic flushing will stop once coalescing is disabled.
1238  *
1239  * @mr: the memory region to be updated.
1240  */
1241 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1242 
1243 /**
1244  * memory_region_clear_global_locking: Declares that access processing does
1245  *                                     not depend on the QEMU global lock.
1246  *
1247  * By clearing this property, accesses to the memory region will be processed
1248  * outside of QEMU's global lock (unless the lock is held on when issuing the
1249  * access request). In this case, the device model implementing the access
1250  * handlers is responsible for synchronization of concurrency.
1251  *
1252  * @mr: the memory region to be updated.
1253  */
1254 void memory_region_clear_global_locking(MemoryRegion *mr);
1255 
1256 /**
1257  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1258  *                            is written to a location.
1259  *
1260  * Marks a word in an IO region (initialized with memory_region_init_io())
1261  * as a trigger for an eventfd event.  The I/O callback will not be called.
1262  * The caller must be prepared to handle failure (that is, take the required
1263  * action if the callback _is_ called).
1264  *
1265  * @mr: the memory region being updated.
1266  * @addr: the address within @mr that is to be monitored
1267  * @size: the size of the access to trigger the eventfd
1268  * @match_data: whether to match against @data, instead of just @addr
1269  * @data: the data to match against the guest write
1270  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1271  **/
1272 void memory_region_add_eventfd(MemoryRegion *mr,
1273                                hwaddr addr,
1274                                unsigned size,
1275                                bool match_data,
1276                                uint64_t data,
1277                                EventNotifier *e);
1278 
1279 /**
1280  * memory_region_del_eventfd: Cancel an eventfd.
1281  *
1282  * Cancels an eventfd trigger requested by a previous
1283  * memory_region_add_eventfd() call.
1284  *
1285  * @mr: the memory region being updated.
1286  * @addr: the address within @mr that is to be monitored
1287  * @size: the size of the access to trigger the eventfd
1288  * @match_data: whether to match against @data, instead of just @addr
1289  * @data: the data to match against the guest write
1290  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1291  */
1292 void memory_region_del_eventfd(MemoryRegion *mr,
1293                                hwaddr addr,
1294                                unsigned size,
1295                                bool match_data,
1296                                uint64_t data,
1297                                EventNotifier *e);
1298 
1299 /**
1300  * memory_region_add_subregion: Add a subregion to a container.
1301  *
1302  * Adds a subregion at @offset.  The subregion may not overlap with other
1303  * subregions (except for those explicitly marked as overlapping).  A region
1304  * may only be added once as a subregion (unless removed with
1305  * memory_region_del_subregion()); use memory_region_init_alias() if you
1306  * want a region to be a subregion in multiple locations.
1307  *
1308  * @mr: the region to contain the new subregion; must be a container
1309  *      initialized with memory_region_init().
1310  * @offset: the offset relative to @mr where @subregion is added.
1311  * @subregion: the subregion to be added.
1312  */
1313 void memory_region_add_subregion(MemoryRegion *mr,
1314                                  hwaddr offset,
1315                                  MemoryRegion *subregion);
1316 /**
1317  * memory_region_add_subregion_overlap: Add a subregion to a container
1318  *                                      with overlap.
1319  *
1320  * Adds a subregion at @offset.  The subregion may overlap with other
1321  * subregions.  Conflicts are resolved by having a higher @priority hide a
1322  * lower @priority. Subregions without priority are taken as @priority 0.
1323  * A region may only be added once as a subregion (unless removed with
1324  * memory_region_del_subregion()); use memory_region_init_alias() if you
1325  * want a region to be a subregion in multiple locations.
1326  *
1327  * @mr: the region to contain the new subregion; must be a container
1328  *      initialized with memory_region_init().
1329  * @offset: the offset relative to @mr where @subregion is added.
1330  * @subregion: the subregion to be added.
1331  * @priority: used for resolving overlaps; highest priority wins.
1332  */
1333 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1334                                          hwaddr offset,
1335                                          MemoryRegion *subregion,
1336                                          int priority);
1337 
1338 /**
1339  * memory_region_get_ram_addr: Get the ram address associated with a memory
1340  *                             region
1341  */
1342 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1343 
1344 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1345 /**
1346  * memory_region_del_subregion: Remove a subregion.
