1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/ramlist.h" 23 #include "qemu/bswap.h" 24 #include "qemu/queue.h" 25 #include "qemu/int128.h" 26 #include "qemu/notify.h" 27 #include "qom/object.h" 28 #include "qemu/rcu.h" 29 30 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 31 32 #define MAX_PHYS_ADDR_SPACE_BITS 62 33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 34 35 #define TYPE_MEMORY_REGION "qemu:memory-region" 36 #define MEMORY_REGION(obj) \ 37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 38 39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 40 #define IOMMU_MEMORY_REGION(obj) \ 41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 42 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 44 TYPE_IOMMU_MEMORY_REGION) 45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 47 TYPE_IOMMU_MEMORY_REGION) 48 49 extern bool global_dirty_log; 50 51 typedef struct MemoryRegionOps MemoryRegionOps; 52 typedef struct MemoryRegionMmio MemoryRegionMmio; 53 54 struct MemoryRegionMmio { 55 CPUReadMemoryFunc *read[3]; 56 CPUWriteMemoryFunc *write[3]; 57 }; 58 59 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 60 61 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 62 typedef enum { 63 IOMMU_NONE = 0, 64 IOMMU_RO = 1, 65 IOMMU_WO = 2, 66 IOMMU_RW = 3, 67 } IOMMUAccessFlags; 68 69 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 70 71 struct IOMMUTLBEntry { 72 AddressSpace *target_as; 73 hwaddr iova; 74 hwaddr translated_addr; 75 hwaddr addr_mask; /* 0xfff = 4k translation */ 76 IOMMUAccessFlags perm; 77 }; 78 79 /* 80 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 81 * register with one or multiple IOMMU Notifier capability bit(s). 82 */ 83 typedef enum { 84 IOMMU_NOTIFIER_NONE = 0, 85 /* Notify cache invalidations */ 86 IOMMU_NOTIFIER_UNMAP = 0x1, 87 /* Notify entry changes (newly created entries) */ 88 IOMMU_NOTIFIER_MAP = 0x2, 89 } IOMMUNotifierFlag; 90 91 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 92 93 struct IOMMUNotifier; 94 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 95 IOMMUTLBEntry *data); 96 97 struct IOMMUNotifier { 98 IOMMUNotify notify; 99 IOMMUNotifierFlag notifier_flags; 100 /* Notify for address space range start <= addr <= end */ 101 hwaddr start; 102 hwaddr end; 103 int iommu_idx; 104 QLIST_ENTRY(IOMMUNotifier) node; 105 }; 106 typedef struct IOMMUNotifier IOMMUNotifier; 107 108 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 109 #define RAM_PREALLOC (1 << 0) 110 111 /* RAM is mmap-ed with MAP_SHARED */ 112 #define RAM_SHARED (1 << 1) 113 114 /* Only a portion of RAM (used_length) is actually used, and migrated. 115 * This used_length size can change across reboots. 116 */ 117 #define RAM_RESIZEABLE (1 << 2) 118 119 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 120 * zero the page and wake waiting processes. 121 * (Set during postcopy) 122 */ 123 #define RAM_UF_ZEROPAGE (1 << 3) 124 125 /* RAM can be migrated */ 126 #define RAM_MIGRATABLE (1 << 4) 127 128 /* RAM is a persistent kind memory */ 129 #define RAM_PMEM (1 << 5) 130 131 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 132 IOMMUNotifierFlag flags, 133 hwaddr start, hwaddr end, 134 int iommu_idx) 135 { 136 n->notify = fn; 137 n->notifier_flags = flags; 138 n->start = start; 139 n->end = end; 140 n->iommu_idx = iommu_idx; 141 } 142 143 /* 144 * Memory region callbacks 145 */ 146 struct MemoryRegionOps { 147 /* Read from the memory region. @addr is relative to @mr; @size is 148 * in bytes. */ 149 uint64_t (*read)(void *opaque, 150 hwaddr addr, 151 unsigned size); 152 /* Write to the memory region. @addr is relative to @mr; @size is 153 * in bytes. */ 154 void (*write)(void *opaque, 155 hwaddr addr, 156 uint64_t data, 157 unsigned size); 158 159 MemTxResult (*read_with_attrs)(void *opaque, 160 hwaddr addr, 161 uint64_t *data, 162 unsigned size, 163 MemTxAttrs attrs); 164 MemTxResult (*write_with_attrs)(void *opaque, 165 hwaddr addr, 166 uint64_t data, 167 unsigned size, 168 MemTxAttrs attrs); 169 170 enum device_endian endianness; 171 /* Guest-visible constraints: */ 172 struct { 173 /* If nonzero, specify bounds on access sizes beyond which a machine 174 * check is thrown. 175 */ 176 unsigned min_access_size; 177 unsigned max_access_size; 178 /* If true, unaligned accesses are supported. Otherwise unaligned 179 * accesses throw machine checks. 180 */ 181 bool unaligned; 182 /* 183 * If present, and returns #false, the transaction is not accepted 184 * by the device (and results in machine dependent behaviour such 185 * as a machine check exception). 186 */ 187 bool (*accepts)(void *opaque, hwaddr addr, 188 unsigned size, bool is_write, 189 MemTxAttrs attrs); 190 } valid; 191 /* Internal implementation constraints: */ 192 struct { 193 /* If nonzero, specifies the minimum size implemented. Smaller sizes 194 * will be rounded upwards and a partial result will be returned. 195 */ 196 unsigned min_access_size; 197 /* If nonzero, specifies the maximum size implemented. Larger sizes 198 * will be done as a series of accesses with smaller sizes. 199 */ 200 unsigned max_access_size; 201 /* If true, unaligned accesses are supported. Otherwise all accesses 202 * are converted to (possibly multiple) naturally aligned accesses. 203 */ 204 bool unaligned; 205 } impl; 206 }; 207 208 typedef struct MemoryRegionClass { 209 /* private */ 210 ObjectClass parent_class; 211 } MemoryRegionClass; 212 213 214 enum IOMMUMemoryRegionAttr { 215 IOMMU_ATTR_SPAPR_TCE_FD 216 }; 217 218 /** 219 * IOMMUMemoryRegionClass: 220 * 221 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 222 * and provide an implementation of at least the @translate method here 223 * to handle requests to the memory region. Other methods are optional. 224 * 225 * The IOMMU implementation must use the IOMMU notifier infrastructure 226 * to report whenever mappings are changed, by calling 227 * memory_region_notify_iommu() (or, if necessary, by calling 228 * memory_region_notify_one() for each registered notifier). 229 * 230 * Conceptually an IOMMU provides a mapping from input address 231 * to an output TLB entry. If the IOMMU is aware of memory transaction 232 * attributes and the output TLB entry depends on the transaction 233 * attributes, we represent this using IOMMU indexes. Each index 234 * selects a particular translation table that the IOMMU has: 235 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 236 * @translate takes an input address and an IOMMU index 237 * and the mapping returned can only depend on the input address and the 238 * IOMMU index. 239 * 240 * Most IOMMUs don't care about the transaction attributes and support 241 * only a single IOMMU index. A more complex IOMMU might have one index 242 * for secure transactions and one for non-secure transactions. 243 */ 244 typedef struct IOMMUMemoryRegionClass { 245 /* private */ 246 MemoryRegionClass parent_class; 247 248 /* 249 * Return a TLB entry that contains a given address. 250 * 251 * The IOMMUAccessFlags indicated via @flag are optional and may 252 * be specified as IOMMU_NONE to indicate that the caller needs 253 * the full translation information for both reads and writes. If 254 * the access flags are specified then the IOMMU implementation 255 * may use this as an optimization, to stop doing a page table 256 * walk as soon as it knows that the requested permissions are not 257 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 258 * full page table walk and report the permissions in the returned 259 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 260 * return different mappings for reads and writes.) 261 * 262 * The returned information remains valid while the caller is 263 * holding the big QEMU lock or is inside an RCU critical section; 264 * if the caller wishes to cache the mapping beyond that it must 265 * register an IOMMU notifier so it can invalidate its cached 266 * information when the IOMMU mapping changes. 267 * 268 * @iommu: the IOMMUMemoryRegion 269 * @hwaddr: address to be translated within the memory region 270 * @flag: requested access permissions 271 * @iommu_idx: IOMMU index for the translation 272 */ 273 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 274 IOMMUAccessFlags flag, int iommu_idx); 275 /* Returns minimum supported page size in bytes. 276 * If this method is not provided then the minimum is assumed to 277 * be TARGET_PAGE_SIZE. 278 * 279 * @iommu: the IOMMUMemoryRegion 280 */ 281 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 282 /* Called when IOMMU Notifier flag changes (ie when the set of 283 * events which IOMMU users are requesting notification for changes). 284 * Optional method -- need not be provided if the IOMMU does not 285 * need to know exactly which events must be notified. 286 * 287 * @iommu: the IOMMUMemoryRegion 288 * @old_flags: events which previously needed to be notified 289 * @new_flags: events which now need to be notified 290 */ 291 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 292 IOMMUNotifierFlag old_flags, 293 IOMMUNotifierFlag new_flags); 294 /* Called to handle memory_region_iommu_replay(). 295 * 296 * The default implementation of memory_region_iommu_replay() is to 297 * call the IOMMU translate method for every page in the address space 298 * with flag == IOMMU_NONE and then call the notifier if translate 299 * returns a valid mapping. If this method is implemented then it 300 * overrides the default behaviour, and must provide the full semantics 301 * of memory_region_iommu_replay(), by calling @notifier for every 302 * translation present in the IOMMU. 303 * 304 * Optional method -- an IOMMU only needs to provide this method 305 * if the default is inefficient or produces undesirable side effects. 306 * 307 * Note: this is not related to record-and-replay functionality. 