1 /* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef MEMORY_H 15 #define MEMORY_H 16 17 #ifndef CONFIG_USER_ONLY 18 19 #include "exec/cpu-common.h" 20 #include "exec/hwaddr.h" 21 #include "exec/memattrs.h" 22 #include "exec/memop.h" 23 #include "exec/ramlist.h" 24 #include "qemu/bswap.h" 25 #include "qemu/queue.h" 26 #include "qemu/int128.h" 27 #include "qemu/notify.h" 28 #include "qom/object.h" 29 #include "qemu/rcu.h" 30 31 #define RAM_ADDR_INVALID (~(ram_addr_t)0) 32 33 #define MAX_PHYS_ADDR_SPACE_BITS 62 34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 35 36 #define TYPE_MEMORY_REGION "memory-region" 37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, 38 TYPE_MEMORY_REGION) 39 40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" 41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; 42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, 43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) 44 45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager" 46 typedef struct RamDiscardManagerClass RamDiscardManagerClass; 47 typedef struct RamDiscardManager RamDiscardManager; 48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, 49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); 50 51 #ifdef CONFIG_FUZZ 52 void fuzz_dma_read_cb(size_t addr, 53 size_t len, 54 MemoryRegion *mr); 55 #else 56 static inline void fuzz_dma_read_cb(size_t addr, 57 size_t len, 58 MemoryRegion *mr) 59 { 60 /* Do Nothing */ 61 } 62 #endif 63 64 /* Possible bits for global_dirty_log_{start|stop} */ 65 66 /* Dirty tracking enabled because migration is running */ 67 #define GLOBAL_DIRTY_MIGRATION (1U << 0) 68 69 /* Dirty tracking enabled because measuring dirty rate */ 70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) 71 72 /* Dirty tracking enabled because dirty limit */ 73 #define GLOBAL_DIRTY_LIMIT (1U << 2) 74 75 #define GLOBAL_DIRTY_MASK (0x7) 76 77 extern unsigned int global_dirty_tracking; 78 79 typedef struct MemoryRegionOps MemoryRegionOps; 80 81 struct ReservedRegion { 82 hwaddr low; 83 hwaddr high; 84 unsigned type; 85 }; 86 87 /** 88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion 89 * 90 * @mr: the region, or %NULL if empty 91 * @fv: the flat view of the address space the region is mapped in 92 * @offset_within_region: the beginning of the section, relative to @mr's start 93 * @size: the size of the section; will not exceed @mr's boundaries 94 * @offset_within_address_space: the address of the first byte of the section 95 * relative to the region's address space 96 * @readonly: writes to this section are ignored 97 * @nonvolatile: this section is non-volatile 98 */ 99 struct MemoryRegionSection { 100 Int128 size; 101 MemoryRegion *mr; 102 FlatView *fv; 103 hwaddr offset_within_region; 104 hwaddr offset_within_address_space; 105 bool readonly; 106 bool nonvolatile; 107 }; 108 109 typedef struct IOMMUTLBEntry IOMMUTLBEntry; 110 111 /* See address_space_translate: bit 0 is read, bit 1 is write. */ 112 typedef enum { 113 IOMMU_NONE = 0, 114 IOMMU_RO = 1, 115 IOMMU_WO = 2, 116 IOMMU_RW = 3, 117 } IOMMUAccessFlags; 118 119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) 120 121 struct IOMMUTLBEntry { 122 AddressSpace *target_as; 123 hwaddr iova; 124 hwaddr translated_addr; 125 hwaddr addr_mask; /* 0xfff = 4k translation */ 126 IOMMUAccessFlags perm; 127 }; 128 129 /* 130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can 131 * register with one or multiple IOMMU Notifier capability bit(s). 132 * 133 * Normally there're two use cases for the notifiers: 134 * 135 * (1) When the device needs accurate synchronizations of the vIOMMU page 136 * tables, it needs to register with both MAP|UNMAP notifies (which 137 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). 138 * 139 * Regarding to accurate synchronization, it's when the notified 140 * device maintains a shadow page table and must be notified on each 141 * guest MAP (page table entry creation) and UNMAP (invalidation) 142 * events (e.g. VFIO). Both notifications must be accurate so that 143 * the shadow page table is fully in sync with the guest view. 144 * 145 * (2) When the device doesn't need accurate synchronizations of the 146 * vIOMMU page tables, it needs to register only with UNMAP or 147 * DEVIOTLB_UNMAP notifies. 148 * 149 * It's when the device maintains a cache of IOMMU translations 150 * (IOTLB) and is able to fill that cache by requesting translations 151 * from the vIOMMU through a protocol similar to ATS (Address 152 * Translation Service). 153 * 154 * Note that in this mode the vIOMMU will not maintain a shadowed 155 * page table for the address space, and the UNMAP messages can cover 156 * more than the pages that used to get mapped. The IOMMU notifiee 157 * should be able to take care of over-sized invalidations. 158 */ 159 typedef enum { 160 IOMMU_NOTIFIER_NONE = 0, 161 /* Notify cache invalidations */ 162 IOMMU_NOTIFIER_UNMAP = 0x1, 163 /* Notify entry changes (newly created entries) */ 164 IOMMU_NOTIFIER_MAP = 0x2, 165 /* Notify changes on device IOTLB entries */ 166 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, 167 } IOMMUNotifierFlag; 168 169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) 170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP 171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ 172 IOMMU_NOTIFIER_DEVIOTLB_EVENTS) 173 174 struct IOMMUNotifier; 175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, 176 IOMMUTLBEntry *data); 177 178 struct IOMMUNotifier { 179 IOMMUNotify notify; 180 IOMMUNotifierFlag notifier_flags; 181 /* Notify for address space range start <= addr <= end */ 182 hwaddr start; 183 hwaddr end; 184 int iommu_idx; 185 QLIST_ENTRY(IOMMUNotifier) node; 186 }; 187 typedef struct IOMMUNotifier IOMMUNotifier; 188 189 typedef struct IOMMUTLBEvent { 190 IOMMUNotifierFlag type; 191 IOMMUTLBEntry entry; 192 } IOMMUTLBEvent; 193 194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ 195 #define RAM_PREALLOC (1 << 0) 196 197 /* RAM is mmap-ed with MAP_SHARED */ 198 #define RAM_SHARED (1 << 1) 199 200 /* Only a portion of RAM (used_length) is actually used, and migrated. 201 * Resizing RAM while migrating can result in the migration being canceled. 202 */ 203 #define RAM_RESIZEABLE (1 << 2) 204 205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically 206 * zero the page and wake waiting processes. 207 * (Set during postcopy) 208 */ 209 #define RAM_UF_ZEROPAGE (1 << 3) 210 211 /* RAM can be migrated */ 212 #define RAM_MIGRATABLE (1 << 4) 213 214 /* RAM is a persistent kind memory */ 215 #define RAM_PMEM (1 << 5) 216 217 218 /* 219 * UFFDIO_WRITEPROTECT is used on this RAMBlock to 220 * support 'write-tracking' migration type. 221 * Implies ram_state->ram_wt_enabled. 222 */ 223 #define RAM_UF_WRITEPROTECT (1 << 6) 224 225 /* 226 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge 227 * pages if applicable) is skipped: will bail out if not supported. When not 228 * set, the OS will do the reservation, if supported for the memory type. 229 */ 230 #define RAM_NORESERVE (1 << 7) 231 232 /* RAM that isn't accessible through normal means. */ 233 #define RAM_PROTECTED (1 << 8) 234 235 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, 236 IOMMUNotifierFlag flags, 237 hwaddr start, hwaddr end, 238 int iommu_idx) 239 { 240 n->notify = fn; 241 n->notifier_flags = flags; 242 n->start = start; 243 n->end = end; 244 n->iommu_idx = iommu_idx; 245 } 246 247 /* 248 * Memory region callbacks 249 */ 250 struct MemoryRegionOps { 251 /* Read from the memory region. @addr is relative to @mr; @size is 252 * in bytes. */ 253 uint64_t (*read)(void *opaque, 254 hwaddr addr, 255 unsigned size); 256 /* Write to the memory region. @addr is relative to @mr; @size is 257 * in bytes. */ 258 void (*write)(void *opaque, 259 hwaddr addr, 260 uint64_t data, 261 unsigned size); 262 263 MemTxResult (*read_with_attrs)(void *opaque, 264 hwaddr addr, 265 uint64_t *data, 266 unsigned size, 267 MemTxAttrs attrs); 268 MemTxResult (*write_with_attrs)(void *opaque, 269 hwaddr addr, 270 uint64_t data, 271 unsigned size, 272 MemTxAttrs attrs); 273 274 enum device_endian endianness; 275 /* Guest-visible constraints: */ 276 struct { 277 /* If nonzero, specify bounds on access sizes beyond which a machine 278 * check is thrown. 279 */ 280 unsigned min_access_size; 281 unsigned max_access_size; 282 /* If true, unaligned accesses are supported. Otherwise unaligned 283 * accesses throw machine checks. 284 */ 285 bool unaligned; 286 /* 287 * If present, and returns #false, the transaction is not accepted 288 * by the device (and results in machine dependent behaviour such 289 * as a machine check exception). 290 */ 291 bool (*accepts)(void *opaque, hwaddr addr, 292 unsigned size, bool is_write, 293 MemTxAttrs attrs); 294 } valid; 295 /* Internal implementation constraints: */ 296 struct { 297 /* If nonzero, specifies the minimum size implemented. Smaller sizes 298 * will be rounded upwards and a partial result will be returned. 299 */ 300 unsigned min_access_size; 301 /* If nonzero, specifies the maximum size implemented. Larger sizes 302 * will be done as a series of accesses with smaller sizes. 303 */ 304 unsigned max_access_size; 305 /* If true, unaligned accesses are supported. Otherwise all accesses 306 * are converted to (possibly multiple) naturally aligned accesses. 307 */ 308 bool unaligned; 309 } impl; 310 }; 311 312 typedef struct MemoryRegionClass { 313 /* private */ 314 ObjectClass parent_class; 315 } MemoryRegionClass; 316 317 318 enum IOMMUMemoryRegionAttr { 319 IOMMU_ATTR_SPAPR_TCE_FD 320 }; 321 322 /* 323 * IOMMUMemoryRegionClass: 324 * 325 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION 326 * and provide an implementation of at least the @translate method here 327 * to handle requests to the memory region. Other methods are optional. 328 * 329 * The IOMMU implementation must use the IOMMU notifier infrastructure 330 * to report whenever mappings are changed, by calling 331 * memory_region_notify_iommu() (or, if necessary, by calling 332 * memory_region_notify_iommu_one() for each registered notifier). 333 * 334 * Conceptually an IOMMU provides a mapping from input address 335 * to an output TLB entry. If the IOMMU is aware of memory transaction 336 * attributes and the output TLB entry depends on the transaction 337 * attributes, we represent this using IOMMU indexes. Each index 338 * selects a particular translation table that the IOMMU has: 339 * 340 * @attrs_to_index returns the IOMMU index for a set of transaction attributes 341 * 342 * @translate takes an input address and an IOMMU index 343 * 344 * and the mapping returned can only depend on the input address and the 345 * IOMMU index. 346 * 347 * Most IOMMUs don't care about the transaction attributes and support 348 * only a single IOMMU index. A more complex IOMMU might have one index 349 * for secure transactions and one for non-secure transactions. 350 */ 351 struct IOMMUMemoryRegionClass { 352 /* private: */ 353 MemoryRegionClass parent_class; 354 355 /* public: */ 356 /** 357 * @translate: 358 * 359 * Return a TLB entry that contains a given address. 360 * 361 * The IOMMUAccessFlags indicated via @flag are optional and may 362 * be specified as IOMMU_NONE to indicate that the caller needs 363 * the full translation information for both reads and writes. If 364 * the access flags are specified then the IOMMU implementation 365 * may use this as an optimization, to stop doing a page table 366 * walk as soon as it knows that the requested permissions are not 367 * allowed. If IOMMU_NONE is passed then the IOMMU must do the 368 * full page table walk and report the permissions in the returned 369 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not 370 * return different mappings for reads and writes.) 371 * 372 * The returned information remains valid while the caller is 373 * holding the big QEMU lock or is inside an RCU critical section; 374 * if the caller wishes to cache the mapping beyond that it must 375 * register an IOMMU notifier so it can invalidate its cached 376 * information when the IOMMU mapping changes. 377 * 378 * @iommu: the IOMMUMemoryRegion 379 * 380 * @hwaddr: address to be translated within the memory region 381 * 382 * @flag: requested access permission 383 * 384 * @iommu_idx: IOMMU index for the translation 385 */ 386 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, 387 IOMMUAccessFlags flag, int iommu_idx); 388 /** 389 * @get_min_page_size: 390 * 391 * Returns minimum supported page size in bytes. 392 * 393 * If this method is not provided then the minimum is assumed to 394 * be TARGET_PAGE_SIZE. 395 * 396 * @iommu: the IOMMUMemoryRegion 397 */ 398 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); 399 /** 400 * @notify_flag_changed: 401 * 402 * Called when IOMMU Notifier flag changes (ie when the set of 403 * events which IOMMU users are requesting notification for changes). 404 * Optional method -- need not be provided if the IOMMU does not 405 * need to know exactly which events must be notified. 406 * 407 * @iommu: the IOMMUMemoryRegion 408 * 409 * @old_flags: events which previously needed to be notified 410 * 411 * @new_flags: events which now need to be notified 412 * 413 * Returns 0 on success, or a negative errno; in particular 414 * returns -EINVAL if the new flag bitmap is not supported by the 415 * IOMMU memory region. In case of failure, the error object 416 * must be created 417 */ 418 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, 419 IOMMUNotifierFlag old_flags, 420 IOMMUNotifierFlag new_flags, 421 Error **errp); 422 /** 423 * @replay: 424 * 425 * Called to handle memory_region_iommu_replay(). 