1347  *
1348  * Removes a subregion from its container.
1349  *
1350  * @mr: the container to be updated.
1351  * @subregion: the region being removed; must be a current subregion of @mr.
1352  */
1353 void memory_region_del_subregion(MemoryRegion *mr,
1354                                  MemoryRegion *subregion);
1355 
1356 /*
1357  * memory_region_set_enabled: dynamically enable or disable a region
1358  *
1359  * Enables or disables a memory region.  A disabled memory region
1360  * ignores all accesses to itself and its subregions.  It does not
1361  * obscure sibling subregions with lower priority - it simply behaves as
1362  * if it was removed from the hierarchy.
1363  *
1364  * Regions default to being enabled.
1365  *
1366  * @mr: the region to be updated
1367  * @enabled: whether to enable or disable the region
1368  */
1369 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1370 
1371 /*
1372  * memory_region_set_address: dynamically update the address of a region
1373  *
1374  * Dynamically updates the address of a region, relative to its container.
1375  * May be used on regions are currently part of a memory hierarchy.
1376  *
1377  * @mr: the region to be updated
1378  * @addr: new address, relative to container region
1379  */
1380 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1381 
1382 /*
1383  * memory_region_set_size: dynamically update the size of a region.
1384  *
1385  * Dynamically updates the size of a region.
1386  *
1387  * @mr: the region to be updated
1388  * @size: used size of the region.
1389  */
1390 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1391 
1392 /*
1393  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1394  *
1395  * Dynamically updates the offset into the target region that an alias points
1396  * to, as if the fourth argument to memory_region_init_alias() has changed.
1397  *
1398  * @mr: the #MemoryRegion to be updated; should be an alias.
1399  * @offset: the new offset into the target memory region
1400  */
1401 void memory_region_set_alias_offset(MemoryRegion *mr,
1402                                     hwaddr offset);
1403 
1404 /**
1405  * memory_region_present: checks if an address relative to a @container
1406  * translates into #MemoryRegion within @container
1407  *
1408  * Answer whether a #MemoryRegion within @container covers the address
1409  * @addr.
1410  *
1411  * @container: a #MemoryRegion within which @addr is a relative address
1412  * @addr: the area within @container to be searched
1413  */
1414 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1415 
1416 /**
1417  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1418  * into any address space.
1419  *
1420  * @mr: a #MemoryRegion which should be checked if it's mapped
1421  */
1422 bool memory_region_is_mapped(MemoryRegion *mr);
1423 
1424 /**
1425  * memory_region_find: translate an address/size relative to a
1426  * MemoryRegion into a #MemoryRegionSection.
1427  *
1428  * Locates the first #MemoryRegion within @mr that overlaps the range
1429  * given by @addr and @size.
1430  *
1431  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1432  * It will have the following characteristics:
1433  *    .@size = 0 iff no overlap was found
1434  *    .@mr is non-%NULL iff an overlap was found
1435  *
1436  * Remember that in the return value the @offset_within_region is
1437  * relative to the returned region (in the .@mr field), not to the
1438  * @mr argument.
1439  *
1440  * Similarly, the .@offset_within_address_space is relative to the
1441  * address space that contains both regions, the passed and the
1442  * returned one.  However, in the special case where the @mr argument
1443  * has no container (and thus is the root of the address space), the
1444  * following will hold:
1445  *    .@offset_within_address_space >= @addr
1446  *    .@offset_within_address_space + .@size <= @addr + @size
1447  *
1448  * @mr: a MemoryRegion within which @addr is a relative address
1449  * @addr: start of the area within @as to be searched
1450  * @size: size of the area to be searched
1451  */
1452 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1453                                        hwaddr addr, uint64_t size);
1454 
1455 /**
1456  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1457  *
1458  * Synchronizes the dirty page log for all address spaces.
1459  */
1460 void memory_global_dirty_log_sync(void);
1461 
1462 /**
1463  * memory_region_transaction_begin: Start a transaction.
1464  *
1465  * During a transaction, changes will be accumulated and made visible
1466  * only when the transaction ends (is committed).
