xref: /openbmc/qemu/include/exec/memory.h (revision 587adaca)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38                          TYPE_MEMORY_REGION)
39 
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44 
45 #ifdef CONFIG_FUZZ
46 void fuzz_dma_read_cb(size_t addr,
47                       size_t len,
48                       MemoryRegion *mr);
49 #else
50 static inline void fuzz_dma_read_cb(size_t addr,
51                                     size_t len,
52                                     MemoryRegion *mr)
53 {
54     /* Do Nothing */
55 }
56 #endif
57 
58 extern bool global_dirty_log;
59 
60 typedef struct MemoryRegionOps MemoryRegionOps;
61 
62 struct ReservedRegion {
63     hwaddr low;
64     hwaddr high;
65     unsigned type;
66 };
67 
68 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
69 
70 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
71 typedef enum {
72     IOMMU_NONE = 0,
73     IOMMU_RO   = 1,
74     IOMMU_WO   = 2,
75     IOMMU_RW   = 3,
76 } IOMMUAccessFlags;
77 
78 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
79 
80 struct IOMMUTLBEntry {
81     AddressSpace    *target_as;
82     hwaddr           iova;
83     hwaddr           translated_addr;
84     hwaddr           addr_mask;  /* 0xfff = 4k translation */
85     IOMMUAccessFlags perm;
86 };
87 
88 /*
89  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
90  * register with one or multiple IOMMU Notifier capability bit(s).
91  */
92 typedef enum {
93     IOMMU_NOTIFIER_NONE = 0,
94     /* Notify cache invalidations */
95     IOMMU_NOTIFIER_UNMAP = 0x1,
96     /* Notify entry changes (newly created entries) */
97     IOMMU_NOTIFIER_MAP = 0x2,
98     /* Notify changes on device IOTLB entries */
99     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
100 } IOMMUNotifierFlag;
101 
102 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
103 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
104 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
105                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
106 
107 struct IOMMUNotifier;
108 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
109                             IOMMUTLBEntry *data);
110 
111 struct IOMMUNotifier {
112     IOMMUNotify notify;
113     IOMMUNotifierFlag notifier_flags;
114     /* Notify for address space range start <= addr <= end */
115     hwaddr start;
116     hwaddr end;
117     int iommu_idx;
118     QLIST_ENTRY(IOMMUNotifier) node;
119 };
120 typedef struct IOMMUNotifier IOMMUNotifier;
121 
122 typedef struct IOMMUTLBEvent {
123     IOMMUNotifierFlag type;
124     IOMMUTLBEntry entry;
125 } IOMMUTLBEvent;
126 
127 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
128 #define RAM_PREALLOC   (1 << 0)
129 
130 /* RAM is mmap-ed with MAP_SHARED */
131 #define RAM_SHARED     (1 << 1)
132 
133 /* Only a portion of RAM (used_length) is actually used, and migrated.
134  * Resizing RAM while migrating can result in the migration being canceled.
135  */
136 #define RAM_RESIZEABLE (1 << 2)
137 
138 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
139  * zero the page and wake waiting processes.
140  * (Set during postcopy)
141  */
142 #define RAM_UF_ZEROPAGE (1 << 3)
143 
144 /* RAM can be migrated */
145 #define RAM_MIGRATABLE (1 << 4)
146 
147 /* RAM is a persistent kind memory */
148 #define RAM_PMEM (1 << 5)
149 
150 
151 /*
152  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
153  * support 'write-tracking' migration type.
154  * Implies ram_state->ram_wt_enabled.
155  */
156 #define RAM_UF_WRITEPROTECT (1 << 6)
157 
158 /*
159  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
160  * pages if applicable) is skipped: will bail out if not supported. When not
161  * set, the OS will do the reservation, if supported for the memory type.
162  */
163 #define RAM_NORESERVE (1 << 7)
164 
165 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
166                                        IOMMUNotifierFlag flags,
167                                        hwaddr start, hwaddr end,
168                                        int iommu_idx)
169 {
170     n->notify = fn;
171     n->notifier_flags = flags;
172     n->start = start;
173     n->end = end;
174     n->iommu_idx = iommu_idx;
175 }
176 
177 /*
178  * Memory region callbacks
179  */
180 struct MemoryRegionOps {
181     /* Read from the memory region. @addr is relative to @mr; @size is
182      * in bytes. */
183     uint64_t (*read)(void *opaque,
184                      hwaddr addr,
185                      unsigned size);
186     /* Write to the memory region. @addr is relative to @mr; @size is
187      * in bytes. */
188     void (*write)(void *opaque,
189                   hwaddr addr,
190                   uint64_t data,
191                   unsigned size);
192 
193     MemTxResult (*read_with_attrs)(void *opaque,
194                                    hwaddr addr,
195                                    uint64_t *data,
196                                    unsigned size,
197                                    MemTxAttrs attrs);
198     MemTxResult (*write_with_attrs)(void *opaque,
199                                     hwaddr addr,
200                                     uint64_t data,
201                                     unsigned size,
202                                     MemTxAttrs attrs);
203 
204     enum device_endian endianness;
205     /* Guest-visible constraints: */
206     struct {
207         /* If nonzero, specify bounds on access sizes beyond which a machine
208          * check is thrown.
209          */
210         unsigned min_access_size;
211         unsigned max_access_size;
212         /* If true, unaligned accesses are supported.  Otherwise unaligned
213          * accesses throw machine checks.
214          */
215          bool unaligned;
216         /*
217          * If present, and returns #false, the transaction is not accepted
218          * by the device (and results in machine dependent behaviour such
219          * as a machine check exception).
220          */
221         bool (*accepts)(void *opaque, hwaddr addr,
222                         unsigned size, bool is_write,
223                         MemTxAttrs attrs);
224     } valid;
225     /* Internal implementation constraints: */
226     struct {
227         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
228          * will be rounded upwards and a partial result will be returned.
229          */
230         unsigned min_access_size;
231         /* If nonzero, specifies the maximum size implemented.  Larger sizes
232          * will be done as a series of accesses with smaller sizes.
233          */
234         unsigned max_access_size;
235         /* If true, unaligned accesses are supported.  Otherwise all accesses
236          * are converted to (possibly multiple) naturally aligned accesses.
237          */
238         bool unaligned;
239     } impl;
240 };
241 
242 typedef struct MemoryRegionClass {
243     /* private */
244     ObjectClass parent_class;
245 } MemoryRegionClass;
246 
247 
248 enum IOMMUMemoryRegionAttr {
249     IOMMU_ATTR_SPAPR_TCE_FD
250 };
251 
252 /*
253  * IOMMUMemoryRegionClass:
254  *
255  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
256  * and provide an implementation of at least the @translate method here
257  * to handle requests to the memory region. Other methods are optional.
258  *
259  * The IOMMU implementation must use the IOMMU notifier infrastructure
260  * to report whenever mappings are changed, by calling
261  * memory_region_notify_iommu() (or, if necessary, by calling
262  * memory_region_notify_iommu_one() for each registered notifier).
263  *
264  * Conceptually an IOMMU provides a mapping from input address
265  * to an output TLB entry. If the IOMMU is aware of memory transaction
266  * attributes and the output TLB entry depends on the transaction
267  * attributes, we represent this using IOMMU indexes. Each index
268  * selects a particular translation table that the IOMMU has:
269  *
270  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
271  *
272  *   @translate takes an input address and an IOMMU index
273  *
274  * and the mapping returned can only depend on the input address and the
275  * IOMMU index.
276  *
277  * Most IOMMUs don't care about the transaction attributes and support
278  * only a single IOMMU index. A more complex IOMMU might have one index
279  * for secure transactions and one for non-secure transactions.
280  */
281 struct IOMMUMemoryRegionClass {
282     /* private: */
283     MemoryRegionClass parent_class;
284 
285     /* public: */
286     /**
287      * @translate:
288      *
289      * Return a TLB entry that contains a given address.
290      *
291      * The IOMMUAccessFlags indicated via @flag are optional and may
292      * be specified as IOMMU_NONE to indicate that the caller needs
293      * the full translation information for both reads and writes. If
294      * the access flags are specified then the IOMMU implementation
295      * may use this as an optimization, to stop doing a page table
296      * walk as soon as it knows that the requested permissions are not
297      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
298      * full page table walk and report the permissions in the returned
299      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
300      * return different mappings for reads and writes.)
301      *
302      * The returned information remains valid while the caller is
303      * holding the big QEMU lock or is inside an RCU critical section;
304      * if the caller wishes to cache the mapping beyond that it must
305      * register an IOMMU notifier so it can invalidate its cached
306      * information when the IOMMU mapping changes.
307      *
308      * @iommu: the IOMMUMemoryRegion
309      *
310      * @hwaddr: address to be translated within the memory region
311      *
312      * @flag: requested access permission
313      *
314      * @iommu_idx: IOMMU index for the translation
315      */
316     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
317                                IOMMUAccessFlags flag, int iommu_idx);
318     /**
319      * @get_min_page_size:
320      *
321      * Returns minimum supported page size in bytes.
322      *
323      * If this method is not provided then the minimum is assumed to
324      * be TARGET_PAGE_SIZE.
325      *
326      * @iommu: the IOMMUMemoryRegion
327      */
328     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
329     /**
330      * @notify_flag_changed:
331      *
332      * Called when IOMMU Notifier flag changes (ie when the set of
333      * events which IOMMU users are requesting notification for changes).
334      * Optional method -- need not be provided if the IOMMU does not
335      * need to know exactly which events must be notified.
336      *
337      * @iommu: the IOMMUMemoryRegion
338      *
339      * @old_flags: events which previously needed to be notified
340      *
341      * @new_flags: events which now need to be notified
342      *
343      * Returns 0 on success, or a negative errno; in particular
344      * returns -EINVAL if the new flag bitmap is not supported by the
345      * IOMMU memory region. In case of failure, the error object
346      * must be created
347      */
348     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
349                                IOMMUNotifierFlag old_flags,
350                                IOMMUNotifierFlag new_flags,
351                                Error **errp);
352     /**
353      * @replay:
354      *
355      * Called to handle memory_region_iommu_replay().
356      *
357      * The default implementation of memory_region_iommu_replay() is to
358      * call the IOMMU translate method for every page in the address space
359      * with flag == IOMMU_NONE and then call the notifier if translate
360      * returns a valid mapping. If this method is implemented then it
361      * overrides the default behaviour, and must provide the full semantics
362      * of memory_region_iommu_replay(), by calling @notifier for every
363      * translation present in the IOMMU.
364      *
365      * Optional method -- an IOMMU only needs to provide this method
366      * if the default is inefficient or produces undesirable side effects.
367      *
368      * Note: this is not related to record-and-replay functionality.