426 * 427 * The default implementation of memory_region_iommu_replay() is to 428 * call the IOMMU translate method for every page in the address space 429 * with flag == IOMMU_NONE and then call the notifier if translate 430 * returns a valid mapping. If this method is implemented then it 431 * overrides the default behaviour, and must provide the full semantics 432 * of memory_region_iommu_replay(), by calling @notifier for every 433 * translation present in the IOMMU. 434 * 435 * Optional method -- an IOMMU only needs to provide this method 436 * if the default is inefficient or produces undesirable side effects. 437 * 438 * Note: this is not related to record-and-replay functionality. 439 */ 440 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); 441 442 /** 443 * @get_attr: 444 * 445 * Get IOMMU misc attributes. This is an optional method that 446 * can be used to allow users of the IOMMU to get implementation-specific 447 * information. The IOMMU implements this method to handle calls 448 * by IOMMU users to memory_region_iommu_get_attr() by filling in 449 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that 450 * the IOMMU supports. If the method is unimplemented then 451 * memory_region_iommu_get_attr() will always return -EINVAL. 452 * 453 * @iommu: the IOMMUMemoryRegion 454 * 455 * @attr: attribute being queried 456 * 457 * @data: memory to fill in with the attribute data 458 * 459 * Returns 0 on success, or a negative errno; in particular 460 * returns -EINVAL for unrecognized or unimplemented attribute types. 461 */ 462 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, 463 void *data); 464 465 /** 466 * @attrs_to_index: 467 * 468 * Return the IOMMU index to use for a given set of transaction attributes. 469 * 470 * Optional method: if an IOMMU only supports a single IOMMU index then 471 * the default implementation of memory_region_iommu_attrs_to_index() 472 * will return 0. 473 * 474 * The indexes supported by an IOMMU must be contiguous, starting at 0. 475 * 476 * @iommu: the IOMMUMemoryRegion 477 * @attrs: memory transaction attributes 478 */ 479 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); 480 481 /** 482 * @num_indexes: 483 * 484 * Return the number of IOMMU indexes this IOMMU supports. 485 * 486 * Optional method: if this method is not provided, then 487 * memory_region_iommu_num_indexes() will return 1, indicating that 488 * only a single IOMMU index is supported. 489 * 490 * @iommu: the IOMMUMemoryRegion 491 */ 492 int (*num_indexes)(IOMMUMemoryRegion *iommu); 493 494 /** 495 * @iommu_set_page_size_mask: 496 * 497 * Restrict the page size mask that can be supported with a given IOMMU 498 * memory region. Used for example to propagate host physical IOMMU page 499 * size mask limitations to the virtual IOMMU. 500 * 501 * Optional method: if this method is not provided, then the default global 502 * page mask is used. 503 * 504 * @iommu: the IOMMUMemoryRegion 505 * 506 * @page_size_mask: a bitmask of supported page sizes. At least one bit, 507 * representing the smallest page size, must be set. Additional set bits 508 * represent supported block sizes. For example a host physical IOMMU that 509 * uses page tables with a page size of 4kB, and supports 2MB and 4GB 510 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate 511 * block sizes is specified with mask 0xfffffffffffff000. 512 * 513 * Returns 0 on success, or a negative error. In case of failure, the error 514 * object must be created. 515 */ 516 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, 517 uint64_t page_size_mask, 518 Error **errp); 519 }; 520 521 typedef struct RamDiscardListener RamDiscardListener; 522 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, 523 MemoryRegionSection *section); 524 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, 525 MemoryRegionSection *section); 526 527 struct RamDiscardListener { 528 /* 529 * @notify_populate: 530 * 531 * Notification that previously discarded memory is about to get populated. 532 * Listeners are able to object. If any listener objects, already 533 * successfully notified listeners are notified about a discard again. 534 * 535 * @rdl: the #RamDiscardListener getting notified 536 * @section: the #MemoryRegionSection to get populated. The section 537 * is aligned within the memory region to the minimum granularity 538 * unless it would exceed the registered section. 539 * 540 * Returns 0 on success. If the notification is rejected by the listener, 541 * an error is returned. 542 */ 543 NotifyRamPopulate notify_populate; 544 545 /* 546 * @notify_discard: 547 * 548 * Notification that previously populated memory was discarded successfully 549 * and listeners should drop all references to such memory and prevent 550 * new population (e.g., unmap). 551 * 552 * @rdl: the #RamDiscardListener getting notified 553 * @section: the #MemoryRegionSection to get populated. The section 554 * is aligned within the memory region to the minimum granularity 555 * unless it would exceed the registered section. 556 */ 557 NotifyRamDiscard notify_discard; 558 559 /* 560 * @double_discard_supported: 561 * 562 * The listener suppors getting @notify_discard notifications that span 563 * already discarded parts. 564 */ 565 bool double_discard_supported; 566 567 MemoryRegionSection *section; 568 QLIST_ENTRY(RamDiscardListener) next; 569 }; 570 571 static inline void ram_discard_listener_init(RamDiscardListener *rdl, 572 NotifyRamPopulate populate_fn, 573 NotifyRamDiscard discard_fn, 574 bool double_discard_supported) 575 { 576 rdl->notify_populate = populate_fn; 577 rdl->notify_discard = discard_fn; 578 rdl->double_discard_supported = double_discard_supported; 579 } 580 581 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); 582 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); 583 584 /* 585 * RamDiscardManagerClass: 586 * 587 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion 588 * regions are currently populated to be used/accessed by the VM, notifying 589 * after parts were discarded (freeing up memory) and before parts will be 590 * populated (consuming memory), to be used/accessed by the VM. 591 * 592 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the 593 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is 594 * mapped. 595 * 596 * The #RamDiscardManager is intended to be used by technologies that are 597 * incompatible with discarding of RAM (e.g., VFIO, which may pin all 598 * memory inside a #MemoryRegion), and require proper coordination to only 599 * map the currently populated parts, to hinder parts that are expected to 600 * remain discarded from silently getting populated and consuming memory. 601 * Technologies that support discarding of RAM don't have to bother and can 602 * simply map the whole #MemoryRegion. 603 * 604 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs 605 * memory within an assigned RAM #MemoryRegion, coordinated with the VM. 606 * Logically unplugging memory consists of discarding RAM. The VM agreed to not 607 * access unplugged (discarded) memory - especially via DMA. virtio-mem will 608 * properly coordinate with listeners before memory is plugged (populated), 609 * and after memory is unplugged (discarded). 610 * 611 * Listeners are called in multiples of the minimum granularity (unless it 612 * would exceed the registered range) and changes are aligned to the minimum 613 * granularity within the #MemoryRegion. Listeners have to prepare for memory 614 * becoming discarded in a different granularity than it was populated and the 615 * other way around. 616 */ 617 struct RamDiscardManagerClass { 618 /* private */ 619 InterfaceClass parent_class; 620 621 /* public */ 622 623 /** 624 * @get_min_granularity: 625 * 626 * Get the minimum granularity in which listeners will get notified 627 * about changes within the #MemoryRegion via the #RamDiscardManager. 628 * 629 * @rdm: the #RamDiscardManager 630 * @mr: the #MemoryRegion 631 * 632 * Returns the minimum granularity. 633 */ 634 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, 635 const MemoryRegion *mr); 636 637 /** 638 * @is_populated: 639 * 640 * Check whether the given #MemoryRegionSection is completely populated 641 * (i.e., no parts are currently discarded) via the #RamDiscardManager. 642 * There are no alignment requirements. 643 * 644 * @rdm: the #RamDiscardManager 645 * @section: the #MemoryRegionSection 646 * 647 * Returns whether the given range is completely populated. 648 */ 649 bool (*is_populated)(const RamDiscardManager *rdm, 650 const MemoryRegionSection *section); 651 652 /** 653 * @replay_populated: 654 * 655 * Call the #ReplayRamPopulate callback for all populated parts within the 656 * #MemoryRegionSection via the #RamDiscardManager. 657 * 658 * In case any call fails, no further calls are made. 659 * 660 * @rdm: the #RamDiscardManager 661 * @section: the #MemoryRegionSection 662 * @replay_fn: the #ReplayRamPopulate callback 663 * @opaque: pointer to forward to the callback 664 * 665 * Returns 0 on success, or a negative error if any notification failed. 666 */ 667 int (*replay_populated)(const RamDiscardManager *rdm, 668 MemoryRegionSection *section, 669 ReplayRamPopulate replay_fn, void *opaque); 670 671 /** 672 * @replay_discarded: 673 * 674 * Call the #ReplayRamDiscard callback for all discarded parts within the 675 * #MemoryRegionSection via the #RamDiscardManager. 676 * 677 * @rdm: the #RamDiscardManager 678 * @section: the #MemoryRegionSection 679 * @replay_fn: the #ReplayRamDiscard callback 680 * @opaque: pointer to forward to the callback 681 */ 682 void (*replay_discarded)(const RamDiscardManager *rdm, 683 MemoryRegionSection *section, 684 ReplayRamDiscard replay_fn, void *opaque); 685 686 /** 687 * @register_listener: 688 * 689 * Register a #RamDiscardListener for the given #MemoryRegionSection and 690 * immediately notify the #RamDiscardListener about all populated parts 691 * within the #MemoryRegionSection via the #RamDiscardManager. 692 * 693 * In case any notification fails, no further notifications are triggered 694 * and an error is logged. 695 * 696 * @rdm: the #RamDiscardManager 697 * @rdl: the #RamDiscardListener 698 * @section: the #MemoryRegionSection 699 */ 700 void (*register_listener)(RamDiscardManager *rdm, 701 RamDiscardListener *rdl, 702 MemoryRegionSection *section); 703 704 /** 705 * @unregister_listener: 706 * 707 * Unregister a previously registered #RamDiscardListener via the 708 * #RamDiscardManager after notifying the #RamDiscardListener about all 709 * populated parts becoming unpopulated within the registered 710 * #MemoryRegionSection. 711 * 712 * @rdm: the #RamDiscardManager 713 * @rdl: the #RamDiscardListener 714 */ 715 void (*unregister_listener)(RamDiscardManager *rdm, 716 RamDiscardListener *rdl); 717 }; 718 719 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 720 const MemoryRegion *mr); 721 722 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 723 const MemoryRegionSection *section); 724 725 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 726 MemoryRegionSection *section, 727 ReplayRamPopulate replay_fn, 728 void *opaque); 729 730 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 731 MemoryRegionSection *section, 732 ReplayRamDiscard replay_fn, 733 void *opaque); 734 735 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 736 RamDiscardListener *rdl, 737 MemoryRegionSection *section); 738 739 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 740 RamDiscardListener *rdl); 741 742 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 743 ram_addr_t *ram_addr, bool *read_only, 744 bool *mr_has_discard_manager); 745 746 typedef struct CoalescedMemoryRange CoalescedMemoryRange; 747 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 748 749 /** MemoryRegion: 750 * 751 * A struct representing a memory region. 752 */ 753 struct MemoryRegion { 754 Object parent_obj; 755 756 /* private: */ 757 758 /* The following fields should fit in a cache line */ 759 bool romd_mode; 760 bool ram; 761 bool subpage; 762 bool readonly; /* For RAM regions */ 763 bool nonvolatile; 764 bool rom_device; 765 bool flush_coalesced_mmio; 766 uint8_t dirty_log_mask; 767 bool is_iommu; 768 RAMBlock *ram_block; 769 Object *owner; 770 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ 771 DeviceState *dev; 772 773 const MemoryRegionOps *ops; 774 void *opaque; 775 MemoryRegion *container; 776 int mapped_via_alias; /* Mapped via an alias, container might be NULL */ 777 Int128 size; 778 hwaddr addr; 779 void (*destructor)(MemoryRegion *mr); 780 uint64_t align; 781 bool terminates; 782 bool ram_device; 783 bool enabled; 784 bool warning_printed; /* For reservations */ 785 uint8_t vga_logging_count; 786 MemoryRegion *alias; 787 hwaddr alias_offset; 788 int32_t priority; 789 QTAILQ_HEAD(, MemoryRegion) subregions; 790 QTAILQ_ENTRY(MemoryRegion) subregions_link; 791 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; 792 const char *name; 793 unsigned ioeventfd_nb; 794 MemoryRegionIoeventfd *ioeventfds; 795 RamDiscardManager *rdm; /* Only for RAM */ 796 797 /* For devices designed to perform re-entrant IO into their own IO MRs */ 798 bool disable_reentrancy_guard; 799 }; 800 801 struct IOMMUMemoryRegion { 802 MemoryRegion parent_obj; 803 804 QLIST_HEAD(, IOMMUNotifier) iommu_notify; 805 IOMMUNotifierFlag iommu_notify_flags; 806 }; 807 808 #define IOMMU_NOTIFIER_FOREACH(n, mr) \ 809 QLIST_FOREACH((n), &(mr)->iommu_notify, node) 810 811 /** 812 * struct MemoryListener: callbacks structure for updates to the physical memory map 813 * 814 * Allows a component to adjust to changes in the guest-visible memory map. 815 * Use with memory_listener_register() and memory_listener_unregister(). 