308 */ 309 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 310 311 /* Get IOMMU misc attributes. This is an optional method that 312 * can be used to allow users of the IOMMU to get implementation-specific 313 * information. The IOMMU implements this method to handle calls 314 * by IOMMU users to memory_region_iommu_get_attr() by filling in 315 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 316 * the IOMMU supports. If the method is unimplemented then 317 * memory_region_iommu_get_attr() will always return -EINVAL. 318 * 319 * @iommu: the IOMMUMemoryRegion 320 * @attr: attribute being queried 321 * @data: memory to fill in with the attribute data 322 * 323 * Returns 0 on success, or a negative errno; in particular 324 * returns -EINVAL for unrecognized or unimplemented attribute types. 325 */ 326 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 327 void *data); 328 329 /* Return the IOMMU index to use for a given set of transaction attributes. 330 * 331 * Optional method: if an IOMMU only supports a single IOMMU index then 332 * the default implementation of memory_region_iommu_attrs_to_index() 333 * will return 0. 334 * 335 * The indexes supported by an IOMMU must be contiguous, starting at 0. 336 * 337 * @iommu: the IOMMUMemoryRegion 338 * @attrs: memory transaction attributes 339 */ 340 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 341 342 /* Return the number of IOMMU indexes this IOMMU supports. 343 * 344 * Optional method: if this method is not provided, then 345 * memory_region_iommu_num_indexes() will return 1, indicating that 346 * only a single IOMMU index is supported. 347 * 348 * @iommu: the IOMMUMemoryRegion 349 */ 350 int (*num_indexes)(IOMMUMemoryRegion *iommu); 351 } IOMMUMemoryRegionClass; 352 353 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 354 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 355 356 struct MemoryRegion { 357 Object parent_obj; 358 359 /* All fields are private - violators will be prosecuted */ 360 361 /* The following fields should fit in a cache line */ 362 bool romd_mode; 363 bool ram; 364 bool subpage; 365 bool readonly; /* For RAM regions */ 366 bool nonvolatile; 367 bool rom_device; 368 bool flush_coalesced_mmio; 369 bool global_locking; 370 uint8_t dirty_log_mask; 371 bool is_iommu; 372 RAMBlock *ram_block; 373 Object *owner; 374 375 const MemoryRegionOps *ops; 376 void *opaque; 377 MemoryRegion *container; 378 Int128 size; 379 hwaddr addr; 380 void (*destructor)(MemoryRegion *mr); 381 uint64_t align; 382 bool terminates; 383 bool ram_device; 384 bool enabled; 385 bool warning_printed; /* For reservations */ 386 uint8_t vga_logging_count; 387 MemoryRegion *alias; 388 hwaddr alias_offset; 389 int32_t priority; 390 QTAILQ_HEAD(, MemoryRegion) subregions; 391 QTAILQ_ENTRY(MemoryRegion) subregions_link; 392 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 393 const char *name; 394 unsigned ioeventfd_nb; 395 MemoryRegionIoeventfd *ioeventfds; 396 }; 397 398 struct IOMMUMemoryRegion { 399 MemoryRegion parent_obj; 400 401 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 402 IOMMUNotifierFlag iommu_notify_flags; 403 }; 404 405 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 406 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 407 408 /** 409 * MemoryListener: callbacks structure for updates to the physical memory map 410 * 411 * Allows a component to adjust to changes in the guest-visible memory map. 412 * Use with memory_listener_register() and memory_listener_unregister(). 413 */ 414 struct MemoryListener { 415 void (*begin)(MemoryListener *listener); 416 void (*commit)(MemoryListener *listener); 417 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 418 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 419 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 420 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 421 int old, int new); 422 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 423 int old, int new); 424 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 425 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 426 void (*log_global_start)(MemoryListener *listener); 427 void (*log_global_stop)(MemoryListener *listener); 428 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 429 bool match_data, uint64_t data, EventNotifier *e); 430 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 431 bool match_data, uint64_t data, EventNotifier *e); 432 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 433 hwaddr addr, hwaddr len); 434 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 435 hwaddr addr, hwaddr len); 436 /* Lower = earlier (during add), later (during del) */ 437 unsigned priority; 438 AddressSpace *address_space; 439 QTAILQ_ENTRY(MemoryListener) link; 440 QTAILQ_ENTRY(MemoryListener) link_as; 441 }; 442 443 /** 444 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 445 */ 446 struct AddressSpace { 447 /* All fields are private. */ 448 struct rcu_head rcu; 449 char *name; 450 MemoryRegion *root; 451 452 /* Accessed via RCU. */ 453 struct FlatView *current_map; 454 455 int ioeventfd_nb; 456 struct MemoryRegionIoeventfd *ioeventfds; 457 QTAILQ_HEAD(, MemoryListener) listeners; 458 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 459 }; 460 461 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 462 typedef struct FlatRange FlatRange; 463 464 /* Flattened global view of current active memory hierarchy. Kept in sorted 465 * order. 466 */ 467 struct FlatView { 468 struct rcu_head rcu; 469 unsigned ref; 470 FlatRange *ranges; 471 unsigned nr; 472 unsigned nr_allocated; 473 struct AddressSpaceDispatch *dispatch; 474 MemoryRegion *root; 475 }; 476 477 static inline FlatView *address_space_to_flatview(AddressSpace *as) 478 { 479 return atomic_rcu_read(&as->current_map); 480 } 481 482 483 /** 484 * MemoryRegionSection: describes a fragment of a #MemoryRegion 485 * 486 * @mr: the region, or %NULL if empty 487 * @fv: the flat view of the address space the region is mapped in 488 * @offset_within_region: the beginning of the section, relative to @mr's start 489 * @size: the size of the section; will not exceed @mr's boundaries 490 * @offset_within_address_space: the address of the first byte of the section 491 * relative to the region's address space 492 * @readonly: writes to this section are ignored 493 * @nonvolatile: this section is non-volatile 494 */ 495 struct MemoryRegionSection { 496 MemoryRegion *mr; 497 FlatView *fv; 498 hwaddr offset_within_region; 499 Int128 size; 500 hwaddr offset_within_address_space; 501 bool readonly; 502 bool nonvolatile; 503 }; 504 505 /** 506 * memory_region_init: Initialize a memory region 507 * 508 * The region typically acts as a container for other memory regions. Use 509 * memory_region_add_subregion() to add subregions. 510 * 511 * @mr: the #MemoryRegion to be initialized 512 * @owner: the object that tracks the region's reference count 513 * @name: used for debugging; not visible to the user or ABI 514 * @size: size of the region; any subregions beyond this size will be clipped 515 */ 516 void memory_region_init(MemoryRegion *mr, 517 struct Object *owner, 518 const char *name, 519 uint64_t size); 520 521 /** 522 * memory_region_ref: Add 1 to a memory region's reference count 523 * 524 * Whenever memory regions are accessed outside the BQL, they need to be 525 * preserved against hot-unplug. MemoryRegions actually do not have their 526 * own reference count; they piggyback on a QOM object, their "owner". 527 * This function adds a reference to the owner. 528 * 529 * All MemoryRegions must have an owner if they can disappear, even if the 530 * device they belong to operates exclusively under the BQL. This is because 531 * the region could be returned at any time by memory_region_find, and this 532 * is usually under guest control. 533 * 534 * @mr: the #MemoryRegion 535 */ 536 void memory_region_ref(MemoryRegion *mr); 537 538 /** 539 * memory_region_unref: Remove 1 to a memory region's reference count 540 * 541 * Whenever memory regions are accessed outside the BQL, they need to be 542 * preserved against hot-unplug. MemoryRegions actually do not have their 543 * own reference count; they piggyback on a QOM object, their "owner". 544 * This function removes a reference to the owner and possibly destroys it. 545 * 546 * @mr: the #MemoryRegion 547 */ 548 void memory_region_unref(MemoryRegion *mr); 549 550 /** 551 * memory_region_init_io: Initialize an I/O memory region. 552 * 553 * Accesses into the region will cause the callbacks in @ops to be called. 554 * if @size is nonzero, subregions will be clipped to @size. 555 * 556 * @mr: the #MemoryRegion to be initialized. 557 * @owner: the object that tracks the region's reference count 558 * @ops: a structure containing read and write callbacks to be used when 559 * I/O is performed on the region. 560 * @opaque: passed to the read and write callbacks of the @ops structure. 561 * @name: used for debugging; not visible to the user or ABI 562 * @size: size of the region. 563 */ 564 void memory_region_init_io(MemoryRegion *mr, 565 struct Object *owner, 566 const MemoryRegionOps *ops, 567 void *opaque, 568 const char *name, 569 uint64_t size); 570 571 /** 572 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 573 * into the region will modify memory 574 * directly. 575 * 576 * @mr: the #MemoryRegion to be initialized. 577 * @owner: the object that tracks the region's reference count 578 * @name: Region name, becomes part of RAMBlock name used in migration stream 579 * must be unique within any device 580 * @size: size of the region. 581 * @errp: pointer to Error*, to store an error if it happens. 582 * 583 * Note that this function does not do anything to cause the data in the 584 * RAM memory region to be migrated; that is the responsibility of the caller. 