369      */
370     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
371 
372     /**
373      * @get_attr:
374      *
375      * Get IOMMU misc attributes. This is an optional method that
376      * can be used to allow users of the IOMMU to get implementation-specific
377      * information. The IOMMU implements this method to handle calls
378      * by IOMMU users to memory_region_iommu_get_attr() by filling in
379      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
380      * the IOMMU supports. If the method is unimplemented then
381      * memory_region_iommu_get_attr() will always return -EINVAL.
382      *
383      * @iommu: the IOMMUMemoryRegion
384      *
385      * @attr: attribute being queried
386      *
387      * @data: memory to fill in with the attribute data
388      *
389      * Returns 0 on success, or a negative errno; in particular
390      * returns -EINVAL for unrecognized or unimplemented attribute types.
391      */
392     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
393                     void *data);
394 
395     /**
396      * @attrs_to_index:
397      *
398      * Return the IOMMU index to use for a given set of transaction attributes.
399      *
400      * Optional method: if an IOMMU only supports a single IOMMU index then
401      * the default implementation of memory_region_iommu_attrs_to_index()
402      * will return 0.
403      *
404      * The indexes supported by an IOMMU must be contiguous, starting at 0.
405      *
406      * @iommu: the IOMMUMemoryRegion
407      * @attrs: memory transaction attributes
408      */
409     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
410 
411     /**
412      * @num_indexes:
413      *
414      * Return the number of IOMMU indexes this IOMMU supports.
415      *
416      * Optional method: if this method is not provided, then
417      * memory_region_iommu_num_indexes() will return 1, indicating that
418      * only a single IOMMU index is supported.
419      *
420      * @iommu: the IOMMUMemoryRegion
421      */
422     int (*num_indexes)(IOMMUMemoryRegion *iommu);
423 
424     /**
425      * @iommu_set_page_size_mask:
426      *
427      * Restrict the page size mask that can be supported with a given IOMMU
428      * memory region. Used for example to propagate host physical IOMMU page
429      * size mask limitations to the virtual IOMMU.
430      *
431      * Optional method: if this method is not provided, then the default global
432      * page mask is used.
433      *
434      * @iommu: the IOMMUMemoryRegion
435      *
436      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
437      * representing the smallest page size, must be set. Additional set bits
438      * represent supported block sizes. For example a host physical IOMMU that
439      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
440      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
441      * block sizes is specified with mask 0xfffffffffffff000.
442      *
443      * Returns 0 on success, or a negative error. In case of failure, the error
444      * object must be created.
445      */
446      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
447                                      uint64_t page_size_mask,
448                                      Error **errp);
449 };
450 
451 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
452 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
453 
454 /** MemoryRegion:
455  *
456  * A struct representing a memory region.
457  */
458 struct MemoryRegion {
459     Object parent_obj;
460 
461     /* private: */
462 
463     /* The following fields should fit in a cache line */
464     bool romd_mode;
465     bool ram;
466     bool subpage;
467     bool readonly; /* For RAM regions */
468     bool nonvolatile;
469     bool rom_device;
470     bool flush_coalesced_mmio;
471     uint8_t dirty_log_mask;
472     bool is_iommu;
473     RAMBlock *ram_block;
474     Object *owner;
475 
476     const MemoryRegionOps *ops;
477     void *opaque;
478     MemoryRegion *container;
479     Int128 size;
480     hwaddr addr;
481     void (*destructor)(MemoryRegion *mr);
482     uint64_t align;
483     bool terminates;
484     bool ram_device;
485     bool enabled;
486     bool warning_printed; /* For reservations */
487     uint8_t vga_logging_count;
488     MemoryRegion *alias;
489     hwaddr alias_offset;
490     int32_t priority;
491     QTAILQ_HEAD(, MemoryRegion) subregions;
492     QTAILQ_ENTRY(MemoryRegion) subregions_link;
493     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
494     const char *name;
495     unsigned ioeventfd_nb;
496     MemoryRegionIoeventfd *ioeventfds;
497 };
498 
499 struct IOMMUMemoryRegion {
500     MemoryRegion parent_obj;
501 
502     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
503     IOMMUNotifierFlag iommu_notify_flags;
504 };
505 
506 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
507     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
508 
509 /**
510  * struct MemoryListener: callbacks structure for updates to the physical memory map
511  *
512  * Allows a component to adjust to changes in the guest-visible memory map.
513  * Use with memory_listener_register() and memory_listener_unregister().
514  */
515 struct MemoryListener {
516     /**
517      * @begin:
518      *
519      * Called at the beginning of an address space update transaction.
520      * Followed by calls to #MemoryListener.region_add(),
521      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
522      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
523      * increasing address order.
524      *
525      * @listener: The #MemoryListener.
526      */
527     void (*begin)(MemoryListener *listener);
528 
529     /**
530      * @commit:
531      *
532      * Called at the end of an address space update transaction,
533      * after the last call to #MemoryListener.region_add(),
534      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
535      * #MemoryListener.log_start() and #MemoryListener.log_stop().
536      *
537      * @listener: The #MemoryListener.
538      */
539     void (*commit)(MemoryListener *listener);
540 
541     /**
542      * @region_add:
543      *
544      * Called during an address space update transaction,
545      * for a section of the address space that is new in this address space
546      * space since the last transaction.
547      *
548      * @listener: The #MemoryListener.
549      * @section: The new #MemoryRegionSection.
550      */
551     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
552 
553     /**
554      * @region_del:
555      *
556      * Called during an address space update transaction,
557      * for a section of the address space that has disappeared in the address
558      * space since the last transaction.
559      *
560      * @listener: The #MemoryListener.
561      * @section: The old #MemoryRegionSection.
562      */
563     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
564 
565     /**
566      * @region_nop:
567      *
568      * Called during an address space update transaction,
569      * for a section of the address space that is in the same place in the address
570      * space as in the last transaction.
571      *
572      * @listener: The #MemoryListener.
573      * @section: The #MemoryRegionSection.
574      */
575     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
576 
577     /**
578      * @log_start:
579      *
580      * Called during an address space update transaction, after
581      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
582      * #MemoryListener.region_nop(), if dirty memory logging clients have
583      * become active since the last transaction.
584      *
585      * @listener: The #MemoryListener.
586      * @section: The #MemoryRegionSection.
587      * @old: A bitmap of dirty memory logging clients that were active in
588      * the previous transaction.
589      * @new: A bitmap of dirty memory logging clients that are active in
590      * the current transaction.
591      */
592     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
593                       int old, int new);
594 
595     /**
596      * @log_stop:
597      *
598      * Called during an address space update transaction, after
599      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
600      * #MemoryListener.region_nop() and possibly after
601      * #MemoryListener.log_start(), if dirty memory logging clients have
602      * become inactive since the last transaction.
603      *
604      * @listener: The #MemoryListener.
605      * @section: The #MemoryRegionSection.
606      * @old: A bitmap of dirty memory logging clients that were active in
607      * the previous transaction.
608      * @new: A bitmap of dirty memory logging clients that are active in
609      * the current transaction.
610      */
611     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
612                      int old, int new);
613 
614     /**
615      * @log_sync:
616      *
617      * Called by memory_region_snapshot_and_clear_dirty() and
618      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
619      * copy of the dirty memory bitmap for a #MemoryRegionSection.
620      *
621      * @listener: The #MemoryListener.
622      * @section: The #MemoryRegionSection.
623      */
624     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
625 
626     /**
627      * @log_sync_global:
628      *
629      * This is the global version of @log_sync when the listener does
630      * not have a way to synchronize the log with finer granularity.
631      * When the listener registers with @log_sync_global defined, then
632      * its @log_sync must be NULL.  Vice versa.
633      *
634      * @listener: The #MemoryListener.
635      */
636     void (*log_sync_global)(MemoryListener *listener);
637 
638     /**
639      * @log_clear:
640      *
641      * Called before reading the dirty memory bitmap for a
642      * #MemoryRegionSection.
643      *
644      * @listener: The #MemoryListener.
645      * @section: The #MemoryRegionSection.
646      */
647     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
648 
649     /**
650      * @log_global_start:
651      *
652      * Called by memory_global_dirty_log_start(), which
653      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
654      * the address space.  #MemoryListener.log_global_start() is also
655      * called when a #MemoryListener is added, if global dirty logging is
656      * active at that time.
657      *
658      * @listener: The #MemoryListener.
659      */
660     void (*log_global_start)(MemoryListener *listener);
661 
662     /**
663      * @log_global_stop:
664      *
665      * Called by memory_global_dirty_log_stop(), which
666      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
667      * the address space.
668      *
669      * @listener: The #MemoryListener.
670      */
671     void (*log_global_stop)(MemoryListener *listener);
672 
673     /**
674      * @log_global_after_sync:
675      *
676      * Called after reading the dirty memory bitmap
677      * for any #MemoryRegionSection.
678      *
679      * @listener: The #MemoryListener.
680      */
681     void (*log_global_after_sync)(MemoryListener *listener);
682 
683     /**
684      * @eventfd_add:
685      *
686      * Called during an address space update transaction,
687      * for a section of the address space that has had a new ioeventfd
688      * registration since the last transaction.
689      *
690      * @listener: The #MemoryListener.
691      * @section: The new #MemoryRegionSection.
692      * @match_data: The @match_data parameter for the new ioeventfd.
693      * @data: The @data parameter for the new ioeventfd.
694      * @e: The #EventNotifier parameter for the new ioeventfd.
695      */
696     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
697                         bool match_data, uint64_t data, EventNotifier *e);
698 
699     /**
700      * @eventfd_del:
701      *
702      * Called during an address space update transaction,
703      * for a section of the address space that has dropped an ioeventfd
704      * registration since the last transaction.
705      *
706      * @listener: The #MemoryListener.
707      * @section: The new #MemoryRegionSection.
708      * @match_data: The @match_data parameter for the dropped ioeventfd.
709      * @data: The @data parameter for the dropped ioeventfd.
710      * @e: The #EventNotifier parameter for the dropped ioeventfd.
711      */
712     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
713                         bool match_data, uint64_t data, EventNotifier *e);
714 
715     /**
716      * @coalesced_io_add:
717      *
718      * Called during an address space update transaction,
719      * for a section of the address space that has had a new coalesced
720      * MMIO range registration since the last transaction.
721      *
722      * @listener: The #MemoryListener.
723      * @section: The new #MemoryRegionSection.
724      * @addr: The starting address for the coalesced MMIO range.
725      * @len: The length of the coalesced MMIO range.
726      */
727     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
728                                hwaddr addr, hwaddr len);
729 
730     /**
731      * @coalesced_io_del:
732      *
733      * Called during an address space update transaction,
734      * for a section of the address space that has dropped a coalesced
735      * MMIO range since the last transaction.