816 */ 817 struct MemoryListener { 818 /** 819 * @begin: 820 * 821 * Called at the beginning of an address space update transaction. 822 * Followed by calls to #MemoryListener.region_add(), 823 * #MemoryListener.region_del(), #MemoryListener.region_nop(), 824 * #MemoryListener.log_start() and #MemoryListener.log_stop() in 825 * increasing address order. 826 * 827 * @listener: The #MemoryListener. 828 */ 829 void (*begin)(MemoryListener *listener); 830 831 /** 832 * @commit: 833 * 834 * Called at the end of an address space update transaction, 835 * after the last call to #MemoryListener.region_add(), 836 * #MemoryListener.region_del() or #MemoryListener.region_nop(), 837 * #MemoryListener.log_start() and #MemoryListener.log_stop(). 838 * 839 * @listener: The #MemoryListener. 840 */ 841 void (*commit)(MemoryListener *listener); 842 843 /** 844 * @region_add: 845 * 846 * Called during an address space update transaction, 847 * for a section of the address space that is new in this address space 848 * space since the last transaction. 849 * 850 * @listener: The #MemoryListener. 851 * @section: The new #MemoryRegionSection. 852 */ 853 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 854 855 /** 856 * @region_del: 857 * 858 * Called during an address space update transaction, 859 * for a section of the address space that has disappeared in the address 860 * space since the last transaction. 861 * 862 * @listener: The #MemoryListener. 863 * @section: The old #MemoryRegionSection. 864 */ 865 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 866 867 /** 868 * @region_nop: 869 * 870 * Called during an address space update transaction, 871 * for a section of the address space that is in the same place in the address 872 * space as in the last transaction. 873 * 874 * @listener: The #MemoryListener. 875 * @section: The #MemoryRegionSection. 876 */ 877 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 878 879 /** 880 * @log_start: 881 * 882 * Called during an address space update transaction, after 883 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 884 * #MemoryListener.region_nop(), if dirty memory logging clients have 885 * become active since the last transaction. 886 * 887 * @listener: The #MemoryListener. 888 * @section: The #MemoryRegionSection. 889 * @old: A bitmap of dirty memory logging clients that were active in 890 * the previous transaction. 891 * @new: A bitmap of dirty memory logging clients that are active in 892 * the current transaction. 893 */ 894 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, 895 int old, int new); 896 897 /** 898 * @log_stop: 899 * 900 * Called during an address space update transaction, after 901 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or 902 * #MemoryListener.region_nop() and possibly after 903 * #MemoryListener.log_start(), if dirty memory logging clients have 904 * become inactive since the last transaction. 905 * 906 * @listener: The #MemoryListener. 907 * @section: The #MemoryRegionSection. 908 * @old: A bitmap of dirty memory logging clients that were active in 909 * the previous transaction. 910 * @new: A bitmap of dirty memory logging clients that are active in 911 * the current transaction. 912 */ 913 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, 914 int old, int new); 915 916 /** 917 * @log_sync: 918 * 919 * Called by memory_region_snapshot_and_clear_dirty() and 920 * memory_global_dirty_log_sync(), before accessing QEMU's "official" 921 * copy of the dirty memory bitmap for a #MemoryRegionSection. 922 * 923 * @listener: The #MemoryListener. 924 * @section: The #MemoryRegionSection. 925 */ 926 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 927 928 /** 929 * @log_sync_global: 930 * 931 * This is the global version of @log_sync when the listener does 932 * not have a way to synchronize the log with finer granularity. 933 * When the listener registers with @log_sync_global defined, then 934 * its @log_sync must be NULL. Vice versa. 935 * 936 * @listener: The #MemoryListener. 937 */ 938 void (*log_sync_global)(MemoryListener *listener); 939 940 /** 941 * @log_clear: 942 * 943 * Called before reading the dirty memory bitmap for a 944 * #MemoryRegionSection. 945 * 946 * @listener: The #MemoryListener. 947 * @section: The #MemoryRegionSection. 948 */ 949 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); 950 951 /** 952 * @log_global_start: 953 * 954 * Called by memory_global_dirty_log_start(), which 955 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in 956 * the address space. #MemoryListener.log_global_start() is also 957 * called when a #MemoryListener is added, if global dirty logging is 958 * active at that time. 959 * 960 * @listener: The #MemoryListener. 961 */ 962 void (*log_global_start)(MemoryListener *listener); 963 964 /** 965 * @log_global_stop: 966 * 967 * Called by memory_global_dirty_log_stop(), which 968 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in 969 * the address space. 970 * 971 * @listener: The #MemoryListener. 972 */ 973 void (*log_global_stop)(MemoryListener *listener); 974 975 /** 976 * @log_global_after_sync: 977 * 978 * Called after reading the dirty memory bitmap 979 * for any #MemoryRegionSection. 980 * 981 * @listener: The #MemoryListener. 982 */ 983 void (*log_global_after_sync)(MemoryListener *listener); 984 985 /** 986 * @eventfd_add: 987 * 988 * Called during an address space update transaction, 989 * for a section of the address space that has had a new ioeventfd 990 * registration since the last transaction. 991 * 992 * @listener: The #MemoryListener. 993 * @section: The new #MemoryRegionSection. 994 * @match_data: The @match_data parameter for the new ioeventfd. 995 * @data: The @data parameter for the new ioeventfd. 996 * @e: The #EventNotifier parameter for the new ioeventfd. 997 */ 998 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 999 bool match_data, uint64_t data, EventNotifier *e); 1000 1001 /** 1002 * @eventfd_del: 1003 * 1004 * Called during an address space update transaction, 1005 * for a section of the address space that has dropped an ioeventfd 1006 * registration since the last transaction. 1007 * 1008 * @listener: The #MemoryListener. 1009 * @section: The new #MemoryRegionSection. 1010 * @match_data: The @match_data parameter for the dropped ioeventfd. 1011 * @data: The @data parameter for the dropped ioeventfd. 1012 * @e: The #EventNotifier parameter for the dropped ioeventfd. 1013 */ 1014 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 1015 bool match_data, uint64_t data, EventNotifier *e); 1016 1017 /** 1018 * @coalesced_io_add: 1019 * 1020 * Called during an address space update transaction, 1021 * for a section of the address space that has had a new coalesced 1022 * MMIO range registration since the last transaction. 1023 * 1024 * @listener: The #MemoryListener. 1025 * @section: The new #MemoryRegionSection. 1026 * @addr: The starting address for the coalesced MMIO range. 1027 * @len: The length of the coalesced MMIO range. 1028 */ 1029 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, 1030 hwaddr addr, hwaddr len); 1031 1032 /** 1033 * @coalesced_io_del: 1034 * 1035 * Called during an address space update transaction, 1036 * for a section of the address space that has dropped a coalesced 1037 * MMIO range since the last transaction. 1038 * 1039 * @listener: The #MemoryListener. 1040 * @section: The new #MemoryRegionSection. 1041 * @addr: The starting address for the coalesced MMIO range. 1042 * @len: The length of the coalesced MMIO range. 1043 */ 1044 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, 1045 hwaddr addr, hwaddr len); 1046 /** 1047 * @priority: 1048 * 1049 * Govern the order in which memory listeners are invoked. Lower priorities 1050 * are invoked earlier for "add" or "start" callbacks, and later for "delete" 1051 * or "stop" callbacks. 1052 */ 1053 unsigned priority; 1054 1055 /** 1056 * @name: 1057 * 1058 * Name of the listener. It can be used in contexts where we'd like to 1059 * identify one memory listener with the rest. 1060 */ 1061 const char *name; 1062 1063 /* private: */ 1064 AddressSpace *address_space; 1065 QTAILQ_ENTRY(MemoryListener) link; 1066 QTAILQ_ENTRY(MemoryListener) link_as; 1067 }; 1068 1069 /** 1070 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects 1071 */ 1072 struct AddressSpace { 1073 /* private: */ 1074 struct rcu_head rcu; 1075 char *name; 1076 MemoryRegion *root; 1077 1078 /* Accessed via RCU. */ 1079 struct FlatView *current_map; 1080 1081 int ioeventfd_nb; 1082 struct MemoryRegionIoeventfd *ioeventfds; 1083 QTAILQ_HEAD(, MemoryListener) listeners; 1084 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 1085 }; 1086 1087 typedef struct AddressSpaceDispatch AddressSpaceDispatch; 1088 typedef struct FlatRange FlatRange; 1089 1090 /* Flattened global view of current active memory hierarchy. Kept in sorted 1091 * order. 1092 */ 1093 struct FlatView { 1094 struct rcu_head rcu; 1095 unsigned ref; 1096 FlatRange *ranges; 1097 unsigned nr; 1098 unsigned nr_allocated; 1099 struct AddressSpaceDispatch *dispatch; 1100 MemoryRegion *root; 1101 }; 1102 1103 static inline FlatView *address_space_to_flatview(AddressSpace *as) 1104 { 1105 return qatomic_rcu_read(&as->current_map); 1106 } 1107 1108 /** 1109 * typedef flatview_cb: callback for flatview_for_each_range() 1110 * 1111 * @start: start address of the range within the FlatView 1112 * @len: length of the range in bytes 1113 * @mr: MemoryRegion covering this range 1114 * @offset_in_region: offset of the first byte of the range within @mr 1115 * @opaque: data pointer passed to flatview_for_each_range() 1116 * 1117 * Returns: true to stop the iteration, false to keep going. 1118 */ 1119 typedef bool (*flatview_cb)(Int128 start, 1120 Int128 len, 1121 const MemoryRegion *mr, 1122 hwaddr offset_in_region, 1123 void *opaque); 1124 1125 /** 1126 * flatview_for_each_range: Iterate through a FlatView 1127 * @fv: the FlatView to iterate through 1128 * @cb: function to call for each range 1129 * @opaque: opaque data pointer to pass to @cb 1130 * 1131 * A FlatView is made up of a list of non-overlapping ranges, each of 1132 * which is a slice of a MemoryRegion. This function iterates through 1133 * each range in @fv, calling @cb. The callback function can terminate 1134 * iteration early by returning 'true'. 1135 */ 1136 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); 1137 1138 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, 1139 MemoryRegionSection *b) 1140 { 1141 return a->mr == b->mr && 1142 a->fv == b->fv && 1143 a->offset_within_region == b->offset_within_region && 1144 a->offset_within_address_space == b->offset_within_address_space && 1145 int128_eq(a->size, b->size) && 1146 a->readonly == b->readonly && 1147 a->nonvolatile == b->nonvolatile; 1148 } 1149 1150 /** 1151 * memory_region_section_new_copy: Copy a memory region section 1152 * 1153 * Allocate memory for a new copy, copy the memory region section, and 1154 * properly take a reference on all relevant members. 1155 * 1156 * @s: the #MemoryRegionSection to copy 1157 */ 1158 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); 1159 1160 /** 1161 * memory_region_section_new_copy: Free a copied memory region section 1162 * 1163 * Free a copy of a memory section created via memory_region_section_new_copy(). 1164 * properly dropping references on all relevant members. 1165 * 1166 * @s: the #MemoryRegionSection to copy 1167 */ 1168 void memory_region_section_free_copy(MemoryRegionSection *s); 1169 1170 /** 1171 * memory_region_init: Initialize a memory region 1172 * 1173 * The region typically acts as a container for other memory regions. Use 1174 * memory_region_add_subregion() to add subregions. 1175 * 1176 * @mr: the #MemoryRegion to be initialized 1177 * @owner: the object that tracks the region's reference count 1178 * @name: used for debugging; not visible to the user or ABI 1179 * @size: size of the region; any subregions beyond this size will be clipped 1180 */ 1181 void memory_region_init(MemoryRegion *mr, 1182 Object *owner, 1183 const char *name, 1184 uint64_t size); 1185 1186 /** 1187 * memory_region_ref: Add 1 to a memory region's reference count 1188 * 1189 * Whenever memory regions are accessed outside the BQL, they need to be 1190 * preserved against hot-unplug. MemoryRegions actually do not have their 1191 * own reference count; they piggyback on a QOM object, their "owner". 1192 * This function adds a reference to the owner. 1193 * 1194 * All MemoryRegions must have an owner if they can disappear, even if the 1195 * device they belong to operates exclusively under the BQL. This is because 1196 * the region could be returned at any time by memory_region_find, and this 1197 * is usually under guest control. 1198 * 1199 * @mr: the #MemoryRegion 1200 */ 1201 void memory_region_ref(MemoryRegion *mr); 1202 1203 /** 1204 * memory_region_unref: Remove 1 to a memory region's reference count 1205 * 1206 * Whenever memory regions are accessed outside the BQL, they need to be 1207 * preserved against hot-unplug. MemoryRegions actually do not have their 1208 * own reference count; they piggyback on a QOM object, their "owner". 1209 * This function removes a reference to the owner and possibly destroys it. 1210 * 1211 * @mr: the #MemoryRegion 1212 */ 1213 void memory_region_unref(MemoryRegion *mr); 1214 1215 /** 1216 * memory_region_init_io: Initialize an I/O memory region. 