xref: /openbmc/qemu/include/exec/memory.h (revision 3f53bc61)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #ifndef CONFIG_USER_ONLY
21 #include "exec/hwaddr.h"
22 #endif
23 #include "exec/memattrs.h"
24 #include "exec/ramlist.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 
40 typedef struct MemoryRegionOps MemoryRegionOps;
41 typedef struct MemoryRegionMmio MemoryRegionMmio;
42 
43 struct MemoryRegionMmio {
44     CPUReadMemoryFunc *read[3];
45     CPUWriteMemoryFunc *write[3];
46 };
47 
48 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
49 
50 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
51 typedef enum {
52     IOMMU_NONE = 0,
53     IOMMU_RO   = 1,
54     IOMMU_WO   = 2,
55     IOMMU_RW   = 3,
56 } IOMMUAccessFlags;
57 
58 struct IOMMUTLBEntry {
59     AddressSpace    *target_as;
60     hwaddr           iova;
61     hwaddr           translated_addr;
62     hwaddr           addr_mask;  /* 0xfff = 4k translation */
63     IOMMUAccessFlags perm;
64 };
65 
66 /*
67  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
68  * register with one or multiple IOMMU Notifier capability bit(s).
69  */
70 typedef enum {
71     IOMMU_NOTIFIER_NONE = 0,
72     /* Notify cache invalidations */
73     IOMMU_NOTIFIER_UNMAP = 0x1,
74     /* Notify entry changes (newly created entries) */
75     IOMMU_NOTIFIER_MAP = 0x2,
76 } IOMMUNotifierFlag;
77 
78 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
79 
80 struct IOMMUNotifier {
81     void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
82     IOMMUNotifierFlag notifier_flags;
83     QLIST_ENTRY(IOMMUNotifier) node;
84 };
85 typedef struct IOMMUNotifier IOMMUNotifier;
86 
87 /* New-style MMIO accessors can indicate that the transaction failed.
88  * A zero (MEMTX_OK) response means success; anything else is a failure
89  * of some kind. The memory subsystem will bitwise-OR together results
90  * if it is synthesizing an operation from multiple smaller accesses.
91  */
92 #define MEMTX_OK 0
93 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
94 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
95 typedef uint32_t MemTxResult;
96 
97 /*
98  * Memory region callbacks
99  */
100 struct MemoryRegionOps {
101     /* Read from the memory region. @addr is relative to @mr; @size is
102      * in bytes. */
103     uint64_t (*read)(void *opaque,
104                      hwaddr addr,
105                      unsigned size);
106     /* Write to the memory region. @addr is relative to @mr; @size is
107      * in bytes. */
108     void (*write)(void *opaque,
109                   hwaddr addr,
110                   uint64_t data,
111                   unsigned size);
112 
113     MemTxResult (*read_with_attrs)(void *opaque,
114                                    hwaddr addr,
115                                    uint64_t *data,
116                                    unsigned size,
117                                    MemTxAttrs attrs);
118     MemTxResult (*write_with_attrs)(void *opaque,
119                                     hwaddr addr,
120                                     uint64_t data,
121                                     unsigned size,
122                                     MemTxAttrs attrs);
123 
124     enum device_endian endianness;
125     /* Guest-visible constraints: */
126     struct {
127         /* If nonzero, specify bounds on access sizes beyond which a machine
128          * check is thrown.
129          */
130         unsigned min_access_size;
131         unsigned max_access_size;
132         /* If true, unaligned accesses are supported.  Otherwise unaligned
133          * accesses throw machine checks.
134          */
135          bool unaligned;
136         /*
137          * If present, and returns #false, the transaction is not accepted
138          * by the device (and results in machine dependent behaviour such
139          * as a machine check exception).
140          */
141         bool (*accepts)(void *opaque, hwaddr addr,
142                         unsigned size, bool is_write);
143     } valid;
144     /* Internal implementation constraints: */
145     struct {
146         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
147          * will be rounded upwards and a partial result will be returned.
148          */
149         unsigned min_access_size;
150         /* If nonzero, specifies the maximum size implemented.  Larger sizes
151          * will be done as a series of accesses with smaller sizes.
152          */
153         unsigned max_access_size;
154         /* If true, unaligned accesses are supported.  Otherwise all accesses
155          * are converted to (possibly multiple) naturally aligned accesses.
156          */
157         bool unaligned;
158     } impl;
159 
160     /* If .read and .write are not present, old_mmio may be used for
161      * backwards compatibility with old mmio registration
162      */
163     const MemoryRegionMmio old_mmio;
164 };
165 
166 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
167 
168 struct MemoryRegionIOMMUOps {
169     /* Return a TLB entry that contains a given address. */
170     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
171     /* Returns minimum supported page size */
172     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
173     /* Called when IOMMU Notifier flag changed */
174     void (*notify_flag_changed)(MemoryRegion *iommu,
175                                 IOMMUNotifierFlag old_flags,
176                                 IOMMUNotifierFlag new_flags);
177 };
178 
179 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
180 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
181 
182 struct MemoryRegion {
183     Object parent_obj;
184 
185     /* All fields are private - violators will be prosecuted */
186 
187     /* The following fields should fit in a cache line */
188     bool romd_mode;
189     bool ram;
190     bool subpage;
191     bool readonly; /* For RAM regions */
192     bool rom_device;
193     bool flush_coalesced_mmio;
194     bool global_locking;
195     uint8_t dirty_log_mask;
196     RAMBlock *ram_block;
197     Object *owner;
198     const MemoryRegionIOMMUOps *iommu_ops;
199 
200     const MemoryRegionOps *ops;
201     void *opaque;
202     MemoryRegion *container;
203     Int128 size;
204     hwaddr addr;
205     void (*destructor)(MemoryRegion *mr);
206     uint64_t align;
207     bool terminates;
208     bool ram_device;
209     bool enabled;
210     bool warning_printed; /* For reservations */
211     uint8_t vga_logging_count;
212     MemoryRegion *alias;
213     hwaddr alias_offset;
214     int32_t priority;
215     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
216     QTAILQ_ENTRY(MemoryRegion) subregions_link;
217     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
218     const char *name;
219     unsigned ioeventfd_nb;
220     MemoryRegionIoeventfd *ioeventfds;
221     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
222     IOMMUNotifierFlag iommu_notify_flags;
223 };
224 
225 /**
226  * MemoryListener: callbacks structure for updates to the physical memory map
227  *
228  * Allows a component to adjust to changes in the guest-visible memory map.
229  * Use with memory_listener_register() and memory_listener_unregister().