736      *
737      * @listener: The #MemoryListener.
738      * @section: The new #MemoryRegionSection.
739      * @addr: The starting address for the coalesced MMIO range.
740      * @len: The length of the coalesced MMIO range.
741      */
742     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
743                                hwaddr addr, hwaddr len);
744     /**
745      * @priority:
746      *
747      * Govern the order in which memory listeners are invoked. Lower priorities
748      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
749      * or "stop" callbacks.
750      */
751     unsigned priority;
752 
753     /* private: */
754     AddressSpace *address_space;
755     QTAILQ_ENTRY(MemoryListener) link;
756     QTAILQ_ENTRY(MemoryListener) link_as;
757 };
758 
759 /**
760  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
761  */
762 struct AddressSpace {
763     /* private: */
764     struct rcu_head rcu;
765     char *name;
766     MemoryRegion *root;
767 
768     /* Accessed via RCU.  */
769     struct FlatView *current_map;
770 
771     int ioeventfd_nb;
772     struct MemoryRegionIoeventfd *ioeventfds;
773     QTAILQ_HEAD(, MemoryListener) listeners;
774     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
775 };
776 
777 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
778 typedef struct FlatRange FlatRange;
779 
780 /* Flattened global view of current active memory hierarchy.  Kept in sorted
781  * order.
782  */
783 struct FlatView {
784     struct rcu_head rcu;
785     unsigned ref;
786     FlatRange *ranges;
787     unsigned nr;
788     unsigned nr_allocated;
789     struct AddressSpaceDispatch *dispatch;
790     MemoryRegion *root;
791 };
792 
793 static inline FlatView *address_space_to_flatview(AddressSpace *as)
794 {
795     return qatomic_rcu_read(&as->current_map);
796 }
797 
798 /**
799  * typedef flatview_cb: callback for flatview_for_each_range()
800  *
801  * @start: start address of the range within the FlatView
802  * @len: length of the range in bytes
803  * @mr: MemoryRegion covering this range
804  * @offset_in_region: offset of the first byte of the range within @mr
805  * @opaque: data pointer passed to flatview_for_each_range()
806  *
807  * Returns: true to stop the iteration, false to keep going.
808  */
809 typedef bool (*flatview_cb)(Int128 start,
810                             Int128 len,
811                             const MemoryRegion *mr,
812                             hwaddr offset_in_region,
813                             void *opaque);
814 
815 /**
816  * flatview_for_each_range: Iterate through a FlatView
817  * @fv: the FlatView to iterate through
818  * @cb: function to call for each range
819  * @opaque: opaque data pointer to pass to @cb
820  *
821  * A FlatView is made up of a list of non-overlapping ranges, each of
822  * which is a slice of a MemoryRegion. This function iterates through
823  * each range in @fv, calling @cb. The callback function can terminate
824  * iteration early by returning 'true'.
825  */
826 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
827 
828 /**
829  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
830  *
831  * @mr: the region, or %NULL if empty
832  * @fv: the flat view of the address space the region is mapped in
833  * @offset_within_region: the beginning of the section, relative to @mr's start
834  * @size: the size of the section; will not exceed @mr's boundaries
835  * @offset_within_address_space: the address of the first byte of the section
836  *     relative to the region's address space
837  * @readonly: writes to this section are ignored
838  * @nonvolatile: this section is non-volatile
839  */
840 struct MemoryRegionSection {
841     Int128 size;
842     MemoryRegion *mr;
843     FlatView *fv;
844     hwaddr offset_within_region;
845     hwaddr offset_within_address_space;
846     bool readonly;
847     bool nonvolatile;
848 };
849 
850 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
851                                           MemoryRegionSection *b)
852 {
853     return a->mr == b->mr &&
854            a->fv == b->fv &&
855            a->offset_within_region == b->offset_within_region &&
856            a->offset_within_address_space == b->offset_within_address_space &&
857            int128_eq(a->size, b->size) &&
858            a->readonly == b->readonly &&
859            a->nonvolatile == b->nonvolatile;
860 }
861 
862 /**
863  * memory_region_init: Initialize a memory region
864  *
865  * The region typically acts as a container for other memory regions.  Use
866  * memory_region_add_subregion() to add subregions.
867  *
868  * @mr: the #MemoryRegion to be initialized
869  * @owner: the object that tracks the region's reference count
870  * @name: used for debugging; not visible to the user or ABI
871  * @size: size of the region; any subregions beyond this size will be clipped
872  */
873 void memory_region_init(MemoryRegion *mr,
874                         Object *owner,
875                         const char *name,
876                         uint64_t size);
877 
878 /**
879  * memory_region_ref: Add 1 to a memory region's reference count
880  *
881  * Whenever memory regions are accessed outside the BQL, they need to be
882  * preserved against hot-unplug.  MemoryRegions actually do not have their
883  * own reference count; they piggyback on a QOM object, their "owner".
884  * This function adds a reference to the owner.
885  *
886  * All MemoryRegions must have an owner if they can disappear, even if the
887  * device they belong to operates exclusively under the BQL.  This is because
888  * the region could be returned at any time by memory_region_find, and this
889  * is usually under guest control.
890  *
891  * @mr: the #MemoryRegion
892  */
893 void memory_region_ref(MemoryRegion *mr);
894 
895 /**
896  * memory_region_unref: Remove 1 to a memory region's reference count
897  *
898  * Whenever memory regions are accessed outside the BQL, they need to be
899  * preserved against hot-unplug.  MemoryRegions actually do not have their
900  * own reference count; they piggyback on a QOM object, their "owner".
901  * This function removes a reference to the owner and possibly destroys it.
902  *
903  * @mr: the #MemoryRegion
904  */
905 void memory_region_unref(MemoryRegion *mr);
906 
907 /**
908  * memory_region_init_io: Initialize an I/O memory region.
909  *
910  * Accesses into the region will cause the callbacks in @ops to be called.
911  * if @size is nonzero, subregions will be clipped to @size.
912  *
913  * @mr: the #MemoryRegion to be initialized.
914  * @owner: the object that tracks the region's reference count
915  * @ops: a structure containing read and write callbacks to be used when
916  *       I/O is performed on the region.
917  * @opaque: passed to the read and write callbacks of the @ops structure.
918  * @name: used for debugging; not visible to the user or ABI
919  * @size: size of the region.
920  */
921 void memory_region_init_io(MemoryRegion *mr,
922                            Object *owner,
923                            const MemoryRegionOps *ops,
924                            void *opaque,
925                            const char *name,
926                            uint64_t size);
927 
928 /**
929  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
930  *                                    into the region will modify memory
931  *                                    directly.
932  *
933  * @mr: the #MemoryRegion to be initialized.
934  * @owner: the object that tracks the region's reference count
935  * @name: Region name, becomes part of RAMBlock name used in migration stream
936  *        must be unique within any device
937  * @size: size of the region.
938  * @errp: pointer to Error*, to store an error if it happens.
939  *
940  * Note that this function does not do anything to cause the data in the
941  * RAM memory region to be migrated; that is the responsibility of the caller.
942  */
943 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
944                                       Object *owner,
945                                       const char *name,
946                                       uint64_t size,
947                                       Error **errp);
948 
949 /**
950  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
951  *                                          Accesses into the region will
952  *                                          modify memory directly.
953  *
954  * @mr: the #MemoryRegion to be initialized.
955  * @owner: the object that tracks the region's reference count
956  * @name: Region name, becomes part of RAMBlock name used in migration stream
957  *        must be unique within any device
958  * @size: size of the region.
959  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
960  * @errp: pointer to Error*, to store an error if it happens.
961  *
962  * Note that this function does not do anything to cause the data in the
963  * RAM memory region to be migrated; that is the responsibility of the caller.
964  */
965 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
966                                             Object *owner,
967                                             const char *name,
968                                             uint64_t size,
969                                             uint32_t ram_flags,
970                                             Error **errp);
971 
972 /**
973  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
974  *                                     RAM.  Accesses into the region will
975  *                                     modify memory directly.  Only an initial
976  *                                     portion of this RAM is actually used.
977  *                                     Changing the size while migrating
978  *                                     can result in the migration being
979  *                                     canceled.
980  *
981  * @mr: the #MemoryRegion to be initialized.
982  * @owner: the object that tracks the region's reference count
983  * @name: Region name, becomes part of RAMBlock name used in migration stream
984  *        must be unique within any device
985  * @size: used size of the region.
986  * @max_size: max size of the region.
987  * @resized: callback to notify owner about used size change.
988  * @errp: pointer to Error*, to store an error if it happens.
989  *
990  * Note that this function does not do anything to cause the data in the
991  * RAM memory region to be migrated; that is the responsibility of the caller.
992  */
993 void memory_region_init_resizeable_ram(MemoryRegion *mr,
994                                        Object *owner,
995                                        const char *name,
996                                        uint64_t size,
997                                        uint64_t max_size,
998                                        void (*resized)(const char*,
999                                                        uint64_t length,
1000                                                        void *host),
1001                                        Error **errp);
1002 #ifdef CONFIG_POSIX
1003 
1004 /**
1005  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1006  *                                    mmap-ed backend.
1007  *
1008  * @mr: the #MemoryRegion to be initialized.
1009  * @owner: the object that tracks the region's reference count
1010  * @name: Region name, becomes part of RAMBlock name used in migration stream
1011  *        must be unique within any device
1012  * @size: size of the region.
1013  * @align: alignment of the region base address; if 0, the default alignment
1014  *         (getpagesize()) will be used.
1015  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1016  *             RAM_NORESERVE,
1017  * @path: the path in which to allocate the RAM.
1018  * @readonly: true to open @path for reading, false for read/write.
1019  * @errp: pointer to Error*, to store an error if it happens.
1020  *
1021  * Note that this function does not do anything to cause the data in the
1022  * RAM memory region to be migrated; that is the responsibility of the caller.
1023  */
1024 void memory_region_init_ram_from_file(MemoryRegion *mr,
1025                                       Object *owner,
1026                                       const char *name,
1027                                       uint64_t size,
1028                                       uint64_t align,
1029                                       uint32_t ram_flags,
1030                                       const char *path,
1031                                       bool readonly,
1032                                       Error **errp);
1033 
1034 /**
1035  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1036  *                                  mmap-ed backend.
1037  *
1038  * @mr: the #MemoryRegion to be initialized.
1039  * @owner: the object that tracks the region's reference count
1040  * @name: the name of the region.
1041  * @size: size of the region.
1042  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1043  *             RAM_NORESERVE.
1044  * @fd: the fd to mmap.
1045  * @offset: offset within the file referenced by fd
1046  * @errp: pointer to Error*, to store an error if it happens.
