1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/ramlist.h" 23 #include "qemu/queue.h" 24 #include "qemu/int128.h" 25 #include "qemu/notify.h" 26 #include "qom/object.h" 27 #include "qemu/rcu.h" 28 #include "hw/qdev-core.h" 29 30 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 31 32 #define MAX_PHYS_ADDR_SPACE_BITS 62 33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 34 35 #define TYPE_MEMORY_REGION "qemu:memory-region" 36 #define MEMORY_REGION(obj) \ 37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION) 38 39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region" 40 #define IOMMU_MEMORY_REGION(obj) \ 41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION) 42 #define IOMMU_MEMORY_REGION_CLASS(klass) \ 43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \ 44 TYPE_IOMMU_MEMORY_REGION) 45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \ 46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \ 47 TYPE_IOMMU_MEMORY_REGION) 48 49 typedef struct MemoryRegionOps MemoryRegionOps; 50 typedef struct MemoryRegionMmio MemoryRegionMmio; 51 52 struct MemoryRegionMmio { 53 CPUReadMemoryFunc *read[3]; 54 CPUWriteMemoryFunc *write[3]; 55 }; 56 57 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 58 59 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 60 typedef enum { 61 IOMMU_NONE = 0, 62 IOMMU_RO = 1, 63 IOMMU_WO = 2, 64 IOMMU_RW = 3, 65 } IOMMUAccessFlags; 66 67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 68 69 struct IOMMUTLBEntry { 70 AddressSpace *target_as; 71 hwaddr iova; 72 hwaddr translated_addr; 73 hwaddr addr_mask; /* 0xfff = 4k translation */ 74 IOMMUAccessFlags perm; 75 }; 76 77 /* 78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 79 * register with one or multiple IOMMU Notifier capability bit(s). 80 */ 81 typedef enum { 82 IOMMU_NOTIFIER_NONE = 0, 83 /* Notify cache invalidations */ 84 IOMMU_NOTIFIER_UNMAP = 0x1, 85 /* Notify entry changes (newly created entries) */ 86 IOMMU_NOTIFIER_MAP = 0x2, 87 } IOMMUNotifierFlag; 88 89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 90 91 struct IOMMUNotifier; 92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 93 IOMMUTLBEntry *data); 94 95 struct IOMMUNotifier { 96 IOMMUNotify notify; 97 IOMMUNotifierFlag notifier_flags; 98 /* Notify for address space range start <= addr <= end */ 99 hwaddr start; 100 hwaddr end; 101 QLIST_ENTRY(IOMMUNotifier) node; 102 }; 103 typedef struct IOMMUNotifier IOMMUNotifier; 104 105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 106 IOMMUNotifierFlag flags, 107 hwaddr start, hwaddr end) 108 { 109 n->notify = fn; 110 n->notifier_flags = flags; 111 n->start = start; 112 n->end = end; 113 } 114 115 /* 116 * Memory region callbacks 117 */ 118 struct MemoryRegionOps { 119 /* Read from the memory region. @addr is relative to @mr; @size is 120 * in bytes. */ 121 uint64_t (*read)(void *opaque, 122 hwaddr addr, 123 unsigned size); 124 /* Write to the memory region. @addr is relative to @mr; @size is 125 * in bytes. */ 126 void (*write)(void *opaque, 127 hwaddr addr, 128 uint64_t data, 129 unsigned size); 130 131 MemTxResult (*read_with_attrs)(void *opaque, 132 hwaddr addr, 133 uint64_t *data, 134 unsigned size, 135 MemTxAttrs attrs); 136 MemTxResult (*write_with_attrs)(void *opaque, 137 hwaddr addr, 138 uint64_t data, 139 unsigned size, 140 MemTxAttrs attrs); 141 /* Instruction execution pre-callback: 142 * @addr is the address of the access relative to the @mr. 143 * @size is the size of the area returned by the callback. 144 * @offset is the location of the pointer inside @mr. 145 * 146 * Returns a pointer to a location which contains guest code. 147 */ 148 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size, 149 unsigned *offset); 150 151 enum device_endian endianness; 152 /* Guest-visible constraints: */ 153 struct { 154 /* If nonzero, specify bounds on access sizes beyond which a machine 155 * check is thrown. 156 */ 157 unsigned min_access_size; 158 unsigned max_access_size; 159 /* If true, unaligned accesses are supported. Otherwise unaligned 160 * accesses throw machine checks. 161 */ 162 bool unaligned; 163 /* 164 * If present, and returns #false, the transaction is not accepted 165 * by the device (and results in machine dependent behaviour such 166 * as a machine check exception). 167 */ 168 bool (*accepts)(void *opaque, hwaddr addr, 169 unsigned size, bool is_write); 170 } valid; 171 /* Internal implementation constraints: */ 172 struct { 173 /* If nonzero, specifies the minimum size implemented. Smaller sizes 174 * will be rounded upwards and a partial result will be returned. 175 */ 176 unsigned min_access_size; 177 /* If nonzero, specifies the maximum size implemented. Larger sizes 178 * will be done as a series of accesses with smaller sizes. 179 */ 180 unsigned max_access_size; 181 /* If true, unaligned accesses are supported. Otherwise all accesses 182 * are converted to (possibly multiple) naturally aligned accesses. 183 */ 184 bool unaligned; 185 } impl; 186 187 /* If .read and .write are not present, old_mmio may be used for 188 * backwards compatibility with old mmio registration 189 */ 190 const MemoryRegionMmio old_mmio; 191 }; 192 193 typedef struct IOMMUMemoryRegionClass { 194 /* private */ 195 struct DeviceClass parent_class; 196 197 /* 198 * Return a TLB entry that contains a given address. Flag should 199 * be the access permission of this translation operation. We can 200 * set flag to IOMMU_NONE to mean that we don't need any 201 * read/write permission checks, like, when for region replay. 202 */ 203 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 204 IOMMUAccessFlags flag); 205 /* Returns minimum supported page size */ 206 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 207 /* Called when IOMMU Notifier flag changed */ 208 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 209 IOMMUNotifierFlag old_flags, 210 IOMMUNotifierFlag new_flags); 211 /* Set this up to provide customized IOMMU replay function */ 212 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 213 } IOMMUMemoryRegionClass; 214 215 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 216 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 217 218 struct MemoryRegion { 219 Object parent_obj; 220 221 /* All fields are private - violators will be prosecuted */ 222 223 /* The following fields should fit in a cache line */ 224 bool romd_mode; 225 bool ram; 226 bool subpage; 227 bool readonly; /* For RAM regions */ 228 bool rom_device; 229 bool flush_coalesced_mmio; 230 bool global_locking; 231 uint8_t dirty_log_mask; 232 bool is_iommu; 233 RAMBlock *ram_block; 234 Object *owner; 235 236 const MemoryRegionOps *ops; 237 void *opaque; 238 MemoryRegion *container; 239 Int128 size; 240 hwaddr addr; 241 void (*destructor)(MemoryRegion *mr); 242 uint64_t align; 243 bool terminates; 244 bool ram_device; 245 bool enabled; 246 bool warning_printed; /* For reservations */ 247 uint8_t vga_logging_count; 248 MemoryRegion *alias; 249 hwaddr alias_offset; 250 int32_t priority; 251 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 252 QTAILQ_ENTRY(MemoryRegion) subregions_link; 253 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 254 const char *name; 255 unsigned ioeventfd_nb; 256 MemoryRegionIoeventfd *ioeventfds; 257 }; 258 259 struct IOMMUMemoryRegion { 260 MemoryRegion parent_obj; 261 262 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 263 IOMMUNotifierFlag iommu_notify_flags; 264 }; 265 266 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 267 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 268 269 /** 270 * MemoryListener: callbacks structure for updates to the physical memory map 271 * 272 * Allows a component to adjust to changes in the guest-visible memory map. 273 * Use with memory_listener_register() and memory_listener_unregister(). 