230  */
231 struct MemoryListener {
232     void (*begin)(MemoryListener *listener);
233     void (*commit)(MemoryListener *listener);
234     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
235     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
236     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
237     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
238                       int old, int new);
239     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
240                      int old, int new);
241     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
242     void (*log_global_start)(MemoryListener *listener);
243     void (*log_global_stop)(MemoryListener *listener);
244     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
245                         bool match_data, uint64_t data, EventNotifier *e);
246     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
247                         bool match_data, uint64_t data, EventNotifier *e);
248     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
249                                hwaddr addr, hwaddr len);
250     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
251                                hwaddr addr, hwaddr len);
252     /* Lower = earlier (during add), later (during del) */
253     unsigned priority;
254     AddressSpace *address_space;
255     QTAILQ_ENTRY(MemoryListener) link;
256     QTAILQ_ENTRY(MemoryListener) link_as;
257 };
258 
259 /**
260  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
261  */
262 struct AddressSpace {
263     /* All fields are private. */
264     struct rcu_head rcu;
265     char *name;
266     MemoryRegion *root;
267     int ref_count;
268     bool malloced;
269 
270     /* Accessed via RCU.  */
271     struct FlatView *current_map;
272 
273     int ioeventfd_nb;
274     struct MemoryRegionIoeventfd *ioeventfds;
275     struct AddressSpaceDispatch *dispatch;
276     struct AddressSpaceDispatch *next_dispatch;
277     MemoryListener dispatch_listener;
278     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
279     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
280 };
281 
282 /**
283  * MemoryRegionSection: describes a fragment of a #MemoryRegion
284  *
285  * @mr: the region, or %NULL if empty
286  * @address_space: the address space the region is mapped in
287  * @offset_within_region: the beginning of the section, relative to @mr's start
288  * @size: the size of the section; will not exceed @mr's boundaries
289  * @offset_within_address_space: the address of the first byte of the section
290  *     relative to the region's address space
291  * @readonly: writes to this section are ignored
292  */
293 struct MemoryRegionSection {
294     MemoryRegion *mr;
295     AddressSpace *address_space;
296     hwaddr offset_within_region;
297     Int128 size;
298     hwaddr offset_within_address_space;
299     bool readonly;
300 };
301 
302 /**
303  * memory_region_init: Initialize a memory region
304  *
305  * The region typically acts as a container for other memory regions.  Use
306  * memory_region_add_subregion() to add subregions.
307  *
308  * @mr: the #MemoryRegion to be initialized
309  * @owner: the object that tracks the region's reference count
310  * @name: used for debugging; not visible to the user or ABI
311  * @size: size of the region; any subregions beyond this size will be clipped
312  */
313 void memory_region_init(MemoryRegion *mr,
314                         struct Object *owner,
315                         const char *name,
316                         uint64_t size);
317 
318 /**
319  * memory_region_ref: Add 1 to a memory region's reference count
320  *
321  * Whenever memory regions are accessed outside the BQL, they need to be
322  * preserved against hot-unplug.  MemoryRegions actually do not have their
323  * own reference count; they piggyback on a QOM object, their "owner".
324  * This function adds a reference to the owner.
325  *
326  * All MemoryRegions must have an owner if they can disappear, even if the
327  * device they belong to operates exclusively under the BQL.  This is because
328  * the region could be returned at any time by memory_region_find, and this
329  * is usually under guest control.
330  *
331  * @mr: the #MemoryRegion
332  */
333 void memory_region_ref(MemoryRegion *mr);
334 
335 /**
336  * memory_region_unref: Remove 1 to a memory region's reference count
337  *
338  * Whenever memory regions are accessed outside the BQL, they need to be
339  * preserved against hot-unplug.  MemoryRegions actually do not have their
340  * own reference count; they piggyback on a QOM object, their "owner".
341  * This function removes a reference to the owner and possibly destroys it.
342  *
343  * @mr: the #MemoryRegion
344  */
345 void memory_region_unref(MemoryRegion *mr);
346 
347 /**
348  * memory_region_init_io: Initialize an I/O memory region.
349  *
350  * Accesses into the region will cause the callbacks in @ops to be called.
351  * if @size is nonzero, subregions will be clipped to @size.
352  *
353  * @mr: the #MemoryRegion to be initialized.
354  * @owner: the object that tracks the region's reference count
355  * @ops: a structure containing read and write callbacks to be used when
356  *       I/O is performed on the region.
357  * @opaque: passed to the read and write callbacks of the @ops structure.
358  * @name: used for debugging; not visible to the user or ABI
359  * @size: size of the region.
360  */
361 void memory_region_init_io(MemoryRegion *mr,
362                            struct Object *owner,
363                            const MemoryRegionOps *ops,
364                            void *opaque,
365                            const char *name,
366                            uint64_t size);
367 
368 /**
369  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
370  *                          region will modify memory directly.
371  *
372  * @mr: the #MemoryRegion to be initialized.
373  * @owner: the object that tracks the region's reference count
374  * @name: Region name, becomes part of RAMBlock name used in migration stream
375  *        must be unique within any device
376  * @size: size of the region.
377  * @errp: pointer to Error*, to store an error if it happens.
378  */
379 void memory_region_init_ram(MemoryRegion *mr,
380                             struct Object *owner,
381                             const char *name,
382                             uint64_t size,
383                             Error **errp);
384 
385 /**
386  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
387  *                                     RAM.  Accesses into the region will
388  *                                     modify memory directly.  Only an initial
389  *                                     portion of this RAM is actually used.
390  *                                     The used size can change across reboots.
391  *
392  * @mr: the #MemoryRegion to be initialized.
393  * @owner: the object that tracks the region's reference count
394  * @name: Region name, becomes part of RAMBlock name used in migration stream
395  *        must be unique within any device
396  * @size: used size of the region.
397  * @max_size: max size of the region.
398  * @resized: callback to notify owner about used size change.
399  * @errp: pointer to Error*, to store an error if it happens.
400  */
401 void memory_region_init_resizeable_ram(MemoryRegion *mr,
402                                        struct Object *owner,
403                                        const char *name,
404                                        uint64_t size,
405                                        uint64_t max_size,
406                                        void (*resized)(const char*,
407                                                        uint64_t length,
408                                                        void *host),
409                                        Error **errp);
410 #ifdef __linux__
411 /**
412  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
413  *                                    mmap-ed backend.
414  *
415  * @mr: the #MemoryRegion to be initialized.
416  * @owner: the object that tracks the region's reference count
417  * @name: Region name, becomes part of RAMBlock name used in migration stream
418  *        must be unique within any device
419  * @size: size of the region.
420  * @share: %true if memory must be mmaped with the MAP_SHARED flag
421  * @path: the path in which to allocate the RAM.
422  * @errp: pointer to Error*, to store an error if it happens.
423  */
424 void memory_region_init_ram_from_file(MemoryRegion *mr,
425                                       struct Object *owner,
426                                       const char *name,
427                                       uint64_t size,
428                                       bool share,
429                                       const char *path,
430                                       Error **errp);
431 #endif
432 
433 /**
434  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
435  *                              user-provided pointer.  Accesses into the
436  *                              region will modify memory directly.
437  *
438  * @mr: the #MemoryRegion to be initialized.
439  * @owner: the object that tracks the region's reference count
440  * @name: Region name, becomes part of RAMBlock name used in migration stream
441  *        must be unique within any device
442  * @size: size of the region.