1047  *
1048  * Note that this function does not do anything to cause the data in the
1049  * RAM memory region to be migrated; that is the responsibility of the caller.
1050  */
1051 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1052                                     Object *owner,
1053                                     const char *name,
1054                                     uint64_t size,
1055                                     uint32_t ram_flags,
1056                                     int fd,
1057                                     ram_addr_t offset,
1058                                     Error **errp);
1059 #endif
1060 
1061 /**
1062  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1063  *                              user-provided pointer.  Accesses into the
1064  *                              region will modify memory directly.
1065  *
1066  * @mr: the #MemoryRegion to be initialized.
1067  * @owner: the object that tracks the region's reference count
1068  * @name: Region name, becomes part of RAMBlock name used in migration stream
1069  *        must be unique within any device
1070  * @size: size of the region.
1071  * @ptr: memory to be mapped; must contain at least @size bytes.
1072  *
1073  * Note that this function does not do anything to cause the data in the
1074  * RAM memory region to be migrated; that is the responsibility of the caller.
1075  */
1076 void memory_region_init_ram_ptr(MemoryRegion *mr,
1077                                 Object *owner,
1078                                 const char *name,
1079                                 uint64_t size,
1080                                 void *ptr);
1081 
1082 /**
1083  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1084  *                                     a user-provided pointer.
1085  *
1086  * A RAM device represents a mapping to a physical device, such as to a PCI
1087  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1088  * into the VM address space and access to the region will modify memory
1089  * directly.  However, the memory region should not be included in a memory
1090  * dump (device may not be enabled/mapped at the time of the dump), and
1091  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1092  * skip_dump flag.
1093  *
1094  * @mr: the #MemoryRegion to be initialized.
1095  * @owner: the object that tracks the region's reference count
1096  * @name: the name of the region.
1097  * @size: size of the region.
1098  * @ptr: memory to be mapped; must contain at least @size bytes.
1099  *
1100  * Note that this function does not do anything to cause the data in the
1101  * RAM memory region to be migrated; that is the responsibility of the caller.
1102  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1103  */
1104 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1105                                        Object *owner,
1106                                        const char *name,
1107                                        uint64_t size,
1108                                        void *ptr);
1109 
1110 /**
1111  * memory_region_init_alias: Initialize a memory region that aliases all or a
1112  *                           part of another memory region.
1113  *
1114  * @mr: the #MemoryRegion to be initialized.
1115  * @owner: the object that tracks the region's reference count
1116  * @name: used for debugging; not visible to the user or ABI
1117  * @orig: the region to be referenced; @mr will be equivalent to
1118  *        @orig between @offset and @offset + @size - 1.
1119  * @offset: start of the section in @orig to be referenced.
1120  * @size: size of the region.
1121  */
1122 void memory_region_init_alias(MemoryRegion *mr,
1123                               Object *owner,
1124                               const char *name,
1125                               MemoryRegion *orig,
1126                               hwaddr offset,
1127                               uint64_t size);
1128 
1129 /**
1130  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1131  *
1132  * This has the same effect as calling memory_region_init_ram_nomigrate()
1133  * and then marking the resulting region read-only with
1134  * memory_region_set_readonly().
1135  *
1136  * Note that this function does not do anything to cause the data in the
1137  * RAM side of the memory region to be migrated; that is the responsibility
1138  * of the caller.
1139  *
1140  * @mr: the #MemoryRegion to be initialized.
1141  * @owner: the object that tracks the region's reference count
1142  * @name: Region name, becomes part of RAMBlock name used in migration stream
1143  *        must be unique within any device
1144  * @size: size of the region.
1145  * @errp: pointer to Error*, to store an error if it happens.
1146  */
1147 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1148                                       Object *owner,
1149                                       const char *name,
1150                                       uint64_t size,
1151                                       Error **errp);
1152 
1153 /**
1154  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1155  *                                 Writes are handled via callbacks.
1156  *
1157  * Note that this function does not do anything to cause the data in the
1158  * RAM side of the memory region to be migrated; that is the responsibility
1159  * of the caller.
1160  *
1161  * @mr: the #MemoryRegion to be initialized.
1162  * @owner: the object that tracks the region's reference count
1163  * @ops: callbacks for write access handling (must not be NULL).
1164  * @opaque: passed to the read and write callbacks of the @ops structure.
1165  * @name: Region name, becomes part of RAMBlock name used in migration stream
1166  *        must be unique within any device
1167  * @size: size of the region.
1168  * @errp: pointer to Error*, to store an error if it happens.
1169  */
1170 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1171                                              Object *owner,
1172                                              const MemoryRegionOps *ops,
1173                                              void *opaque,
1174                                              const char *name,
1175                                              uint64_t size,
1176                                              Error **errp);
1177 
1178 /**
1179  * memory_region_init_iommu: Initialize a memory region of a custom type
1180  * that translates addresses
1181  *
1182  * An IOMMU region translates addresses and forwards accesses to a target
1183  * memory region.
1184  *
1185  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1186  * @_iommu_mr should be a pointer to enough memory for an instance of
1187  * that subclass, @instance_size is the size of that subclass, and
1188  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1189  * instance of the subclass, and its methods will then be called to handle
1190  * accesses to the memory region. See the documentation of
1191  * #IOMMUMemoryRegionClass for further details.
1192  *
1193  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1194  * @instance_size: the IOMMUMemoryRegion subclass instance size
1195  * @mrtypename: the type name of the #IOMMUMemoryRegion
1196  * @owner: the object that tracks the region's reference count
1197  * @name: used for debugging; not visible to the user or ABI
1198  * @size: size of the region.
1199  */
1200 void memory_region_init_iommu(void *_iommu_mr,
1201                               size_t instance_size,
1202                               const char *mrtypename,
1203                               Object *owner,
1204                               const char *name,
1205                               uint64_t size);
1206 
1207 /**
1208  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1209  *                          region will modify memory directly.
1210  *
1211  * @mr: the #MemoryRegion to be initialized
1212  * @owner: the object that tracks the region's reference count (must be
1213  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1214  * @name: name of the memory region
1215  * @size: size of the region in bytes
1216  * @errp: pointer to Error*, to store an error if it happens.
1217  *
1218  * This function allocates RAM for a board model or device, and
1219  * arranges for it to be migrated (by calling vmstate_register_ram()
1220  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1221  * @owner is NULL).
1222  *
1223  * TODO: Currently we restrict @owner to being either NULL (for
1224  * global RAM regions with no owner) or devices, so that we can
1225  * give the RAM block a unique name for migration purposes.
1226  * We should lift this restriction and allow arbitrary Objects.
1227  * If you pass a non-NULL non-device @owner then we will assert.
1228  */
1229 void memory_region_init_ram(MemoryRegion *mr,
1230                             Object *owner,
1231                             const char *name,
1232                             uint64_t size,
1233                             Error **errp);
1234 
1235 /**
1236  * memory_region_init_rom: Initialize a ROM memory region.
1237  *
1238  * This has the same effect as calling memory_region_init_ram()
1239  * and then marking the resulting region read-only with
1240  * memory_region_set_readonly(). This includes arranging for the
1241  * contents to be migrated.
1242  *
1243  * TODO: Currently we restrict @owner to being either NULL (for
1244  * global RAM regions with no owner) or devices, so that we can
1245  * give the RAM block a unique name for migration purposes.
1246  * We should lift this restriction and allow arbitrary Objects.
1247  * If you pass a non-NULL non-device @owner then we will assert.
1248  *
1249  * @mr: the #MemoryRegion to be initialized.
1250  * @owner: the object that tracks the region's reference count
1251  * @name: Region name, becomes part of RAMBlock name used in migration stream
1252  *        must be unique within any device
1253  * @size: size of the region.
1254  * @errp: pointer to Error*, to store an error if it happens.
1255  */
1256 void memory_region_init_rom(MemoryRegion *mr,
1257                             Object *owner,
1258                             const char *name,
1259                             uint64_t size,
1260                             Error **errp);
1261 
1262 /**
1263  * memory_region_init_rom_device:  Initialize a ROM memory region.
1264  *                                 Writes are handled via callbacks.
1265  *
1266  * This function initializes a memory region backed by RAM for reads
1267  * and callbacks for writes, and arranges for the RAM backing to
1268  * be migrated (by calling vmstate_register_ram()
1269  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1270  * @owner is NULL).
1271  *
1272  * TODO: Currently we restrict @owner to being either NULL (for
1273  * global RAM regions with no owner) or devices, so that we can
1274  * give the RAM block a unique name for migration purposes.
1275  * We should lift this restriction and allow arbitrary Objects.
1276  * If you pass a non-NULL non-device @owner then we will assert.
1277  *
1278  * @mr: the #MemoryRegion to be initialized.
1279  * @owner: the object that tracks the region's reference count
1280  * @ops: callbacks for write access handling (must not be NULL).
1281  * @opaque: passed to the read and write callbacks of the @ops structure.
1282  * @name: Region name, becomes part of RAMBlock name used in migration stream
1283  *        must be unique within any device
1284  * @size: size of the region.
1285  * @errp: pointer to Error*, to store an error if it happens.
1286  */
1287 void memory_region_init_rom_device(MemoryRegion *mr,
1288                                    Object *owner,
1289                                    const MemoryRegionOps *ops,
1290                                    void *opaque,
1291                                    const char *name,
1292                                    uint64_t size,
1293                                    Error **errp);
1294 
1295 
1296 /**
1297  * memory_region_owner: get a memory region's owner.
1298  *
1299  * @mr: the memory region being queried.
1300  */
1301 Object *memory_region_owner(MemoryRegion *mr);
1302 
1303 /**
1304  * memory_region_size: get a memory region's size.
1305  *
1306  * @mr: the memory region being queried.
1307  */
1308 uint64_t memory_region_size(MemoryRegion *mr);
1309 
1310 /**
1311  * memory_region_is_ram: check whether a memory region is random access
1312  *
1313  * Returns %true if a memory region is random access.
1314  *
1315  * @mr: the memory region being queried
1316  */
1317 static inline bool memory_region_is_ram(MemoryRegion *mr)
1318 {
1319     return mr->ram;
1320 }
1321 
1322 /**
1323  * memory_region_is_ram_device: check whether a memory region is a ram device
1324  *
1325  * Returns %true if a memory region is a device backed ram region
1326  *
1327  * @mr: the memory region being queried
1328  */
1329 bool memory_region_is_ram_device(MemoryRegion *mr);
1330 
1331 /**
1332  * memory_region_is_romd: check whether a memory region is in ROMD mode
1333  *
1334  * Returns %true if a memory region is a ROM device and currently set to allow
1335  * direct reads.