1217 * 1218 * Accesses into the region will cause the callbacks in @ops to be called. 1219 * if @size is nonzero, subregions will be clipped to @size. 1220 * 1221 * @mr: the #MemoryRegion to be initialized. 1222 * @owner: the object that tracks the region's reference count 1223 * @ops: a structure containing read and write callbacks to be used when 1224 * I/O is performed on the region. 1225 * @opaque: passed to the read and write callbacks of the @ops structure. 1226 * @name: used for debugging; not visible to the user or ABI 1227 * @size: size of the region. 1228 */ 1229 void memory_region_init_io(MemoryRegion *mr, 1230 Object *owner, 1231 const MemoryRegionOps *ops, 1232 void *opaque, 1233 const char *name, 1234 uint64_t size); 1235 1236 /** 1237 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses 1238 * into the region will modify memory 1239 * directly. 1240 * 1241 * @mr: the #MemoryRegion to be initialized. 1242 * @owner: the object that tracks the region's reference count 1243 * @name: Region name, becomes part of RAMBlock name used in migration stream 1244 * must be unique within any device 1245 * @size: size of the region. 1246 * @errp: pointer to Error*, to store an error if it happens. 1247 * 1248 * Note that this function does not do anything to cause the data in the 1249 * RAM memory region to be migrated; that is the responsibility of the caller. 1250 */ 1251 void memory_region_init_ram_nomigrate(MemoryRegion *mr, 1252 Object *owner, 1253 const char *name, 1254 uint64_t size, 1255 Error **errp); 1256 1257 /** 1258 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. 1259 * Accesses into the region will 1260 * modify memory directly. 1261 * 1262 * @mr: the #MemoryRegion to be initialized. 1263 * @owner: the object that tracks the region's reference count 1264 * @name: Region name, becomes part of RAMBlock name used in migration stream 1265 * must be unique within any device 1266 * @size: size of the region. 1267 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE. 1268 * @errp: pointer to Error*, to store an error if it happens. 1269 * 1270 * Note that this function does not do anything to cause the data in the 1271 * RAM memory region to be migrated; that is the responsibility of the caller. 1272 */ 1273 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1274 Object *owner, 1275 const char *name, 1276 uint64_t size, 1277 uint32_t ram_flags, 1278 Error **errp); 1279 1280 /** 1281 * memory_region_init_resizeable_ram: Initialize memory region with resizable 1282 * RAM. Accesses into the region will 1283 * modify memory directly. Only an initial 1284 * portion of this RAM is actually used. 1285 * Changing the size while migrating 1286 * can result in the migration being 1287 * canceled. 1288 * 1289 * @mr: the #MemoryRegion to be initialized. 1290 * @owner: the object that tracks the region's reference count 1291 * @name: Region name, becomes part of RAMBlock name used in migration stream 1292 * must be unique within any device 1293 * @size: used size of the region. 1294 * @max_size: max size of the region. 1295 * @resized: callback to notify owner about used size change. 1296 * @errp: pointer to Error*, to store an error if it happens. 1297 * 1298 * Note that this function does not do anything to cause the data in the 1299 * RAM memory region to be migrated; that is the responsibility of the caller. 1300 */ 1301 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1302 Object *owner, 1303 const char *name, 1304 uint64_t size, 1305 uint64_t max_size, 1306 void (*resized)(const char*, 1307 uint64_t length, 1308 void *host), 1309 Error **errp); 1310 #ifdef CONFIG_POSIX 1311 1312 /** 1313 * memory_region_init_ram_from_file: Initialize RAM memory region with a 1314 * mmap-ed backend. 1315 * 1316 * @mr: the #MemoryRegion to be initialized. 1317 * @owner: the object that tracks the region's reference count 1318 * @name: Region name, becomes part of RAMBlock name used in migration stream 1319 * must be unique within any device 1320 * @size: size of the region. 1321 * @align: alignment of the region base address; if 0, the default alignment 1322 * (getpagesize()) will be used. 1323 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1324 * RAM_NORESERVE, 1325 * @path: the path in which to allocate the RAM. 1326 * @readonly: true to open @path for reading, false for read/write. 1327 * @errp: pointer to Error*, to store an error if it happens. 1328 * 1329 * Note that this function does not do anything to cause the data in the 1330 * RAM memory region to be migrated; that is the responsibility of the caller. 1331 */ 1332 void memory_region_init_ram_from_file(MemoryRegion *mr, 1333 Object *owner, 1334 const char *name, 1335 uint64_t size, 1336 uint64_t align, 1337 uint32_t ram_flags, 1338 const char *path, 1339 bool readonly, 1340 Error **errp); 1341 1342 /** 1343 * memory_region_init_ram_from_fd: Initialize RAM memory region with a 1344 * mmap-ed backend. 1345 * 1346 * @mr: the #MemoryRegion to be initialized. 1347 * @owner: the object that tracks the region's reference count 1348 * @name: the name of the region. 1349 * @size: size of the region. 1350 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, 1351 * RAM_NORESERVE, RAM_PROTECTED. 1352 * @fd: the fd to mmap. 1353 * @offset: offset within the file referenced by fd 1354 * @errp: pointer to Error*, to store an error if it happens. 1355 * 1356 * Note that this function does not do anything to cause the data in the 1357 * RAM memory region to be migrated; that is the responsibility of the caller. 1358 */ 1359 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1360 Object *owner, 1361 const char *name, 1362 uint64_t size, 1363 uint32_t ram_flags, 1364 int fd, 1365 ram_addr_t offset, 1366 Error **errp); 1367 #endif 1368 1369 /** 1370 * memory_region_init_ram_ptr: Initialize RAM memory region from a 1371 * user-provided pointer. Accesses into the 1372 * region will modify memory directly. 1373 * 1374 * @mr: the #MemoryRegion to be initialized. 1375 * @owner: the object that tracks the region's reference count 1376 * @name: Region name, becomes part of RAMBlock name used in migration stream 1377 * must be unique within any device 1378 * @size: size of the region. 1379 * @ptr: memory to be mapped; must contain at least @size bytes. 1380 * 1381 * Note that this function does not do anything to cause the data in the 1382 * RAM memory region to be migrated; that is the responsibility of the caller. 1383 */ 1384 void memory_region_init_ram_ptr(MemoryRegion *mr, 1385 Object *owner, 1386 const char *name, 1387 uint64_t size, 1388 void *ptr); 1389 1390 /** 1391 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from 1392 * a user-provided pointer. 1393 * 1394 * A RAM device represents a mapping to a physical device, such as to a PCI 1395 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped 1396 * into the VM address space and access to the region will modify memory 1397 * directly. However, the memory region should not be included in a memory 1398 * dump (device may not be enabled/mapped at the time of the dump), and 1399 * operations incompatible with manipulating MMIO should be avoided. Replaces 1400 * skip_dump flag. 1401 * 1402 * @mr: the #MemoryRegion to be initialized. 1403 * @owner: the object that tracks the region's reference count 1404 * @name: the name of the region. 1405 * @size: size of the region. 1406 * @ptr: memory to be mapped; must contain at least @size bytes. 1407 * 1408 * Note that this function does not do anything to cause the data in the 1409 * RAM memory region to be migrated; that is the responsibility of the caller. 1410 * (For RAM device memory regions, migrating the contents rarely makes sense.) 1411 */ 1412 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1413 Object *owner, 1414 const char *name, 1415 uint64_t size, 1416 void *ptr); 1417 1418 /** 1419 * memory_region_init_alias: Initialize a memory region that aliases all or a 1420 * part of another memory region. 1421 * 1422 * @mr: the #MemoryRegion to be initialized. 1423 * @owner: the object that tracks the region's reference count 1424 * @name: used for debugging; not visible to the user or ABI 1425 * @orig: the region to be referenced; @mr will be equivalent to 1426 * @orig between @offset and @offset + @size - 1. 1427 * @offset: start of the section in @orig to be referenced. 1428 * @size: size of the region. 1429 */ 1430 void memory_region_init_alias(MemoryRegion *mr, 1431 Object *owner, 1432 const char *name, 1433 MemoryRegion *orig, 1434 hwaddr offset, 1435 uint64_t size); 1436 1437 /** 1438 * memory_region_init_rom_nomigrate: Initialize a ROM memory region. 1439 * 1440 * This has the same effect as calling memory_region_init_ram_nomigrate() 1441 * and then marking the resulting region read-only with 1442 * memory_region_set_readonly(). 1443 * 1444 * Note that this function does not do anything to cause the data in the 1445 * RAM side of the memory region to be migrated; that is the responsibility 1446 * of the caller. 1447 * 1448 * @mr: the #MemoryRegion to be initialized. 1449 * @owner: the object that tracks the region's reference count 1450 * @name: Region name, becomes part of RAMBlock name used in migration stream 1451 * must be unique within any device 1452 * @size: size of the region. 1453 * @errp: pointer to Error*, to store an error if it happens. 1454 */ 1455 void memory_region_init_rom_nomigrate(MemoryRegion *mr, 1456 Object *owner, 1457 const char *name, 1458 uint64_t size, 1459 Error **errp); 1460 1461 /** 1462 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. 1463 * Writes are handled via callbacks. 1464 * 1465 * Note that this function does not do anything to cause the data in the 1466 * RAM side of the memory region to be migrated; that is the responsibility 1467 * of the caller. 1468 * 1469 * @mr: the #MemoryRegion to be initialized. 1470 * @owner: the object that tracks the region's reference count 1471 * @ops: callbacks for write access handling (must not be NULL). 1472 * @opaque: passed to the read and write callbacks of the @ops structure. 1473 * @name: Region name, becomes part of RAMBlock name used in migration stream 1474 * must be unique within any device 1475 * @size: size of the region. 1476 * @errp: pointer to Error*, to store an error if it happens. 1477 */ 1478 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1479 Object *owner, 1480 const MemoryRegionOps *ops, 1481 void *opaque, 1482 const char *name, 1483 uint64_t size, 1484 Error **errp); 1485 1486 /** 1487 * memory_region_init_iommu: Initialize a memory region of a custom type 1488 * that translates addresses 1489 * 1490 * An IOMMU region translates addresses and forwards accesses to a target 1491 * memory region. 1492 * 1493 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. 1494 * @_iommu_mr should be a pointer to enough memory for an instance of 1495 * that subclass, @instance_size is the size of that subclass, and 1496 * @mrtypename is its name. This function will initialize @_iommu_mr as an 1497 * instance of the subclass, and its methods will then be called to handle 1498 * accesses to the memory region. See the documentation of 1499 * #IOMMUMemoryRegionClass for further details. 1500 * 1501 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized 1502 * @instance_size: the IOMMUMemoryRegion subclass instance size 1503 * @mrtypename: the type name of the #IOMMUMemoryRegion 1504 * @owner: the object that tracks the region's reference count 1505 * @name: used for debugging; not visible to the user or ABI 1506 * @size: size of the region. 1507 */ 1508 void memory_region_init_iommu(void *_iommu_mr, 1509 size_t instance_size, 1510 const char *mrtypename, 1511 Object *owner, 1512 const char *name, 1513 uint64_t size); 1514 1515 /** 1516 * memory_region_init_ram - Initialize RAM memory region. Accesses into the 1517 * region will modify memory directly. 1518 * 1519 * @mr: the #MemoryRegion to be initialized 1520 * @owner: the object that tracks the region's reference count (must be 1521 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) 1522 * @name: name of the memory region 1523 * @size: size of the region in bytes 1524 * @errp: pointer to Error*, to store an error if it happens. 1525 * 1526 * This function allocates RAM for a board model or device, and 1527 * arranges for it to be migrated (by calling vmstate_register_ram() 1528 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1529 * @owner is NULL). 1530 * 1531 * TODO: Currently we restrict @owner to being either NULL (for 1532 * global RAM regions with no owner) or devices, so that we can 1533 * give the RAM block a unique name for migration purposes. 1534 * We should lift this restriction and allow arbitrary Objects. 1535 * If you pass a non-NULL non-device @owner then we will assert. 1536 */ 1537 void memory_region_init_ram(MemoryRegion *mr, 1538 Object *owner, 1539 const char *name, 1540 uint64_t size, 1541 Error **errp); 1542 1543 /** 1544 * memory_region_init_rom: Initialize a ROM memory region. 1545 * 1546 * This has the same effect as calling memory_region_init_ram() 1547 * and then marking the resulting region read-only with 1548 * memory_region_set_readonly(). This includes arranging for the 1549 * contents to be migrated. 1550 * 1551 * TODO: Currently we restrict @owner to being either NULL (for 1552 * global RAM regions with no owner) or devices, so that we can 1553 * give the RAM block a unique name for migration purposes. 