1467  */
1468 void memory_region_transaction_begin(void);
1469 
1470 /**
1471  * memory_region_transaction_commit: Commit a transaction and make changes
1472  *                                   visible to the guest.
1473  */
1474 void memory_region_transaction_commit(void);
1475 
1476 /**
1477  * memory_listener_register: register callbacks to be called when memory
1478  *                           sections are mapped or unmapped into an address
1479  *                           space
1480  *
1481  * @listener: an object containing the callbacks to be called
1482  * @filter: if non-%NULL, only regions in this address space will be observed
1483  */
1484 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1485 
1486 /**
1487  * memory_listener_unregister: undo the effect of memory_listener_register()
1488  *
1489  * @listener: an object containing the callbacks to be removed
1490  */
1491 void memory_listener_unregister(MemoryListener *listener);
1492 
1493 /**
1494  * memory_global_dirty_log_start: begin dirty logging for all regions
1495  */
1496 void memory_global_dirty_log_start(void);
1497 
1498 /**
1499  * memory_global_dirty_log_stop: end dirty logging for all regions
1500  */
1501 void memory_global_dirty_log_stop(void);
1502 
1503 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1504                 bool dispatch_tree);
1505 
1506 /**
1507  * memory_region_request_mmio_ptr: request a pointer to an mmio
1508  * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1509  * When the device wants to invalidate the pointer it will call
1510  * memory_region_invalidate_mmio_ptr.
1511  *
1512  * @mr: #MemoryRegion to check
1513  * @addr: address within that region
1514  *
1515  * Returns true on success, false otherwise.
1516  */
1517 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1518 
1519 /**
1520  * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1521  * previously requested.
1522  * In the end that means that if something wants to execute from this area it
1523  * will need to request the pointer again.
1524  *
1525  * @mr: #MemoryRegion associated to the pointer.
1526  * @addr: address within that region
1527  * @size: size of that area.
1528  */
1529 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1530                                        unsigned size);
1531 
1532 /**
1533  * memory_region_dispatch_read: perform a read directly to the specified
1534  * MemoryRegion.
1535  *
1536  * @mr: #MemoryRegion to access
1537  * @addr: address within that region
1538  * @pval: pointer to uint64_t which the data is written to
1539  * @size: size of the access in bytes
1540  * @attrs: memory transaction attributes to use for the access
1541  */
1542 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1543                                         hwaddr addr,
1544                                         uint64_t *pval,
1545                                         unsigned size,
1546                                         MemTxAttrs attrs);
1547 /**
1548  * memory_region_dispatch_write: perform a write directly to the specified
1549  * MemoryRegion.
1550  *
1551  * @mr: #MemoryRegion to access
1552  * @addr: address within that region
1553  * @data: data to write
1554  * @size: size of the access in bytes
1555  * @attrs: memory transaction attributes to use for the access
1556  */
1557 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1558                                          hwaddr addr,
1559                                          uint64_t data,
1560                                          unsigned size,
1561                                          MemTxAttrs attrs);
1562 
1563 /**
1564  * address_space_init: initializes an address space
1565  *
1566  * @as: an uninitialized #AddressSpace
1567  * @root: a #MemoryRegion that routes addresses for the address space
1568  * @name: an address space name.  The name is only used for debugging
1569  *        output.
1570  */
1571 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1572 
1573 /**
1574  * address_space_destroy: destroy an address space
1575  *
1576  * Releases all resources associated with an address space.  After an address space
1577  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1578  * as well.
1579  *
1580  * @as: address space to be destroyed
1581  */
1582 void address_space_destroy(AddressSpace *as);
1583 
1584 /**
1585  * address_space_rw: read from or write to an address space.
1586  *
1587  * Return a MemTxResult indicating whether the operation succeeded
1588  * or failed (eg unassigned memory, device rejected the transaction,
1589  * IOMMU fault).
1590  *
1591  * @as: #AddressSpace to be accessed
1592  * @addr: address within that address space
1593  * @attrs: memory transaction attributes
1594  * @buf: buffer with the data transferred
1595  * @is_write: indicates the transfer direction
1596  */
1597 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1598                              MemTxAttrs attrs, uint8_t *buf,
1599                              int len, bool is_write);
1600 
1601 /**
1602  * address_space_write: write to address space.