585 */ 586 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 587 struct Object *owner, 588 const char *name, 589 uint64_t size, 590 Error **errp); 591 592 /** 593 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region. 594 * Accesses into the region will 595 * modify memory directly. 596 * 597 * @mr: the #MemoryRegion to be initialized. 598 * @owner: the object that tracks the region's reference count 599 * @name: Region name, becomes part of RAMBlock name used in migration stream 600 * must be unique within any device 601 * @size: size of the region. 602 * @share: allow remapping RAM to different addresses 603 * @errp: pointer to Error*, to store an error if it happens. 604 * 605 * Note that this function is similar to memory_region_init_ram_nomigrate. 606 * The only difference is part of the RAM region can be remapped. 607 */ 608 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr, 609 struct Object *owner, 610 const char *name, 611 uint64_t size, 612 bool share, 613 Error **errp); 614 615 /** 616 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 617 * RAM. Accesses into the region will 618 * modify memory directly. Only an initial 619 * portion of this RAM is actually used. 620 * The used size can change across reboots. 621 * 622 * @mr: the #MemoryRegion to be initialized. 623 * @owner: the object that tracks the region's reference count 624 * @name: Region name, becomes part of RAMBlock name used in migration stream 625 * must be unique within any device 626 * @size: used size of the region. 627 * @max_size: max size of the region. 628 * @resized: callback to notify owner about used size change. 629 * @errp: pointer to Error*, to store an error if it happens. 630 * 631 * Note that this function does not do anything to cause the data in the 632 * RAM memory region to be migrated; that is the responsibility of the caller. 633 */ 634 void memory_region_init_resizeable_ram(MemoryRegion *mr, 635 struct Object *owner, 636 const char *name, 637 uint64_t size, 638 uint64_t max_size, 639 void (*resized)(const char*, 640 uint64_t length, 641 void *host), 642 Error **errp); 643 #ifdef CONFIG_POSIX 644 645 /** 646 * memory_region_init_ram_from_file: Initialize RAM memory region with a 647 * mmap-ed backend. 648 * 649 * @mr: the #MemoryRegion to be initialized. 650 * @owner: the object that tracks the region's reference count 651 * @name: Region name, becomes part of RAMBlock name used in migration stream 652 * must be unique within any device 653 * @size: size of the region. 654 * @align: alignment of the region base address; if 0, the default alignment 655 * (getpagesize()) will be used. 656 * @ram_flags: Memory region features: 657 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag 658 * - RAM_PMEM: the memory is persistent memory 659 * Other bits are ignored now. 660 * @path: the path in which to allocate the RAM. 661 * @errp: pointer to Error*, to store an error if it happens. 662 * 663 * Note that this function does not do anything to cause the data in the 664 * RAM memory region to be migrated; that is the responsibility of the caller. 665 */ 666 void memory_region_init_ram_from_file(MemoryRegion *mr, 667 struct Object *owner, 668 const char *name, 669 uint64_t size, 670 uint64_t align, 671 uint32_t ram_flags, 672 const char *path, 673 Error **errp); 674 675 /** 676 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 677 * mmap-ed backend. 678 * 679 * @mr: the #MemoryRegion to be initialized. 680 * @owner: the object that tracks the region's reference count 681 * @name: the name of the region. 682 * @size: size of the region. 683 * @share: %true if memory must be mmaped with the MAP_SHARED flag 684 * @fd: the fd to mmap. 685 * @errp: pointer to Error*, to store an error if it happens. 686 * 687 * Note that this function does not do anything to cause the data in the 688 * RAM memory region to be migrated; that is the responsibility of the caller. 689 */ 690 void memory_region_init_ram_from_fd(MemoryRegion *mr, 691 struct Object *owner, 692 const char *name, 693 uint64_t size, 694 bool share, 695 int fd, 696 Error **errp); 697 #endif 698 699 /** 700 * memory_region_init_ram_ptr: Initialize RAM memory region from a 701 * user-provided pointer. Accesses into the 702 * region will modify memory directly. 703 * 704 * @mr: the #MemoryRegion to be initialized. 705 * @owner: the object that tracks the region's reference count 706 * @name: Region name, becomes part of RAMBlock name used in migration stream 707 * must be unique within any device 708 * @size: size of the region. 709 * @ptr: memory to be mapped; must contain at least @size bytes. 710 * 711 * Note that this function does not do anything to cause the data in the 712 * RAM memory region to be migrated; that is the responsibility of the caller. 713 */ 714 void memory_region_init_ram_ptr(MemoryRegion *mr, 715 struct Object *owner, 716 const char *name, 717 uint64_t size, 718 void *ptr); 719 720 /** 721 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 722 * a user-provided pointer. 723 * 724 * A RAM device represents a mapping to a physical device, such as to a PCI 725 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 726 * into the VM address space and access to the region will modify memory 727 * directly. However, the memory region should not be included in a memory 728 * dump (device may not be enabled/mapped at the time of the dump), and 729 * operations incompatible with manipulating MMIO should be avoided. Replaces 730 * skip_dump flag. 731 * 732 * @mr: the #MemoryRegion to be initialized. 733 * @owner: the object that tracks the region's reference count 734 * @name: the name of the region. 735 * @size: size of the region. 736 * @ptr: memory to be mapped; must contain at least @size bytes. 737 * 738 * Note that this function does not do anything to cause the data in the 739 * RAM memory region to be migrated; that is the responsibility of the caller. 740 * (For RAM device memory regions, migrating the contents rarely makes sense.) 741 */ 742 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 743 struct Object *owner, 744 const char *name, 745 uint64_t size, 746 void *ptr); 747 748 /** 749 * memory_region_init_alias: Initialize a memory region that aliases all or a 750 * part of another memory region. 751 * 752 * @mr: the #MemoryRegion to be initialized. 753 * @owner: the object that tracks the region's reference count 754 * @name: used for debugging; not visible to the user or ABI 755 * @orig: the region to be referenced; @mr will be equivalent to 756 * @orig between @offset and @offset + @size - 1. 757 * @offset: start of the section in @orig to be referenced. 758 * @size: size of the region. 759 */ 760 void memory_region_init_alias(MemoryRegion *mr, 761 struct Object *owner, 762 const char *name, 763 MemoryRegion *orig, 764 hwaddr offset, 765 uint64_t size); 766 767 /** 768 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 769 * 770 * This has the same effect as calling memory_region_init_ram_nomigrate() 771 * and then marking the resulting region read-only with 772 * memory_region_set_readonly(). 773 * 774 * Note that this function does not do anything to cause the data in the 775 * RAM side of the memory region to be migrated; that is the responsibility 776 * of the caller. 777 * 778 * @mr: the #MemoryRegion to be initialized. 779 * @owner: the object that tracks the region's reference count 780 * @name: Region name, becomes part of RAMBlock name used in migration stream 781 * must be unique within any device 782 * @size: size of the region. 783 * @errp: pointer to Error*, to store an error if it happens. 784 */ 785 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 786 struct Object *owner, 787 const char *name, 788 uint64_t size, 789 Error **errp); 790 791 /** 792 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 793 * Writes are handled via callbacks. 794 * 795 * Note that this function does not do anything to cause the data in the 796 * RAM side of the memory region to be migrated; that is the responsibility 797 * of the caller. 798 * 799 * @mr: the #MemoryRegion to be initialized. 800 * @owner: the object that tracks the region's reference count 801 * @ops: callbacks for write access handling (must not be NULL). 802 * @opaque: passed to the read and write callbacks of the @ops structure. 803 * @name: Region name, becomes part of RAMBlock name used in migration stream 804 * must be unique within any device 805 * @size: size of the region. 806 * @errp: pointer to Error*, to store an error if it happens. 807 */ 808 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 809 struct Object *owner, 810 const MemoryRegionOps *ops, 811 void *opaque, 812 const char *name, 813 uint64_t size, 814 Error **errp); 815 816 /** 817 * memory_region_init_iommu: Initialize a memory region of a custom type 818 * that translates addresses 819 * 820 * An IOMMU region translates addresses and forwards accesses to a target 821 * memory region. 822 * 823 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 824 * @_iommu_mr should be a pointer to enough memory for an instance of 825 * that subclass, @instance_size is the size of that subclass, and 826 * @mrtypename is its name. This function will initialize @_iommu_mr as an 827 * instance of the subclass, and its methods will then be called to handle 828 * accesses to the memory region. See the documentation of 829 * #IOMMUMemoryRegionClass for further details. 830 * 831 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 832 * @instance_size: the IOMMUMemoryRegion subclass instance size 833 * @mrtypename: the type name of the #IOMMUMemoryRegion 834 * @owner: the object that tracks the region's reference count 835 * @name: used for debugging; not visible to the user or ABI 836 * @size: size of the region. 