1554 * We should lift this restriction and allow arbitrary Objects. 1555 * If you pass a non-NULL non-device @owner then we will assert. 1556 * 1557 * @mr: the #MemoryRegion to be initialized. 1558 * @owner: the object that tracks the region's reference count 1559 * @name: Region name, becomes part of RAMBlock name used in migration stream 1560 * must be unique within any device 1561 * @size: size of the region. 1562 * @errp: pointer to Error*, to store an error if it happens. 1563 */ 1564 void memory_region_init_rom(MemoryRegion *mr, 1565 Object *owner, 1566 const char *name, 1567 uint64_t size, 1568 Error **errp); 1569 1570 /** 1571 * memory_region_init_rom_device: Initialize a ROM memory region. 1572 * Writes are handled via callbacks. 1573 * 1574 * This function initializes a memory region backed by RAM for reads 1575 * and callbacks for writes, and arranges for the RAM backing to 1576 * be migrated (by calling vmstate_register_ram() 1577 * if @owner is a DeviceState, or vmstate_register_ram_global() if 1578 * @owner is NULL). 1579 * 1580 * TODO: Currently we restrict @owner to being either NULL (for 1581 * global RAM regions with no owner) or devices, so that we can 1582 * give the RAM block a unique name for migration purposes. 1583 * We should lift this restriction and allow arbitrary Objects. 1584 * If you pass a non-NULL non-device @owner then we will assert. 1585 * 1586 * @mr: the #MemoryRegion to be initialized. 1587 * @owner: the object that tracks the region's reference count 1588 * @ops: callbacks for write access handling (must not be NULL). 1589 * @opaque: passed to the read and write callbacks of the @ops structure. 1590 * @name: Region name, becomes part of RAMBlock name used in migration stream 1591 * must be unique within any device 1592 * @size: size of the region. 1593 * @errp: pointer to Error*, to store an error if it happens. 1594 */ 1595 void memory_region_init_rom_device(MemoryRegion *mr, 1596 Object *owner, 1597 const MemoryRegionOps *ops, 1598 void *opaque, 1599 const char *name, 1600 uint64_t size, 1601 Error **errp); 1602 1603 1604 /** 1605 * memory_region_owner: get a memory region's owner. 1606 * 1607 * @mr: the memory region being queried. 1608 */ 1609 Object *memory_region_owner(MemoryRegion *mr); 1610 1611 /** 1612 * memory_region_size: get a memory region's size. 1613 * 1614 * @mr: the memory region being queried. 1615 */ 1616 uint64_t memory_region_size(MemoryRegion *mr); 1617 1618 /** 1619 * memory_region_is_ram: check whether a memory region is random access 1620 * 1621 * Returns %true if a memory region is random access. 1622 * 1623 * @mr: the memory region being queried 1624 */ 1625 static inline bool memory_region_is_ram(MemoryRegion *mr) 1626 { 1627 return mr->ram; 1628 } 1629 1630 /** 1631 * memory_region_is_ram_device: check whether a memory region is a ram device 1632 * 1633 * Returns %true if a memory region is a device backed ram region 1634 * 1635 * @mr: the memory region being queried 1636 */ 1637 bool memory_region_is_ram_device(MemoryRegion *mr); 1638 1639 /** 1640 * memory_region_is_romd: check whether a memory region is in ROMD mode 1641 * 1642 * Returns %true if a memory region is a ROM device and currently set to allow 1643 * direct reads. 1644 * 1645 * @mr: the memory region being queried 1646 */ 1647 static inline bool memory_region_is_romd(MemoryRegion *mr) 1648 { 1649 return mr->rom_device && mr->romd_mode; 1650 } 1651 1652 /** 1653 * memory_region_is_protected: check whether a memory region is protected 1654 * 1655 * Returns %true if a memory region is protected RAM and cannot be accessed 1656 * via standard mechanisms, e.g. DMA. 1657 * 1658 * @mr: the memory region being queried 1659 */ 1660 bool memory_region_is_protected(MemoryRegion *mr); 1661 1662 /** 1663 * memory_region_get_iommu: check whether a memory region is an iommu 1664 * 1665 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, 1666 * otherwise NULL. 1667 * 1668 * @mr: the memory region being queried 1669 */ 1670 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) 1671 { 1672 if (mr->alias) { 1673 return memory_region_get_iommu(mr->alias); 1674 } 1675 if (mr->is_iommu) { 1676 return (IOMMUMemoryRegion *) mr; 1677 } 1678 return NULL; 1679 } 1680 1681 /** 1682 * memory_region_get_iommu_class_nocheck: returns iommu memory region class 1683 * if an iommu or NULL if not 1684 * 1685 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, 1686 * otherwise NULL. This is fast path avoiding QOM checking, use with caution. 1687 * 1688 * @iommu_mr: the memory region being queried 1689 */ 1690 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( 1691 IOMMUMemoryRegion *iommu_mr) 1692 { 1693 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); 1694 } 1695 1696 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) 1697 1698 /** 1699 * memory_region_iommu_get_min_page_size: get minimum supported page size 1700 * for an iommu 1701 * 1702 * Returns minimum supported page size for an iommu. 1703 * 1704 * @iommu_mr: the memory region being queried 1705 */ 1706 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); 1707 1708 /** 1709 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 1710 * 1711 * Note: for any IOMMU implementation, an in-place mapping change 1712 * should be notified with an UNMAP followed by a MAP. 1713 * 1714 * @iommu_mr: the memory region that was changed 1715 * @iommu_idx: the IOMMU index for the translation table which has changed 1716 * @event: TLB event with the new entry in the IOMMU translation table. 1717 * The entry replaces all old entries for the same virtual I/O address 1718 * range. 1719 */ 1720 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 1721 int iommu_idx, 1722 IOMMUTLBEvent event); 1723 1724 /** 1725 * memory_region_notify_iommu_one: notify a change in an IOMMU translation 1726 * entry to a single notifier 1727 * 1728 * This works just like memory_region_notify_iommu(), but it only 1729 * notifies a specific notifier, not all of them. 1730 * 1731 * @notifier: the notifier to be notified 1732 * @event: TLB event with the new entry in the IOMMU translation table. 1733 * The entry replaces all old entries for the same virtual I/O address 1734 * range. 1735 */ 1736 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1737 IOMMUTLBEvent *event); 1738 1739 /** 1740 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU 1741 * translation that covers the 1742 * range of a notifier 1743 * 1744 * @notifier: the notifier to be notified 1745 */ 1746 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); 1747 1748 1749 /** 1750 * memory_region_register_iommu_notifier: register a notifier for changes to 1751 * IOMMU translation entries. 1752 * 1753 * Returns 0 on success, or a negative errno otherwise. In particular, 1754 * -EINVAL indicates that at least one of the attributes of the notifier 1755 * is not supported (flag/range) by the IOMMU memory region. In case of error 1756 * the error object must be created. 1757 * 1758 * @mr: the memory region to observe 1759 * @n: the IOMMUNotifier to be added; the notify callback receives a 1760 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer 1761 * ceases to be valid on exit from the notifier. 1762 * @errp: pointer to Error*, to store an error if it happens. 1763 */ 1764 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1765 IOMMUNotifier *n, Error **errp); 1766 1767 /** 1768 * memory_region_iommu_replay: replay existing IOMMU translations to 1769 * a notifier with the minimum page granularity returned by 1770 * mr->iommu_ops->get_page_size(). 1771 * 1772 * Note: this is not related to record-and-replay functionality. 1773 * 1774 * @iommu_mr: the memory region to observe 1775 * @n: the notifier to which to replay iommu mappings 1776 */ 1777 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); 1778 1779 /** 1780 * memory_region_unregister_iommu_notifier: unregister a notifier for 1781 * changes to IOMMU translation entries. 1782 * 1783 * @mr: the memory region which was observed and for which notity_stopped() 1784 * needs to be called 1785 * @n: the notifier to be removed. 1786 */ 1787 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1788 IOMMUNotifier *n); 1789 1790 /** 1791 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is 1792 * defined on the IOMMU. 1793 * 1794 * Returns 0 on success, or a negative errno otherwise. In particular, 1795 * -EINVAL indicates that the IOMMU does not support the requested 1796 * attribute. 1797 * 1798 * @iommu_mr: the memory region 1799 * @attr: the requested attribute 1800 * @data: a pointer to the requested attribute data 1801 */ 1802 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 1803 enum IOMMUMemoryRegionAttr attr, 1804 void *data); 1805 1806 /** 1807 * memory_region_iommu_attrs_to_index: return the IOMMU index to 1808 * use for translations with the given memory transaction attributes. 1809 * 1810 * @iommu_mr: the memory region 1811 * @attrs: the memory transaction attributes 1812 */ 1813 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 1814 MemTxAttrs attrs); 1815 1816 /** 1817 * memory_region_iommu_num_indexes: return the total number of IOMMU 1818 * indexes that this IOMMU supports. 1819 * 1820 * @iommu_mr: the memory region 1821 */ 1822 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); 1823 1824 /** 1825 * memory_region_iommu_set_page_size_mask: set the supported page 1826 * sizes for a given IOMMU memory region 1827 * 1828 * @iommu_mr: IOMMU memory region 1829 * @page_size_mask: supported page size mask 1830 * @errp: pointer to Error*, to store an error if it happens. 1831 */ 1832 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1833 uint64_t page_size_mask, 1834 Error **errp); 1835 1836 /** 1837 * memory_region_name: get a memory region's name 1838 * 1839 * Returns the string that was used to initialize the memory region. 1840 * 1841 * @mr: the memory region being queried 1842 */ 1843 const char *memory_region_name(const MemoryRegion *mr); 1844 1845 /** 1846 * memory_region_is_logging: return whether a memory region is logging writes 1847 * 1848 * Returns %true if the memory region is logging writes for the given client 1849 * 1850 * @mr: the memory region being queried 1851 * @client: the client being queried 1852 */ 1853 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); 1854 1855 /** 1856 * memory_region_get_dirty_log_mask: return the clients for which a 1857 * memory region is logging writes. 1858 * 1859 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants 1860 * are the bit indices. 1861 * 1862 * @mr: the memory region being queried 1863 */ 1864 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); 1865 1866 /** 1867 * memory_region_is_rom: check whether a memory region is ROM 1868 * 1869 * Returns %true if a memory region is read-only memory. 1870 * 1871 * @mr: the memory region being queried 1872 */ 1873 static inline bool memory_region_is_rom(MemoryRegion *mr) 1874 { 1875 return mr->ram && mr->readonly; 1876 } 1877 1878 /** 1879 * memory_region_is_nonvolatile: check whether a memory region is non-volatile 1880 * 1881 * Returns %true is a memory region is non-volatile memory. 1882 * 1883 * @mr: the memory region being queried 1884 */ 1885 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) 1886 { 1887 return mr->nonvolatile; 1888 } 1889 1890 /** 1891 * memory_region_get_fd: Get a file descriptor backing a RAM memory region. 1892 * 1893 * Returns a file descriptor backing a file-based RAM memory region, 1894 * or -1 if the region is not a file-based RAM memory region. 1895 * 1896 * @mr: the RAM or alias memory region being queried. 1897 */ 1898 int memory_region_get_fd(MemoryRegion *mr); 1899 1900 /** 1901 * memory_region_from_host: Convert a pointer into a RAM memory region 1902 * and an offset within it. 1903 * 1904 * Given a host pointer inside a RAM memory region (created with 1905 * memory_region_init_ram() or memory_region_init_ram_ptr()), return 1906 * the MemoryRegion and the offset within it. 1907 * 1908 * Use with care; by the time this function returns, the returned pointer is 1909 * not protected by RCU anymore. If the caller is not within an RCU critical 1910 * section and does not hold the iothread lock, it must have other means of 1911 * protecting the pointer, such as a reference to the region that includes 1912 * the incoming ram_addr_t. 1913 * 1914 * @ptr: the host pointer to be converted 1915 * @offset: the offset within memory region 1916 */ 1917 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); 1918 1919 /** 1920 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 1921 * 1922 * Returns a host pointer to a RAM memory region (created with 1923 * memory_region_init_ram() or memory_region_init_ram_ptr()). 1924 * 1925 * Use with care; by the time this function returns, the returned pointer is 1926 * not protected by RCU anymore. If the caller is not within an RCU critical 1927 * section and does not hold the iothread lock, it must have other means of 1928 * protecting the pointer, such as a reference to the region that includes 1929 * the incoming ram_addr_t. 1930 * 1931 * @mr: the memory region being queried. 1932 */ 1933 void *memory_region_get_ram_ptr(MemoryRegion *mr); 1934 1935 /* memory_region_ram_resize: Resize a RAM region. 1936 * 1937 * Resizing RAM while migrating can result in the migration being canceled. 1938 * Care has to be taken if the guest might have already detected the memory. 1939 * 1940 * @mr: a memory region created with @memory_region_init_resizeable_ram. 1941 * @newsize: the new size the region 1942 * @errp: pointer to Error*, to store an error if it happens. 