274 */ 275 struct MemoryListener { 276 void (*begin)(MemoryListener *listener); 277 void (*commit)(MemoryListener *listener); 278 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 279 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 280 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 281 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 282 int old, int new); 283 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 284 int old, int new); 285 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 286 void (*log_global_start)(MemoryListener *listener); 287 void (*log_global_stop)(MemoryListener *listener); 288 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 289 bool match_data, uint64_t data, EventNotifier *e); 290 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 291 bool match_data, uint64_t data, EventNotifier *e); 292 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 293 hwaddr addr, hwaddr len); 294 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 295 hwaddr addr, hwaddr len); 296 /* Lower = earlier (during add), later (during del) */ 297 unsigned priority; 298 AddressSpace *address_space; 299 QTAILQ_ENTRY(MemoryListener) link; 300 QTAILQ_ENTRY(MemoryListener) link_as; 301 }; 302 303 /** 304 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 305 */ 306 struct AddressSpace { 307 /* All fields are private. */ 308 struct rcu_head rcu; 309 char *name; 310 MemoryRegion *root; 311 312 /* Accessed via RCU. */ 313 struct FlatView *current_map; 314 315 int ioeventfd_nb; 316 struct MemoryRegionIoeventfd *ioeventfds; 317 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; 318 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 319 }; 320 321 FlatView *address_space_to_flatview(AddressSpace *as); 322 323 /** 324 * MemoryRegionSection: describes a fragment of a #MemoryRegion 325 * 326 * @mr: the region, or %NULL if empty 327 * @address_space: the address space the region is mapped in 328 * @offset_within_region: the beginning of the section, relative to @mr's start 329 * @size: the size of the section; will not exceed @mr's boundaries 330 * @offset_within_address_space: the address of the first byte of the section 331 * relative to the region's address space 332 * @readonly: writes to this section are ignored 333 */ 334 struct MemoryRegionSection { 335 MemoryRegion *mr; 336 FlatView *fv; 337 hwaddr offset_within_region; 338 Int128 size; 339 hwaddr offset_within_address_space; 340 bool readonly; 341 }; 342 343 /** 344 * memory_region_init: Initialize a memory region 345 * 346 * The region typically acts as a container for other memory regions. Use 347 * memory_region_add_subregion() to add subregions. 348 * 349 * @mr: the #MemoryRegion to be initialized 350 * @owner: the object that tracks the region's reference count 351 * @name: used for debugging; not visible to the user or ABI 352 * @size: size of the region; any subregions beyond this size will be clipped 353 */ 354 void memory_region_init(MemoryRegion *mr, 355 struct Object *owner, 356 const char *name, 357 uint64_t size); 358 359 /** 360 * memory_region_ref: Add 1 to a memory region's reference count 361 * 362 * Whenever memory regions are accessed outside the BQL, they need to be 363 * preserved against hot-unplug. MemoryRegions actually do not have their 364 * own reference count; they piggyback on a QOM object, their "owner". 365 * This function adds a reference to the owner. 366 * 367 * All MemoryRegions must have an owner if they can disappear, even if the 368 * device they belong to operates exclusively under the BQL. This is because 369 * the region could be returned at any time by memory_region_find, and this 370 * is usually under guest control. 371 * 372 * @mr: the #MemoryRegion 373 */ 374 void memory_region_ref(MemoryRegion *mr); 375 376 /** 377 * memory_region_unref: Remove 1 to a memory region's reference count 378 * 379 * Whenever memory regions are accessed outside the BQL, they need to be 380 * preserved against hot-unplug. MemoryRegions actually do not have their 381 * own reference count; they piggyback on a QOM object, their "owner". 382 * This function removes a reference to the owner and possibly destroys it. 383 * 384 * @mr: the #MemoryRegion 385 */ 386 void memory_region_unref(MemoryRegion *mr); 387 388 /** 389 * memory_region_init_io: Initialize an I/O memory region. 390 * 391 * Accesses into the region will cause the callbacks in @ops to be called. 392 * if @size is nonzero, subregions will be clipped to @size. 393 * 394 * @mr: the #MemoryRegion to be initialized. 395 * @owner: the object that tracks the region's reference count 396 * @ops: a structure containing read and write callbacks to be used when 397 * I/O is performed on the region. 398 * @opaque: passed to the read and write callbacks of the @ops structure. 399 * @name: used for debugging; not visible to the user or ABI 400 * @size: size of the region. 401 */ 402 void memory_region_init_io(MemoryRegion *mr, 403 struct Object *owner, 404 const MemoryRegionOps *ops, 405 void *opaque, 406 const char *name, 407 uint64_t size); 408 409 /** 410 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 411 * into the region will modify memory 412 * directly. 413 * 414 * @mr: the #MemoryRegion to be initialized. 415 * @owner: the object that tracks the region's reference count 416 * @name: Region name, becomes part of RAMBlock name used in migration stream 417 * must be unique within any device 418 * @size: size of the region. 419 * @errp: pointer to Error*, to store an error if it happens. 420 * 421 * Note that this function does not do anything to cause the data in the 422 * RAM memory region to be migrated; that is the responsibility of the caller. 423 */ 424 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 425 struct Object *owner, 426 const char *name, 427 uint64_t size, 428 Error **errp); 429 430 /** 431 * memory_region_init_resizeable_ram: Initialize memory region with resizeable 432 * RAM. Accesses into the region will 433 * modify memory directly. Only an initial 434 * portion of this RAM is actually used. 435 * The used size can change across reboots. 436 * 437 * @mr: the #MemoryRegion to be initialized. 438 * @owner: the object that tracks the region's reference count 439 * @name: Region name, becomes part of RAMBlock name used in migration stream 440 * must be unique within any device 441 * @size: used size of the region. 442 * @max_size: max size of the region. 443 * @resized: callback to notify owner about used size change. 444 * @errp: pointer to Error*, to store an error if it happens. 445 * 446 * Note that this function does not do anything to cause the data in the 447 * RAM memory region to be migrated; that is the responsibility of the caller. 448 */ 449 void memory_region_init_resizeable_ram(MemoryRegion *mr, 450 struct Object *owner, 451 const char *name, 452 uint64_t size, 453 uint64_t max_size, 454 void (*resized)(const char*, 455 uint64_t length, 456 void *host), 457 Error **errp); 458 #ifdef __linux__ 459 /** 460 * memory_region_init_ram_from_file: Initialize RAM memory region with a 461 * mmap-ed backend. 462 * 463 * @mr: the #MemoryRegion to be initialized. 464 * @owner: the object that tracks the region's reference count 465 * @name: Region name, becomes part of RAMBlock name used in migration stream 466 * must be unique within any device 467 * @size: size of the region. 468 * @share: %true if memory must be mmaped with the MAP_SHARED flag 469 * @path: the path in which to allocate the RAM. 470 * @errp: pointer to Error*, to store an error if it happens. 471 * 472 * Note that this function does not do anything to cause the data in the 473 * RAM memory region to be migrated; that is the responsibility of the caller. 474 */ 475 void memory_region_init_ram_from_file(MemoryRegion *mr, 476 struct Object *owner, 477 const char *name, 478 uint64_t size, 479 bool share, 480 const char *path, 481 Error **errp); 482 483 /** 484 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 485 * mmap-ed backend. 486 * 487 * @mr: the #MemoryRegion to be initialized. 488 * @owner: the object that tracks the region's reference count 489 * @name: the name of the region. 490 * @size: size of the region. 491 * @share: %true if memory must be mmaped with the MAP_SHARED flag 492 * @fd: the fd to mmap. 493 * @errp: pointer to Error*, to store an error if it happens. 494 * 495 * Note that this function does not do anything to cause the data in the 496 * RAM memory region to be migrated; that is the responsibility of the caller. 497 */ 498 void memory_region_init_ram_from_fd(MemoryRegion *mr, 499 struct Object *owner, 500 const char *name, 501 uint64_t size, 502 bool share, 503 int fd, 504 Error **errp); 505 #endif 506 507 /** 508 * memory_region_init_ram_ptr: Initialize RAM memory region from a 509 * user-provided pointer. Accesses into the 510 * region will modify memory directly. 511 * 512 * @mr: the #MemoryRegion to be initialized. 513 * @owner: the object that tracks the region's reference count 514 * @name: Region name, becomes part of RAMBlock name used in migration stream 515 * must be unique within any device 516 * @size: size of the region. 517 * @ptr: memory to be mapped; must contain at least @size bytes. 518 * 519 * Note that this function does not do anything to cause the data in the 520 * RAM memory region to be migrated; that is the responsibility of the caller. 521 */ 522 void memory_region_init_ram_ptr(MemoryRegion *mr, 523 struct Object *owner, 524 const char *name, 525 uint64_t size, 526 void *ptr); 527 528 /** 529 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 530 * a user-provided pointer. 531 * 532 * A RAM device represents a mapping to a physical device, such as to a PCI 533 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 534 * into the VM address space and access to the region will modify memory 535 * directly. However, the memory region should not be included in a memory 536 * dump (device may not be enabled/mapped at the time of the dump), and 537 * operations incompatible with manipulating MMIO should be avoided. Replaces 538 * skip_dump flag. 539 * 540 * @mr: the #MemoryRegion to be initialized. 