443  * @ptr: memory to be mapped; must contain at least @size bytes.
444  */
445 void memory_region_init_ram_ptr(MemoryRegion *mr,
446                                 struct Object *owner,
447                                 const char *name,
448                                 uint64_t size,
449                                 void *ptr);
450 
451 /**
452  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
453  *                                     a user-provided pointer.
454  *
455  * A RAM device represents a mapping to a physical device, such as to a PCI
456  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
457  * into the VM address space and access to the region will modify memory
458  * directly.  However, the memory region should not be included in a memory
459  * dump (device may not be enabled/mapped at the time of the dump), and
460  * operations incompatible with manipulating MMIO should be avoided.  Replaces
461  * skip_dump flag.
462  *
463  * @mr: the #MemoryRegion to be initialized.
464  * @owner: the object that tracks the region's reference count
465  * @name: the name of the region.
466  * @size: size of the region.
467  * @ptr: memory to be mapped; must contain at least @size bytes.
468  */
469 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
470                                        struct Object *owner,
471                                        const char *name,
472                                        uint64_t size,
473                                        void *ptr);
474 
475 /**
476  * memory_region_init_alias: Initialize a memory region that aliases all or a
477  *                           part of another memory region.
478  *
479  * @mr: the #MemoryRegion to be initialized.
480  * @owner: the object that tracks the region's reference count
481  * @name: used for debugging; not visible to the user or ABI
482  * @orig: the region to be referenced; @mr will be equivalent to
483  *        @orig between @offset and @offset + @size - 1.
484  * @offset: start of the section in @orig to be referenced.
485  * @size: size of the region.
486  */
487 void memory_region_init_alias(MemoryRegion *mr,
488                               struct Object *owner,
489                               const char *name,
490                               MemoryRegion *orig,
491                               hwaddr offset,
492                               uint64_t size);
493 
494 /**
495  * memory_region_init_rom: Initialize a ROM memory region.
496  *
497  * This has the same effect as calling memory_region_init_ram()
498  * and then marking the resulting region read-only with
499  * memory_region_set_readonly().
500  *
501  * @mr: the #MemoryRegion to be initialized.
502  * @owner: the object that tracks the region's reference count
503  * @name: Region name, becomes part of RAMBlock name used in migration stream
504  *        must be unique within any device
505  * @size: size of the region.
506  * @errp: pointer to Error*, to store an error if it happens.
507  */
508 void memory_region_init_rom(MemoryRegion *mr,
509                             struct Object *owner,
510                             const char *name,
511                             uint64_t size,
512                             Error **errp);
513 
514 /**
515  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
516  *                                 handled via callbacks.
517  *
518  * @mr: the #MemoryRegion to be initialized.
519  * @owner: the object that tracks the region's reference count
520  * @ops: callbacks for write access handling (must not be NULL).
521  * @name: Region name, becomes part of RAMBlock name used in migration stream
522  *        must be unique within any device
523  * @size: size of the region.
524  * @errp: pointer to Error*, to store an error if it happens.
525  */
526 void memory_region_init_rom_device(MemoryRegion *mr,
527                                    struct Object *owner,
528                                    const MemoryRegionOps *ops,
529                                    void *opaque,
530                                    const char *name,
531                                    uint64_t size,
532                                    Error **errp);
533 
534 /**
535  * memory_region_init_reservation: Initialize a memory region that reserves
536  *                                 I/O space.
537  *
538  * A reservation region primariy serves debugging purposes.  It claims I/O
539  * space that is not supposed to be handled by QEMU itself.  Any access via
540  * the memory API will cause an abort().
541  * This function is deprecated. Use memory_region_init_io() with NULL
542  * callbacks instead.
543  *
544  * @mr: the #MemoryRegion to be initialized
545  * @owner: the object that tracks the region's reference count
546  * @name: used for debugging; not visible to the user or ABI
547  * @size: size of the region.
548  */
549 static inline void memory_region_init_reservation(MemoryRegion *mr,
550                                     Object *owner,
551                                     const char *name,
552                                     uint64_t size)
553 {
554     memory_region_init_io(mr, owner, NULL, mr, name, size);
555 }
556 
557 /**
558  * memory_region_init_iommu: Initialize a memory region that translates
559  * addresses
560  *
561  * An IOMMU region translates addresses and forwards accesses to a target
562  * memory region.
563  *
564  * @mr: the #MemoryRegion to be initialized
565  * @owner: the object that tracks the region's reference count
566  * @ops: a function that translates addresses into the @target region
567  * @name: used for debugging; not visible to the user or ABI
568  * @size: size of the region.
569  */
570 void memory_region_init_iommu(MemoryRegion *mr,
571                               struct Object *owner,
572                               const MemoryRegionIOMMUOps *ops,
573                               const char *name,
574                               uint64_t size);
575 
576 /**
577  * memory_region_owner: get a memory region's owner.
578  *
579  * @mr: the memory region being queried.
580  */
581 struct Object *memory_region_owner(MemoryRegion *mr);
582 
583 /**
584  * memory_region_size: get a memory region's size.
585  *
586  * @mr: the memory region being queried.
587  */
588 uint64_t memory_region_size(MemoryRegion *mr);
589 
590 /**
591  * memory_region_is_ram: check whether a memory region is random access
592  *
593  * Returns %true is a memory region is random access.
594  *
595  * @mr: the memory region being queried
596  */
597 static inline bool memory_region_is_ram(MemoryRegion *mr)
598 {
599     return mr->ram;
600 }
601 
602 /**
603  * memory_region_is_ram_device: check whether a memory region is a ram device
604  *
605  * Returns %true is a memory region is a device backed ram region
606  *
607  * @mr: the memory region being queried
608  */
609 bool memory_region_is_ram_device(MemoryRegion *mr);
610 
611 /**
612  * memory_region_is_romd: check whether a memory region is in ROMD mode
613  *
614  * Returns %true if a memory region is a ROM device and currently set to allow
615  * direct reads.
616  *
617  * @mr: the memory region being queried
618  */
619 static inline bool memory_region_is_romd(MemoryRegion *mr)
620 {
621     return mr->rom_device && mr->romd_mode;
622 }
623 
624 /**
625  * memory_region_is_iommu: check whether a memory region is an iommu
626  *
627  * Returns %true is a memory region is an iommu.
628  *
629  * @mr: the memory region being queried
630  */
631 static inline bool memory_region_is_iommu(MemoryRegion *mr)
632 {
633     if (mr->alias) {
634         return memory_region_is_iommu(mr->alias);
635     }
636     return mr->iommu_ops;
637 }
638 
639 
640 /**
641  * memory_region_iommu_get_min_page_size: get minimum supported page size
642  * for an iommu
643  *
644  * Returns minimum supported page size for an iommu.
645  *
646  * @mr: the memory region being queried
647  */
648 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
649 
650 /**
651  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
652  *
653  * The notification type will be decided by entry.perm bits:
654  *
655  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
656  * - For MAP (newly added entry) notifies: set entry.perm to the
657  *   permission of the page (which is definitely !IOMMU_NONE).