1943 */ 1944 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, 1945 Error **errp); 1946 1947 /** 1948 * memory_region_msync: Synchronize selected address range of 1949 * a memory mapped region 1950 * 1951 * @mr: the memory region to be msync 1952 * @addr: the initial address of the range to be sync 1953 * @size: the size of the range to be sync 1954 */ 1955 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); 1956 1957 /** 1958 * memory_region_writeback: Trigger cache writeback for 1959 * selected address range 1960 * 1961 * @mr: the memory region to be updated 1962 * @addr: the initial address of the range to be written back 1963 * @size: the size of the range to be written back 1964 */ 1965 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); 1966 1967 /** 1968 * memory_region_set_log: Turn dirty logging on or off for a region. 1969 * 1970 * Turns dirty logging on or off for a specified client (display, migration). 1971 * Only meaningful for RAM regions. 1972 * 1973 * @mr: the memory region being updated. 1974 * @log: whether dirty logging is to be enabled or disabled. 1975 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. 1976 */ 1977 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 1978 1979 /** 1980 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 1981 * 1982 * Marks a range of bytes as dirty, after it has been dirtied outside 1983 * guest code. 1984 * 1985 * @mr: the memory region being dirtied. 1986 * @addr: the address (relative to the start of the region) being dirtied. 1987 * @size: size of the range being dirtied. 1988 */ 1989 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 1990 hwaddr size); 1991 1992 /** 1993 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range 1994 * 1995 * This function is called when the caller wants to clear the remote 1996 * dirty bitmap of a memory range within the memory region. This can 1997 * be used by e.g. KVM to manually clear dirty log when 1998 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host 1999 * kernel. 2000 * 2001 * @mr: the memory region to clear the dirty log upon 2002 * @start: start address offset within the memory region 2003 * @len: length of the memory region to clear dirty bitmap 2004 */ 2005 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2006 hwaddr len); 2007 2008 /** 2009 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty 2010 * bitmap and clear it. 2011 * 2012 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and 2013 * returns the snapshot. The snapshot can then be used to query dirty 2014 * status, using memory_region_snapshot_get_dirty. Snapshotting allows 2015 * querying the same page multiple times, which is especially useful for 2016 * display updates where the scanlines often are not page aligned. 2017 * 2018 * The dirty bitmap region which gets copied into the snapshot (and 2019 * cleared afterwards) can be larger than requested. The boundaries 2020 * are rounded up/down so complete bitmap longs (covering 64 pages on 2021 * 64bit hosts) can be copied over into the bitmap snapshot. Which 2022 * isn't a problem for display updates as the extra pages are outside 2023 * the visible area, and in case the visible area changes a full 2024 * display redraw is due anyway. Should other use cases for this 2025 * function emerge we might have to revisit this implementation 2026 * detail. 2027 * 2028 * Use g_free to release DirtyBitmapSnapshot. 2029 * 2030 * @mr: the memory region being queried. 2031 * @addr: the address (relative to the start of the region) being queried. 2032 * @size: the size of the range being queried. 2033 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. 2034 */ 2035 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2036 hwaddr addr, 2037 hwaddr size, 2038 unsigned client); 2039 2040 /** 2041 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty 2042 * in the specified dirty bitmap snapshot. 2043 * 2044 * @mr: the memory region being queried. 2045 * @snap: the dirty bitmap snapshot 2046 * @addr: the address (relative to the start of the region) being queried. 2047 * @size: the size of the range being queried. 2048 */ 2049 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, 2050 DirtyBitmapSnapshot *snap, 2051 hwaddr addr, hwaddr size); 2052 2053 /** 2054 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 2055 * client. 2056 * 2057 * Marks a range of pages as no longer dirty. 2058 * 2059 * @mr: the region being updated. 2060 * @addr: the start of the subrange being cleaned. 2061 * @size: the size of the subrange being cleaned. 2062 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 2063 * %DIRTY_MEMORY_VGA. 2064 */ 2065 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2066 hwaddr size, unsigned client); 2067 2068 /** 2069 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate 2070 * TBs (for self-modifying code). 2071 * 2072 * The MemoryRegionOps->write() callback of a ROM device must use this function 2073 * to mark byte ranges that have been modified internally, such as by directly 2074 * accessing the memory returned by memory_region_get_ram_ptr(). 2075 * 2076 * This function marks the range dirty and invalidates TBs so that TCG can 2077 * detect self-modifying code. 2078 * 2079 * @mr: the region being flushed. 2080 * @addr: the start, relative to the start of the region, of the range being 2081 * flushed. 2082 * @size: the size, in bytes, of the range being flushed. 2083 */ 2084 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); 2085 2086 /** 2087 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 2088 * 2089 * Allows a memory region to be marked as read-only (turning it into a ROM). 2090 * only useful on RAM regions. 2091 * 2092 * @mr: the region being updated. 2093 * @readonly: whether rhe region is to be ROM or RAM. 2094 */ 2095 void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 2096 2097 /** 2098 * memory_region_set_nonvolatile: Turn a memory region non-volatile 2099 * 2100 * Allows a memory region to be marked as non-volatile. 2101 * only useful on RAM regions. 2102 * 2103 * @mr: the region being updated. 2104 * @nonvolatile: whether rhe region is to be non-volatile. 2105 */ 2106 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); 2107 2108 /** 2109 * memory_region_rom_device_set_romd: enable/disable ROMD mode 2110 * 2111 * Allows a ROM device (initialized with memory_region_init_rom_device() to 2112 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 2113 * device is mapped to guest memory and satisfies read access directly. 2114 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 2115 * Writes are always handled by the #MemoryRegion.write function. 2116 * 2117 * @mr: the memory region to be updated 2118 * @romd_mode: %true to put the region into ROMD mode 2119 */ 2120 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 2121 2122 /** 2123 * memory_region_set_coalescing: Enable memory coalescing for the region. 2124 * 2125 * Enabled writes to a region to be queued for later processing. MMIO ->write 2126 * callbacks may be delayed until a non-coalesced MMIO is issued. 2127 * Only useful for IO regions. Roughly similar to write-combining hardware. 2128 * 2129 * @mr: the memory region to be write coalesced 2130 */ 2131 void memory_region_set_coalescing(MemoryRegion *mr); 2132 2133 /** 2134 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 2135 * a region. 2136 * 2137 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 2138 * Multiple calls can be issued coalesced disjoint ranges. 2139 * 2140 * @mr: the memory region to be updated. 2141 * @offset: the start of the range within the region to be coalesced. 2142 * @size: the size of the subrange to be coalesced. 2143 */ 2144 void memory_region_add_coalescing(MemoryRegion *mr, 2145 hwaddr offset, 2146 uint64_t size); 2147 2148 /** 2149 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 2150 * 2151 * Disables any coalescing caused by memory_region_set_coalescing() or 2152 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 2153 * hardware. 2154 * 2155 * @mr: the memory region to be updated. 2156 */ 2157 void memory_region_clear_coalescing(MemoryRegion *mr); 2158 2159 /** 2160 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 2161 * accesses. 2162 * 2163 * Ensure that pending coalesced MMIO request are flushed before the memory 2164 * region is accessed. This property is automatically enabled for all regions 2165 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 2166 * 2167 * @mr: the memory region to be updated. 2168 */ 2169 void memory_region_set_flush_coalesced(MemoryRegion *mr); 2170 2171 /** 2172 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 2173 * accesses. 2174 * 2175 * Clear the automatic coalesced MMIO flushing enabled via 2176 * memory_region_set_flush_coalesced. Note that this service has no effect on 2177 * memory regions that have MMIO coalescing enabled for themselves. For them, 2178 * automatic flushing will stop once coalescing is disabled. 2179 * 2180 * @mr: the memory region to be updated. 2181 */ 2182 void memory_region_clear_flush_coalesced(MemoryRegion *mr); 2183 2184 /** 2185 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 2186 * is written to a location. 2187 * 2188 * Marks a word in an IO region (initialized with memory_region_init_io()) 2189 * as a trigger for an eventfd event. The I/O callback will not be called. 2190 * The caller must be prepared to handle failure (that is, take the required 2191 * action if the callback _is_ called). 2192 * 2193 * @mr: the memory region being updated. 2194 * @addr: the address within @mr that is to be monitored 2195 * @size: the size of the access to trigger the eventfd 2196 * @match_data: whether to match against @data, instead of just @addr 2197 * @data: the data to match against the guest write 2198 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2199 **/ 2200 void memory_region_add_eventfd(MemoryRegion *mr, 2201 hwaddr addr, 2202 unsigned size, 2203 bool match_data, 2204 uint64_t data, 2205 EventNotifier *e); 2206 2207 /** 2208 * memory_region_del_eventfd: Cancel an eventfd. 2209 * 2210 * Cancels an eventfd trigger requested by a previous 2211 * memory_region_add_eventfd() call. 2212 * 2213 * @mr: the memory region being updated. 2214 * @addr: the address within @mr that is to be monitored 2215 * @size: the size of the access to trigger the eventfd 2216 * @match_data: whether to match against @data, instead of just @addr 2217 * @data: the data to match against the guest write 2218 * @e: event notifier to be triggered when @addr, @size, and @data all match. 2219 */ 2220 void memory_region_del_eventfd(MemoryRegion *mr, 2221 hwaddr addr, 2222 unsigned size, 2223 bool match_data, 2224 uint64_t data, 2225 EventNotifier *e); 2226 2227 /** 2228 * memory_region_add_subregion: Add a subregion to a container. 2229 * 2230 * Adds a subregion at @offset. The subregion may not overlap with other 2231 * subregions (except for those explicitly marked as overlapping). A region 2232 * may only be added once as a subregion (unless removed with 2233 * memory_region_del_subregion()); use memory_region_init_alias() if you 2234 * want a region to be a subregion in multiple locations. 2235 * 2236 * @mr: the region to contain the new subregion; must be a container 2237 * initialized with memory_region_init(). 2238 * @offset: the offset relative to @mr where @subregion is added. 2239 * @subregion: the subregion to be added. 2240 */ 2241 void memory_region_add_subregion(MemoryRegion *mr, 2242 hwaddr offset, 2243 MemoryRegion *subregion); 2244 /** 2245 * memory_region_add_subregion_overlap: Add a subregion to a container 2246 * with overlap. 2247 * 2248 * Adds a subregion at @offset. The subregion may overlap with other 2249 * subregions. Conflicts are resolved by having a higher @priority hide a 2250 * lower @priority. Subregions without priority are taken as @priority 0. 2251 * A region may only be added once as a subregion (unless removed with 2252 * memory_region_del_subregion()); use memory_region_init_alias() if you 2253 * want a region to be a subregion in multiple locations. 2254 * 2255 * @mr: the region to contain the new subregion; must be a container 2256 * initialized with memory_region_init(). 2257 * @offset: the offset relative to @mr where @subregion is added. 2258 * @subregion: the subregion to be added. 2259 * @priority: used for resolving overlaps; highest priority wins. 2260 */ 2261 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2262 hwaddr offset, 2263 MemoryRegion *subregion, 2264 int priority); 2265 2266 /** 2267 * memory_region_get_ram_addr: Get the ram address associated with a memory 2268 * region 2269 * 2270 * @mr: the region to be queried 2271 */ 2272 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 2273 2274 uint64_t memory_region_get_alignment(const MemoryRegion *mr); 2275 /** 2276 * memory_region_del_subregion: Remove a subregion. 2277 * 2278 * Removes a subregion from its container. 2279 * 2280 * @mr: the container to be updated. 2281 * @subregion: the region being removed; must be a current subregion of @mr. 2282 */ 2283 void memory_region_del_subregion(MemoryRegion *mr, 2284 MemoryRegion *subregion); 2285 2286 /* 2287 * memory_region_set_enabled: dynamically enable or disable a region 2288 * 2289 * Enables or disables a memory region. A disabled memory region 2290 * ignores all accesses to itself and its subregions. It does not 2291 * obscure sibling subregions with lower priority - it simply behaves as 2292 * if it was removed from the hierarchy. 2293 * 2294 * Regions default to being enabled. 