1336  *
1337  * @mr: the memory region being queried
1338  */
1339 static inline bool memory_region_is_romd(MemoryRegion *mr)
1340 {
1341     return mr->rom_device && mr->romd_mode;
1342 }
1343 
1344 /**
1345  * memory_region_get_iommu: check whether a memory region is an iommu
1346  *
1347  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1348  * otherwise NULL.
1349  *
1350  * @mr: the memory region being queried
1351  */
1352 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1353 {
1354     if (mr->alias) {
1355         return memory_region_get_iommu(mr->alias);
1356     }
1357     if (mr->is_iommu) {
1358         return (IOMMUMemoryRegion *) mr;
1359     }
1360     return NULL;
1361 }
1362 
1363 /**
1364  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1365  *   if an iommu or NULL if not
1366  *
1367  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1368  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1369  *
1370  * @iommu_mr: the memory region being queried
1371  */
1372 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1373         IOMMUMemoryRegion *iommu_mr)
1374 {
1375     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1376 }
1377 
1378 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1379 
1380 /**
1381  * memory_region_iommu_get_min_page_size: get minimum supported page size
1382  * for an iommu
1383  *
1384  * Returns minimum supported page size for an iommu.
1385  *
1386  * @iommu_mr: the memory region being queried
1387  */
1388 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1389 
1390 /**
1391  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1392  *
1393  * Note: for any IOMMU implementation, an in-place mapping change
1394  * should be notified with an UNMAP followed by a MAP.
1395  *
1396  * @iommu_mr: the memory region that was changed
1397  * @iommu_idx: the IOMMU index for the translation table which has changed
1398  * @event: TLB event with the new entry in the IOMMU translation table.
1399  *         The entry replaces all old entries for the same virtual I/O address
1400  *         range.
1401  */
1402 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1403                                 int iommu_idx,
1404                                 IOMMUTLBEvent event);
1405 
1406 /**
1407  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1408  *                           entry to a single notifier
1409  *
1410  * This works just like memory_region_notify_iommu(), but it only
1411  * notifies a specific notifier, not all of them.
1412  *
1413  * @notifier: the notifier to be notified
1414  * @event: TLB event with the new entry in the IOMMU translation table.
1415  *         The entry replaces all old entries for the same virtual I/O address
1416  *         range.
1417  */
1418 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1419                                     IOMMUTLBEvent *event);
1420 
1421 /**
1422  * memory_region_register_iommu_notifier: register a notifier for changes to
1423  * IOMMU translation entries.
1424  *
1425  * Returns 0 on success, or a negative errno otherwise. In particular,
1426  * -EINVAL indicates that at least one of the attributes of the notifier
1427  * is not supported (flag/range) by the IOMMU memory region. In case of error
1428  * the error object must be created.
1429  *
1430  * @mr: the memory region to observe
1431  * @n: the IOMMUNotifier to be added; the notify callback receives a
1432  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1433  *     ceases to be valid on exit from the notifier.
1434  * @errp: pointer to Error*, to store an error if it happens.
1435  */
1436 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1437                                           IOMMUNotifier *n, Error **errp);
1438 
1439 /**
1440  * memory_region_iommu_replay: replay existing IOMMU translations to
1441  * a notifier with the minimum page granularity returned by
1442  * mr->iommu_ops->get_page_size().
1443  *
1444  * Note: this is not related to record-and-replay functionality.
1445  *
1446  * @iommu_mr: the memory region to observe
1447  * @n: the notifier to which to replay iommu mappings
1448  */
1449 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1450 
1451 /**
1452  * memory_region_unregister_iommu_notifier: unregister a notifier for
1453  * changes to IOMMU translation entries.
1454  *
1455  * @mr: the memory region which was observed and for which notity_stopped()
1456  *      needs to be called
1457  * @n: the notifier to be removed.
1458  */
1459 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1460                                              IOMMUNotifier *n);
1461 
1462 /**
1463  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1464  * defined on the IOMMU.
1465  *
1466  * Returns 0 on success, or a negative errno otherwise. In particular,
1467  * -EINVAL indicates that the IOMMU does not support the requested
1468  * attribute.
1469  *
1470  * @iommu_mr: the memory region
1471  * @attr: the requested attribute
1472  * @data: a pointer to the requested attribute data
1473  */
1474 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1475                                  enum IOMMUMemoryRegionAttr attr,
1476                                  void *data);
1477 
1478 /**
1479  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1480  * use for translations with the given memory transaction attributes.
1481  *
1482  * @iommu_mr: the memory region
1483  * @attrs: the memory transaction attributes
1484  */
1485 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1486                                        MemTxAttrs attrs);
1487 
1488 /**
1489  * memory_region_iommu_num_indexes: return the total number of IOMMU
1490  * indexes that this IOMMU supports.
1491  *
1492  * @iommu_mr: the memory region
1493  */
1494 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1495 
1496 /**
1497  * memory_region_iommu_set_page_size_mask: set the supported page
1498  * sizes for a given IOMMU memory region
1499  *
1500  * @iommu_mr: IOMMU memory region
1501  * @page_size_mask: supported page size mask
1502  * @errp: pointer to Error*, to store an error if it happens.
1503  */
1504 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1505                                            uint64_t page_size_mask,
1506                                            Error **errp);
1507 
1508 /**
1509  * memory_region_name: get a memory region's name
1510  *
1511  * Returns the string that was used to initialize the memory region.
1512  *
1513  * @mr: the memory region being queried
1514  */
1515 const char *memory_region_name(const MemoryRegion *mr);
1516 
1517 /**
1518  * memory_region_is_logging: return whether a memory region is logging writes
1519  *
1520  * Returns %true if the memory region is logging writes for the given client
1521  *
1522  * @mr: the memory region being queried
1523  * @client: the client being queried
1524  */
1525 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1526 
1527 /**
1528  * memory_region_get_dirty_log_mask: return the clients for which a
1529  * memory region is logging writes.
1530  *
1531  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1532  * are the bit indices.
1533  *
1534  * @mr: the memory region being queried
1535  */
1536 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1537 
1538 /**
1539  * memory_region_is_rom: check whether a memory region is ROM
1540  *
1541  * Returns %true if a memory region is read-only memory.
1542  *
1543  * @mr: the memory region being queried
1544  */
1545 static inline bool memory_region_is_rom(MemoryRegion *mr)
1546 {
1547     return mr->ram && mr->readonly;
1548 }
1549 
1550 /**
1551  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1552  *
1553  * Returns %true is a memory region is non-volatile memory.
1554  *
1555  * @mr: the memory region being queried
1556  */
1557 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1558 {
1559     return mr->nonvolatile;
1560 }
1561 
1562 /**
1563  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1564  *
1565  * Returns a file descriptor backing a file-based RAM memory region,
1566  * or -1 if the region is not a file-based RAM memory region.
1567  *
1568  * @mr: the RAM or alias memory region being queried.
1569  */
1570 int memory_region_get_fd(MemoryRegion *mr);
1571 
1572 /**
1573  * memory_region_from_host: Convert a pointer into a RAM memory region
1574  * and an offset within it.
1575  *
1576  * Given a host pointer inside a RAM memory region (created with
1577  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1578  * the MemoryRegion and the offset within it.
1579  *
1580  * Use with care; by the time this function returns, the returned pointer is
1581  * not protected by RCU anymore.  If the caller is not within an RCU critical
1582  * section and does not hold the iothread lock, it must have other means of
1583  * protecting the pointer, such as a reference to the region that includes
1584  * the incoming ram_addr_t.
1585  *
1586  * @ptr: the host pointer to be converted
1587  * @offset: the offset within memory region
1588  */
1589 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1590 
1591 /**
1592  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1593  *
1594  * Returns a host pointer to a RAM memory region (created with
1595  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1596  *
1597  * Use with care; by the time this function returns, the returned pointer is
1598  * not protected by RCU anymore.  If the caller is not within an RCU critical
1599  * section and does not hold the iothread lock, it must have other means of
1600  * protecting the pointer, such as a reference to the region that includes
1601  * the incoming ram_addr_t.
1602  *
1603  * @mr: the memory region being queried.
1604  */
1605 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1606 
1607 /* memory_region_ram_resize: Resize a RAM region.
1608  *
1609  * Resizing RAM while migrating can result in the migration being canceled.
1610  * Care has to be taken if the guest might have already detected the memory.
1611  *
1612  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1613  * @newsize: the new size the region
1614  * @errp: pointer to Error*, to store an error if it happens.
1615  */
1616 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1617                               Error **errp);
1618 
1619 /**
1620  * memory_region_msync: Synchronize selected address range of
1621  * a memory mapped region
1622  *
1623  * @mr: the memory region to be msync
1624  * @addr: the initial address of the range to be sync
1625  * @size: the size of the range to be sync
1626  */
1627 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1628 
1629 /**
1630  * memory_region_writeback: Trigger cache writeback for
1631  * selected address range
1632  *
1633  * @mr: the memory region to be updated
1634  * @addr: the initial address of the range to be written back
1635  * @size: the size of the range to be written back
1636  */
1637 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1638 
1639 /**
1640  * memory_region_set_log: Turn dirty logging on or off for a region.
1641  *
1642  * Turns dirty logging on or off for a specified client (display, migration).
1643  * Only meaningful for RAM regions.
1644  *
1645  * @mr: the memory region being updated.
1646  * @log: whether dirty logging is to be enabled or disabled.
1647  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1648  */
1649 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1650 
1651 /**
1652  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1653  *
1654  * Marks a range of bytes as dirty, after it has been dirtied outside
1655  * guest code.
1656  *
1657  * @mr: the memory region being dirtied.
1658  * @addr: the address (relative to the start of the region) being dirtied.
1659  * @size: size of the range being dirtied.
1660  */
1661 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1662                              hwaddr size);
1663 
1664 /**
1665  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1666  *
1667  * This function is called when the caller wants to clear the remote
1668  * dirty bitmap of a memory range within the memory region.  This can
1669  * be used by e.g. KVM to manually clear dirty log when
1670  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1671  * kernel.
1672  *
1673  * @mr:     the memory region to clear the dirty log upon
1674  * @start:  start address offset within the memory region
1675  * @len:    length of the memory region to clear dirty bitmap
1676  */
1677 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1678                                       hwaddr len);
1679 
1680 /**
1681  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1682  *                                         bitmap and clear it.
1683  *
1684  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1685  * returns the snapshot.  The snapshot can then be used to query dirty
1686  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1687  * querying the same page multiple times, which is especially useful for
1688  * display updates where the scanlines often are not page aligned.
1689  *
1690  * The dirty bitmap region which gets copyed into the snapshot (and
1691  * cleared afterwards) can be larger than requested.  The boundaries
1692  * are rounded up/down so complete bitmap longs (covering 64 pages on
1693  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1694  * isn't a problem for display updates as the extra pages are outside
1695  * the visible area, and in case the visible area changes a full
1696  * display redraw is due anyway.  Should other use cases for this
1697  * function emerge we might have to revisit this implementation
1698  * detail.