837 */ 838 void memory_region_init_iommu(void *_iommu_mr, 839 size_t instance_size, 840 const char *mrtypename, 841 Object *owner, 842 const char *name, 843 uint64_t size); 844 845 /** 846 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 847 * region will modify memory directly. 848 * 849 * @mr: the #MemoryRegion to be initialized 850 * @owner: the object that tracks the region's reference count (must be 851 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 852 * @name: name of the memory region 853 * @size: size of the region in bytes 854 * @errp: pointer to Error*, to store an error if it happens. 855 * 856 * This function allocates RAM for a board model or device, and 857 * arranges for it to be migrated (by calling vmstate_register_ram() 858 * if @owner is a DeviceState, or vmstate_register_ram_global() if 859 * @owner is NULL). 860 * 861 * TODO: Currently we restrict @owner to being either NULL (for 862 * global RAM regions with no owner) or devices, so that we can 863 * give the RAM block a unique name for migration purposes. 864 * We should lift this restriction and allow arbitrary Objects. 865 * If you pass a non-NULL non-device @owner then we will assert. 866 */ 867 void memory_region_init_ram(MemoryRegion *mr, 868 struct Object *owner, 869 const char *name, 870 uint64_t size, 871 Error **errp); 872 873 /** 874 * memory_region_init_rom: Initialize a ROM memory region. 875 * 876 * This has the same effect as calling memory_region_init_ram() 877 * and then marking the resulting region read-only with 878 * memory_region_set_readonly(). This includes arranging for the 879 * contents to be migrated. 880 * 881 * TODO: Currently we restrict @owner to being either NULL (for 882 * global RAM regions with no owner) or devices, so that we can 883 * give the RAM block a unique name for migration purposes. 884 * We should lift this restriction and allow arbitrary Objects. 885 * If you pass a non-NULL non-device @owner then we will assert. 886 * 887 * @mr: the #MemoryRegion to be initialized. 888 * @owner: the object that tracks the region's reference count 889 * @name: Region name, becomes part of RAMBlock name used in migration stream 890 * must be unique within any device 891 * @size: size of the region. 892 * @errp: pointer to Error*, to store an error if it happens. 893 */ 894 void memory_region_init_rom(MemoryRegion *mr, 895 struct Object *owner, 896 const char *name, 897 uint64_t size, 898 Error **errp); 899 900 /** 901 * memory_region_init_rom_device: Initialize a ROM memory region. 902 * Writes are handled via callbacks. 903 * 904 * This function initializes a memory region backed by RAM for reads 905 * and callbacks for writes, and arranges for the RAM backing to 906 * be migrated (by calling vmstate_register_ram() 907 * if @owner is a DeviceState, or vmstate_register_ram_global() if 908 * @owner is NULL). 909 * 910 * TODO: Currently we restrict @owner to being either NULL (for 911 * global RAM regions with no owner) or devices, so that we can 912 * give the RAM block a unique name for migration purposes. 913 * We should lift this restriction and allow arbitrary Objects. 914 * If you pass a non-NULL non-device @owner then we will assert. 915 * 916 * @mr: the #MemoryRegion to be initialized. 917 * @owner: the object that tracks the region's reference count 918 * @ops: callbacks for write access handling (must not be NULL). 919 * @name: Region name, becomes part of RAMBlock name used in migration stream 920 * must be unique within any device 921 * @size: size of the region. 922 * @errp: pointer to Error*, to store an error if it happens. 923 */ 924 void memory_region_init_rom_device(MemoryRegion *mr, 925 struct Object *owner, 926 const MemoryRegionOps *ops, 927 void *opaque, 928 const char *name, 929 uint64_t size, 930 Error **errp); 931 932 933 /** 934 * memory_region_owner: get a memory region's owner. 935 * 936 * @mr: the memory region being queried. 937 */ 938 struct Object *memory_region_owner(MemoryRegion *mr); 939 940 /** 941 * memory_region_size: get a memory region's size. 942 * 943 * @mr: the memory region being queried. 944 */ 945 uint64_t memory_region_size(MemoryRegion *mr); 946 947 /** 948 * memory_region_is_ram: check whether a memory region is random access 949 * 950 * Returns %true if a memory region is random access. 951 * 952 * @mr: the memory region being queried 953 */ 954 static inline bool memory_region_is_ram(MemoryRegion *mr) 955 { 956 return mr->ram; 957 } 958 959 /** 960 * memory_region_is_ram_device: check whether a memory region is a ram device 961 * 962 * Returns %true if a memory region is a device backed ram region 963 * 964 * @mr: the memory region being queried 965 */ 966 bool memory_region_is_ram_device(MemoryRegion *mr); 967 968 /** 969 * memory_region_is_romd: check whether a memory region is in ROMD mode 970 * 971 * Returns %true if a memory region is a ROM device and currently set to allow 972 * direct reads. 973 * 974 * @mr: the memory region being queried 975 */ 976 static inline bool memory_region_is_romd(MemoryRegion *mr) 977 { 978 return mr->rom_device && mr->romd_mode; 979 } 980 981 /** 982 * memory_region_get_iommu: check whether a memory region is an iommu 983 * 984 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 985 * otherwise NULL. 986 * 987 * @mr: the memory region being queried 988 */ 989 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 990 { 991 if (mr->alias) { 992 return memory_region_get_iommu(mr->alias); 993 } 994 if (mr->is_iommu) { 995 return (IOMMUMemoryRegion *) mr; 996 } 997 return NULL; 998 } 999 1000 /** 1001 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1002 * if an iommu or NULL if not 1003 * 1004 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1005 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1006 * 1007 * @mr: the memory region being queried 1008 */ 1009 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1010 IOMMUMemoryRegion *iommu_mr) 1011 { 1012 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1013 } 1014 1015 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1016 1017 /** 1018 * memory_region_iommu_get_min_page_size: get minimum supported page size 1019 * for an iommu 1020 * 1021 * Returns minimum supported page size for an iommu. 1022 * 1023 * @iommu_mr: the memory region being queried 1024 */ 1025 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1026 1027 /** 1028 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1029 * 1030 * The notification type will be decided by entry.perm bits: 1031 * 1032 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 1033 * - For MAP (newly added entry) notifies: set entry.perm to the 1034 * permission of the page (which is definitely !IOMMU_NONE). 1035 * 1036 * Note: for any IOMMU implementation, an in-place mapping change 1037 * should be notified with an UNMAP followed by a MAP. 1038 * 1039 * @iommu_mr: the memory region that was changed 1040 * @iommu_idx: the IOMMU index for the translation table which has changed 1041 * @entry: the new entry in the IOMMU translation table. The entry 1042 * replaces all old entries for the same virtual I/O address range. 1043 * Deleted entries have .@perm == 0. 1044 */ 1045 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1046 int iommu_idx, 1047 IOMMUTLBEntry entry); 1048 1049 /** 1050 * memory_region_notify_one: notify a change in an IOMMU translation 1051 * entry to a single notifier 1052 * 1053 * This works just like memory_region_notify_iommu(), but it only 1054 * notifies a specific notifier, not all of them. 1055 * 1056 * @notifier: the notifier to be notified 1057 * @entry: the new entry in the IOMMU translation table. The entry 1058 * replaces all old entries for the same virtual I/O address range. 1059 * Deleted entries have .@perm == 0. 1060 */ 1061 void memory_region_notify_one(IOMMUNotifier *notifier, 1062 IOMMUTLBEntry *entry); 1063 1064 /** 1065 * memory_region_register_iommu_notifier: register a notifier for changes to 1066 * IOMMU translation entries. 1067 * 1068 * @mr: the memory region to observe 1069 * @n: the IOMMUNotifier to be added; the notify callback receives a 1070 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1071 * ceases to be valid on exit from the notifier. 1072 */ 1073 void memory_region_register_iommu_notifier(MemoryRegion *mr, 1074 IOMMUNotifier *n); 1075 1076 /** 1077 * memory_region_iommu_replay: replay existing IOMMU translations to 1078 * a notifier with the minimum page granularity returned by 1079 * mr->iommu_ops->get_page_size(). 1080 * 1081 * Note: this is not related to record-and-replay functionality. 1082 * 1083 * @iommu_mr: the memory region to observe 1084 * @n: the notifier to which to replay iommu mappings 1085 */ 1086 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1087 1088 /** 1089 * memory_region_iommu_replay_all: replay existing IOMMU translations 1090 * to all the notifiers registered. 1091 * 1092 * Note: this is not related to record-and-replay functionality. 1093 * 1094 * @iommu_mr: the memory region to observe 1095 */ 1096 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 1097 1098 /** 1099 * memory_region_unregister_iommu_notifier: unregister a notifier for 1100 * changes to IOMMU translation entries. 1101 * 1102 * @mr: the memory region which was observed and for which notity_stopped() 1103 * needs to be called 1104 * @n: the notifier to be removed. 1105 */ 1106 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1107 IOMMUNotifier *n); 1108 1109 /** 1110 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1111 * defined on the IOMMU. 1112 * 1113 * Returns 0 on success, or a negative errno otherwise. In particular, 1114 * -EINVAL indicates that the IOMMU does not support the requested 1115 * attribute. 