2295 * 2296 * @mr: the region to be updated 2297 * @enabled: whether to enable or disable the region 2298 */ 2299 void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 2300 2301 /* 2302 * memory_region_set_address: dynamically update the address of a region 2303 * 2304 * Dynamically updates the address of a region, relative to its container. 2305 * May be used on regions are currently part of a memory hierarchy. 2306 * 2307 * @mr: the region to be updated 2308 * @addr: new address, relative to container region 2309 */ 2310 void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 2311 2312 /* 2313 * memory_region_set_size: dynamically update the size of a region. 2314 * 2315 * Dynamically updates the size of a region. 2316 * 2317 * @mr: the region to be updated 2318 * @size: used size of the region. 2319 */ 2320 void memory_region_set_size(MemoryRegion *mr, uint64_t size); 2321 2322 /* 2323 * memory_region_set_alias_offset: dynamically update a memory alias's offset 2324 * 2325 * Dynamically updates the offset into the target region that an alias points 2326 * to, as if the fourth argument to memory_region_init_alias() has changed. 2327 * 2328 * @mr: the #MemoryRegion to be updated; should be an alias. 2329 * @offset: the new offset into the target memory region 2330 */ 2331 void memory_region_set_alias_offset(MemoryRegion *mr, 2332 hwaddr offset); 2333 2334 /** 2335 * memory_region_present: checks if an address relative to a @container 2336 * translates into #MemoryRegion within @container 2337 * 2338 * Answer whether a #MemoryRegion within @container covers the address 2339 * @addr. 2340 * 2341 * @container: a #MemoryRegion within which @addr is a relative address 2342 * @addr: the area within @container to be searched 2343 */ 2344 bool memory_region_present(MemoryRegion *container, hwaddr addr); 2345 2346 /** 2347 * memory_region_is_mapped: returns true if #MemoryRegion is mapped 2348 * into another memory region, which does not necessarily imply that it is 2349 * mapped into an address space. 2350 * 2351 * @mr: a #MemoryRegion which should be checked if it's mapped 2352 */ 2353 bool memory_region_is_mapped(MemoryRegion *mr); 2354 2355 /** 2356 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a 2357 * #MemoryRegion 2358 * 2359 * The #RamDiscardManager cannot change while a memory region is mapped. 2360 * 2361 * @mr: the #MemoryRegion 2362 */ 2363 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); 2364 2365 /** 2366 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a 2367 * #RamDiscardManager assigned 2368 * 2369 * @mr: the #MemoryRegion 2370 */ 2371 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) 2372 { 2373 return !!memory_region_get_ram_discard_manager(mr); 2374 } 2375 2376 /** 2377 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a 2378 * #MemoryRegion 2379 * 2380 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion 2381 * that does not cover RAM, or a #MemoryRegion that already has a 2382 * #RamDiscardManager assigned. 2383 * 2384 * @mr: the #MemoryRegion 2385 * @rdm: #RamDiscardManager to set 2386 */ 2387 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2388 RamDiscardManager *rdm); 2389 2390 /** 2391 * memory_region_find: translate an address/size relative to a 2392 * MemoryRegion into a #MemoryRegionSection. 2393 * 2394 * Locates the first #MemoryRegion within @mr that overlaps the range 2395 * given by @addr and @size. 2396 * 2397 * Returns a #MemoryRegionSection that describes a contiguous overlap. 2398 * It will have the following characteristics: 2399 * - @size = 0 iff no overlap was found 2400 * - @mr is non-%NULL iff an overlap was found 2401 * 2402 * Remember that in the return value the @offset_within_region is 2403 * relative to the returned region (in the .@mr field), not to the 2404 * @mr argument. 2405 * 2406 * Similarly, the .@offset_within_address_space is relative to the 2407 * address space that contains both regions, the passed and the 2408 * returned one. However, in the special case where the @mr argument 2409 * has no container (and thus is the root of the address space), the 2410 * following will hold: 2411 * - @offset_within_address_space >= @addr 2412 * - @offset_within_address_space + .@size <= @addr + @size 2413 * 2414 * @mr: a MemoryRegion within which @addr is a relative address 2415 * @addr: start of the area within @as to be searched 2416 * @size: size of the area to be searched 2417 */ 2418 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2419 hwaddr addr, uint64_t size); 2420 2421 /** 2422 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2423 * 2424 * Synchronizes the dirty page log for all address spaces. 2425 */ 2426 void memory_global_dirty_log_sync(void); 2427 2428 /** 2429 * memory_global_dirty_log_sync: synchronize the dirty log for all memory 2430 * 2431 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. 2432 * This function must be called after the dirty log bitmap is cleared, and 2433 * before dirty guest memory pages are read. If you are using 2434 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes 2435 * care of doing this. 2436 */ 2437 void memory_global_after_dirty_log_sync(void); 2438 2439 /** 2440 * memory_region_transaction_begin: Start a transaction. 2441 * 2442 * During a transaction, changes will be accumulated and made visible 2443 * only when the transaction ends (is committed). 2444 */ 2445 void memory_region_transaction_begin(void); 2446 2447 /** 2448 * memory_region_transaction_commit: Commit a transaction and make changes 2449 * visible to the guest. 2450 */ 2451 void memory_region_transaction_commit(void); 2452 2453 /** 2454 * memory_listener_register: register callbacks to be called when memory 2455 * sections are mapped or unmapped into an address 2456 * space 2457 * 2458 * @listener: an object containing the callbacks to be called 2459 * @filter: if non-%NULL, only regions in this address space will be observed 2460 */ 2461 void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 2462 2463 /** 2464 * memory_listener_unregister: undo the effect of memory_listener_register() 2465 * 2466 * @listener: an object containing the callbacks to be removed 2467 */ 2468 void memory_listener_unregister(MemoryListener *listener); 2469 2470 /** 2471 * memory_global_dirty_log_start: begin dirty logging for all regions 2472 * 2473 * @flags: purpose of starting dirty log, migration or dirty rate 2474 */ 2475 void memory_global_dirty_log_start(unsigned int flags); 2476 2477 /** 2478 * memory_global_dirty_log_stop: end dirty logging for all regions 2479 * 2480 * @flags: purpose of stopping dirty log, migration or dirty rate 2481 */ 2482 void memory_global_dirty_log_stop(unsigned int flags); 2483 2484 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); 2485 2486 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, 2487 unsigned size, bool is_write, 2488 MemTxAttrs attrs); 2489 2490 /** 2491 * memory_region_dispatch_read: perform a read directly to the specified 2492 * MemoryRegion. 2493 * 2494 * @mr: #MemoryRegion to access 2495 * @addr: address within that region 2496 * @pval: pointer to uint64_t which the data is written to 2497 * @op: size, sign, and endianness of the memory operation 2498 * @attrs: memory transaction attributes to use for the access 2499 */ 2500 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 2501 hwaddr addr, 2502 uint64_t *pval, 2503 MemOp op, 2504 MemTxAttrs attrs); 2505 /** 2506 * memory_region_dispatch_write: perform a write directly to the specified 2507 * MemoryRegion. 2508 * 2509 * @mr: #MemoryRegion to access 2510 * @addr: address within that region 2511 * @data: data to write 2512 * @op: size, sign, and endianness of the memory operation 2513 * @attrs: memory transaction attributes to use for the access 2514 */ 2515 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 2516 hwaddr addr, 2517 uint64_t data, 2518 MemOp op, 2519 MemTxAttrs attrs); 2520 2521 /** 2522 * address_space_init: initializes an address space 2523 * 2524 * @as: an uninitialized #AddressSpace 2525 * @root: a #MemoryRegion that routes addresses for the address space 2526 * @name: an address space name. The name is only used for debugging 2527 * output. 2528 */ 2529 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 2530 2531 /** 2532 * address_space_destroy: destroy an address space 2533 * 2534 * Releases all resources associated with an address space. After an address space 2535 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 2536 * as well. 2537 * 2538 * @as: address space to be destroyed 2539 */ 2540 void address_space_destroy(AddressSpace *as); 2541 2542 /** 2543 * address_space_remove_listeners: unregister all listeners of an address space 2544 * 2545 * Removes all callbacks previously registered with memory_listener_register() 2546 * for @as. 2547 * 2548 * @as: an initialized #AddressSpace 2549 */ 2550 void address_space_remove_listeners(AddressSpace *as); 2551 2552 /** 2553 * address_space_rw: read from or write to an address space. 2554 * 2555 * Return a MemTxResult indicating whether the operation succeeded 2556 * or failed (eg unassigned memory, device rejected the transaction, 2557 * IOMMU fault). 2558 * 2559 * @as: #AddressSpace to be accessed 2560 * @addr: address within that address space 2561 * @attrs: memory transaction attributes 2562 * @buf: buffer with the data transferred 2563 * @len: the number of bytes to read or write 2564 * @is_write: indicates the transfer direction 2565 */ 2566 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, 2567 MemTxAttrs attrs, void *buf, 2568 hwaddr len, bool is_write); 2569 2570 /** 2571 * address_space_write: write to address space. 2572 * 2573 * Return a MemTxResult indicating whether the operation succeeded 2574 * or failed (eg unassigned memory, device rejected the transaction, 2575 * IOMMU fault). 2576 * 2577 * @as: #AddressSpace to be accessed 2578 * @addr: address within that address space 2579 * @attrs: memory transaction attributes 2580 * @buf: buffer with the data transferred 2581 * @len: the number of bytes to write 2582 */ 2583 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2584 MemTxAttrs attrs, 2585 const void *buf, hwaddr len); 2586 2587 /** 2588 * address_space_write_rom: write to address space, including ROM. 2589 * 2590 * This function writes to the specified address space, but will 2591 * write data to both ROM and RAM. This is used for non-guest 2592 * writes like writes from the gdb debug stub or initial loading 2593 * of ROM contents. 2594 * 2595 * Note that portions of the write which attempt to write data to 2596 * a device will be silently ignored -- only real RAM and ROM will 2597 * be written to. 2598 * 2599 * Return a MemTxResult indicating whether the operation succeeded 2600 * or failed (eg unassigned memory, device rejected the transaction, 2601 * IOMMU fault). 2602 * 2603 * @as: #AddressSpace to be accessed 2604 * @addr: address within that address space 2605 * @attrs: memory transaction attributes 2606 * @buf: buffer with the data transferred 2607 * @len: the number of bytes to write 2608 */ 2609 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2610 MemTxAttrs attrs, 2611 const void *buf, hwaddr len); 2612 2613 /* address_space_ld*: load from an address space 2614 * address_space_st*: store to an address space 2615 * 2616 * These functions perform a load or store of the byte, word, 2617 * longword or quad to the specified address within the AddressSpace. 2618 * The _le suffixed functions treat the data as little endian; 2619 * _be indicates big endian; no suffix indicates "same endianness 2620 * as guest CPU". 2621 * 2622 * The "guest CPU endianness" accessors are deprecated for use outside 2623 * target-* code; devices should be CPU-agnostic and use either the LE 2624 * or the BE accessors. 2625 * 2626 * @as #AddressSpace to be accessed 2627 * @addr: address within that address space 2628 * @val: data value, for stores 2629 * @attrs: memory transaction attributes 2630 * @result: location to write the success/failure of the transaction; 2631 * if NULL, this information is discarded 2632 */ 2633 2634 #define SUFFIX 2635 #define ARG1 as 2636 #define ARG1_DECL AddressSpace *as 2637 #include "exec/memory_ldst.h.inc" 2638 2639 #define SUFFIX 2640 #define ARG1 as 2641 #define ARG1_DECL AddressSpace *as 2642 #include "exec/memory_ldst_phys.h.inc" 2643 2644 struct MemoryRegionCache { 2645 void *ptr; 2646 hwaddr xlat; 2647 hwaddr len; 2648 FlatView *fv; 2649 MemoryRegionSection mrs; 2650 bool is_write; 2651 }; 2652 2653 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL }) 2654 2655 2656 /* address_space_ld*_cached: load from a cached #MemoryRegion 2657 * address_space_st*_cached: store into a cached #MemoryRegion 2658 * 2659 * These functions perform a load or store of the byte, word, 2660 * longword or quad to the specified address. The address is 2661 * a physical address in the AddressSpace, but it must lie within 2662 * a #MemoryRegion that was mapped with address_space_cache_init. 2663 * 2664 * The _le suffixed functions treat the data as little endian; 2665 * _be indicates big endian; no suffix indicates "same endianness 2666 * as guest CPU". 2667 * 2668 * The "guest CPU endianness" accessors are deprecated for use outside 2669 * target-* code; devices should be CPU-agnostic and use either the LE 2670 * or the BE accessors. 