1603  *
1604  * Return a MemTxResult indicating whether the operation succeeded
1605  * or failed (eg unassigned memory, device rejected the transaction,
1606  * IOMMU fault).
1607  *
1608  * @as: #AddressSpace to be accessed
1609  * @addr: address within that address space
1610  * @attrs: memory transaction attributes
1611  * @buf: buffer with the data transferred
1612  */
1613 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1614                                 MemTxAttrs attrs,
1615                                 const uint8_t *buf, int len);
1616 
1617 /* address_space_ld*: load from an address space
1618  * address_space_st*: store to an address space
1619  *
1620  * These functions perform a load or store of the byte, word,
1621  * longword or quad to the specified address within the AddressSpace.
1622  * The _le suffixed functions treat the data as little endian;
1623  * _be indicates big endian; no suffix indicates "same endianness
1624  * as guest CPU".
1625  *
1626  * The "guest CPU endianness" accessors are deprecated for use outside
1627  * target-* code; devices should be CPU-agnostic and use either the LE
1628  * or the BE accessors.
1629  *
1630  * @as #AddressSpace to be accessed
1631  * @addr: address within that address space
1632  * @val: data value, for stores
1633  * @attrs: memory transaction attributes
1634  * @result: location to write the success/failure of the transaction;
1635  *   if NULL, this information is discarded
1636  */
1637 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1638                             MemTxAttrs attrs, MemTxResult *result);
1639 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1640                             MemTxAttrs attrs, MemTxResult *result);
1641 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1642                             MemTxAttrs attrs, MemTxResult *result);
1643 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1644                             MemTxAttrs attrs, MemTxResult *result);
1645 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1646                             MemTxAttrs attrs, MemTxResult *result);
1647 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1648                             MemTxAttrs attrs, MemTxResult *result);
1649 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1650                             MemTxAttrs attrs, MemTxResult *result);
1651 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1652                             MemTxAttrs attrs, MemTxResult *result);
1653 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1654                             MemTxAttrs attrs, MemTxResult *result);
1655 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1656                             MemTxAttrs attrs, MemTxResult *result);
1657 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1658                             MemTxAttrs attrs, MemTxResult *result);
1659 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1660                             MemTxAttrs attrs, MemTxResult *result);
1661 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1662                             MemTxAttrs attrs, MemTxResult *result);
1663 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1664                             MemTxAttrs attrs, MemTxResult *result);
1665 
1666 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1667 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1668 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1669 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1670 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1671 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1672 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1673 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1674 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1675 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1676 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1677 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1678 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1679 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1680 
1681 struct MemoryRegionCache {
1682     hwaddr xlat;
1683     hwaddr len;
1684     AddressSpace *as;
1685 };
1686 
1687 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1688 
1689 /* address_space_cache_init: prepare for repeated access to a physical
1690  * memory region
1691  *
1692  * @cache: #MemoryRegionCache to be filled
1693  * @as: #AddressSpace to be accessed
1694  * @addr: address within that address space
1695  * @len: length of buffer
1696  * @is_write: indicates the transfer direction
1697  *
1698  * Will only work with RAM, and may map a subset of the requested range by
1699  * returning a value that is less than @len.  On failure, return a negative
1700  * errno value.
1701  *
1702  * Because it only works with RAM, this function can be used for
1703  * read-modify-write operations.  In this case, is_write should be %true.
1704  *
1705  * Note that addresses passed to the address_space_*_cached functions
1706  * are relative to @addr.
1707  */
1708 int64_t address_space_cache_init(MemoryRegionCache *cache,
1709                                  AddressSpace *as,
1710                                  hwaddr addr,
1711                                  hwaddr len,
1712                                  bool is_write);
1713 
1714 /**
1715  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1716  *
1717  * @cache: The #MemoryRegionCache to operate on.
1718  * @addr: The first physical address that was written, relative to the
1719  * address that was passed to @address_space_cache_init.
1720  * @access_len: The number of bytes that were written starting at @addr.
1721  */
1722 void address_space_cache_invalidate(MemoryRegionCache *cache,
1723                                     hwaddr addr,
1724                                     hwaddr access_len);
1725 
1726 /**
1727  * address_space_cache_destroy: free a #MemoryRegionCache
1728  *
1729  * @cache: The #MemoryRegionCache whose memory should be released.