1699  *
1700  * Use g_free to release DirtyBitmapSnapshot.
1701  *
1702  * @mr: the memory region being queried.
1703  * @addr: the address (relative to the start of the region) being queried.
1704  * @size: the size of the range being queried.
1705  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1706  */
1707 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1708                                                             hwaddr addr,
1709                                                             hwaddr size,
1710                                                             unsigned client);
1711 
1712 /**
1713  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1714  *                                   in the specified dirty bitmap snapshot.
1715  *
1716  * @mr: the memory region being queried.
1717  * @snap: the dirty bitmap snapshot
1718  * @addr: the address (relative to the start of the region) being queried.
1719  * @size: the size of the range being queried.
1720  */
1721 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1722                                       DirtyBitmapSnapshot *snap,
1723                                       hwaddr addr, hwaddr size);
1724 
1725 /**
1726  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1727  *                            client.
1728  *
1729  * Marks a range of pages as no longer dirty.
1730  *
1731  * @mr: the region being updated.
1732  * @addr: the start of the subrange being cleaned.
1733  * @size: the size of the subrange being cleaned.
1734  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1735  *          %DIRTY_MEMORY_VGA.
1736  */
1737 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1738                                hwaddr size, unsigned client);
1739 
1740 /**
1741  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1742  *                                 TBs (for self-modifying code).
1743  *
1744  * The MemoryRegionOps->write() callback of a ROM device must use this function
1745  * to mark byte ranges that have been modified internally, such as by directly
1746  * accessing the memory returned by memory_region_get_ram_ptr().
1747  *
1748  * This function marks the range dirty and invalidates TBs so that TCG can
1749  * detect self-modifying code.
1750  *
1751  * @mr: the region being flushed.
1752  * @addr: the start, relative to the start of the region, of the range being
1753  *        flushed.
1754  * @size: the size, in bytes, of the range being flushed.
1755  */
1756 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1757 
1758 /**
1759  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1760  *
1761  * Allows a memory region to be marked as read-only (turning it into a ROM).
1762  * only useful on RAM regions.
1763  *
1764  * @mr: the region being updated.
1765  * @readonly: whether rhe region is to be ROM or RAM.
1766  */
1767 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1768 
1769 /**
1770  * memory_region_set_nonvolatile: Turn a memory region non-volatile
1771  *
1772  * Allows a memory region to be marked as non-volatile.
1773  * only useful on RAM regions.
1774  *
1775  * @mr: the region being updated.
1776  * @nonvolatile: whether rhe region is to be non-volatile.
1777  */
1778 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1779 
1780 /**
1781  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1782  *
1783  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1784  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1785  * device is mapped to guest memory and satisfies read access directly.
1786  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1787  * Writes are always handled by the #MemoryRegion.write function.
1788  *
1789  * @mr: the memory region to be updated
1790  * @romd_mode: %true to put the region into ROMD mode
1791  */
1792 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1793 
1794 /**
1795  * memory_region_set_coalescing: Enable memory coalescing for the region.
1796  *
1797  * Enabled writes to a region to be queued for later processing. MMIO ->write
1798  * callbacks may be delayed until a non-coalesced MMIO is issued.
1799  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1800  *
1801  * @mr: the memory region to be write coalesced
1802  */
1803 void memory_region_set_coalescing(MemoryRegion *mr);
1804 
1805 /**
1806  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1807  *                               a region.
1808  *
1809  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1810  * Multiple calls can be issued coalesced disjoint ranges.
1811  *
1812  * @mr: the memory region to be updated.
1813  * @offset: the start of the range within the region to be coalesced.
1814  * @size: the size of the subrange to be coalesced.
1815  */
1816 void memory_region_add_coalescing(MemoryRegion *mr,
1817                                   hwaddr offset,
1818                                   uint64_t size);
1819 
1820 /**
1821  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1822  *
1823  * Disables any coalescing caused by memory_region_set_coalescing() or
1824  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1825  * hardware.
1826  *
1827  * @mr: the memory region to be updated.
1828  */
1829 void memory_region_clear_coalescing(MemoryRegion *mr);
1830 
1831 /**
1832  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1833  *                                    accesses.
1834  *
1835  * Ensure that pending coalesced MMIO request are flushed before the memory
1836  * region is accessed. This property is automatically enabled for all regions
1837  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1838  *
1839  * @mr: the memory region to be updated.
1840  */
1841 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1842 
1843 /**
1844  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1845  *                                      accesses.
1846  *
1847  * Clear the automatic coalesced MMIO flushing enabled via
1848  * memory_region_set_flush_coalesced. Note that this service has no effect on
1849  * memory regions that have MMIO coalescing enabled for themselves. For them,
1850  * automatic flushing will stop once coalescing is disabled.
1851  *
1852  * @mr: the memory region to be updated.
1853  */
1854 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1855 
1856 /**
1857  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1858  *                            is written to a location.
1859  *
1860  * Marks a word in an IO region (initialized with memory_region_init_io())
1861  * as a trigger for an eventfd event.  The I/O callback will not be called.
1862  * The caller must be prepared to handle failure (that is, take the required
1863  * action if the callback _is_ called).
1864  *
1865  * @mr: the memory region being updated.
1866  * @addr: the address within @mr that is to be monitored
1867  * @size: the size of the access to trigger the eventfd
1868  * @match_data: whether to match against @data, instead of just @addr
1869  * @data: the data to match against the guest write
1870  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1871  **/
1872 void memory_region_add_eventfd(MemoryRegion *mr,
1873                                hwaddr addr,
1874                                unsigned size,
1875                                bool match_data,
1876                                uint64_t data,
1877                                EventNotifier *e);
1878 
1879 /**
1880  * memory_region_del_eventfd: Cancel an eventfd.
1881  *
1882  * Cancels an eventfd trigger requested by a previous
1883  * memory_region_add_eventfd() call.
1884  *
1885  * @mr: the memory region being updated.
1886  * @addr: the address within @mr that is to be monitored
1887  * @size: the size of the access to trigger the eventfd
1888  * @match_data: whether to match against @data, instead of just @addr
1889  * @data: the data to match against the guest write
1890  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1891  */
1892 void memory_region_del_eventfd(MemoryRegion *mr,
1893                                hwaddr addr,
1894                                unsigned size,
1895                                bool match_data,
1896                                uint64_t data,
1897                                EventNotifier *e);
1898 
1899 /**
1900  * memory_region_add_subregion: Add a subregion to a container.
1901  *
1902  * Adds a subregion at @offset.  The subregion may not overlap with other
1903  * subregions (except for those explicitly marked as overlapping).  A region
1904  * may only be added once as a subregion (unless removed with
1905  * memory_region_del_subregion()); use memory_region_init_alias() if you
1906  * want a region to be a subregion in multiple locations.
1907  *
1908  * @mr: the region to contain the new subregion; must be a container
1909  *      initialized with memory_region_init().
1910  * @offset: the offset relative to @mr where @subregion is added.
1911  * @subregion: the subregion to be added.
1912  */
1913 void memory_region_add_subregion(MemoryRegion *mr,
1914                                  hwaddr offset,
1915                                  MemoryRegion *subregion);
1916 /**
1917  * memory_region_add_subregion_overlap: Add a subregion to a container
1918  *                                      with overlap.
1919  *
1920  * Adds a subregion at @offset.  The subregion may overlap with other
1921  * subregions.  Conflicts are resolved by having a higher @priority hide a
1922  * lower @priority. Subregions without priority are taken as @priority 0.
1923  * A region may only be added once as a subregion (unless removed with
1924  * memory_region_del_subregion()); use memory_region_init_alias() if you
1925  * want a region to be a subregion in multiple locations.
1926  *
1927  * @mr: the region to contain the new subregion; must be a container
1928  *      initialized with memory_region_init().
1929  * @offset: the offset relative to @mr where @subregion is added.
1930  * @subregion: the subregion to be added.
1931  * @priority: used for resolving overlaps; highest priority wins.
1932  */
1933 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1934                                          hwaddr offset,
1935                                          MemoryRegion *subregion,
1936                                          int priority);
1937 
1938 /**
1939  * memory_region_get_ram_addr: Get the ram address associated with a memory
1940  *                             region
1941  *
1942  * @mr: the region to be queried
1943  */
1944 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1945 
1946 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1947 /**
1948  * memory_region_del_subregion: Remove a subregion.
1949  *
1950  * Removes a subregion from its container.
1951  *
1952  * @mr: the container to be updated.
1953  * @subregion: the region being removed; must be a current subregion of @mr.
1954  */
1955 void memory_region_del_subregion(MemoryRegion *mr,
1956                                  MemoryRegion *subregion);
1957 
1958 /*
1959  * memory_region_set_enabled: dynamically enable or disable a region
1960  *
1961  * Enables or disables a memory region.  A disabled memory region
1962  * ignores all accesses to itself and its subregions.  It does not
1963  * obscure sibling subregions with lower priority - it simply behaves as
1964  * if it was removed from the hierarchy.
1965  *
1966  * Regions default to being enabled.
1967  *
1968  * @mr: the region to be updated
1969  * @enabled: whether to enable or disable the region
1970  */
1971 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1972 
1973 /*
1974  * memory_region_set_address: dynamically update the address of a region
1975  *
1976  * Dynamically updates the address of a region, relative to its container.
1977  * May be used on regions are currently part of a memory hierarchy.
1978  *
1979  * @mr: the region to be updated
1980  * @addr: new address, relative to container region
1981  */
1982 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1983 
1984 /*
1985  * memory_region_set_size: dynamically update the size of a region.
1986  *
1987  * Dynamically updates the size of a region.
1988  *
1989  * @mr: the region to be updated
1990  * @size: used size of the region.
1991  */
1992 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1993 
1994 /*
1995  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1996  *
1997  * Dynamically updates the offset into the target region that an alias points
1998  * to, as if the fourth argument to memory_region_init_alias() has changed.
1999  *
2000  * @mr: the #MemoryRegion to be updated; should be an alias.
2001  * @offset: the new offset into the target memory region
2002  */
2003 void memory_region_set_alias_offset(MemoryRegion *mr,
2004                                     hwaddr offset);
2005 
2006 /**
2007  * memory_region_present: checks if an address relative to a @container
2008  * translates into #MemoryRegion within @container
2009  *
2010  * Answer whether a #MemoryRegion within @container covers the address
2011  * @addr.
2012  *
2013  * @container: a #MemoryRegion within which @addr is a relative address
2014  * @addr: the area within @container to be searched
2015  */
2016 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2017 
2018 /**
2019  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2020  * into any address space.