1116 * 1117 * @iommu_mr: the memory region 1118 * @attr: the requested attribute 1119 * @data: a pointer to the requested attribute data 1120 */ 1121 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1122 enum IOMMUMemoryRegionAttr attr, 1123 void *data); 1124 1125 /** 1126 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1127 * use for translations with the given memory transaction attributes. 1128 * 1129 * @iommu_mr: the memory region 1130 * @attrs: the memory transaction attributes 1131 */ 1132 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1133 MemTxAttrs attrs); 1134 1135 /** 1136 * memory_region_iommu_num_indexes: return the total number of IOMMU 1137 * indexes that this IOMMU supports. 1138 * 1139 * @iommu_mr: the memory region 1140 */ 1141 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1142 1143 /** 1144 * memory_region_name: get a memory region's name 1145 * 1146 * Returns the string that was used to initialize the memory region. 1147 * 1148 * @mr: the memory region being queried 1149 */ 1150 const char *memory_region_name(const MemoryRegion *mr); 1151 1152 /** 1153 * memory_region_is_logging: return whether a memory region is logging writes 1154 * 1155 * Returns %true if the memory region is logging writes for the given client 1156 * 1157 * @mr: the memory region being queried 1158 * @client: the client being queried 1159 */ 1160 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1161 1162 /** 1163 * memory_region_get_dirty_log_mask: return the clients for which a 1164 * memory region is logging writes. 1165 * 1166 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1167 * are the bit indices. 1168 * 1169 * @mr: the memory region being queried 1170 */ 1171 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1172 1173 /** 1174 * memory_region_is_rom: check whether a memory region is ROM 1175 * 1176 * Returns %true if a memory region is read-only memory. 1177 * 1178 * @mr: the memory region being queried 1179 */ 1180 static inline bool memory_region_is_rom(MemoryRegion *mr) 1181 { 1182 return mr->ram && mr->readonly; 1183 } 1184 1185 /** 1186 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1187 * 1188 * Returns %true is a memory region is non-volatile memory. 1189 * 1190 * @mr: the memory region being queried 1191 */ 1192 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1193 { 1194 return mr->nonvolatile; 1195 } 1196 1197 /** 1198 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1199 * 1200 * Returns a file descriptor backing a file-based RAM memory region, 1201 * or -1 if the region is not a file-based RAM memory region. 1202 * 1203 * @mr: the RAM or alias memory region being queried. 1204 */ 1205 int memory_region_get_fd(MemoryRegion *mr); 1206 1207 /** 1208 * memory_region_from_host: Convert a pointer into a RAM memory region 1209 * and an offset within it. 1210 * 1211 * Given a host pointer inside a RAM memory region (created with 1212 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1213 * the MemoryRegion and the offset within it. 1214 * 1215 * Use with care; by the time this function returns, the returned pointer is 1216 * not protected by RCU anymore. If the caller is not within an RCU critical 1217 * section and does not hold the iothread lock, it must have other means of 1218 * protecting the pointer, such as a reference to the region that includes 1219 * the incoming ram_addr_t. 1220 * 1221 * @ptr: the host pointer to be converted 1222 * @offset: the offset within memory region 1223 */ 1224 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1225 1226 /** 1227 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1228 * 1229 * Returns a host pointer to a RAM memory region (created with 1230 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1231 * 1232 * Use with care; by the time this function returns, the returned pointer is 1233 * not protected by RCU anymore. If the caller is not within an RCU critical 1234 * section and does not hold the iothread lock, it must have other means of 1235 * protecting the pointer, such as a reference to the region that includes 1236 * the incoming ram_addr_t. 1237 * 1238 * @mr: the memory region being queried. 1239 */ 1240 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1241 1242 /* memory_region_ram_resize: Resize a RAM region. 1243 * 1244 * Only legal before guest might have detected the memory size: e.g. on 1245 * incoming migration, or right after reset. 1246 * 1247 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1248 * @newsize: the new size the region 1249 * @errp: pointer to Error*, to store an error if it happens. 1250 */ 1251 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1252 Error **errp); 1253 1254 /** 1255 * memory_region_set_log: Turn dirty logging on or off for a region. 1256 * 1257 * Turns dirty logging on or off for a specified client (display, migration). 1258 * Only meaningful for RAM regions. 1259 * 1260 * @mr: the memory region being updated. 1261 * @log: whether dirty logging is to be enabled or disabled. 1262 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1263 */ 1264 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1265 1266 /** 1267 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1268 * 1269 * Marks a range of bytes as dirty, after it has been dirtied outside 1270 * guest code. 1271 * 1272 * @mr: the memory region being dirtied. 1273 * @addr: the address (relative to the start of the region) being dirtied. 1274 * @size: size of the range being dirtied. 1275 */ 1276 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1277 hwaddr size); 1278 1279 /** 1280 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1281 * 1282 * This function is called when the caller wants to clear the remote 1283 * dirty bitmap of a memory range within the memory region. This can 1284 * be used by e.g. KVM to manually clear dirty log when 1285 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1286 * kernel. 1287 * 1288 * @mr: the memory region to clear the dirty log upon 1289 * @start: start address offset within the memory region 1290 * @len: length of the memory region to clear dirty bitmap 1291 */ 1292 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 1293 hwaddr len); 1294 1295 /** 1296 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1297 * bitmap and clear it. 1298 * 1299 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1300 * returns the snapshot. The snapshot can then be used to query dirty 1301 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 1302 * querying the same page multiple times, which is especially useful for 1303 * display updates where the scanlines often are not page aligned. 1304 * 1305 * The dirty bitmap region which gets copyed into the snapshot (and 1306 * cleared afterwards) can be larger than requested. The boundaries 1307 * are rounded up/down so complete bitmap longs (covering 64 pages on 1308 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1309 * isn't a problem for display updates as the extra pages are outside 1310 * the visible area, and in case the visible area changes a full 1311 * display redraw is due anyway. Should other use cases for this 1312 * function emerge we might have to revisit this implementation 1313 * detail. 1314 * 1315 * Use g_free to release DirtyBitmapSnapshot. 1316 * 1317 * @mr: the memory region being queried. 1318 * @addr: the address (relative to the start of the region) being queried. 1319 * @size: the size of the range being queried. 1320 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1321 */ 1322 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1323 hwaddr addr, 1324 hwaddr size, 1325 unsigned client); 1326 1327 /** 1328 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1329 * in the specified dirty bitmap snapshot. 1330 * 1331 * @mr: the memory region being queried. 1332 * @snap: the dirty bitmap snapshot 1333 * @addr: the address (relative to the start of the region) being queried. 1334 * @size: the size of the range being queried. 1335 */ 1336 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1337 DirtyBitmapSnapshot *snap, 1338 hwaddr addr, hwaddr size); 1339 1340 /** 1341 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1342 * client. 1343 * 1344 * Marks a range of pages as no longer dirty. 1345 * 1346 * @mr: the region being updated. 1347 * @addr: the start of the subrange being cleaned. 1348 * @size: the size of the subrange being cleaned. 1349 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1350 * %DIRTY_MEMORY_VGA. 1351 */ 1352 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1353 hwaddr size, unsigned client); 1354 1355 /** 1356 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 1357 * TBs (for self-modifying code). 1358 * 1359 * The MemoryRegionOps->write() callback of a ROM device must use this function 1360 * to mark byte ranges that have been modified internally, such as by directly 1361 * accessing the memory returned by memory_region_get_ram_ptr(). 1362 * 1363 * This function marks the range dirty and invalidates TBs so that TCG can 1364 * detect self-modifying code. 1365 * 1366 * @mr: the region being flushed. 1367 * @addr: the start, relative to the start of the region, of the range being 1368 * flushed. 1369 * @size: the size, in bytes, of the range being flushed. 1370 */ 1371 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 1372 1373 /** 1374 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1375 * 1376 * Allows a memory region to be marked as read-only (turning it into a ROM). 1377 * only useful on RAM regions. 1378 * 1379 * @mr: the region being updated. 1380 * @readonly: whether rhe region is to be ROM or RAM. 1381 */ 1382 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1383 1384 /** 1385 * memory_region_set_nonvolatile: Turn a memory region non-volatile 1386 * 1387 * Allows a memory region to be marked as non-volatile. 1388 * only useful on RAM regions. 1389 * 1390 * @mr: the region being updated. 1391 * @nonvolatile: whether rhe region is to be non-volatile. 