658  *
659  * Note: for any IOMMU implementation, an in-place mapping change
660  * should be notified with an UNMAP followed by a MAP.
661  *
662  * @mr: the memory region that was changed
663  * @entry: the new entry in the IOMMU translation table.  The entry
664  *         replaces all old entries for the same virtual I/O address range.
665  *         Deleted entries have .@perm == 0.
666  */
667 void memory_region_notify_iommu(MemoryRegion *mr,
668                                 IOMMUTLBEntry entry);
669 
670 /**
671  * memory_region_register_iommu_notifier: register a notifier for changes to
672  * IOMMU translation entries.
673  *
674  * @mr: the memory region to observe
675  * @n: the IOMMUNotifier to be added; the notify callback receives a
676  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
677  *     ceases to be valid on exit from the notifier.
678  */
679 void memory_region_register_iommu_notifier(MemoryRegion *mr,
680                                            IOMMUNotifier *n);
681 
682 /**
683  * memory_region_iommu_replay: replay existing IOMMU translations to
684  * a notifier with the minimum page granularity returned by
685  * mr->iommu_ops->get_page_size().
686  *
687  * @mr: the memory region to observe
688  * @n: the notifier to which to replay iommu mappings
689  * @is_write: Whether to treat the replay as a translate "write"
690  *     through the iommu
691  */
692 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
693                                 bool is_write);
694 
695 /**
696  * memory_region_unregister_iommu_notifier: unregister a notifier for
697  * changes to IOMMU translation entries.
698  *
699  * @mr: the memory region which was observed and for which notity_stopped()
700  *      needs to be called
701  * @n: the notifier to be removed.
702  */
703 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
704                                              IOMMUNotifier *n);
705 
706 /**
707  * memory_region_name: get a memory region's name
708  *
709  * Returns the string that was used to initialize the memory region.
710  *
711  * @mr: the memory region being queried
712  */
713 const char *memory_region_name(const MemoryRegion *mr);
714 
715 /**
716  * memory_region_is_logging: return whether a memory region is logging writes
717  *
718  * Returns %true if the memory region is logging writes for the given client
719  *
720  * @mr: the memory region being queried
721  * @client: the client being queried
722  */
723 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
724 
725 /**
726  * memory_region_get_dirty_log_mask: return the clients for which a
727  * memory region is logging writes.
728  *
729  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
730  * are the bit indices.
731  *
732  * @mr: the memory region being queried
733  */
734 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
735 
736 /**
737  * memory_region_is_rom: check whether a memory region is ROM
738  *
739  * Returns %true is a memory region is read-only memory.
740  *
741  * @mr: the memory region being queried
742  */
743 static inline bool memory_region_is_rom(MemoryRegion *mr)
744 {
745     return mr->ram && mr->readonly;
746 }
747 
748 
749 /**
750  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
751  *
752  * Returns a file descriptor backing a file-based RAM memory region,
753  * or -1 if the region is not a file-based RAM memory region.
754  *
755  * @mr: the RAM or alias memory region being queried.
756  */
757 int memory_region_get_fd(MemoryRegion *mr);
758 
759 /**
760  * memory_region_set_fd: Mark a RAM memory region as backed by a
761  * file descriptor.
762  *
763  * This function is typically used after memory_region_init_ram_ptr().
764  *
765  * @mr: the memory region being queried.
766  * @fd: the file descriptor that backs @mr.
767  */
768 void memory_region_set_fd(MemoryRegion *mr, int fd);
769 
770 /**
771  * memory_region_from_host: Convert a pointer into a RAM memory region
772  * and an offset within it.
773  *
774  * Given a host pointer inside a RAM memory region (created with
775  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
776  * the MemoryRegion and the offset within it.
777  *
778  * Use with care; by the time this function returns, the returned pointer is
779  * not protected by RCU anymore.  If the caller is not within an RCU critical
780  * section and does not hold the iothread lock, it must have other means of
781  * protecting the pointer, such as a reference to the region that includes
782  * the incoming ram_addr_t.
783  *
784  * @mr: the memory region being queried.
785  */
786 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
787 
788 /**
789  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
790  *
791  * Returns a host pointer to a RAM memory region (created with
792  * memory_region_init_ram() or memory_region_init_ram_ptr()).
793  *
794  * Use with care; by the time this function returns, the returned pointer is
795  * not protected by RCU anymore.  If the caller is not within an RCU critical
796  * section and does not hold the iothread lock, it must have other means of
797  * protecting the pointer, such as a reference to the region that includes
798  * the incoming ram_addr_t.
799  *
800  * @mr: the memory region being queried.
801  */
802 void *memory_region_get_ram_ptr(MemoryRegion *mr);
803 
804 /* memory_region_ram_resize: Resize a RAM region.
805  *
806  * Only legal before guest might have detected the memory size: e.g. on
807  * incoming migration, or right after reset.
808  *
809  * @mr: a memory region created with @memory_region_init_resizeable_ram.
810  * @newsize: the new size the region
811  * @errp: pointer to Error*, to store an error if it happens.
812  */
813 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
814                               Error **errp);
815 
816 /**
817  * memory_region_set_log: Turn dirty logging on or off for a region.
818  *
819  * Turns dirty logging on or off for a specified client (display, migration).
820  * Only meaningful for RAM regions.
821  *
822  * @mr: the memory region being updated.
823  * @log: whether dirty logging is to be enabled or disabled.
824  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
825  */
826 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
827 
828 /**
829  * memory_region_get_dirty: Check whether a range of bytes is dirty
830  *                          for a specified client.
831  *
832  * Checks whether a range of bytes has been written to since the last
833  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
834  * must be enabled.
835  *
836  * @mr: the memory region being queried.
837  * @addr: the address (relative to the start of the region) being queried.
838  * @size: the size of the range being queried.
839  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
840  *          %DIRTY_MEMORY_VGA.
841  */
842 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
843                              hwaddr size, unsigned client);
844 
845 /**
846  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
847  *
848  * Marks a range of bytes as dirty, after it has been dirtied outside
849  * guest code.
850  *
851  * @mr: the memory region being dirtied.
852  * @addr: the address (relative to the start of the region) being dirtied.
853  * @size: size of the range being dirtied.
854  */
855 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
856                              hwaddr size);
857 
858 /**
859  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
860  *                                     for a specified client. It clears them.
861  *
862  * Checks whether a range of bytes has been written to since the last
863  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
864  * must be enabled.
865  *
866  * @mr: the memory region being queried.
867  * @addr: the address (relative to the start of the region) being queried.
868  * @size: the size of the range being queried.
869  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
870  *          %DIRTY_MEMORY_VGA.
871  */
872 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
873                                         hwaddr size, unsigned client);
874 /**
875  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
876  *                                  any external TLBs (e.g. kvm)
877  *
878  * Flushes dirty information from accelerators such as kvm and vhost-net
879  * and makes it available to users of the memory API.