541 * @owner: the object that tracks the region's reference count 542 * @name: the name of the region. 543 * @size: size of the region. 544 * @ptr: memory to be mapped; must contain at least @size bytes. 545 * 546 * Note that this function does not do anything to cause the data in the 547 * RAM memory region to be migrated; that is the responsibility of the caller. 548 * (For RAM device memory regions, migrating the contents rarely makes sense.) 549 */ 550 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 551 struct Object *owner, 552 const char *name, 553 uint64_t size, 554 void *ptr); 555 556 /** 557 * memory_region_init_alias: Initialize a memory region that aliases all or a 558 * part of another memory region. 559 * 560 * @mr: the #MemoryRegion to be initialized. 561 * @owner: the object that tracks the region's reference count 562 * @name: used for debugging; not visible to the user or ABI 563 * @orig: the region to be referenced; @mr will be equivalent to 564 * @orig between @offset and @offset + @size - 1. 565 * @offset: start of the section in @orig to be referenced. 566 * @size: size of the region. 567 */ 568 void memory_region_init_alias(MemoryRegion *mr, 569 struct Object *owner, 570 const char *name, 571 MemoryRegion *orig, 572 hwaddr offset, 573 uint64_t size); 574 575 /** 576 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 577 * 578 * This has the same effect as calling memory_region_init_ram_nomigrate() 579 * and then marking the resulting region read-only with 580 * memory_region_set_readonly(). 581 * 582 * Note that this function does not do anything to cause the data in the 583 * RAM side of the memory region to be migrated; that is the responsibility 584 * of the caller. 585 * 586 * @mr: the #MemoryRegion to be initialized. 587 * @owner: the object that tracks the region's reference count 588 * @name: Region name, becomes part of RAMBlock name used in migration stream 589 * must be unique within any device 590 * @size: size of the region. 591 * @errp: pointer to Error*, to store an error if it happens. 592 */ 593 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 594 struct Object *owner, 595 const char *name, 596 uint64_t size, 597 Error **errp); 598 599 /** 600 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 601 * Writes are handled via callbacks. 602 * 603 * Note that this function does not do anything to cause the data in the 604 * RAM side of the memory region to be migrated; that is the responsibility 605 * of the caller. 606 * 607 * @mr: the #MemoryRegion to be initialized. 608 * @owner: the object that tracks the region's reference count 609 * @ops: callbacks for write access handling (must not be NULL). 610 * @name: Region name, becomes part of RAMBlock name used in migration stream 611 * must be unique within any device 612 * @size: size of the region. 613 * @errp: pointer to Error*, to store an error if it happens. 614 */ 615 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 616 struct Object *owner, 617 const MemoryRegionOps *ops, 618 void *opaque, 619 const char *name, 620 uint64_t size, 621 Error **errp); 622 623 /** 624 * memory_region_init_reservation: Initialize a memory region that reserves 625 * I/O space. 626 * 627 * A reservation region primariy serves debugging purposes. It claims I/O 628 * space that is not supposed to be handled by QEMU itself. Any access via 629 * the memory API will cause an abort(). 630 * This function is deprecated. Use memory_region_init_io() with NULL 631 * callbacks instead. 632 * 633 * @mr: the #MemoryRegion to be initialized 634 * @owner: the object that tracks the region's reference count 635 * @name: used for debugging; not visible to the user or ABI 636 * @size: size of the region. 637 */ 638 static inline void memory_region_init_reservation(MemoryRegion *mr, 639 Object *owner, 640 const char *name, 641 uint64_t size) 642 { 643 memory_region_init_io(mr, owner, NULL, mr, name, size); 644 } 645 646 /** 647 * memory_region_init_iommu: Initialize a memory region of a custom type 648 * that translates addresses 649 * 650 * An IOMMU region translates addresses and forwards accesses to a target 651 * memory region. 652 * 653 * @typename: QOM class name 654 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 655 * @instance_size: the IOMMUMemoryRegion subclass instance size 656 * @owner: the object that tracks the region's reference count 657 * @ops: a function that translates addresses into the @target region 658 * @name: used for debugging; not visible to the user or ABI 659 * @size: size of the region. 660 */ 661 void memory_region_init_iommu(void *_iommu_mr, 662 size_t instance_size, 663 const char *mrtypename, 664 Object *owner, 665 const char *name, 666 uint64_t size); 667 668 /** 669 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 670 * region will modify memory directly. 671 * 672 * @mr: the #MemoryRegion to be initialized 673 * @owner: the object that tracks the region's reference count (must be 674 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 675 * @name: name of the memory region 676 * @size: size of the region in bytes 677 * @errp: pointer to Error*, to store an error if it happens. 678 * 679 * This function allocates RAM for a board model or device, and 680 * arranges for it to be migrated (by calling vmstate_register_ram() 681 * if @owner is a DeviceState, or vmstate_register_ram_global() if 682 * @owner is NULL). 683 * 684 * TODO: Currently we restrict @owner to being either NULL (for 685 * global RAM regions with no owner) or devices, so that we can 686 * give the RAM block a unique name for migration purposes. 687 * We should lift this restriction and allow arbitrary Objects. 688 * If you pass a non-NULL non-device @owner then we will assert. 689 */ 690 void memory_region_init_ram(MemoryRegion *mr, 691 struct Object *owner, 692 const char *name, 693 uint64_t size, 694 Error **errp); 695 696 /** 697 * memory_region_init_rom: Initialize a ROM memory region. 698 * 699 * This has the same effect as calling memory_region_init_ram() 700 * and then marking the resulting region read-only with 701 * memory_region_set_readonly(). This includes arranging for the 702 * contents to be migrated. 703 * 704 * TODO: Currently we restrict @owner to being either NULL (for 705 * global RAM regions with no owner) or devices, so that we can 706 * give the RAM block a unique name for migration purposes. 707 * We should lift this restriction and allow arbitrary Objects. 708 * If you pass a non-NULL non-device @owner then we will assert. 709 * 710 * @mr: the #MemoryRegion to be initialized. 711 * @owner: the object that tracks the region's reference count 712 * @name: Region name, becomes part of RAMBlock name used in migration stream 713 * must be unique within any device 714 * @size: size of the region. 715 * @errp: pointer to Error*, to store an error if it happens. 716 */ 717 void memory_region_init_rom(MemoryRegion *mr, 718 struct Object *owner, 719 const char *name, 720 uint64_t size, 721 Error **errp); 722 723 /** 724 * memory_region_init_rom_device: Initialize a ROM memory region. 725 * Writes are handled via callbacks. 726 * 727 * This function initializes a memory region backed by RAM for reads 728 * and callbacks for writes, and arranges for the RAM backing to 729 * be migrated (by calling vmstate_register_ram() 730 * if @owner is a DeviceState, or vmstate_register_ram_global() if 731 * @owner is NULL). 732 * 733 * TODO: Currently we restrict @owner to being either NULL (for 734 * global RAM regions with no owner) or devices, so that we can 735 * give the RAM block a unique name for migration purposes. 736 * We should lift this restriction and allow arbitrary Objects. 737 * If you pass a non-NULL non-device @owner then we will assert. 738 * 739 * @mr: the #MemoryRegion to be initialized. 740 * @owner: the object that tracks the region's reference count 741 * @ops: callbacks for write access handling (must not be NULL). 742 * @name: Region name, becomes part of RAMBlock name used in migration stream 743 * must be unique within any device 744 * @size: size of the region. 745 * @errp: pointer to Error*, to store an error if it happens. 746 */ 747 void memory_region_init_rom_device(MemoryRegion *mr, 748 struct Object *owner, 749 const MemoryRegionOps *ops, 750 void *opaque, 751 const char *name, 752 uint64_t size, 753 Error **errp); 754 755 756 /** 757 * memory_region_owner: get a memory region's owner. 758 * 759 * @mr: the memory region being queried. 760 */ 761 struct Object *memory_region_owner(MemoryRegion *mr); 762 763 /** 764 * memory_region_size: get a memory region's size. 765 * 766 * @mr: the memory region being queried. 767 */ 768 uint64_t memory_region_size(MemoryRegion *mr); 769 770 /** 771 * memory_region_is_ram: check whether a memory region is random access 772 * 773 * Returns %true is a memory region is random access. 