2021  *
2022  * @mr: a #MemoryRegion which should be checked if it's mapped
2023  */
2024 bool memory_region_is_mapped(MemoryRegion *mr);
2025 
2026 /**
2027  * memory_region_find: translate an address/size relative to a
2028  * MemoryRegion into a #MemoryRegionSection.
2029  *
2030  * Locates the first #MemoryRegion within @mr that overlaps the range
2031  * given by @addr and @size.
2032  *
2033  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2034  * It will have the following characteristics:
2035  * - @size = 0 iff no overlap was found
2036  * - @mr is non-%NULL iff an overlap was found
2037  *
2038  * Remember that in the return value the @offset_within_region is
2039  * relative to the returned region (in the .@mr field), not to the
2040  * @mr argument.
2041  *
2042  * Similarly, the .@offset_within_address_space is relative to the
2043  * address space that contains both regions, the passed and the
2044  * returned one.  However, in the special case where the @mr argument
2045  * has no container (and thus is the root of the address space), the
2046  * following will hold:
2047  * - @offset_within_address_space >= @addr
2048  * - @offset_within_address_space + .@size <= @addr + @size
2049  *
2050  * @mr: a MemoryRegion within which @addr is a relative address
2051  * @addr: start of the area within @as to be searched
2052  * @size: size of the area to be searched
2053  */
2054 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2055                                        hwaddr addr, uint64_t size);
2056 
2057 /**
2058  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2059  *
2060  * Synchronizes the dirty page log for all address spaces.
2061  */
2062 void memory_global_dirty_log_sync(void);
2063 
2064 /**
2065  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2066  *
2067  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2068  * This function must be called after the dirty log bitmap is cleared, and
2069  * before dirty guest memory pages are read.  If you are using
2070  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2071  * care of doing this.
2072  */
2073 void memory_global_after_dirty_log_sync(void);
2074 
2075 /**
2076  * memory_region_transaction_begin: Start a transaction.
2077  *
2078  * During a transaction, changes will be accumulated and made visible
2079  * only when the transaction ends (is committed).
2080  */
2081 void memory_region_transaction_begin(void);
2082 
2083 /**
2084  * memory_region_transaction_commit: Commit a transaction and make changes
2085  *                                   visible to the guest.
2086  */
2087 void memory_region_transaction_commit(void);
2088 
2089 /**
2090  * memory_listener_register: register callbacks to be called when memory
2091  *                           sections are mapped or unmapped into an address
2092  *                           space
2093  *
2094  * @listener: an object containing the callbacks to be called
2095  * @filter: if non-%NULL, only regions in this address space will be observed
2096  */
2097 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2098 
2099 /**
2100  * memory_listener_unregister: undo the effect of memory_listener_register()
2101  *
2102  * @listener: an object containing the callbacks to be removed
2103  */
2104 void memory_listener_unregister(MemoryListener *listener);
2105 
2106 /**
2107  * memory_global_dirty_log_start: begin dirty logging for all regions
2108  */
2109 void memory_global_dirty_log_start(void);
2110 
2111 /**
2112  * memory_global_dirty_log_stop: end dirty logging for all regions
2113  */
2114 void memory_global_dirty_log_stop(void);
2115 
2116 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2117 
2118 /**
2119  * memory_region_dispatch_read: perform a read directly to the specified
2120  * MemoryRegion.
2121  *
2122  * @mr: #MemoryRegion to access
2123  * @addr: address within that region
2124  * @pval: pointer to uint64_t which the data is written to
2125  * @op: size, sign, and endianness of the memory operation
2126  * @attrs: memory transaction attributes to use for the access
2127  */
2128 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2129                                         hwaddr addr,
2130                                         uint64_t *pval,
2131                                         MemOp op,
2132                                         MemTxAttrs attrs);
2133 /**
2134  * memory_region_dispatch_write: perform a write directly to the specified
2135  * MemoryRegion.
2136  *
2137  * @mr: #MemoryRegion to access
2138  * @addr: address within that region
2139  * @data: data to write
2140  * @op: size, sign, and endianness of the memory operation
2141  * @attrs: memory transaction attributes to use for the access
2142  */
2143 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2144                                          hwaddr addr,
2145                                          uint64_t data,
2146                                          MemOp op,
2147                                          MemTxAttrs attrs);
2148 
2149 /**
2150  * address_space_init: initializes an address space
2151  *
2152  * @as: an uninitialized #AddressSpace
2153  * @root: a #MemoryRegion that routes addresses for the address space
2154  * @name: an address space name.  The name is only used for debugging
2155  *        output.
2156  */
2157 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2158 
2159 /**
2160  * address_space_destroy: destroy an address space
2161  *
2162  * Releases all resources associated with an address space.  After an address space
2163  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2164  * as well.
2165  *
2166  * @as: address space to be destroyed
2167  */
2168 void address_space_destroy(AddressSpace *as);
2169 
2170 /**
2171  * address_space_remove_listeners: unregister all listeners of an address space
2172  *
2173  * Removes all callbacks previously registered with memory_listener_register()
2174  * for @as.
2175  *
2176  * @as: an initialized #AddressSpace
2177  */
2178 void address_space_remove_listeners(AddressSpace *as);
2179 
2180 /**
2181  * address_space_rw: read from or write to an address space.
2182  *
2183  * Return a MemTxResult indicating whether the operation succeeded
2184  * or failed (eg unassigned memory, device rejected the transaction,
2185  * IOMMU fault).
2186  *
2187  * @as: #AddressSpace to be accessed
2188  * @addr: address within that address space
2189  * @attrs: memory transaction attributes
2190  * @buf: buffer with the data transferred
2191  * @len: the number of bytes to read or write
2192  * @is_write: indicates the transfer direction
2193  */
2194 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2195                              MemTxAttrs attrs, void *buf,
2196                              hwaddr len, bool is_write);
2197 
2198 /**
2199  * address_space_write: write to address space.
2200  *
2201  * Return a MemTxResult indicating whether the operation succeeded
2202  * or failed (eg unassigned memory, device rejected the transaction,
2203  * IOMMU fault).
2204  *
2205  * @as: #AddressSpace to be accessed
2206  * @addr: address within that address space
2207  * @attrs: memory transaction attributes
2208  * @buf: buffer with the data transferred
2209  * @len: the number of bytes to write
2210  */
2211 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2212                                 MemTxAttrs attrs,
2213                                 const void *buf, hwaddr len);
2214 
2215 /**
2216  * address_space_write_rom: write to address space, including ROM.
2217  *
2218  * This function writes to the specified address space, but will
2219  * write data to both ROM and RAM. This is used for non-guest
2220  * writes like writes from the gdb debug stub or initial loading
2221  * of ROM contents.
2222  *
2223  * Note that portions of the write which attempt to write data to
2224  * a device will be silently ignored -- only real RAM and ROM will
2225  * be written to.
2226  *
2227  * Return a MemTxResult indicating whether the operation succeeded
2228  * or failed (eg unassigned memory, device rejected the transaction,
2229  * IOMMU fault).
2230  *
2231  * @as: #AddressSpace to be accessed
2232  * @addr: address within that address space
2233  * @attrs: memory transaction attributes
2234  * @buf: buffer with the data transferred
2235  * @len: the number of bytes to write
2236  */
2237 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2238                                     MemTxAttrs attrs,
2239                                     const void *buf, hwaddr len);
2240 
2241 /* address_space_ld*: load from an address space
2242  * address_space_st*: store to an address space
2243  *
2244  * These functions perform a load or store of the byte, word,
2245  * longword or quad to the specified address within the AddressSpace.
2246  * The _le suffixed functions treat the data as little endian;
2247  * _be indicates big endian; no suffix indicates "same endianness
2248  * as guest CPU".
2249  *
2250  * The "guest CPU endianness" accessors are deprecated for use outside
2251  * target-* code; devices should be CPU-agnostic and use either the LE
2252  * or the BE accessors.
2253  *
2254  * @as #AddressSpace to be accessed
2255  * @addr: address within that address space
2256  * @val: data value, for stores
2257  * @attrs: memory transaction attributes
2258  * @result: location to write the success/failure of the transaction;
2259  *   if NULL, this information is discarded
2260  */
2261 
2262 #define SUFFIX
2263 #define ARG1         as
2264 #define ARG1_DECL    AddressSpace *as
2265 #include "exec/memory_ldst.h.inc"
2266 
2267 #define SUFFIX
2268 #define ARG1         as
2269 #define ARG1_DECL    AddressSpace *as
2270 #include "exec/memory_ldst_phys.h.inc"
2271 
2272 struct MemoryRegionCache {
2273     void *ptr;
2274     hwaddr xlat;
2275     hwaddr len;
2276     FlatView *fv;
2277     MemoryRegionSection mrs;
2278     bool is_write;
2279 };
2280 
2281 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2282 
2283 
2284 /* address_space_ld*_cached: load from a cached #MemoryRegion
2285  * address_space_st*_cached: store into a cached #MemoryRegion
2286  *
2287  * These functions perform a load or store of the byte, word,
2288  * longword or quad to the specified address.  The address is
2289  * a physical address in the AddressSpace, but it must lie within
2290  * a #MemoryRegion that was mapped with address_space_cache_init.
2291  *
2292  * The _le suffixed functions treat the data as little endian;
2293  * _be indicates big endian; no suffix indicates "same endianness
2294  * as guest CPU".
2295  *
2296  * The "guest CPU endianness" accessors are deprecated for use outside
2297  * target-* code; devices should be CPU-agnostic and use either the LE
2298  * or the BE accessors.
2299  *
2300  * @cache: previously initialized #MemoryRegionCache to be accessed
2301  * @addr: address within the address space
2302  * @val: data value, for stores
2303  * @attrs: memory transaction attributes
2304  * @result: location to write the success/failure of the transaction;
2305  *   if NULL, this information is discarded
2306  */
2307 
2308 #define SUFFIX       _cached_slow
2309 #define ARG1         cache
2310 #define ARG1_DECL    MemoryRegionCache *cache
2311 #include "exec/memory_ldst.h.inc"
2312 
2313 /* Inline fast path for direct RAM access.  */
2314 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2315     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2316 {
2317     assert(addr < cache->len);
2318     if (likely(cache->ptr)) {
2319         return ldub_p(cache->ptr + addr);
2320     } else {
2321         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2322     }
2323 }
2324 
2325 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2326     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2327 {
2328     assert(addr < cache->len);
2329     if (likely(cache->ptr)) {
2330         stb_p(cache->ptr + addr, val);
2331     } else {
2332         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2333     }
2334 }
2335 
2336 #define ENDIANNESS   _le
2337 #include "exec/memory_ldst_cached.h.inc"
2338 
2339 #define ENDIANNESS   _be
2340 #include "exec/memory_ldst_cached.h.inc"
2341 
2342 #define SUFFIX       _cached
2343 #define ARG1         cache
2344 #define ARG1_DECL    MemoryRegionCache *cache
2345 #include "exec/memory_ldst_phys.h.inc"
2346 
2347 /* address_space_cache_init: prepare for repeated access to a physical
2348  * memory region
2349  *
2350  * @cache: #MemoryRegionCache to be filled
2351  * @as: #AddressSpace to be accessed
2352  * @addr: address within that address space
2353  * @len: length of buffer
2354  * @is_write: indicates the transfer direction
2355  *
2356  * Will only work with RAM, and may map a subset of the requested range by
2357  * returning a value that is less than @len.  On failure, return a negative
2358  * errno value.