880  *
881  * @mr: the region being flushed.
882  */
883 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
884 
885 /**
886  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
887  *                            client.
888  *
889  * Marks a range of pages as no longer dirty.
890  *
891  * @mr: the region being updated.
892  * @addr: the start of the subrange being cleaned.
893  * @size: the size of the subrange being cleaned.
894  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
895  *          %DIRTY_MEMORY_VGA.
896  */
897 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
898                                hwaddr size, unsigned client);
899 
900 /**
901  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
902  *
903  * Allows a memory region to be marked as read-only (turning it into a ROM).
904  * only useful on RAM regions.
905  *
906  * @mr: the region being updated.
907  * @readonly: whether rhe region is to be ROM or RAM.
908  */
909 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
910 
911 /**
912  * memory_region_rom_device_set_romd: enable/disable ROMD mode
913  *
914  * Allows a ROM device (initialized with memory_region_init_rom_device() to
915  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
916  * device is mapped to guest memory and satisfies read access directly.
917  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
918  * Writes are always handled by the #MemoryRegion.write function.
919  *
920  * @mr: the memory region to be updated
921  * @romd_mode: %true to put the region into ROMD mode
922  */
923 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
924 
925 /**
926  * memory_region_set_coalescing: Enable memory coalescing for the region.
927  *
928  * Enabled writes to a region to be queued for later processing. MMIO ->write
929  * callbacks may be delayed until a non-coalesced MMIO is issued.
930  * Only useful for IO regions.  Roughly similar to write-combining hardware.
931  *
932  * @mr: the memory region to be write coalesced
933  */
934 void memory_region_set_coalescing(MemoryRegion *mr);
935 
936 /**
937  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
938  *                               a region.
939  *
940  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
941  * Multiple calls can be issued coalesced disjoint ranges.
942  *
943  * @mr: the memory region to be updated.
944  * @offset: the start of the range within the region to be coalesced.
945  * @size: the size of the subrange to be coalesced.
946  */
947 void memory_region_add_coalescing(MemoryRegion *mr,
948                                   hwaddr offset,
949                                   uint64_t size);
950 
951 /**
952  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
953  *
954  * Disables any coalescing caused by memory_region_set_coalescing() or
955  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
956  * hardware.
957  *
958  * @mr: the memory region to be updated.
959  */
960 void memory_region_clear_coalescing(MemoryRegion *mr);
961 
962 /**
963  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
964  *                                    accesses.
965  *
966  * Ensure that pending coalesced MMIO request are flushed before the memory
967  * region is accessed. This property is automatically enabled for all regions
968  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
969  *
970  * @mr: the memory region to be updated.
971  */
972 void memory_region_set_flush_coalesced(MemoryRegion *mr);
973 
974 /**
975  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
976  *                                      accesses.
977  *
978  * Clear the automatic coalesced MMIO flushing enabled via
979  * memory_region_set_flush_coalesced. Note that this service has no effect on
980  * memory regions that have MMIO coalescing enabled for themselves. For them,
981  * automatic flushing will stop once coalescing is disabled.
982  *
983  * @mr: the memory region to be updated.
984  */
985 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
986 
987 /**
988  * memory_region_set_global_locking: Declares the access processing requires
989  *                                   QEMU's global lock.
990  *
991  * When this is invoked, accesses to the memory region will be processed while
992  * holding the global lock of QEMU. This is the default behavior of memory
993  * regions.
994  *
995  * @mr: the memory region to be updated.
996  */
997 void memory_region_set_global_locking(MemoryRegion *mr);
998 
999 /**
1000  * memory_region_clear_global_locking: Declares that access processing does
1001  *                                     not depend on the QEMU global lock.
1002  *
1003  * By clearing this property, accesses to the memory region will be processed
1004  * outside of QEMU's global lock (unless the lock is held on when issuing the
1005  * access request). In this case, the device model implementing the access
1006  * handlers is responsible for synchronization of concurrency.
1007  *
1008  * @mr: the memory region to be updated.
1009  */
1010 void memory_region_clear_global_locking(MemoryRegion *mr);
1011 
1012 /**
1013  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1014  *                            is written to a location.
1015  *
1016  * Marks a word in an IO region (initialized with memory_region_init_io())
1017  * as a trigger for an eventfd event.  The I/O callback will not be called.
1018  * The caller must be prepared to handle failure (that is, take the required
1019  * action if the callback _is_ called).
1020  *
1021  * @mr: the memory region being updated.
1022  * @addr: the address within @mr that is to be monitored
1023  * @size: the size of the access to trigger the eventfd
1024  * @match_data: whether to match against @data, instead of just @addr
1025  * @data: the data to match against the guest write
1026  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1027  **/
1028 void memory_region_add_eventfd(MemoryRegion *mr,
1029                                hwaddr addr,
1030                                unsigned size,
1031                                bool match_data,
1032                                uint64_t data,
1033                                EventNotifier *e);
1034 
1035 /**
1036  * memory_region_del_eventfd: Cancel an eventfd.
1037  *
1038  * Cancels an eventfd trigger requested by a previous
1039  * memory_region_add_eventfd() call.
1040  *
1041  * @mr: the memory region being updated.
1042  * @addr: the address within @mr that is to be monitored
1043  * @size: the size of the access to trigger the eventfd
1044  * @match_data: whether to match against @data, instead of just @addr
1045  * @data: the data to match against the guest write
1046  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1047  */
1048 void memory_region_del_eventfd(MemoryRegion *mr,
1049                                hwaddr addr,
1050                                unsigned size,
1051                                bool match_data,
1052                                uint64_t data,
1053                                EventNotifier *e);
1054 
1055 /**
1056  * memory_region_add_subregion: Add a subregion to a container.
1057  *
1058  * Adds a subregion at @offset.  The subregion may not overlap with other
1059  * subregions (except for those explicitly marked as overlapping).  A region
1060  * may only be added once as a subregion (unless removed with
1061  * memory_region_del_subregion()); use memory_region_init_alias() if you
1062  * want a region to be a subregion in multiple locations.
1063  *
1064  * @mr: the region to contain the new subregion; must be a container
1065  *      initialized with memory_region_init().
1066  * @offset: the offset relative to @mr where @subregion is added.
1067  * @subregion: the subregion to be added.
1068  */
1069 void memory_region_add_subregion(MemoryRegion *mr,
1070                                  hwaddr offset,
1071                                  MemoryRegion *subregion);
1072 /**
1073  * memory_region_add_subregion_overlap: Add a subregion to a container
1074  *                                      with overlap.
1075  *
1076  * Adds a subregion at @offset.  The subregion may overlap with other
1077  * subregions.  Conflicts are resolved by having a higher @priority hide a
1078  * lower @priority. Subregions without priority are taken as @priority 0.
1079  * A region may only be added once as a subregion (unless removed with
1080  * memory_region_del_subregion()); use memory_region_init_alias() if you
1081  * want a region to be a subregion in multiple locations.