774 * 775 * @mr: the memory region being queried 776 */ 777 static inline bool memory_region_is_ram(MemoryRegion *mr) 778 { 779 return mr->ram; 780 } 781 782 /** 783 * memory_region_is_ram_device: check whether a memory region is a ram device 784 * 785 * Returns %true is a memory region is a device backed ram region 786 * 787 * @mr: the memory region being queried 788 */ 789 bool memory_region_is_ram_device(MemoryRegion *mr); 790 791 /** 792 * memory_region_is_romd: check whether a memory region is in ROMD mode 793 * 794 * Returns %true if a memory region is a ROM device and currently set to allow 795 * direct reads. 796 * 797 * @mr: the memory region being queried 798 */ 799 static inline bool memory_region_is_romd(MemoryRegion *mr) 800 { 801 return mr->rom_device && mr->romd_mode; 802 } 803 804 /** 805 * memory_region_get_iommu: check whether a memory region is an iommu 806 * 807 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 808 * otherwise NULL. 809 * 810 * @mr: the memory region being queried 811 */ 812 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 813 { 814 if (mr->alias) { 815 return memory_region_get_iommu(mr->alias); 816 } 817 if (mr->is_iommu) { 818 return (IOMMUMemoryRegion *) mr; 819 } 820 return NULL; 821 } 822 823 /** 824 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 825 * if an iommu or NULL if not 826 * 827 * Returns pointer to IOMMUMemoryRegioniClass if a memory region is an iommu, 828 * otherwise NULL. This is fast path avoinding QOM checking, use with caution. 829 * 830 * @mr: the memory region being queried 831 */ 832 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 833 IOMMUMemoryRegion *iommu_mr) 834 { 835 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 836 } 837 838 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 839 840 /** 841 * memory_region_iommu_get_min_page_size: get minimum supported page size 842 * for an iommu 843 * 844 * Returns minimum supported page size for an iommu. 845 * 846 * @iommu_mr: the memory region being queried 847 */ 848 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 849 850 /** 851 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 852 * 853 * The notification type will be decided by entry.perm bits: 854 * 855 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE. 856 * - For MAP (newly added entry) notifies: set entry.perm to the 857 * permission of the page (which is definitely !IOMMU_NONE). 858 * 859 * Note: for any IOMMU implementation, an in-place mapping change 860 * should be notified with an UNMAP followed by a MAP. 861 * 862 * @iommu_mr: the memory region that was changed 863 * @entry: the new entry in the IOMMU translation table. The entry 864 * replaces all old entries for the same virtual I/O address range. 865 * Deleted entries have .@perm == 0. 866 */ 867 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 868 IOMMUTLBEntry entry); 869 870 /** 871 * memory_region_notify_one: notify a change in an IOMMU translation 872 * entry to a single notifier 873 * 874 * This works just like memory_region_notify_iommu(), but it only 875 * notifies a specific notifier, not all of them. 876 * 877 * @notifier: the notifier to be notified 878 * @entry: the new entry in the IOMMU translation table. The entry 879 * replaces all old entries for the same virtual I/O address range. 880 * Deleted entries have .@perm == 0. 881 */ 882 void memory_region_notify_one(IOMMUNotifier *notifier, 883 IOMMUTLBEntry *entry); 884 885 /** 886 * memory_region_register_iommu_notifier: register a notifier for changes to 887 * IOMMU translation entries. 888 * 889 * @mr: the memory region to observe 890 * @n: the IOMMUNotifier to be added; the notify callback receives a 891 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 892 * ceases to be valid on exit from the notifier. 893 */ 894 void memory_region_register_iommu_notifier(MemoryRegion *mr, 895 IOMMUNotifier *n); 896 897 /** 898 * memory_region_iommu_replay: replay existing IOMMU translations to 899 * a notifier with the minimum page granularity returned by 900 * mr->iommu_ops->get_page_size(). 901 * 902 * @iommu_mr: the memory region to observe 903 * @n: the notifier to which to replay iommu mappings 904 */ 905 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 906 907 /** 908 * memory_region_iommu_replay_all: replay existing IOMMU translations 909 * to all the notifiers registered. 910 * 911 * @iommu_mr: the memory region to observe 912 */ 913 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr); 914 915 /** 916 * memory_region_unregister_iommu_notifier: unregister a notifier for 917 * changes to IOMMU translation entries. 918 * 919 * @mr: the memory region which was observed and for which notity_stopped() 920 * needs to be called 921 * @n: the notifier to be removed. 922 */ 923 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 924 IOMMUNotifier *n); 925 926 /** 927 * memory_region_name: get a memory region's name 928 * 929 * Returns the string that was used to initialize the memory region. 930 * 931 * @mr: the memory region being queried 932 */ 933 const char *memory_region_name(const MemoryRegion *mr); 934 935 /** 936 * memory_region_is_logging: return whether a memory region is logging writes 937 * 938 * Returns %true if the memory region is logging writes for the given client 939 * 940 * @mr: the memory region being queried 941 * @client: the client being queried 942 */ 943 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 944 945 /** 946 * memory_region_get_dirty_log_mask: return the clients for which a 947 * memory region is logging writes. 948 * 949 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 950 * are the bit indices. 951 * 952 * @mr: the memory region being queried 953 */ 954 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 955 956 /** 957 * memory_region_is_rom: check whether a memory region is ROM 958 * 959 * Returns %true is a memory region is read-only memory. 960 * 961 * @mr: the memory region being queried 962 */ 963 static inline bool memory_region_is_rom(MemoryRegion *mr) 964 { 965 return mr->ram && mr->readonly; 966 } 967 968 969 /** 970 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 971 * 972 * Returns a file descriptor backing a file-based RAM memory region, 973 * or -1 if the region is not a file-based RAM memory region. 974 * 975 * @mr: the RAM or alias memory region being queried. 976 */ 977 int memory_region_get_fd(MemoryRegion *mr); 978 979 /** 980 * memory_region_from_host: Convert a pointer into a RAM memory region 981 * and an offset within it. 982 * 983 * Given a host pointer inside a RAM memory region (created with 984 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 985 * the MemoryRegion and the offset within it. 986 * 987 * Use with care; by the time this function returns, the returned pointer is 988 * not protected by RCU anymore. If the caller is not within an RCU critical 989 * section and does not hold the iothread lock, it must have other means of 990 * protecting the pointer, such as a reference to the region that includes 991 * the incoming ram_addr_t. 992 * 993 * @mr: the memory region being queried. 994 */ 995 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 996 997 /** 998 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 999 * 1000 * Returns a host pointer to a RAM memory region (created with 1001 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1002 * 1003 * Use with care; by the time this function returns, the returned pointer is 1004 * not protected by RCU anymore. If the caller is not within an RCU critical 1005 * section and does not hold the iothread lock, it must have other means of 1006 * protecting the pointer, such as a reference to the region that includes 1007 * the incoming ram_addr_t. 1008 * 1009 * @mr: the memory region being queried. 1010 */ 1011 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1012 1013 /* memory_region_ram_resize: Resize a RAM region. 1014 * 1015 * Only legal before guest might have detected the memory size: e.g. on 1016 * incoming migration, or right after reset. 1017 * 1018 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1019 * @newsize: the new size the region 1020 * @errp: pointer to Error*, to store an error if it happens. 1021 */ 1022 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1023 Error **errp); 1024 1025 /** 1026 * memory_region_set_log: Turn dirty logging on or off for a region. 1027 * 1028 * Turns dirty logging on or off for a specified client (display, migration). 1029 * Only meaningful for RAM regions. 1030 * 1031 * @mr: the memory region being updated. 1032 * @log: whether dirty logging is to be enabled or disabled. 1033 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1034 */ 1035 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1036 1037 /** 1038 * memory_region_get_dirty: Check whether a range of bytes is dirty 1039 * for a specified client. 1040 * 1041 * Checks whether a range of bytes has been written to since the last 1042 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1043 * must be enabled. 1044 * 1045 * @mr: the memory region being queried. 1046 * @addr: the address (relative to the start of the region) being queried. 