1730  */
1731 void address_space_cache_destroy(MemoryRegionCache *cache);
1732 
1733 /* address_space_ld*_cached: load from a cached #MemoryRegion
1734  * address_space_st*_cached: store into a cached #MemoryRegion
1735  *
1736  * These functions perform a load or store of the byte, word,
1737  * longword or quad to the specified address.  The address is
1738  * a physical address in the AddressSpace, but it must lie within
1739  * a #MemoryRegion that was mapped with address_space_cache_init.
1740  *
1741  * The _le suffixed functions treat the data as little endian;
1742  * _be indicates big endian; no suffix indicates "same endianness
1743  * as guest CPU".
1744  *
1745  * The "guest CPU endianness" accessors are deprecated for use outside
1746  * target-* code; devices should be CPU-agnostic and use either the LE
1747  * or the BE accessors.
1748  *
1749  * @cache: previously initialized #MemoryRegionCache to be accessed
1750  * @addr: address within the address space
1751  * @val: data value, for stores
1752  * @attrs: memory transaction attributes
1753  * @result: location to write the success/failure of the transaction;
1754  *   if NULL, this information is discarded
1755  */
1756 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1757                             MemTxAttrs attrs, MemTxResult *result);
1758 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1759                             MemTxAttrs attrs, MemTxResult *result);
1760 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1761                             MemTxAttrs attrs, MemTxResult *result);
1762 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1763                             MemTxAttrs attrs, MemTxResult *result);
1764 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1765                             MemTxAttrs attrs, MemTxResult *result);
1766 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1767                             MemTxAttrs attrs, MemTxResult *result);
1768 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1769                             MemTxAttrs attrs, MemTxResult *result);
1770 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1771                             MemTxAttrs attrs, MemTxResult *result);
1772 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1773                             MemTxAttrs attrs, MemTxResult *result);
1774 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1775                             MemTxAttrs attrs, MemTxResult *result);
1776 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1777                             MemTxAttrs attrs, MemTxResult *result);
1778 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1779                             MemTxAttrs attrs, MemTxResult *result);
1780 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1781                             MemTxAttrs attrs, MemTxResult *result);
1782 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1783                             MemTxAttrs attrs, MemTxResult *result);
1784 
1785 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1786 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1787 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1788 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1789 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1790 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1791 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1792 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1793 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1794 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1795 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1796 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1797 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1798 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1799 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1800  * entry. Should be called from an RCU critical section.
1801  */
1802 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1803                                             bool is_write);
1804 
1805 /* address_space_translate: translate an address range into an address space
1806  * into a MemoryRegion and an address range into that section.  Should be
1807  * called from an RCU critical section, to avoid that the last reference
1808  * to the returned region disappears after address_space_translate returns.
1809  *
1810  * @as: #AddressSpace to be accessed
1811  * @addr: address within that address space
1812  * @xlat: pointer to address within the returned memory region section's
1813  * #MemoryRegion.
1814  * @len: pointer to length
1815  * @is_write: indicates the transfer direction
1816  */
1817 MemoryRegion *flatview_translate(FlatView *fv,
1818                                  hwaddr addr, hwaddr *xlat,
1819                                  hwaddr *len, bool is_write);
1820 
1821 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1822                                                     hwaddr addr, hwaddr *xlat,
1823                                                     hwaddr *len, bool is_write)
1824 {
1825     return flatview_translate(address_space_to_flatview(as),
1826                               addr, xlat, len, is_write);
1827 }
1828 
1829 /* address_space_access_valid: check for validity of accessing an address
1830  * space range
1831  *
1832  * Check whether memory is assigned to the given address space range, and
1833  * access is permitted by any IOMMU regions that are active for the address
1834  * space.
1835  *
1836  * For now, addr and len should be aligned to a page size.  This limitation
1837  * will be lifted in the future.
1838  *
1839  * @as: #AddressSpace to be accessed
1840  * @addr: address within that address space
1841  * @len: length of the area to be checked
1842  * @is_write: indicates the transfer direction
1843  */
1844 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1845 
1846 /* address_space_map: map a physical memory region into a host virtual address
1847  *
1848  * May map a subset of the requested range, given by and returned in @plen.