1082  *
1083  * @mr: the region to contain the new subregion; must be a container
1084  *      initialized with memory_region_init().
1085  * @offset: the offset relative to @mr where @subregion is added.
1086  * @subregion: the subregion to be added.
1087  * @priority: used for resolving overlaps; highest priority wins.
1088  */
1089 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1090                                          hwaddr offset,
1091                                          MemoryRegion *subregion,
1092                                          int priority);
1093 
1094 /**
1095  * memory_region_get_ram_addr: Get the ram address associated with a memory
1096  *                             region
1097  */
1098 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1099 
1100 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1101 /**
1102  * memory_region_del_subregion: Remove a subregion.
1103  *
1104  * Removes a subregion from its container.
1105  *
1106  * @mr: the container to be updated.
1107  * @subregion: the region being removed; must be a current subregion of @mr.
1108  */
1109 void memory_region_del_subregion(MemoryRegion *mr,
1110                                  MemoryRegion *subregion);
1111 
1112 /*
1113  * memory_region_set_enabled: dynamically enable or disable a region
1114  *
1115  * Enables or disables a memory region.  A disabled memory region
1116  * ignores all accesses to itself and its subregions.  It does not
1117  * obscure sibling subregions with lower priority - it simply behaves as
1118  * if it was removed from the hierarchy.
1119  *
1120  * Regions default to being enabled.
1121  *
1122  * @mr: the region to be updated
1123  * @enabled: whether to enable or disable the region
1124  */
1125 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1126 
1127 /*
1128  * memory_region_set_address: dynamically update the address of a region
1129  *
1130  * Dynamically updates the address of a region, relative to its container.
1131  * May be used on regions are currently part of a memory hierarchy.
1132  *
1133  * @mr: the region to be updated
1134  * @addr: new address, relative to container region
1135  */
1136 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1137 
1138 /*
1139  * memory_region_set_size: dynamically update the size of a region.
1140  *
1141  * Dynamically updates the size of a region.
1142  *
1143  * @mr: the region to be updated
1144  * @size: used size of the region.
1145  */
1146 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1147 
1148 /*
1149  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1150  *
1151  * Dynamically updates the offset into the target region that an alias points
1152  * to, as if the fourth argument to memory_region_init_alias() has changed.
1153  *
1154  * @mr: the #MemoryRegion to be updated; should be an alias.
1155  * @offset: the new offset into the target memory region
1156  */
1157 void memory_region_set_alias_offset(MemoryRegion *mr,
1158                                     hwaddr offset);
1159 
1160 /**
1161  * memory_region_present: checks if an address relative to a @container
1162  * translates into #MemoryRegion within @container
1163  *
1164  * Answer whether a #MemoryRegion within @container covers the address
1165  * @addr.
1166  *
1167  * @container: a #MemoryRegion within which @addr is a relative address
1168  * @addr: the area within @container to be searched
1169  */
1170 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1171 
1172 /**
1173  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1174  * into any address space.
1175  *
1176  * @mr: a #MemoryRegion which should be checked if it's mapped
1177  */
1178 bool memory_region_is_mapped(MemoryRegion *mr);
1179 
1180 /**
1181  * memory_region_find: translate an address/size relative to a
1182  * MemoryRegion into a #MemoryRegionSection.
1183  *
1184  * Locates the first #MemoryRegion within @mr that overlaps the range
1185  * given by @addr and @size.
1186  *
1187  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1188  * It will have the following characteristics:
1189  *    .@size = 0 iff no overlap was found
1190  *    .@mr is non-%NULL iff an overlap was found
1191  *
1192  * Remember that in the return value the @offset_within_region is
1193  * relative to the returned region (in the .@mr field), not to the
1194  * @mr argument.
1195  *
1196  * Similarly, the .@offset_within_address_space is relative to the
1197  * address space that contains both regions, the passed and the
1198  * returned one.  However, in the special case where the @mr argument
1199  * has no container (and thus is the root of the address space), the
1200  * following will hold:
1201  *    .@offset_within_address_space >= @addr
1202  *    .@offset_within_address_space + .@size <= @addr + @size
1203  *
1204  * @mr: a MemoryRegion within which @addr is a relative address
1205  * @addr: start of the area within @as to be searched
1206  * @size: size of the area to be searched
1207  */
1208 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1209                                        hwaddr addr, uint64_t size);
1210 
1211 /**
1212  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1213  *
1214  * Synchronizes the dirty page log for all address spaces.
1215  */
1216 void memory_global_dirty_log_sync(void);
1217 
1218 /**
1219  * memory_region_transaction_begin: Start a transaction.
1220  *
1221  * During a transaction, changes will be accumulated and made visible
1222  * only when the transaction ends (is committed).
1223  */
1224 void memory_region_transaction_begin(void);
1225 
1226 /**
1227  * memory_region_transaction_commit: Commit a transaction and make changes
1228  *                                   visible to the guest.
1229  */
1230 void memory_region_transaction_commit(void);
1231 
1232 /**
1233  * memory_listener_register: register callbacks to be called when memory
1234  *                           sections are mapped or unmapped into an address
1235  *                           space
1236  *
1237  * @listener: an object containing the callbacks to be called
1238  * @filter: if non-%NULL, only regions in this address space will be observed
1239  */
1240 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1241 
1242 /**
1243  * memory_listener_unregister: undo the effect of memory_listener_register()
1244  *
1245  * @listener: an object containing the callbacks to be removed
1246  */
1247 void memory_listener_unregister(MemoryListener *listener);
1248 
1249 /**
1250  * memory_global_dirty_log_start: begin dirty logging for all regions
1251  */
1252 void memory_global_dirty_log_start(void);
1253 
1254 /**
1255  * memory_global_dirty_log_stop: end dirty logging for all regions
1256  */
1257 void memory_global_dirty_log_stop(void);
1258 
1259 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1260 
1261 /**
1262  * memory_region_dispatch_read: perform a read directly to the specified
1263  * MemoryRegion.
1264  *
1265  * @mr: #MemoryRegion to access
1266  * @addr: address within that region
1267  * @pval: pointer to uint64_t which the data is written to
1268  * @size: size of the access in bytes
1269  * @attrs: memory transaction attributes to use for the access
1270  */
1271 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1272                                         hwaddr addr,
1273                                         uint64_t *pval,
1274                                         unsigned size,
1275                                         MemTxAttrs attrs);
1276 /**
1277  * memory_region_dispatch_write: perform a write directly to the specified
1278  * MemoryRegion.
1279  *
1280  * @mr: #MemoryRegion to access
1281  * @addr: address within that region
1282  * @data: data to write
1283  * @size: size of the access in bytes
1284  * @attrs: memory transaction attributes to use for the access
1285  */
1286 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1287                                          hwaddr addr,
1288                                          uint64_t data,
1289                                          unsigned size,
1290                                          MemTxAttrs attrs);
1291 
1292 /**
1293  * address_space_init: initializes an address space
1294  *
1295  * @as: an uninitialized #AddressSpace
1296  * @root: a #MemoryRegion that routes addresses for the address space
1297  * @name: an address space name.  The name is only used for debugging
1298  *        output.