1047 * @size: the size of the range being queried. 1048 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1049 * %DIRTY_MEMORY_VGA. 1050 */ 1051 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 1052 hwaddr size, unsigned client); 1053 1054 /** 1055 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1056 * 1057 * Marks a range of bytes as dirty, after it has been dirtied outside 1058 * guest code. 1059 * 1060 * @mr: the memory region being dirtied. 1061 * @addr: the address (relative to the start of the region) being dirtied. 1062 * @size: size of the range being dirtied. 1063 */ 1064 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1065 hwaddr size); 1066 1067 /** 1068 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 1069 * for a specified client. It clears them. 1070 * 1071 * Checks whether a range of bytes has been written to since the last 1072 * call to memory_region_reset_dirty() with the same @client. Dirty logging 1073 * must be enabled. 1074 * 1075 * @mr: the memory region being queried. 1076 * @addr: the address (relative to the start of the region) being queried. 1077 * @size: the size of the range being queried. 1078 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1079 * %DIRTY_MEMORY_VGA. 1080 */ 1081 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 1082 hwaddr size, unsigned client); 1083 1084 /** 1085 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 1086 * bitmap and clear it. 1087 * 1088 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 1089 * returns the snapshot. The snapshot can then be used to query dirty 1090 * status, using memory_region_snapshot_get_dirty. Unlike 1091 * memory_region_test_and_clear_dirty this allows to query the same 1092 * page multiple times, which is especially useful for display updates 1093 * where the scanlines often are not page aligned. 1094 * 1095 * The dirty bitmap region which gets copyed into the snapshot (and 1096 * cleared afterwards) can be larger than requested. The boundaries 1097 * are rounded up/down so complete bitmap longs (covering 64 pages on 1098 * 64bit hosts) can be copied over into the bitmap snapshot. Which 1099 * isn't a problem for display updates as the extra pages are outside 1100 * the visible area, and in case the visible area changes a full 1101 * display redraw is due anyway. Should other use cases for this 1102 * function emerge we might have to revisit this implementation 1103 * detail. 1104 * 1105 * Use g_free to release DirtyBitmapSnapshot. 1106 * 1107 * @mr: the memory region being queried. 1108 * @addr: the address (relative to the start of the region) being queried. 1109 * @size: the size of the range being queried. 1110 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 1111 */ 1112 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 1113 hwaddr addr, 1114 hwaddr size, 1115 unsigned client); 1116 1117 /** 1118 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 1119 * in the specified dirty bitmap snapshot. 1120 * 1121 * @mr: the memory region being queried. 1122 * @snap: the dirty bitmap snapshot 1123 * @addr: the address (relative to the start of the region) being queried. 1124 * @size: the size of the range being queried. 1125 */ 1126 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 1127 DirtyBitmapSnapshot *snap, 1128 hwaddr addr, hwaddr size); 1129 1130 /** 1131 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 1132 * any external TLBs (e.g. kvm) 1133 * 1134 * Flushes dirty information from accelerators such as kvm and vhost-net 1135 * and makes it available to users of the memory API. 1136 * 1137 * @mr: the region being flushed. 1138 */ 1139 void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 1140 1141 /** 1142 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 1143 * client. 1144 * 1145 * Marks a range of pages as no longer dirty. 1146 * 1147 * @mr: the region being updated. 1148 * @addr: the start of the subrange being cleaned. 1149 * @size: the size of the subrange being cleaned. 1150 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 1151 * %DIRTY_MEMORY_VGA. 1152 */ 1153 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 1154 hwaddr size, unsigned client); 1155 1156 /** 1157 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 1158 * 1159 * Allows a memory region to be marked as read-only (turning it into a ROM). 1160 * only useful on RAM regions. 1161 * 1162 * @mr: the region being updated. 1163 * @readonly: whether rhe region is to be ROM or RAM. 1164 */ 1165 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 1166 1167 /** 1168 * memory_region_rom_device_set_romd: enable/disable ROMD mode 1169 * 1170 * Allows a ROM device (initialized with memory_region_init_rom_device() to 1171 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 1172 * device is mapped to guest memory and satisfies read access directly. 1173 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 1174 * Writes are always handled by the #MemoryRegion.write function. 1175 * 1176 * @mr: the memory region to be updated 1177 * @romd_mode: %true to put the region into ROMD mode 1178 */ 1179 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 1180 1181 /** 1182 * memory_region_set_coalescing: Enable memory coalescing for the region. 1183 * 1184 * Enabled writes to a region to be queued for later processing. MMIO ->write 1185 * callbacks may be delayed until a non-coalesced MMIO is issued. 1186 * Only useful for IO regions. Roughly similar to write-combining hardware. 1187 * 1188 * @mr: the memory region to be write coalesced 1189 */ 1190 void memory_region_set_coalescing(MemoryRegion *mr); 1191 1192 /** 1193 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 1194 * a region. 1195 * 1196 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 1197 * Multiple calls can be issued coalesced disjoint ranges. 1198 * 1199 * @mr: the memory region to be updated. 1200 * @offset: the start of the range within the region to be coalesced. 1201 * @size: the size of the subrange to be coalesced. 1202 */ 1203 void memory_region_add_coalescing(MemoryRegion *mr, 1204 hwaddr offset, 1205 uint64_t size); 1206 1207 /** 1208 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 1209 * 1210 * Disables any coalescing caused by memory_region_set_coalescing() or 1211 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 1212 * hardware. 1213 * 1214 * @mr: the memory region to be updated. 1215 */ 1216 void memory_region_clear_coalescing(MemoryRegion *mr); 1217 1218 /** 1219 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 1220 * accesses. 1221 * 1222 * Ensure that pending coalesced MMIO request are flushed before the memory 1223 * region is accessed. This property is automatically enabled for all regions 1224 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 1225 * 1226 * @mr: the memory region to be updated. 1227 */ 1228 void memory_region_set_flush_coalesced(MemoryRegion *mr); 1229 1230 /** 1231 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 1232 * accesses. 1233 * 1234 * Clear the automatic coalesced MMIO flushing enabled via 1235 * memory_region_set_flush_coalesced. Note that this service has no effect on 1236 * memory regions that have MMIO coalescing enabled for themselves. For them, 1237 * automatic flushing will stop once coalescing is disabled. 1238 * 1239 * @mr: the memory region to be updated. 1240 */ 1241 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 1242 1243 /** 1244 * memory_region_clear_global_locking: Declares that access processing does 1245 * not depend on the QEMU global lock. 1246 * 1247 * By clearing this property, accesses to the memory region will be processed 1248 * outside of QEMU's global lock (unless the lock is held on when issuing the 1249 * access request). In this case, the device model implementing the access 1250 * handlers is responsible for synchronization of concurrency. 1251 * 1252 * @mr: the memory region to be updated. 1253 */ 1254 void memory_region_clear_global_locking(MemoryRegion *mr); 1255 1256 /** 1257 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 1258 * is written to a location. 1259 * 1260 * Marks a word in an IO region (initialized with memory_region_init_io()) 1261 * as a trigger for an eventfd event. The I/O callback will not be called. 1262 * The caller must be prepared to handle failure (that is, take the required 1263 * action if the callback _is_ called). 1264 * 1265 * @mr: the memory region being updated. 1266 * @addr: the address within @mr that is to be monitored 1267 * @size: the size of the access to trigger the eventfd 1268 * @match_data: whether to match against @data, instead of just @addr 1269 * @data: the data to match against the guest write 1270 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1271 **/ 1272 void memory_region_add_eventfd(MemoryRegion *mr, 1273 hwaddr addr, 1274 unsigned size, 1275 bool match_data, 1276 uint64_t data, 1277 EventNotifier *e); 1278 1279 /** 1280 * memory_region_del_eventfd: Cancel an eventfd. 