1392 */ 1393 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 1394 1395 /** 1396 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1397 * 1398 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1399 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1400 * device is mapped to guest memory and satisfies read access directly. 1401 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1402 * Writes are always handled by the #MemoryRegion.write function. 1403 * 1404 * @mr: the memory region to be updated 1405 * @romd_mode: %true to put the region into ROMD mode 1406 */ 1407 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1408 1409 /** 1410 * memory_region_set_coalescing: Enable memory coalescing for the region. 1411 * 1412 * Enabled writes to a region to be queued for later processing. MMIO ->write 1413 * callbacks may be delayed until a non-coalesced MMIO is issued. 1414 * Only useful for IO regions. Roughly similar to write-combining hardware. 1415 * 1416 * @mr: the memory region to be write coalesced 1417 */ 1418 void memory_region_set_coalescing(MemoryRegion *mr); 1419 1420 /** 1421 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1422 * a region. 1423 * 1424 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1425 * Multiple calls can be issued coalesced disjoint ranges. 1426 * 1427 * @mr: the memory region to be updated. 1428 * @offset: the start of the range within the region to be coalesced. 1429 * @size: the size of the subrange to be coalesced. 1430 */ 1431 void memory_region_add_coalescing(MemoryRegion *mr, 1432 hwaddr offset, 1433 uint64_t size); 1434 1435 /** 1436 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1437 * 1438 * Disables any coalescing caused by memory_region_set_coalescing() or 1439 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1440 * hardware. 1441 * 1442 * @mr: the memory region to be updated. 1443 */ 1444 void memory_region_clear_coalescing(MemoryRegion *mr); 1445 1446 /** 1447 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1448 * accesses. 1449 * 1450 * Ensure that pending coalesced MMIO request are flushed before the memory 1451 * region is accessed. This property is automatically enabled for all regions 1452 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1453 * 1454 * @mr: the memory region to be updated. 1455 */ 1456 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1457 1458 /** 1459 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1460 * accesses. 1461 * 1462 * Clear the automatic coalesced MMIO flushing enabled via 1463 * memory_region_set_flush_coalesced. Note that this service has no effect on 1464 * memory regions that have MMIO coalescing enabled for themselves. For them, 1465 * automatic flushing will stop once coalescing is disabled. 1466 * 1467 * @mr: the memory region to be updated. 1468 */ 1469 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1470 1471 /** 1472 * memory_region_clear_global_locking: Declares that access processing does 1473 * not depend on the QEMU global lock. 1474 * 1475 * By clearing this property, accesses to the memory region will be processed 1476 * outside of QEMU's global lock (unless the lock is held on when issuing the 1477 * access request). In this case, the device model implementing the access 1478 * handlers is responsible for synchronization of concurrency. 1479 * 1480 * @mr: the memory region to be updated. 1481 */ 1482 void memory_region_clear_global_locking(MemoryRegion *mr); 1483 1484 /** 1485 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1486 * is written to a location. 1487 * 1488 * Marks a word in an IO region (initialized with memory_region_init_io()) 1489 * as a trigger for an eventfd event. The I/O callback will not be called. 1490 * The caller must be prepared to handle failure (that is, take the required 1491 * action if the callback _is_ called). 1492 * 1493 * @mr: the memory region being updated. 1494 * @addr: the address within @mr that is to be monitored 1495 * @size: the size of the access to trigger the eventfd 1496 * @match_data: whether to match against @data, instead of just @addr 1497 * @data: the data to match against the guest write 1498 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1499 **/ 1500 void memory_region_add_eventfd(MemoryRegion *mr, 1501 hwaddr addr, 1502 unsigned size, 1503 bool match_data, 1504 uint64_t data, 1505 EventNotifier *e); 1506 1507 /** 1508 * memory_region_del_eventfd: Cancel an eventfd. 1509 * 1510 * Cancels an eventfd trigger requested by a previous 1511 * memory_region_add_eventfd() call. 1512 * 1513 * @mr: the memory region being updated. 1514 * @addr: the address within @mr that is to be monitored 1515 * @size: the size of the access to trigger the eventfd 1516 * @match_data: whether to match against @data, instead of just @addr 1517 * @data: the data to match against the guest write 1518 * @e: event notifier to be triggered when @addr, @size, and @data all match. 1519 */ 1520 void memory_region_del_eventfd(MemoryRegion *mr, 1521 hwaddr addr, 1522 unsigned size, 1523 bool match_data, 1524 uint64_t data, 1525 EventNotifier *e); 1526 1527 /** 1528 * memory_region_add_subregion: Add a subregion to a container. 1529 * 1530 * Adds a subregion at @offset. The subregion may not overlap with other 1531 * subregions (except for those explicitly marked as overlapping). A region 1532 * may only be added once as a subregion (unless removed with 1533 * memory_region_del_subregion()); use memory_region_init_alias() if you 1534 * want a region to be a subregion in multiple locations. 1535 * 1536 * @mr: the region to contain the new subregion; must be a container 1537 * initialized with memory_region_init(). 1538 * @offset: the offset relative to @mr where @subregion is added. 1539 * @subregion: the subregion to be added. 1540 */ 1541 void memory_region_add_subregion(MemoryRegion *mr, 1542 hwaddr offset, 1543 MemoryRegion *subregion); 1544 /** 1545 * memory_region_add_subregion_overlap: Add a subregion to a container 1546 * with overlap. 1547 * 1548 * Adds a subregion at @offset. The subregion may overlap with other 1549 * subregions. Conflicts are resolved by having a higher @priority hide a 1550 * lower @priority. Subregions without priority are taken as @priority 0. 1551 * A region may only be added once as a subregion (unless removed with 1552 * memory_region_del_subregion()); use memory_region_init_alias() if you 1553 * want a region to be a subregion in multiple locations. 1554 * 1555 * @mr: the region to contain the new subregion; must be a container 1556 * initialized with memory_region_init(). 1557 * @offset: the offset relative to @mr where @subregion is added. 1558 * @subregion: the subregion to be added. 1559 * @priority: used for resolving overlaps; highest priority wins. 1560 */ 1561 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1562 hwaddr offset, 1563 MemoryRegion *subregion, 1564 int priority); 1565 1566 /** 1567 * memory_region_get_ram_addr: Get the ram address associated with a memory 1568 * region 1569 */ 1570 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1571 1572 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1573 /** 1574 * memory_region_del_subregion: Remove a subregion. 1575 * 1576 * Removes a subregion from its container. 1577 * 1578 * @mr: the container to be updated. 1579 * @subregion: the region being removed; must be a current subregion of @mr. 1580 */ 1581 void memory_region_del_subregion(MemoryRegion *mr, 1582 MemoryRegion *subregion); 1583 1584 /* 1585 * memory_region_set_enabled: dynamically enable or disable a region 1586 * 1587 * Enables or disables a memory region. A disabled memory region 1588 * ignores all accesses to itself and its subregions. It does not 1589 * obscure sibling subregions with lower priority - it simply behaves as 1590 * if it was removed from the hierarchy. 1591 * 1592 * Regions default to being enabled. 1593 * 1594 * @mr: the region to be updated 1595 * @enabled: whether to enable or disable the region 1596 */ 1597 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1598 1599 /* 1600 * memory_region_set_address: dynamically update the address of a region 1601 * 1602 * Dynamically updates the address of a region, relative to its container. 1603 * May be used on regions are currently part of a memory hierarchy. 1604 * 1605 * @mr: the region to be updated 1606 * @addr: new address, relative to container region 1607 */ 1608 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1609 1610 /* 1611 * memory_region_set_size: dynamically update the size of a region. 1612 * 1613 * Dynamically updates the size of a region. 1614 * 1615 * @mr: the region to be updated 1616 * @size: used size of the region. 1617 */ 1618 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1619 1620 /* 1621 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1622 * 1623 * Dynamically updates the offset into the target region that an alias points 1624 * to, as if the fourth argument to memory_region_init_alias() has changed. 1625 * 1626 * @mr: the #MemoryRegion to be updated; should be an alias. 1627 * @offset: the new offset into the target memory region 1628 */ 1629 void memory_region_set_alias_offset(MemoryRegion *mr, 1630 hwaddr offset); 1631 1632 /** 1633 * memory_region_present: checks if an address relative to a @container 1634 * translates into #MemoryRegion within @container 1635 * 1636 * Answer whether a #MemoryRegion within @container covers the address 1637 * @addr. 1638 * 1639 * @container: a #MemoryRegion within which @addr is a relative address 1640 * @addr: the area within @container to be searched 1641 */ 1642 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1643 1644 /** 1645 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1646 * into any address space. 