1849  * May return %NULL if resources needed to perform the mapping are exhausted.
1850  * Use only for reads OR writes - not for read-modify-write operations.
1851  * Use cpu_register_map_client() to know when retrying the map operation is
1852  * likely to succeed.
1853  *
1854  * @as: #AddressSpace to be accessed
1855  * @addr: address within that address space
1856  * @plen: pointer to length of buffer; updated on return
1857  * @is_write: indicates the transfer direction
1858  */
1859 void *address_space_map(AddressSpace *as, hwaddr addr,
1860                         hwaddr *plen, bool is_write);
1861 
1862 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1863  *
1864  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1865  * the amount of memory that was actually read or written by the caller.
1866  *
1867  * @as: #AddressSpace used
1868  * @addr: address within that address space
1869  * @len: buffer length as returned by address_space_map()
1870  * @access_len: amount of data actually transferred
1871  * @is_write: indicates the transfer direction
1872  */
1873 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1874                          int is_write, hwaddr access_len);
1875 
1876 
1877 /* Internal functions, part of the implementation of address_space_read.  */
1878 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1879                                    MemTxAttrs attrs, uint8_t *buf,
1880                                    int len, hwaddr addr1, hwaddr l,
1881                                    MemoryRegion *mr);
1882 
1883 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
1884                                MemTxAttrs attrs, uint8_t *buf, int len);
1885 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1886 
1887 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1888 {
1889     if (is_write) {
1890         return memory_region_is_ram(mr) &&
1891                !mr->readonly && !memory_region_is_ram_device(mr);
1892     } else {
1893         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1894                memory_region_is_romd(mr);
1895     }
1896 }
1897 
1898 /**
1899  * address_space_read: read from an address space.
1900  *
1901  * Return a MemTxResult indicating whether the operation succeeded
1902  * or failed (eg unassigned memory, device rejected the transaction,
1903  * IOMMU fault).
1904  *
1905  * @as: #AddressSpace to be accessed
1906  * @addr: address within that address space
1907  * @attrs: memory transaction attributes
1908  * @buf: buffer with the data transferred
1909  */
1910 static inline __attribute__((__always_inline__))
1911 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
1912                           uint8_t *buf, int len)
1913 {
1914     MemTxResult result = MEMTX_OK;
1915     hwaddr l, addr1;
1916     void *ptr;
1917     MemoryRegion *mr;
1918 
1919     if (__builtin_constant_p(len)) {
1920         if (len) {
1921             rcu_read_lock();
1922             l = len;
1923             mr = flatview_translate(fv, addr, &addr1, &l, false);
1924             if (len == l && memory_access_is_direct(mr, false)) {
1925                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1926                 memcpy(buf, ptr, len);
1927             } else {
1928                 result = flatview_read_continue(fv, addr, attrs, buf, len,
1929                                                 addr1, l, mr);
1930             }
1931             rcu_read_unlock();
1932         }
1933     } else {
1934         result = flatview_read_full(fv, addr, attrs, buf, len);
1935     }
1936     return result;
1937 }
1938 
1939 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1940                                              MemTxAttrs attrs, uint8_t *buf,
1941                                              int len)
1942 {
1943     return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
1944 }
1945 
1946 /**
1947  * address_space_read_cached: read from a cached RAM region
1948  *
1949  * @cache: Cached region to be addressed
1950  * @addr: address relative to the base of the RAM region
1951  * @buf: buffer with the data transferred
1952  * @len: length of the data transferred
1953  */
1954 static inline void
1955 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1956                           void *buf, int len)
1957 {
1958     assert(addr < cache->len && len <= cache->len - addr);
1959     address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1960 }
1961 
1962 /**
1963  * address_space_write_cached: write to a cached RAM region
1964  *
1965  * @cache: Cached region to be addressed
1966  * @addr: address relative to the base of the RAM region
1967  * @buf: buffer with the data transferred
1968  * @len: length of the data transferred
1969  */
1970 static inline void
1971 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1972                            void *buf, int len)
1973 {
1974     assert(addr < cache->len && len <= cache->len - addr);
1975     address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1976 }
1977 
1978 #endif
1979 
1980 #endif
1981