1281 * 1282 * Cancels an eventfd trigger requested by a previous 1283 * memory_region_add_eventfd() call. 1284 * 1285 * @mr: the memory region being updated. 1286 * @addr: the address within @mr that is to be monitored 1287 * @size: the size of the access to trigger the eventfd 1288 * @match_data: whether to match against @data, instead of just @addr 1289 * @data: the data to match against the guest write 1290 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 1291 */ 1292 void memory_region_del_eventfd(MemoryRegion *mr, 1293 hwaddr addr, 1294 unsigned size, 1295 bool match_data, 1296 uint64_t data, 1297 EventNotifier *e); 1298 1299 /** 1300 * memory_region_add_subregion: Add a subregion to a container. 1301 * 1302 * Adds a subregion at @offset. The subregion may not overlap with other 1303 * subregions (except for those explicitly marked as overlapping). A region 1304 * may only be added once as a subregion (unless removed with 1305 * memory_region_del_subregion()); use memory_region_init_alias() if you 1306 * want a region to be a subregion in multiple locations. 1307 * 1308 * @mr: the region to contain the new subregion; must be a container 1309 * initialized with memory_region_init(). 1310 * @offset: the offset relative to @mr where @subregion is added. 1311 * @subregion: the subregion to be added. 1312 */ 1313 void memory_region_add_subregion(MemoryRegion *mr, 1314 hwaddr offset, 1315 MemoryRegion *subregion); 1316 /** 1317 * memory_region_add_subregion_overlap: Add a subregion to a container 1318 * with overlap. 1319 * 1320 * Adds a subregion at @offset. The subregion may overlap with other 1321 * subregions. Conflicts are resolved by having a higher @priority hide a 1322 * lower @priority. Subregions without priority are taken as @priority 0. 1323 * A region may only be added once as a subregion (unless removed with 1324 * memory_region_del_subregion()); use memory_region_init_alias() if you 1325 * want a region to be a subregion in multiple locations. 1326 * 1327 * @mr: the region to contain the new subregion; must be a container 1328 * initialized with memory_region_init(). 1329 * @offset: the offset relative to @mr where @subregion is added. 1330 * @subregion: the subregion to be added. 1331 * @priority: used for resolving overlaps; highest priority wins. 1332 */ 1333 void memory_region_add_subregion_overlap(MemoryRegion *mr, 1334 hwaddr offset, 1335 MemoryRegion *subregion, 1336 int priority); 1337 1338 /** 1339 * memory_region_get_ram_addr: Get the ram address associated with a memory 1340 * region 1341 */ 1342 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 1343 1344 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 1345 /** 1346 * memory_region_del_subregion: Remove a subregion. 1347 * 1348 * Removes a subregion from its container. 1349 * 1350 * @mr: the container to be updated. 1351 * @subregion: the region being removed; must be a current subregion of @mr. 1352 */ 1353 void memory_region_del_subregion(MemoryRegion *mr, 1354 MemoryRegion *subregion); 1355 1356 /* 1357 * memory_region_set_enabled: dynamically enable or disable a region 1358 * 1359 * Enables or disables a memory region. A disabled memory region 1360 * ignores all accesses to itself and its subregions. It does not 1361 * obscure sibling subregions with lower priority - it simply behaves as 1362 * if it was removed from the hierarchy. 1363 * 1364 * Regions default to being enabled. 1365 * 1366 * @mr: the region to be updated 1367 * @enabled: whether to enable or disable the region 1368 */ 1369 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 1370 1371 /* 1372 * memory_region_set_address: dynamically update the address of a region 1373 * 1374 * Dynamically updates the address of a region, relative to its container. 1375 * May be used on regions are currently part of a memory hierarchy. 1376 * 1377 * @mr: the region to be updated 1378 * @addr: new address, relative to container region 1379 */ 1380 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 1381 1382 /* 1383 * memory_region_set_size: dynamically update the size of a region. 1384 * 1385 * Dynamically updates the size of a region. 1386 * 1387 * @mr: the region to be updated 1388 * @size: used size of the region. 1389 */ 1390 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 1391 1392 /* 1393 * memory_region_set_alias_offset: dynamically update a memory alias's offset 1394 * 1395 * Dynamically updates the offset into the target region that an alias points 1396 * to, as if the fourth argument to memory_region_init_alias() has changed. 1397 * 1398 * @mr: the #MemoryRegion to be updated; should be an alias. 1399 * @offset: the new offset into the target memory region 1400 */ 1401 void memory_region_set_alias_offset(MemoryRegion *mr, 1402 hwaddr offset); 1403 1404 /** 1405 * memory_region_present: checks if an address relative to a @container 1406 * translates into #MemoryRegion within @container 1407 * 1408 * Answer whether a #MemoryRegion within @container covers the address 1409 * @addr. 1410 * 1411 * @container: a #MemoryRegion within which @addr is a relative address 1412 * @addr: the area within @container to be searched 1413 */ 1414 bool memory_region_present(MemoryRegion *container, hwaddr addr); 1415 1416 /** 1417 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 1418 * into any address space. 1419 * 1420 * @mr: a #MemoryRegion which should be checked if it's mapped 1421 */ 1422 bool memory_region_is_mapped(MemoryRegion *mr); 1423 1424 /** 1425 * memory_region_find: translate an address/size relative to a 1426 * MemoryRegion into a #MemoryRegionSection. 1427 * 1428 * Locates the first #MemoryRegion within @mr that overlaps the range 1429 * given by @addr and @size. 1430 * 1431 * Returns a #MemoryRegionSection that describes a contiguous overlap. 1432 * It will have the following characteristics: 1433 * .@size = 0 iff no overlap was found 1434 * .@mr is non-%NULL iff an overlap was found 1435 * 1436 * Remember that in the return value the @offset_within_region is 1437 * relative to the returned region (in the .@mr field), not to the 1438 * @mr argument. 1439 * 1440 * Similarly, the .@offset_within_address_space is relative to the 1441 * address space that contains both regions, the passed and the 1442 * returned one. However, in the special case where the @mr argument 1443 * has no container (and thus is the root of the address space), the 1444 * following will hold: 1445 * .@offset_within_address_space >= @addr 1446 * .@offset_within_address_space + .@size <= @addr + @size 1447 * 1448 * @mr: a MemoryRegion within which @addr is a relative address 1449 * @addr: start of the area within @as to be searched 1450 * @size: size of the area to be searched 1451 */ 1452 MemoryRegionSection memory_region_find(MemoryRegion *mr, 1453 hwaddr addr, uint64_t size); 1454 1455 /** 1456 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 1457 * 1458 * Synchronizes the dirty page log for all address spaces. 1459 */ 1460 void memory_global_dirty_log_sync(void); 1461 1462 /** 1463 * memory_region_transaction_begin: Start a transaction. 1464 * 1465 * During a transaction, changes will be accumulated and made visible 1466 * only when the transaction ends (is committed). 1467 */ 1468 void memory_region_transaction_begin(void); 1469 1470 /** 1471 * memory_region_transaction_commit: Commit a transaction and make changes 1472 * visible to the guest. 1473 */ 1474 void memory_region_transaction_commit(void); 1475 1476 /** 1477 * memory_listener_register: register callbacks to be called when memory 1478 * sections are mapped or unmapped into an address 1479 * space 1480 * 1481 * @listener: an object containing the callbacks to be called 1482 * @filter: if non-%NULL, only regions in this address space will be observed 1483 */ 1484 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 1485 1486 /** 1487 * memory_listener_unregister: undo the effect of memory_listener_register() 1488 * 1489 * @listener: an object containing the callbacks to be removed 1490 */ 1491 void memory_listener_unregister(MemoryListener *listener); 1492 1493 /** 1494 * memory_global_dirty_log_start: begin dirty logging for all regions 1495 */ 1496 void memory_global_dirty_log_start(void); 1497 1498 /** 1499 * memory_global_dirty_log_stop: end dirty logging for all regions 1500 */ 1501 void memory_global_dirty_log_stop(void); 1502 1503 void mtree_info(fprintf_function mon_printf, void *f, bool flatview, 1504 bool dispatch_tree); 1505 1506 /** 1507 * memory_region_request_mmio_ptr: request a pointer to an mmio 1508 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer. 1509 * When the device wants to invalidate the pointer it will call 1510 * memory_region_invalidate_mmio_ptr. 1511 * 1512 * @mr: #MemoryRegion to check 1513 * @addr: address within that region 1514 * 1515 * Returns true on success, false otherwise. 1516 */ 1517 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr); 1518 1519 /** 1520 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio 1521 * previously requested. 