1299  */
1300 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1301 
1302 /**
1303  * address_space_init_shareable: return an address space for a memory region,
1304  *                               creating it if it does not already exist
1305  *
1306  * @root: a #MemoryRegion that routes addresses for the address space
1307  * @name: an address space name.  The name is only used for debugging
1308  *        output.
1309  *
1310  * This function will return a pointer to an existing AddressSpace
1311  * which was initialized with the specified MemoryRegion, or it will
1312  * create and initialize one if it does not already exist. The ASes
1313  * are reference-counted, so the memory will be freed automatically
1314  * when the AddressSpace is destroyed via address_space_destroy.
1315  */
1316 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1317                                            const char *name);
1318 
1319 /**
1320  * address_space_destroy: destroy an address space
1321  *
1322  * Releases all resources associated with an address space.  After an address space
1323  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1324  * as well.
1325  *
1326  * @as: address space to be destroyed
1327  */
1328 void address_space_destroy(AddressSpace *as);
1329 
1330 /**
1331  * address_space_rw: read from or write to an address space.
1332  *
1333  * Return a MemTxResult indicating whether the operation succeeded
1334  * or failed (eg unassigned memory, device rejected the transaction,
1335  * IOMMU fault).
1336  *
1337  * @as: #AddressSpace to be accessed
1338  * @addr: address within that address space
1339  * @attrs: memory transaction attributes
1340  * @buf: buffer with the data transferred
1341  * @is_write: indicates the transfer direction
1342  */
1343 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1344                              MemTxAttrs attrs, uint8_t *buf,
1345                              int len, bool is_write);
1346 
1347 /**
1348  * address_space_write: write to address space.
1349  *
1350  * Return a MemTxResult indicating whether the operation succeeded
1351  * or failed (eg unassigned memory, device rejected the transaction,
1352  * IOMMU fault).
1353  *
1354  * @as: #AddressSpace to be accessed
1355  * @addr: address within that address space
1356  * @attrs: memory transaction attributes
1357  * @buf: buffer with the data transferred
1358  */
1359 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1360                                 MemTxAttrs attrs,
1361                                 const uint8_t *buf, int len);
1362 
1363 /* address_space_ld*: load from an address space
1364  * address_space_st*: store to an address space
1365  *
1366  * These functions perform a load or store of the byte, word,
1367  * longword or quad to the specified address within the AddressSpace.
1368  * The _le suffixed functions treat the data as little endian;
1369  * _be indicates big endian; no suffix indicates "same endianness
1370  * as guest CPU".
1371  *
1372  * The "guest CPU endianness" accessors are deprecated for use outside
1373  * target-* code; devices should be CPU-agnostic and use either the LE
1374  * or the BE accessors.
1375  *
1376  * @as #AddressSpace to be accessed
1377  * @addr: address within that address space
1378  * @val: data value, for stores
1379  * @attrs: memory transaction attributes
1380  * @result: location to write the success/failure of the transaction;
1381  *   if NULL, this information is discarded
1382  */
1383 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1384                             MemTxAttrs attrs, MemTxResult *result);
1385 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1386                             MemTxAttrs attrs, MemTxResult *result);
1387 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1388                             MemTxAttrs attrs, MemTxResult *result);
1389 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1390                             MemTxAttrs attrs, MemTxResult *result);
1391 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1392                             MemTxAttrs attrs, MemTxResult *result);
1393 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1394                             MemTxAttrs attrs, MemTxResult *result);
1395 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1396                             MemTxAttrs attrs, MemTxResult *result);
1397 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1398                             MemTxAttrs attrs, MemTxResult *result);
1399 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1400                             MemTxAttrs attrs, MemTxResult *result);
1401 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1402                             MemTxAttrs attrs, MemTxResult *result);
1403 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1404                             MemTxAttrs attrs, MemTxResult *result);
1405 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1406                             MemTxAttrs attrs, MemTxResult *result);
1407 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1408                             MemTxAttrs attrs, MemTxResult *result);
1409 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1410                             MemTxAttrs attrs, MemTxResult *result);
1411 
1412 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1413 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1414 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1415 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1416 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1417 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1418 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1419 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1420 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1421 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1422 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1423 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1424 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1425 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1426 
1427 struct MemoryRegionCache {
1428     hwaddr xlat;
1429     void *ptr;
1430     hwaddr len;
1431     MemoryRegion *mr;
1432     bool is_write;
1433 };
1434 
1435 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mr = NULL })
1436 
1437 /* address_space_cache_init: prepare for repeated access to a physical
1438  * memory region
1439  *
1440  * @cache: #MemoryRegionCache to be filled
1441  * @as: #AddressSpace to be accessed
1442  * @addr: address within that address space
1443  * @len: length of buffer
1444  * @is_write: indicates the transfer direction
1445  *
1446  * Will only work with RAM, and may map a subset of the requested range by
1447  * returning a value that is less than @len.  On failure, return a negative
1448  * errno value.
1449  *
1450  * Because it only works with RAM, this function can be used for
1451  * read-modify-write operations.  In this case, is_write should be %true.
1452  *
1453  * Note that addresses passed to the address_space_*_cached functions
1454  * are relative to @addr.
1455  */
1456 int64_t address_space_cache_init(MemoryRegionCache *cache,
1457                                  AddressSpace *as,
1458                                  hwaddr addr,
1459                                  hwaddr len,
1460                                  bool is_write);
1461 
1462 /**
1463  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1464  *
1465  * @cache: The #MemoryRegionCache to operate on.
1466  * @addr: The first physical address that was written, relative to the
1467  * address that was passed to @address_space_cache_init.
1468  * @access_len: The number of bytes that were written starting at @addr.
1469  */
1470 void address_space_cache_invalidate(MemoryRegionCache *cache,
1471                                     hwaddr addr,
1472                                     hwaddr access_len);
1473 
1474 /**
1475  * address_space_cache_destroy: free a #MemoryRegionCache
1476  *
1477  * @cache: The #MemoryRegionCache whose memory should be released.
1478  */
1479 void address_space_cache_destroy(MemoryRegionCache *cache);
1480 
1481 /* address_space_ld*_cached: load from a cached #MemoryRegion
1482  * address_space_st*_cached: store into a cached #MemoryRegion
1483  *
1484  * These functions perform a load or store of the byte, word,
1485  * longword or quad to the specified address.  The address is
1486  * a physical address in the AddressSpace, but it must lie within
1487  * a #MemoryRegion that was mapped with address_space_cache_init.
1488  *
1489  * The _le suffixed functions treat the data as little endian;
1490  * _be indicates big endian; no suffix indicates "same endianness
1491  * as guest CPU".
1492  *
1493  * The "guest CPU endianness" accessors are deprecated for use outside
1494  * target-* code; devices should be CPU-agnostic and use either the LE
1495  * or the BE accessors.