2359  *
2360  * Because it only works with RAM, this function can be used for
2361  * read-modify-write operations.  In this case, is_write should be %true.
2362  *
2363  * Note that addresses passed to the address_space_*_cached functions
2364  * are relative to @addr.
2365  */
2366 int64_t address_space_cache_init(MemoryRegionCache *cache,
2367                                  AddressSpace *as,
2368                                  hwaddr addr,
2369                                  hwaddr len,
2370                                  bool is_write);
2371 
2372 /**
2373  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2374  *
2375  * @cache: The #MemoryRegionCache to operate on.
2376  * @addr: The first physical address that was written, relative to the
2377  * address that was passed to @address_space_cache_init.
2378  * @access_len: The number of bytes that were written starting at @addr.
2379  */
2380 void address_space_cache_invalidate(MemoryRegionCache *cache,
2381                                     hwaddr addr,
2382                                     hwaddr access_len);
2383 
2384 /**
2385  * address_space_cache_destroy: free a #MemoryRegionCache
2386  *
2387  * @cache: The #MemoryRegionCache whose memory should be released.
2388  */
2389 void address_space_cache_destroy(MemoryRegionCache *cache);
2390 
2391 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2392  * entry. Should be called from an RCU critical section.
2393  */
2394 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2395                                             bool is_write, MemTxAttrs attrs);
2396 
2397 /* address_space_translate: translate an address range into an address space
2398  * into a MemoryRegion and an address range into that section.  Should be
2399  * called from an RCU critical section, to avoid that the last reference
2400  * to the returned region disappears after address_space_translate returns.
2401  *
2402  * @fv: #FlatView to be accessed
2403  * @addr: address within that address space
2404  * @xlat: pointer to address within the returned memory region section's
2405  * #MemoryRegion.
2406  * @len: pointer to length
2407  * @is_write: indicates the transfer direction
2408  * @attrs: memory attributes
2409  */
2410 MemoryRegion *flatview_translate(FlatView *fv,
2411                                  hwaddr addr, hwaddr *xlat,
2412                                  hwaddr *len, bool is_write,
2413                                  MemTxAttrs attrs);
2414 
2415 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2416                                                     hwaddr addr, hwaddr *xlat,
2417                                                     hwaddr *len, bool is_write,
2418                                                     MemTxAttrs attrs)
2419 {
2420     return flatview_translate(address_space_to_flatview(as),
2421                               addr, xlat, len, is_write, attrs);
2422 }
2423 
2424 /* address_space_access_valid: check for validity of accessing an address
2425  * space range
2426  *
2427  * Check whether memory is assigned to the given address space range, and
2428  * access is permitted by any IOMMU regions that are active for the address
2429  * space.
2430  *
2431  * For now, addr and len should be aligned to a page size.  This limitation
2432  * will be lifted in the future.
2433  *
2434  * @as: #AddressSpace to be accessed
2435  * @addr: address within that address space
2436  * @len: length of the area to be checked
2437  * @is_write: indicates the transfer direction
2438  * @attrs: memory attributes
2439  */
2440 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2441                                 bool is_write, MemTxAttrs attrs);
2442 
2443 /* address_space_map: map a physical memory region into a host virtual address
2444  *
2445  * May map a subset of the requested range, given by and returned in @plen.
2446  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2447  * the mapping are exhausted.
2448  * Use only for reads OR writes - not for read-modify-write operations.
2449  * Use cpu_register_map_client() to know when retrying the map operation is
2450  * likely to succeed.
2451  *
2452  * @as: #AddressSpace to be accessed
2453  * @addr: address within that address space
2454  * @plen: pointer to length of buffer; updated on return
2455  * @is_write: indicates the transfer direction
2456  * @attrs: memory attributes
2457  */
2458 void *address_space_map(AddressSpace *as, hwaddr addr,
2459                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2460 
2461 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2462  *
2463  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2464  * the amount of memory that was actually read or written by the caller.
2465  *
2466  * @as: #AddressSpace used
2467  * @buffer: host pointer as returned by address_space_map()
2468  * @len: buffer length as returned by address_space_map()
2469  * @access_len: amount of data actually transferred
2470  * @is_write: indicates the transfer direction
2471  */
2472 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2473                          bool is_write, hwaddr access_len);
2474 
2475 
2476 /* Internal functions, part of the implementation of address_space_read.  */
2477 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2478                                     MemTxAttrs attrs, void *buf, hwaddr len);
2479 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2480                                    MemTxAttrs attrs, void *buf,
2481                                    hwaddr len, hwaddr addr1, hwaddr l,
2482                                    MemoryRegion *mr);
2483 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2484 
2485 /* Internal functions, part of the implementation of address_space_read_cached
2486  * and address_space_write_cached.  */
2487 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2488                                            hwaddr addr, void *buf, hwaddr len);
2489 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2490                                             hwaddr addr, const void *buf,
2491                                             hwaddr len);
2492 
2493 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2494 {
2495     if (is_write) {
2496         return memory_region_is_ram(mr) && !mr->readonly &&
2497                !mr->rom_device && !memory_region_is_ram_device(mr);
2498     } else {
2499         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2500                memory_region_is_romd(mr);
2501     }
2502 }
2503 
2504 /**
2505  * address_space_read: read from an address space.
2506  *
2507  * Return a MemTxResult indicating whether the operation succeeded
2508  * or failed (eg unassigned memory, device rejected the transaction,
2509  * IOMMU fault).  Called within RCU critical section.
2510  *
2511  * @as: #AddressSpace to be accessed
2512  * @addr: address within that address space
2513  * @attrs: memory transaction attributes
2514  * @buf: buffer with the data transferred
2515  * @len: length of the data transferred
2516  */
2517 static inline __attribute__((__always_inline__))
2518 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2519                                MemTxAttrs attrs, void *buf,
2520                                hwaddr len)
2521 {
2522     MemTxResult result = MEMTX_OK;
2523     hwaddr l, addr1;
2524     void *ptr;
2525     MemoryRegion *mr;
2526     FlatView *fv;
2527 
2528     if (__builtin_constant_p(len)) {
2529         if (len) {
2530             RCU_READ_LOCK_GUARD();
2531             fv = address_space_to_flatview(as);
2532             l = len;
2533             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2534             if (len == l && memory_access_is_direct(mr, false)) {
2535                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2536                 memcpy(buf, ptr, len);
2537             } else {
2538                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2539                                                 addr1, l, mr);
2540             }
2541         }
2542     } else {
2543         result = address_space_read_full(as, addr, attrs, buf, len);
2544     }
2545     return result;
2546 }
2547 
2548 /**
2549  * address_space_read_cached: read from a cached RAM region
2550  *
2551  * @cache: Cached region to be addressed
2552  * @addr: address relative to the base of the RAM region
2553  * @buf: buffer with the data transferred
2554  * @len: length of the data transferred
2555  */
2556 static inline MemTxResult
2557 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2558                           void *buf, hwaddr len)
2559 {
2560     assert(addr < cache->len && len <= cache->len - addr);
2561     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2562     if (likely(cache->ptr)) {
2563         memcpy(buf, cache->ptr + addr, len);
2564         return MEMTX_OK;
2565     } else {
2566         return address_space_read_cached_slow(cache, addr, buf, len);
2567     }
2568 }
2569 
2570 /**
2571  * address_space_write_cached: write to a cached RAM region
2572  *
2573  * @cache: Cached region to be addressed
2574  * @addr: address relative to the base of the RAM region
2575  * @buf: buffer with the data transferred
2576  * @len: length of the data transferred
2577  */
2578 static inline MemTxResult
2579 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2580                            const void *buf, hwaddr len)
2581 {
2582     assert(addr < cache->len && len <= cache->len - addr);
2583     if (likely(cache->ptr)) {
2584         memcpy(cache->ptr + addr, buf, len);
2585         return MEMTX_OK;
2586     } else {
2587         return address_space_write_cached_slow(cache, addr, buf, len);
2588     }
2589 }
2590 
2591 #ifdef NEED_CPU_H
2592 /* enum device_endian to MemOp.  */
2593 static inline MemOp devend_memop(enum device_endian end)
2594 {
2595     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2596                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2597 
2598 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2599     /* Swap if non-host endianness or native (target) endianness */
2600     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2601 #else
2602     const int non_host_endianness =
2603         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2604 
2605     /* In this case, native (target) endianness needs no swap.  */
2606     return (end == non_host_endianness) ? MO_BSWAP : 0;
2607 #endif
2608 }
2609 #endif
2610 
2611 /*
2612  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2613  * to manage the actual amount of memory consumed by the VM (then, the memory
2614  * provided by RAM blocks might be bigger than the desired memory consumption).
2615  * This *must* be set if:
2616  * - Discarding parts of a RAM blocks does not result in the change being
2617  *   reflected in the VM and the pages getting freed.
2618  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2619  *   discards blindly.
2620  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2621  *   encrypted VMs).
2622  * Technologies that only temporarily pin the current working set of a
2623  * driver are fine, because we don't expect such pages to be discarded
2624  * (esp. based on guest action like balloon inflation).
2625  *
2626  * This is *not* to be used to protect from concurrent discards (esp.,
2627  * postcopy).
2628  *
2629  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2630  * discards to work reliably is active.
2631  */
2632 int ram_block_discard_disable(bool state);
2633 
2634 /*
2635  * Inhibit technologies that disable discarding of pages in RAM blocks.
2636  *
2637  * Returns 0 if successful. Returns -EBUSY if discards are already set to
2638  * broken.
2639  */
2640 int ram_block_discard_require(bool state);
2641 
2642 /*
2643  * Test if discarding of memory in ram blocks is disabled.
2644  */
2645 bool ram_block_discard_is_disabled(void);
2646 
2647 /*
2648  * Test if discarding of memory in ram blocks is required to work reliably.
2649  */
2650 bool ram_block_discard_is_required(void);
2651 
2652 #endif
2653 
2654 #endif
2655