1522 * In the end that means that if something wants to execute from this area it 1523 * will need to request the pointer again. 1524 * 1525 * @mr: #MemoryRegion associated to the pointer. 1526 * @addr: address within that region 1527 * @size: size of that area. 1528 */ 1529 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset, 1530 unsigned size); 1531 1532 /** 1533 * memory_region_dispatch_read: perform a read directly to the specified 1534 * MemoryRegion. 1535 * 1536 * @mr: #MemoryRegion to access 1537 * @addr: address within that region 1538 * @pval: pointer to uint64_t which the data is written to 1539 * @size: size of the access in bytes 1540 * @attrs: memory transaction attributes to use for the access 1541 */ 1542 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1543 hwaddr addr, 1544 uint64_t *pval, 1545 unsigned size, 1546 MemTxAttrs attrs); 1547 /** 1548 * memory_region_dispatch_write: perform a write directly to the specified 1549 * MemoryRegion. 1550 * 1551 * @mr: #MemoryRegion to access 1552 * @addr: address within that region 1553 * @data: data to write 1554 * @size: size of the access in bytes 1555 * @attrs: memory transaction attributes to use for the access 1556 */ 1557 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1558 hwaddr addr, 1559 uint64_t data, 1560 unsigned size, 1561 MemTxAttrs attrs); 1562 1563 /** 1564 * address_space_init: initializes an address space 1565 * 1566 * @as: an uninitialized #AddressSpace 1567 * @root: a #MemoryRegion that routes addresses for the address space 1568 * @name: an address space name. The name is only used for debugging 1569 * output. 1570 */ 1571 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 1572 1573 /** 1574 * address_space_destroy: destroy an address space 1575 * 1576 * Releases all resources associated with an address space. After an address space 1577 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 1578 * as well. 1579 * 1580 * @as: address space to be destroyed 1581 */ 1582 void address_space_destroy(AddressSpace *as); 1583 1584 /** 1585 * address_space_rw: read from or write to an address space. 1586 * 1587 * Return a MemTxResult indicating whether the operation succeeded 1588 * or failed (eg unassigned memory, device rejected the transaction, 1589 * IOMMU fault). 1590 * 1591 * @as: #AddressSpace to be accessed 1592 * @addr: address within that address space 1593 * @attrs: memory transaction attributes 1594 * @buf: buffer with the data transferred 1595 * @is_write: indicates the transfer direction 1596 */ 1597 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 1598 MemTxAttrs attrs, uint8_t *buf, 1599 int len, bool is_write); 1600 1601 /** 1602 * address_space_write: write to address space. 1603 * 1604 * Return a MemTxResult indicating whether the operation succeeded 1605 * or failed (eg unassigned memory, device rejected the transaction, 1606 * IOMMU fault). 1607 * 1608 * @as: #AddressSpace to be accessed 1609 * @addr: address within that address space 1610 * @attrs: memory transaction attributes 1611 * @buf: buffer with the data transferred 1612 */ 1613 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 1614 MemTxAttrs attrs, 1615 const uint8_t *buf, int len); 1616 1617 /* address_space_ld*: load from an address space 1618 * address_space_st*: store to an address space 1619 * 1620 * These functions perform a load or store of the byte, word, 1621 * longword or quad to the specified address within the AddressSpace. 1622 * The _le suffixed functions treat the data as little endian; 1623 * _be indicates big endian; no suffix indicates "same endianness 1624 * as guest CPU". 1625 * 1626 * The "guest CPU endianness" accessors are deprecated for use outside 1627 * target-* code; devices should be CPU-agnostic and use either the LE 1628 * or the BE accessors. 1629 * 1630 * @as #AddressSpace to be accessed 1631 * @addr: address within that address space 1632 * @val: data value, for stores 1633 * @attrs: memory transaction attributes 1634 * @result: location to write the success/failure of the transaction; 1635 * if NULL, this information is discarded 1636 */ 1637 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, 1638 MemTxAttrs attrs, MemTxResult *result); 1639 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, 1640 MemTxAttrs attrs, MemTxResult *result); 1641 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, 1642 MemTxAttrs attrs, MemTxResult *result); 1643 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, 1644 MemTxAttrs attrs, MemTxResult *result); 1645 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, 1646 MemTxAttrs attrs, MemTxResult *result); 1647 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, 1648 MemTxAttrs attrs, MemTxResult *result); 1649 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, 1650 MemTxAttrs attrs, MemTxResult *result); 1651 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, 1652 MemTxAttrs attrs, MemTxResult *result); 1653 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, 1654 MemTxAttrs attrs, MemTxResult *result); 1655 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, 1656 MemTxAttrs attrs, MemTxResult *result); 1657 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, 1658 MemTxAttrs attrs, MemTxResult *result); 1659 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, 1660 MemTxAttrs attrs, MemTxResult *result); 1661 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, 1662 MemTxAttrs attrs, MemTxResult *result); 1663 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, 1664 MemTxAttrs attrs, MemTxResult *result); 1665 1666 uint32_t ldub_phys(AddressSpace *as, hwaddr addr); 1667 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr); 1668 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr); 1669 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr); 1670 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr); 1671 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr); 1672 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr); 1673 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1674 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1675 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1676 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1677 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); 1678 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1679 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val); 1680 1681 struct MemoryRegionCache { 1682 hwaddr xlat; 1683 hwaddr len; 1684 AddressSpace *as; 1685 }; 1686 1687 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL }) 1688 1689 /* address_space_cache_init: prepare for repeated access to a physical 1690 * memory region 1691 * 1692 * @cache: #MemoryRegionCache to be filled 1693 * @as: #AddressSpace to be accessed 1694 * @addr: address within that address space 1695 * @len: length of buffer 1696 * @is_write: indicates the transfer direction 1697 * 1698 * Will only work with RAM, and may map a subset of the requested range by 1699 * returning a value that is less than @len. On failure, return a negative 1700 * errno value. 1701 * 1702 * Because it only works with RAM, this function can be used for 1703 * read-modify-write operations. In this case, is_write should be %true. 1704 * 1705 * Note that addresses passed to the address_space_*_cached functions 1706 * are relative to @addr. 1707 */ 1708 int64_t address_space_cache_init(MemoryRegionCache *cache, 1709 AddressSpace *as, 1710 hwaddr addr, 1711 hwaddr len, 1712 bool is_write); 1713 1714 /** 1715 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 1716 * 1717 * @cache: The #MemoryRegionCache to operate on. 1718 * @addr: The first physical address that was written, relative to the 1719 * address that was passed to @address_space_cache_init. 1720 * @access_len: The number of bytes that were written starting at @addr. 1721 */ 1722 void address_space_cache_invalidate(MemoryRegionCache *cache, 1723 hwaddr addr, 1724 hwaddr access_len); 1725 1726 /** 1727 * address_space_cache_destroy: free a #MemoryRegionCache 1728 * 1729 * @cache: The #MemoryRegionCache whose memory should be released. 1730 */ 1731 void address_space_cache_destroy(MemoryRegionCache *cache); 1732 1733 /* address_space_ld*_cached: load from a cached #MemoryRegion 1734 * address_space_st*_cached: store into a cached #MemoryRegion 1735 * 1736 * These functions perform a load or store of the byte, word, 1737 * longword or quad to the specified address. The address is 1738 * a physical address in the AddressSpace, but it must lie within 1739 * a #MemoryRegion that was mapped with address_space_cache_init. 1740 * 1741 * The _le suffixed functions treat the data as little endian; 1742 * _be indicates big endian; no suffix indicates "same endianness 1743 * as guest CPU". 1744 * 1745 * The "guest CPU endianness" accessors are deprecated for use outside 1746 * target-* code; devices should be CPU-agnostic and use either the LE 1747 * or the BE accessors. 