1496  *
1497  * @cache: previously initialized #MemoryRegionCache to be accessed
1498  * @addr: address within the address space
1499  * @val: data value, for stores
1500  * @attrs: memory transaction attributes
1501  * @result: location to write the success/failure of the transaction;
1502  *   if NULL, this information is discarded
1503  */
1504 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1505                             MemTxAttrs attrs, MemTxResult *result);
1506 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1507                             MemTxAttrs attrs, MemTxResult *result);
1508 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1509                             MemTxAttrs attrs, MemTxResult *result);
1510 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1511                             MemTxAttrs attrs, MemTxResult *result);
1512 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1513                             MemTxAttrs attrs, MemTxResult *result);
1514 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1515                             MemTxAttrs attrs, MemTxResult *result);
1516 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1517                             MemTxAttrs attrs, MemTxResult *result);
1518 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1519                             MemTxAttrs attrs, MemTxResult *result);
1520 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1521                             MemTxAttrs attrs, MemTxResult *result);
1522 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1523                             MemTxAttrs attrs, MemTxResult *result);
1524 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1525                             MemTxAttrs attrs, MemTxResult *result);
1526 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1527                             MemTxAttrs attrs, MemTxResult *result);
1528 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1529                             MemTxAttrs attrs, MemTxResult *result);
1530 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1531                             MemTxAttrs attrs, MemTxResult *result);
1532 
1533 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1534 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1535 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1536 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1537 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1538 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1539 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1540 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1541 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1542 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1543 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1544 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1545 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1546 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1547 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1548  * entry. Should be called from an RCU critical section.
1549  */
1550 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1551                                             bool is_write);
1552 
1553 /* address_space_translate: translate an address range into an address space
1554  * into a MemoryRegion and an address range into that section.  Should be
1555  * called from an RCU critical section, to avoid that the last reference
1556  * to the returned region disappears after address_space_translate returns.
1557  *
1558  * @as: #AddressSpace to be accessed
1559  * @addr: address within that address space
1560  * @xlat: pointer to address within the returned memory region section's
1561  * #MemoryRegion.
1562  * @len: pointer to length
1563  * @is_write: indicates the transfer direction
1564  */
1565 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1566                                       hwaddr *xlat, hwaddr *len,
1567                                       bool is_write);
1568 
1569 /* address_space_access_valid: check for validity of accessing an address
1570  * space range
1571  *
1572  * Check whether memory is assigned to the given address space range, and
1573  * access is permitted by any IOMMU regions that are active for the address
1574  * space.
1575  *
1576  * For now, addr and len should be aligned to a page size.  This limitation
1577  * will be lifted in the future.
1578  *
1579  * @as: #AddressSpace to be accessed
1580  * @addr: address within that address space
1581  * @len: length of the area to be checked
1582  * @is_write: indicates the transfer direction
1583  */
1584 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1585 
1586 /* address_space_map: map a physical memory region into a host virtual address
1587  *
1588  * May map a subset of the requested range, given by and returned in @plen.
1589  * May return %NULL if resources needed to perform the mapping are exhausted.
1590  * Use only for reads OR writes - not for read-modify-write operations.
1591  * Use cpu_register_map_client() to know when retrying the map operation is
1592  * likely to succeed.
1593  *
1594  * @as: #AddressSpace to be accessed
1595  * @addr: address within that address space
1596  * @plen: pointer to length of buffer; updated on return
1597  * @is_write: indicates the transfer direction
1598  */
1599 void *address_space_map(AddressSpace *as, hwaddr addr,
1600                         hwaddr *plen, bool is_write);
1601 
1602 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1603  *
1604  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1605  * the amount of memory that was actually read or written by the caller.
1606  *
1607  * @as: #AddressSpace used
1608  * @addr: address within that address space
1609  * @len: buffer length as returned by address_space_map()
1610  * @access_len: amount of data actually transferred
1611  * @is_write: indicates the transfer direction
1612  */
1613 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1614                          int is_write, hwaddr access_len);
1615 
1616 
1617 /* Internal functions, part of the implementation of address_space_read.  */
1618 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1619                                         MemTxAttrs attrs, uint8_t *buf,
1620                                         int len, hwaddr addr1, hwaddr l,
1621 					MemoryRegion *mr);
1622 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1623                                     MemTxAttrs attrs, uint8_t *buf, int len);
1624 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1625 
1626 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1627 {
1628     if (is_write) {
1629         return memory_region_is_ram(mr) &&
1630                !mr->readonly && !memory_region_is_ram_device(mr);
1631     } else {
1632         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1633                memory_region_is_romd(mr);
1634     }
1635 }
1636 
1637 /**
1638  * address_space_read: read from an address space.
1639  *
1640  * Return a MemTxResult indicating whether the operation succeeded
1641  * or failed (eg unassigned memory, device rejected the transaction,
1642  * IOMMU fault).
1643  *
1644  * @as: #AddressSpace to be accessed
1645  * @addr: address within that address space
1646  * @attrs: memory transaction attributes
1647  * @buf: buffer with the data transferred
1648  */
1649 static inline __attribute__((__always_inline__))
1650 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1651                                uint8_t *buf, int len)
1652 {
1653     MemTxResult result = MEMTX_OK;
1654     hwaddr l, addr1;
1655     void *ptr;
1656     MemoryRegion *mr;
1657 
1658     if (__builtin_constant_p(len)) {
1659         if (len) {
1660             rcu_read_lock();
1661             l = len;
1662             mr = address_space_translate(as, addr, &addr1, &l, false);
1663             if (len == l && memory_access_is_direct(mr, false)) {
1664                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1665                 memcpy(buf, ptr, len);
1666             } else {
1667                 result = address_space_read_continue(as, addr, attrs, buf, len,
1668                                                      addr1, l, mr);
1669             }
1670             rcu_read_unlock();
1671         }
1672     } else {
1673         result = address_space_read_full(as, addr, attrs, buf, len);
1674     }
1675     return result;
1676 }
1677 
1678 /**
1679  * address_space_read_cached: read from a cached RAM region
1680  *
1681  * @cache: Cached region to be addressed
1682  * @addr: address relative to the base of the RAM region
1683  * @buf: buffer with the data transferred
1684  * @len: length of the data transferred
1685  */
1686 static inline void
1687 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1688                           void *buf, int len)
1689 {
1690     assert(addr < cache->len && len <= cache->len - addr);
1691     memcpy(buf, cache->ptr + addr, len);
1692 }
1693 
1694 /**
1695  * address_space_write_cached: write to a cached RAM region
1696  *
1697  * @cache: Cached region to be addressed
1698  * @addr: address relative to the base of the RAM region
1699  * @buf: buffer with the data transferred
1700  * @len: length of the data transferred
1701  */
1702 static inline void
1703 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1704                            void *buf, int len)
1705 {
1706     assert(addr < cache->len && len <= cache->len - addr);
1707     memcpy(cache->ptr + addr, buf, len);
1708 }
1709 
1710 #endif
1711 
1712 #endif
1713