1647 * 1648 * @mr: a #MemoryRegion which should be checked if it's mapped 1649 */ 1650 bool memory_region_is_mapped(MemoryRegion *mr); 1651 1652 /** 1653 * memory_region_find: translate an address/size relative to a 1654 * MemoryRegion into a #MemoryRegionSection. 1655 * 1656 * Locates the first #MemoryRegion within @mr that overlaps the range 1657 * given by @addr and @size. 1658 * 1659 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1660 * It will have the following characteristics: 1661 * .@size = 0 iff no overlap was found 1662 * .@mr is non-%NULL iff an overlap was found 1663 * 1664 * Remember that in the return value the @offset_within_region is 1665 * relative to the returned region (in the .@mr field), not to the 1666 * @mr argument. 1667 * 1668 * Similarly, the .@offset_within_address_space is relative to the 1669 * address space that contains both regions, the passed and the 1670 * returned one. However, in the special case where the @mr argument 1671 * has no container (and thus is the root of the address space), the 1672 * following will hold: 1673 * .@offset_within_address_space >= @addr 1674 * .@offset_within_address_space + .@size <= @addr + @size 1675 * 1676 * @mr: a MemoryRegion within which @addr is a relative address 1677 * @addr: start of the area within @as to be searched 1678 * @size: size of the area to be searched 1679 */ 1680 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1681 hwaddr addr, uint64_t size); 1682 1683 /** 1684 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1685 * 1686 * Synchronizes the dirty page log for all address spaces. 1687 */ 1688 void memory_global_dirty_log_sync(void); 1689 1690 /** 1691 * memory_region_transaction_begin: Start a transaction. 1692 * 1693 * During a transaction, changes will be accumulated and made visible 1694 * only when the transaction ends (is committed). 1695 */ 1696 void memory_region_transaction_begin(void); 1697 1698 /** 1699 * memory_region_transaction_commit: Commit a transaction and make changes 1700 * visible to the guest. 1701 */ 1702 void memory_region_transaction_commit(void); 1703 1704 /** 1705 * memory_listener_register: register callbacks to be called when memory 1706 * sections are mapped or unmapped into an address 1707 * space 1708 * 1709 * @listener: an object containing the callbacks to be called 1710 * @filter: if non-%NULL, only regions in this address space will be observed 1711 */ 1712 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1713 1714 /** 1715 * memory_listener_unregister: undo the effect of memory_listener_register() 1716 * 1717 * @listener: an object containing the callbacks to be removed 1718 */ 1719 void memory_listener_unregister(MemoryListener *listener); 1720 1721 /** 1722 * memory_global_dirty_log_start: begin dirty logging for all regions 1723 */ 1724 void memory_global_dirty_log_start(void); 1725 1726 /** 1727 * memory_global_dirty_log_stop: end dirty logging for all regions 1728 */ 1729 void memory_global_dirty_log_stop(void); 1730 1731 void mtree_info(bool flatview, bool dispatch_tree, bool owner); 1732 1733 /** 1734 * memory_region_dispatch_read: perform a read directly to the specified 1735 * MemoryRegion. 1736 * 1737 * @mr: #MemoryRegion to access 1738 * @addr: address within that region 1739 * @pval: pointer to uint64_t which the data is written to 1740 * @size: size of the access in bytes 1741 * @attrs: memory transaction attributes to use for the access 1742 */ 1743 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1744 hwaddr addr, 1745 uint64_t *pval, 1746 unsigned size, 1747 MemTxAttrs attrs); 1748 /** 1749 * memory_region_dispatch_write: perform a write directly to the specified 1750 * MemoryRegion. 1751 * 1752 * @mr: #MemoryRegion to access 1753 * @addr: address within that region 1754 * @data: data to write 1755 * @size: size of the access in bytes 1756 * @attrs: memory transaction attributes to use for the access 1757 */ 1758 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1759 hwaddr addr, 1760 uint64_t data, 1761 unsigned size, 1762 MemTxAttrs attrs); 1763 1764 /** 1765 * address_space_init: initializes an address space 1766 * 1767 * @as: an uninitialized #AddressSpace 1768 * @root: a #MemoryRegion that routes addresses for the address space 1769 * @name: an address space name. The name is only used for debugging 1770 * output. 1771 */ 1772 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1773 1774 /** 1775 * address_space_destroy: destroy an address space 1776 * 1777 * Releases all resources associated with an address space. After an address space 1778 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1779 * as well. 1780 * 1781 * @as: address space to be destroyed 1782 */ 1783 void address_space_destroy(AddressSpace *as); 1784 1785 /** 1786 * address_space_remove_listeners: unregister all listeners of an address space 1787 * 1788 * Removes all callbacks previously registered with memory_listener_register() 1789 * for @as. 1790 * 1791 * @as: an initialized #AddressSpace 1792 */ 1793 void address_space_remove_listeners(AddressSpace *as); 1794 1795 /** 1796 * address_space_rw: read from or write to an address space. 1797 * 1798 * Return a MemTxResult indicating whether the operation succeeded 1799 * or failed (eg unassigned memory, device rejected the transaction, 1800 * IOMMU fault). 1801 * 1802 * @as: #AddressSpace to be accessed 1803 * @addr: address within that address space 1804 * @attrs: memory transaction attributes 1805 * @buf: buffer with the data transferred 1806 * @len: the number of bytes to read or write 1807 * @is_write: indicates the transfer direction 1808 */ 1809 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1810 MemTxAttrs attrs, uint8_t *buf, 1811 hwaddr len, bool is_write); 1812 1813 /** 1814 * address_space_write: write to address space. 1815 * 1816 * Return a MemTxResult indicating whether the operation succeeded 1817 * or failed (eg unassigned memory, device rejected the transaction, 1818 * IOMMU fault). 1819 * 1820 * @as: #AddressSpace to be accessed 1821 * @addr: address within that address space 1822 * @attrs: memory transaction attributes 1823 * @buf: buffer with the data transferred 1824 * @len: the number of bytes to write 1825 */ 1826 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1827 MemTxAttrs attrs, 1828 const uint8_t *buf, hwaddr len); 1829 1830 /** 1831 * address_space_write_rom: write to address space, including ROM. 1832 * 1833 * This function writes to the specified address space, but will 1834 * write data to both ROM and RAM. This is used for non-guest 1835 * writes like writes from the gdb debug stub or initial loading 1836 * of ROM contents. 1837 * 1838 * Note that portions of the write which attempt to write data to 1839 * a device will be silently ignored -- only real RAM and ROM will 1840 * be written to. 1841 * 1842 * Return a MemTxResult indicating whether the operation succeeded 1843 * or failed (eg unassigned memory, device rejected the transaction, 1844 * IOMMU fault). 1845 * 1846 * @as: #AddressSpace to be accessed 1847 * @addr: address within that address space 1848 * @attrs: memory transaction attributes 1849 * @buf: buffer with the data transferred 1850 * @len: the number of bytes to write 1851 */ 1852 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 1853 MemTxAttrs attrs, 1854 const uint8_t *buf, hwaddr len); 1855 1856 /* address_space_ld*: load from an address space 1857 * address_space_st*: store to an address space 1858 * 1859 * These functions perform a load or store of the byte, word, 1860 * longword or quad to the specified address within the AddressSpace. 1861 * The _le suffixed functions treat the data as little endian; 1862 * _be indicates big endian; no suffix indicates "same endianness 1863 * as guest CPU". 1864 * 1865 * The "guest CPU endianness" accessors are deprecated for use outside 1866 * target-* code; devices should be CPU-agnostic and use either the LE 1867 * or the BE accessors. 1868 * 1869 * @as #AddressSpace to be accessed 1870 * @addr: address within that address space 1871 * @val: data value, for stores 1872 * @attrs: memory transaction attributes 1873 * @result: location to write the success/failure of the transaction; 1874 * if NULL, this information is discarded 1875 */ 1876 1877 #define SUFFIX 1878 #define ARG1 as 1879 #define ARG1_DECL AddressSpace *as 1880 #include "exec/memory_ldst.inc.h" 1881 1882 #define SUFFIX 1883 #define ARG1 as 1884 #define ARG1_DECL AddressSpace *as 1885 #include "exec/memory_ldst_phys.inc.h" 1886 1887 struct MemoryRegionCache { 1888 void *ptr; 1889 hwaddr xlat; 1890 hwaddr len; 1891 FlatView *fv; 1892 MemoryRegionSection mrs; 1893 bool is_write; 1894 }; 1895 1896 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 1897 1898 1899 /* address_space_ld*_cached: load from a cached #MemoryRegion 1900 * address_space_st*_cached: store into a cached #MemoryRegion 1901 * 1902 * These functions perform a load or store of the byte, word, 1903 * longword or quad to the specified address. The address is 1904 * a physical address in the AddressSpace, but it must lie within 1905 * a #MemoryRegion that was mapped with address_space_cache_init. 1906 * 1907 * The _le suffixed functions treat the data as little endian; 1908 * _be indicates big endian; no suffix indicates "same endianness 1909 * as guest CPU". 1910 * 1911 * The "guest CPU endianness" accessors are deprecated for use outside 1912 * target-* code; devices should be CPU-agnostic and use either the LE 1913 * or the BE accessors. 