1748 * 1749 * @cache: previously initialized #MemoryRegionCache to be accessed 1750 * @addr: address within the address space 1751 * @val: data value, for stores 1752 * @attrs: memory transaction attributes 1753 * @result: location to write the success/failure of the transaction; 1754 * if NULL, this information is discarded 1755 */ 1756 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr, 1757 MemTxAttrs attrs, MemTxResult *result); 1758 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr, 1759 MemTxAttrs attrs, MemTxResult *result); 1760 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr, 1761 MemTxAttrs attrs, MemTxResult *result); 1762 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr, 1763 MemTxAttrs attrs, MemTxResult *result); 1764 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr, 1765 MemTxAttrs attrs, MemTxResult *result); 1766 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr, 1767 MemTxAttrs attrs, MemTxResult *result); 1768 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr, 1769 MemTxAttrs attrs, MemTxResult *result); 1770 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1771 MemTxAttrs attrs, MemTxResult *result); 1772 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1773 MemTxAttrs attrs, MemTxResult *result); 1774 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1775 MemTxAttrs attrs, MemTxResult *result); 1776 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1777 MemTxAttrs attrs, MemTxResult *result); 1778 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, 1779 MemTxAttrs attrs, MemTxResult *result); 1780 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1781 MemTxAttrs attrs, MemTxResult *result); 1782 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, 1783 MemTxAttrs attrs, MemTxResult *result); 1784 1785 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1786 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1787 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1788 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1789 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1790 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1791 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); 1792 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1793 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1794 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1795 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1796 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); 1797 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1798 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); 1799 /* address_space_get_iotlb_entry: translate an address into an IOTLB 1800 * entry. Should be called from an RCU critical section. 1801 */ 1802 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 1803 bool is_write); 1804 1805 /* address_space_translate: translate an address range into an address space 1806 * into a MemoryRegion and an address range into that section. Should be 1807 * called from an RCU critical section, to avoid that the last reference 1808 * to the returned region disappears after address_space_translate returns. 1809 * 1810 * @as: #AddressSpace to be accessed 1811 * @addr: address within that address space 1812 * @xlat: pointer to address within the returned memory region section's 1813 * #MemoryRegion. 1814 * @len: pointer to length 1815 * @is_write: indicates the transfer direction 1816 */ 1817 MemoryRegion *flatview_translate(FlatView *fv, 1818 hwaddr addr, hwaddr *xlat, 1819 hwaddr *len, bool is_write); 1820 1821 static inline MemoryRegion *address_space_translate(AddressSpace *as, 1822 hwaddr addr, hwaddr *xlat, 1823 hwaddr *len, bool is_write) 1824 { 1825 return flatview_translate(address_space_to_flatview(as), 1826 addr, xlat, len, is_write); 1827 } 1828 1829 /* address_space_access_valid: check for validity of accessing an address 1830 * space range 1831 * 1832 * Check whether memory is assigned to the given address space range, and 1833 * access is permitted by any IOMMU regions that are active for the address 1834 * space. 1835 * 1836 * For now, addr and len should be aligned to a page size. This limitation 1837 * will be lifted in the future. 1838 * 1839 * @as: #AddressSpace to be accessed 1840 * @addr: address within that address space 1841 * @len: length of the area to be checked 1842 * @is_write: indicates the transfer direction 1843 */ 1844 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1845 1846 /* address_space_map: map a physical memory region into a host virtual address 1847 * 1848 * May map a subset of the requested range, given by and returned in @plen. 1849 * May return %NULL if resources needed to perform the mapping are exhausted. 1850 * Use only for reads OR writes - not for read-modify-write operations. 1851 * Use cpu_register_map_client() to know when retrying the map operation is 1852 * likely to succeed. 1853 * 1854 * @as: #AddressSpace to be accessed 1855 * @addr: address within that address space 1856 * @plen: pointer to length of buffer; updated on return 1857 * @is_write: indicates the transfer direction 1858 */ 1859 void *address_space_map(AddressSpace *as, hwaddr addr, 1860 hwaddr *plen, bool is_write); 1861 1862 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1863 * 1864 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1865 * the amount of memory that was actually read or written by the caller. 1866 * 1867 * @as: #AddressSpace used 1868 * @addr: address within that address space 1869 * @len: buffer length as returned by address_space_map() 1870 * @access_len: amount of data actually transferred 1871 * @is_write: indicates the transfer direction 1872 */ 1873 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1874 int is_write, hwaddr access_len); 1875 1876 1877 /* Internal functions, part of the implementation of address_space_read. */ 1878 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 1879 MemTxAttrs attrs, uint8_t *buf, 1880 int len, hwaddr addr1, hwaddr l, 1881 MemoryRegion *mr); 1882 1883 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr, 1884 MemTxAttrs attrs, uint8_t *buf, int len); 1885 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 1886 1887 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 1888 { 1889 if (is_write) { 1890 return memory_region_is_ram(mr) && 1891 !mr->readonly && !memory_region_is_ram_device(mr); 1892 } else { 1893 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 1894 memory_region_is_romd(mr); 1895 } 1896 } 1897 1898 /** 1899 * address_space_read: read from an address space. 1900 * 1901 * Return a MemTxResult indicating whether the operation succeeded 1902 * or failed (eg unassigned memory, device rejected the transaction, 1903 * IOMMU fault). 1904 * 1905 * @as: #AddressSpace to be accessed 1906 * @addr: address within that address space 1907 * @attrs: memory transaction attributes 1908 * @buf: buffer with the data transferred 1909 */ 1910 static inline __attribute__((__always_inline__)) 1911 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 1912 uint8_t *buf, int len) 1913 { 1914 MemTxResult result = MEMTX_OK; 1915 hwaddr l, addr1; 1916 void *ptr; 1917 MemoryRegion *mr; 1918 1919 if (__builtin_constant_p(len)) { 1920 if (len) { 1921 rcu_read_lock(); 1922 l = len; 1923 mr = flatview_translate(fv, addr, &addr1, &l, false); 1924 if (len == l && memory_access_is_direct(mr, false)) { 1925 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 1926 memcpy(buf, ptr, len); 1927 } else { 1928 result = flatview_read_continue(fv, addr, attrs, buf, len, 1929 addr1, l, mr); 1930 } 1931 rcu_read_unlock(); 1932 } 1933 } else { 1934 result = flatview_read_full(fv, addr, attrs, buf, len); 1935 } 1936 return result; 1937 } 1938 1939 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 1940 MemTxAttrs attrs, uint8_t *buf, 1941 int len) 1942 { 1943 return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len); 1944 } 1945 1946 /** 1947 * address_space_read_cached: read from a cached RAM region 1948 * 1949 * @cache: Cached region to be addressed 1950 * @addr: address relative to the base of the RAM region 1951 * @buf: buffer with the data transferred 1952 * @len: length of the data transferred 1953 */ 1954 static inline void 1955 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 1956 void *buf, int len) 1957 { 1958 assert(addr < cache->len && len <= cache->len - addr); 1959 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 1960 } 1961 1962 /** 1963 * address_space_write_cached: write to a cached RAM region 1964 * 1965 * @cache: Cached region to be addressed 1966 * @addr: address relative to the base of the RAM region 1967 * @buf: buffer with the data transferred 1968 * @len: length of the data transferred 1969 */ 1970 static inline void 1971 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 1972 void *buf, int len) 1973 { 1974 assert(addr < cache->len && len <= cache->len - addr); 1975 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len); 1976 } 1977 1978 #endif 1979 1980 #endif 1981