1914 * 1915 * @cache: previously initialized #MemoryRegionCache to be accessed 1916 * @addr: address within the address space 1917 * @val: data value, for stores 1918 * @attrs: memory transaction attributes 1919 * @result: location to write the success/failure of the transaction; 1920 * if NULL, this information is discarded 1921 */ 1922 1923 #define SUFFIX _cached_slow 1924 #define ARG1 cache 1925 #define ARG1_DECL MemoryRegionCache *cache 1926 #include "exec/memory_ldst.inc.h" 1927 1928 /* Inline fast path for direct RAM access. */ 1929 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 1930 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 1931 { 1932 assert(addr < cache->len); 1933 if (likely(cache->ptr)) { 1934 return ldub_p(cache->ptr + addr); 1935 } else { 1936 return address_space_ldub_cached_slow(cache, addr, attrs, result); 1937 } 1938 } 1939 1940 static inline void address_space_stb_cached(MemoryRegionCache *cache, 1941 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result) 1942 { 1943 assert(addr < cache->len); 1944 if (likely(cache->ptr)) { 1945 stb_p(cache->ptr + addr, val); 1946 } else { 1947 address_space_stb_cached_slow(cache, addr, val, attrs, result); 1948 } 1949 } 1950 1951 #define ENDIANNESS _le 1952 #include "exec/memory_ldst_cached.inc.h" 1953 1954 #define ENDIANNESS _be 1955 #include "exec/memory_ldst_cached.inc.h" 1956 1957 #define SUFFIX _cached 1958 #define ARG1 cache 1959 #define ARG1_DECL MemoryRegionCache *cache 1960 #include "exec/memory_ldst_phys.inc.h" 1961 1962 /* address_space_cache_init: prepare for repeated access to a physical 1963 * memory region 1964 * 1965 * @cache: #MemoryRegionCache to be filled 1966 * @as: #AddressSpace to be accessed 1967 * @addr: address within that address space 1968 * @len: length of buffer 1969 * @is_write: indicates the transfer direction 1970 * 1971 * Will only work with RAM, and may map a subset of the requested range by 1972 * returning a value that is less than @len. On failure, return a negative 1973 * errno value. 1974 * 1975 * Because it only works with RAM, this function can be used for 1976 * read-modify-write operations. In this case, is_write should be %true. 1977 * 1978 * Note that addresses passed to the address_space_*_cached functions 1979 * are relative to @addr. 1980 */ 1981 int64_t address_space_cache_init(MemoryRegionCache *cache, 1982 AddressSpace *as, 1983 hwaddr addr, 1984 hwaddr len, 1985 bool is_write); 1986 1987 /** 1988 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1989 * 1990 * @cache: The #MemoryRegionCache to operate on. 1991 * @addr: The first physical address that was written, relative to the 1992 * address that was passed to @address_space_cache_init. 1993 * @access_len: The number of bytes that were written starting at @addr. 1994 */ 1995 void address_space_cache_invalidate(MemoryRegionCache *cache, 1996 hwaddr addr, 1997 hwaddr access_len); 1998 1999 /** 2000 * address_space_cache_destroy: free a #MemoryRegionCache 2001 * 2002 * @cache: The #MemoryRegionCache whose memory should be released. 2003 */ 2004 void address_space_cache_destroy(MemoryRegionCache *cache); 2005 2006 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2007 * entry. Should be called from an RCU critical section. 2008 */ 2009 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2010 bool is_write, MemTxAttrs attrs); 2011 2012 /* address_space_translate: translate an address range into an address space 2013 * into a MemoryRegion and an address range into that section. Should be 2014 * called from an RCU critical section, to avoid that the last reference 2015 * to the returned region disappears after address_space_translate returns. 2016 * 2017 * @fv: #FlatView to be accessed 2018 * @addr: address within that address space 2019 * @xlat: pointer to address within the returned memory region section's 2020 * #MemoryRegion. 2021 * @len: pointer to length 2022 * @is_write: indicates the transfer direction 2023 * @attrs: memory attributes 2024 */ 2025 MemoryRegion *flatview_translate(FlatView *fv, 2026 hwaddr addr, hwaddr *xlat, 2027 hwaddr *len, bool is_write, 2028 MemTxAttrs attrs); 2029 2030 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2031 hwaddr addr, hwaddr *xlat, 2032 hwaddr *len, bool is_write, 2033 MemTxAttrs attrs) 2034 { 2035 return flatview_translate(address_space_to_flatview(as), 2036 addr, xlat, len, is_write, attrs); 2037 } 2038 2039 /* address_space_access_valid: check for validity of accessing an address 2040 * space range 2041 * 2042 * Check whether memory is assigned to the given address space range, and 2043 * access is permitted by any IOMMU regions that are active for the address 2044 * space. 2045 * 2046 * For now, addr and len should be aligned to a page size. This limitation 2047 * will be lifted in the future. 2048 * 2049 * @as: #AddressSpace to be accessed 2050 * @addr: address within that address space 2051 * @len: length of the area to be checked 2052 * @is_write: indicates the transfer direction 2053 * @attrs: memory attributes 2054 */ 2055 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2056 bool is_write, MemTxAttrs attrs); 2057 2058 /* address_space_map: map a physical memory region into a host virtual address 2059 * 2060 * May map a subset of the requested range, given by and returned in @plen. 2061 * May return %NULL if resources needed to perform the mapping are exhausted. 2062 * Use only for reads OR writes - not for read-modify-write operations. 2063 * Use cpu_register_map_client() to know when retrying the map operation is 2064 * likely to succeed. 2065 * 2066 * @as: #AddressSpace to be accessed 2067 * @addr: address within that address space 2068 * @plen: pointer to length of buffer; updated on return 2069 * @is_write: indicates the transfer direction 2070 * @attrs: memory attributes 2071 */ 2072 void *address_space_map(AddressSpace *as, hwaddr addr, 2073 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2074 2075 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2076 * 2077 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2078 * the amount of memory that was actually read or written by the caller. 2079 * 2080 * @as: #AddressSpace used 2081 * @buffer: host pointer as returned by address_space_map() 2082 * @len: buffer length as returned by address_space_map() 2083 * @access_len: amount of data actually transferred 2084 * @is_write: indicates the transfer direction 2085 */ 2086 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2087 int is_write, hwaddr access_len); 2088 2089 2090 /* Internal functions, part of the implementation of address_space_read. */ 2091 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2092 MemTxAttrs attrs, uint8_t *buf, hwaddr len); 2093 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2094 MemTxAttrs attrs, uint8_t *buf, 2095 hwaddr len, hwaddr addr1, hwaddr l, 2096 MemoryRegion *mr); 2097 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2098 2099 /* Internal functions, part of the implementation of address_space_read_cached 2100 * and address_space_write_cached. */ 2101 void address_space_read_cached_slow(MemoryRegionCache *cache, 2102 hwaddr addr, void *buf, hwaddr len); 2103 void address_space_write_cached_slow(MemoryRegionCache *cache, 2104 hwaddr addr, const void *buf, hwaddr len); 2105 2106 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2107 { 2108 if (is_write) { 2109 return memory_region_is_ram(mr) && 2110 !mr->readonly && !memory_region_is_ram_device(mr); 2111 } else { 2112 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2113 memory_region_is_romd(mr); 2114 } 2115 } 2116 2117 /** 2118 * address_space_read: read from an address space. 2119 * 2120 * Return a MemTxResult indicating whether the operation succeeded 2121 * or failed (eg unassigned memory, device rejected the transaction, 2122 * IOMMU fault). Called within RCU critical section. 2123 * 2124 * @as: #AddressSpace to be accessed 2125 * @addr: address within that address space 2126 * @attrs: memory transaction attributes 2127 * @buf: buffer with the data transferred 2128 */ 2129 static inline __attribute__((__always_inline__)) 2130 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2131 MemTxAttrs attrs, uint8_t *buf, 2132 hwaddr len) 2133 { 2134 MemTxResult result = MEMTX_OK; 2135 hwaddr l, addr1; 2136 void *ptr; 2137 MemoryRegion *mr; 2138 FlatView *fv; 2139 2140 if (__builtin_constant_p(len)) { 2141 if (len) { 2142 rcu_read_lock(); 2143 fv = address_space_to_flatview(as); 2144 l = len; 2145 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2146 if (len == l && memory_access_is_direct(mr, false)) { 2147 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2148 memcpy(buf, ptr, len); 2149 } else { 2150 result = flatview_read_continue(fv, addr, attrs, buf, len, 2151 addr1, l, mr); 2152 } 2153 rcu_read_unlock(); 2154 } 2155 } else { 2156 result = address_space_read_full(as, addr, attrs, buf, len); 2157 } 2158 return result; 2159 } 2160 2161 /** 2162 * address_space_read_cached: read from a cached RAM region 2163 * 2164 * @cache: Cached region to be addressed 2165 * @addr: address relative to the base of the RAM region 2166 * @buf: buffer with the data transferred 2167 * @len: length of the data transferred 2168 */ 2169 static inline void 2170 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2171 void *buf, hwaddr len) 2172 { 2173 assert(addr < cache->len && len <= cache->len - addr); 2174 if (likely(cache->ptr)) { 2175 memcpy(buf, cache->ptr + addr, len); 2176 } else { 2177 address_space_read_cached_slow(cache, addr, buf, len); 2178 } 2179 } 2180 2181 /** 2182 * address_space_write_cached: write to a cached RAM region 2183 * 2184 * @cache: Cached region to be addressed 2185 * @addr: address relative to the base of the RAM region 2186 * @buf: buffer with the data transferred 2187 * @len: length of the data transferred 2188 */ 2189 static inline void 2190 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2191 void *buf, hwaddr len) 2192 { 2193 assert(addr < cache->len && len <= cache->len - addr); 2194 if (likely(cache->ptr)) { 2195 memcpy(cache->ptr + addr, buf, len); 2196 } else { 2197 address_space_write_cached_slow(cache, addr, buf, len); 2198 } 2199 } 2200 2201 #endif 2202 2203 #endif 2204