2671 * 2672 * @cache: previously initialized #MemoryRegionCache to be accessed 2673 * @addr: address within the address space 2674 * @val: data value, for stores 2675 * @attrs: memory transaction attributes 2676 * @result: location to write the success/failure of the transaction; 2677 * if NULL, this information is discarded 2678 */ 2679 2680 #define SUFFIX _cached_slow 2681 #define ARG1 cache 2682 #define ARG1_DECL MemoryRegionCache *cache 2683 #include "exec/memory_ldst.h.inc" 2684 2685 /* Inline fast path for direct RAM access. */ 2686 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, 2687 hwaddr addr, MemTxAttrs attrs, MemTxResult *result) 2688 { 2689 assert(addr < cache->len); 2690 if (likely(cache->ptr)) { 2691 return ldub_p(cache->ptr + addr); 2692 } else { 2693 return address_space_ldub_cached_slow(cache, addr, attrs, result); 2694 } 2695 } 2696 2697 static inline void address_space_stb_cached(MemoryRegionCache *cache, 2698 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) 2699 { 2700 assert(addr < cache->len); 2701 if (likely(cache->ptr)) { 2702 stb_p(cache->ptr + addr, val); 2703 } else { 2704 address_space_stb_cached_slow(cache, addr, val, attrs, result); 2705 } 2706 } 2707 2708 #define ENDIANNESS _le 2709 #include "exec/memory_ldst_cached.h.inc" 2710 2711 #define ENDIANNESS _be 2712 #include "exec/memory_ldst_cached.h.inc" 2713 2714 #define SUFFIX _cached 2715 #define ARG1 cache 2716 #define ARG1_DECL MemoryRegionCache *cache 2717 #include "exec/memory_ldst_phys.h.inc" 2718 2719 /* address_space_cache_init: prepare for repeated access to a physical 2720 * memory region 2721 * 2722 * @cache: #MemoryRegionCache to be filled 2723 * @as: #AddressSpace to be accessed 2724 * @addr: address within that address space 2725 * @len: length of buffer 2726 * @is_write: indicates the transfer direction 2727 * 2728 * Will only work with RAM, and may map a subset of the requested range by 2729 * returning a value that is less than @len. On failure, return a negative 2730 * errno value. 2731 * 2732 * Because it only works with RAM, this function can be used for 2733 * read-modify-write operations. In this case, is_write should be %true. 2734 * 2735 * Note that addresses passed to the address_space_*_cached functions 2736 * are relative to @addr. 2737 */ 2738 int64_t address_space_cache_init(MemoryRegionCache *cache, 2739 AddressSpace *as, 2740 hwaddr addr, 2741 hwaddr len, 2742 bool is_write); 2743 2744 /** 2745 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache 2746 * 2747 * @cache: The #MemoryRegionCache to operate on. 2748 * @addr: The first physical address that was written, relative to the 2749 * address that was passed to @address_space_cache_init. 2750 * @access_len: The number of bytes that were written starting at @addr. 2751 */ 2752 void address_space_cache_invalidate(MemoryRegionCache *cache, 2753 hwaddr addr, 2754 hwaddr access_len); 2755 2756 /** 2757 * address_space_cache_destroy: free a #MemoryRegionCache 2758 * 2759 * @cache: The #MemoryRegionCache whose memory should be released. 2760 */ 2761 void address_space_cache_destroy(MemoryRegionCache *cache); 2762 2763 /* address_space_get_iotlb_entry: translate an address into an IOTLB 2764 * entry. Should be called from an RCU critical section. 2765 */ 2766 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 2767 bool is_write, MemTxAttrs attrs); 2768 2769 /* address_space_translate: translate an address range into an address space 2770 * into a MemoryRegion and an address range into that section. Should be 2771 * called from an RCU critical section, to avoid that the last reference 2772 * to the returned region disappears after address_space_translate returns. 2773 * 2774 * @fv: #FlatView to be accessed 2775 * @addr: address within that address space 2776 * @xlat: pointer to address within the returned memory region section's 2777 * #MemoryRegion. 2778 * @len: pointer to length 2779 * @is_write: indicates the transfer direction 2780 * @attrs: memory attributes 2781 */ 2782 MemoryRegion *flatview_translate(FlatView *fv, 2783 hwaddr addr, hwaddr *xlat, 2784 hwaddr *len, bool is_write, 2785 MemTxAttrs attrs); 2786 2787 static inline MemoryRegion *address_space_translate(AddressSpace *as, 2788 hwaddr addr, hwaddr *xlat, 2789 hwaddr *len, bool is_write, 2790 MemTxAttrs attrs) 2791 { 2792 return flatview_translate(address_space_to_flatview(as), 2793 addr, xlat, len, is_write, attrs); 2794 } 2795 2796 /* address_space_access_valid: check for validity of accessing an address 2797 * space range 2798 * 2799 * Check whether memory is assigned to the given address space range, and 2800 * access is permitted by any IOMMU regions that are active for the address 2801 * space. 2802 * 2803 * For now, addr and len should be aligned to a page size. This limitation 2804 * will be lifted in the future. 2805 * 2806 * @as: #AddressSpace to be accessed 2807 * @addr: address within that address space 2808 * @len: length of the area to be checked 2809 * @is_write: indicates the transfer direction 2810 * @attrs: memory attributes 2811 */ 2812 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, 2813 bool is_write, MemTxAttrs attrs); 2814 2815 /* address_space_map: map a physical memory region into a host virtual address 2816 * 2817 * May map a subset of the requested range, given by and returned in @plen. 2818 * May return %NULL and set *@plen to zero(0), if resources needed to perform 2819 * the mapping are exhausted. 2820 * Use only for reads OR writes - not for read-modify-write operations. 2821 * Use cpu_register_map_client() to know when retrying the map operation is 2822 * likely to succeed. 2823 * 2824 * @as: #AddressSpace to be accessed 2825 * @addr: address within that address space 2826 * @plen: pointer to length of buffer; updated on return 2827 * @is_write: indicates the transfer direction 2828 * @attrs: memory attributes 2829 */ 2830 void *address_space_map(AddressSpace *as, hwaddr addr, 2831 hwaddr *plen, bool is_write, MemTxAttrs attrs); 2832 2833 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 2834 * 2835 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 2836 * the amount of memory that was actually read or written by the caller. 2837 * 2838 * @as: #AddressSpace used 2839 * @buffer: host pointer as returned by address_space_map() 2840 * @len: buffer length as returned by address_space_map() 2841 * @access_len: amount of data actually transferred 2842 * @is_write: indicates the transfer direction 2843 */ 2844 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 2845 bool is_write, hwaddr access_len); 2846 2847 2848 /* Internal functions, part of the implementation of address_space_read. */ 2849 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2850 MemTxAttrs attrs, void *buf, hwaddr len); 2851 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2852 MemTxAttrs attrs, void *buf, 2853 hwaddr len, hwaddr addr1, hwaddr l, 2854 MemoryRegion *mr); 2855 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); 2856 2857 /* Internal functions, part of the implementation of address_space_read_cached 2858 * and address_space_write_cached. */ 2859 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, 2860 hwaddr addr, void *buf, hwaddr len); 2861 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, 2862 hwaddr addr, const void *buf, 2863 hwaddr len); 2864 2865 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); 2866 bool prepare_mmio_access(MemoryRegion *mr); 2867 2868 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) 2869 { 2870 if (is_write) { 2871 return memory_region_is_ram(mr) && !mr->readonly && 2872 !mr->rom_device && !memory_region_is_ram_device(mr); 2873 } else { 2874 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || 2875 memory_region_is_romd(mr); 2876 } 2877 } 2878 2879 /** 2880 * address_space_read: read from an address space. 2881 * 2882 * Return a MemTxResult indicating whether the operation succeeded 2883 * or failed (eg unassigned memory, device rejected the transaction, 2884 * IOMMU fault). Called within RCU critical section. 2885 * 2886 * @as: #AddressSpace to be accessed 2887 * @addr: address within that address space 2888 * @attrs: memory transaction attributes 2889 * @buf: buffer with the data transferred 2890 * @len: length of the data transferred 2891 */ 2892 static inline __attribute__((__always_inline__)) 2893 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, 2894 MemTxAttrs attrs, void *buf, 2895 hwaddr len) 2896 { 2897 MemTxResult result = MEMTX_OK; 2898 hwaddr l, addr1; 2899 void *ptr; 2900 MemoryRegion *mr; 2901 FlatView *fv; 2902 2903 if (__builtin_constant_p(len)) { 2904 if (len) { 2905 RCU_READ_LOCK_GUARD(); 2906 fv = address_space_to_flatview(as); 2907 l = len; 2908 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2909 if (len == l && memory_access_is_direct(mr, false)) { 2910 ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2911 memcpy(buf, ptr, len); 2912 } else { 2913 result = flatview_read_continue(fv, addr, attrs, buf, len, 2914 addr1, l, mr); 2915 } 2916 } 2917 } else { 2918 result = address_space_read_full(as, addr, attrs, buf, len); 2919 } 2920 return result; 2921 } 2922 2923 /** 2924 * address_space_read_cached: read from a cached RAM region 2925 * 2926 * @cache: Cached region to be addressed 2927 * @addr: address relative to the base of the RAM region 2928 * @buf: buffer with the data transferred 2929 * @len: length of the data transferred 2930 */ 2931 static inline MemTxResult 2932 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, 2933 void *buf, hwaddr len) 2934 { 2935 assert(addr < cache->len && len <= cache->len - addr); 2936 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); 2937 if (likely(cache->ptr)) { 2938 memcpy(buf, cache->ptr + addr, len); 2939 return MEMTX_OK; 2940 } else { 2941 return address_space_read_cached_slow(cache, addr, buf, len); 2942 } 2943 } 2944 2945 /** 2946 * address_space_write_cached: write to a cached RAM region 2947 * 2948 * @cache: Cached region to be addressed 2949 * @addr: address relative to the base of the RAM region 2950 * @buf: buffer with the data transferred 2951 * @len: length of the data transferred 2952 */ 2953 static inline MemTxResult 2954 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, 2955 const void *buf, hwaddr len) 2956 { 2957 assert(addr < cache->len && len <= cache->len - addr); 2958 if (likely(cache->ptr)) { 2959 memcpy(cache->ptr + addr, buf, len); 2960 return MEMTX_OK; 2961 } else { 2962 return address_space_write_cached_slow(cache, addr, buf, len); 2963 } 2964 } 2965 2966 /** 2967 * address_space_set: Fill address space with a constant byte. 2968 * 2969 * Return a MemTxResult indicating whether the operation succeeded 2970 * or failed (eg unassigned memory, device rejected the transaction, 2971 * IOMMU fault). 2972 * 2973 * @as: #AddressSpace to be accessed 2974 * @addr: address within that address space 2975 * @c: constant byte to fill the memory 2976 * @len: the number of bytes to fill with the constant byte 2977 * @attrs: memory transaction attributes 2978 */ 2979 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2980 uint8_t c, hwaddr len, MemTxAttrs attrs); 2981 2982 #ifdef NEED_CPU_H 2983 /* enum device_endian to MemOp. */ 2984 static inline MemOp devend_memop(enum device_endian end) 2985 { 2986 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && 2987 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); 2988 2989 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 2990 /* Swap if non-host endianness or native (target) endianness */ 2991 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; 2992 #else 2993 const int non_host_endianness = 2994 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; 2995 2996 /* In this case, native (target) endianness needs no swap. */ 2997 return (end == non_host_endianness) ? MO_BSWAP : 0; 2998 #endif 2999 } 3000 #endif 3001 3002 /* 3003 * Inhibit technologies that require discarding of pages in RAM blocks, e.g., 3004 * to manage the actual amount of memory consumed by the VM (then, the memory 3005 * provided by RAM blocks might be bigger than the desired memory consumption). 3006 * This *must* be set if: 3007 * - Discarding parts of a RAM blocks does not result in the change being 3008 * reflected in the VM and the pages getting freed. 3009 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous 3010 * discards blindly. 3011 * - Discarding parts of a RAM blocks will result in integrity issues (e.g., 3012 * encrypted VMs). 3013 * Technologies that only temporarily pin the current working set of a 3014 * driver are fine, because we don't expect such pages to be discarded 3015 * (esp. based on guest action like balloon inflation). 3016 * 3017 * This is *not* to be used to protect from concurrent discards (esp., 3018 * postcopy). 3019 * 3020 * Returns 0 if successful. Returns -EBUSY if a technology that relies on 3021 * discards to work reliably is active. 3022 */ 3023 int ram_block_discard_disable(bool state); 3024 3025 /* 3026 * See ram_block_discard_disable(): only disable uncoordinated discards, 3027 * keeping coordinated discards (via the RamDiscardManager) enabled. 3028 */ 3029 int ram_block_uncoordinated_discard_disable(bool state); 3030 3031 /* 3032 * Inhibit technologies that disable discarding of pages in RAM blocks. 3033 * 3034 * Returns 0 if successful. Returns -EBUSY if discards are already set to 3035 * broken. 3036 */ 3037 int ram_block_discard_require(bool state); 3038 3039 /* 3040 * See ram_block_discard_require(): only inhibit technologies that disable 3041 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with 3042 * technologies that only inhibit uncoordinated discards (via the 3043 * RamDiscardManager). 3044 */ 3045 int ram_block_coordinated_discard_require(bool state); 3046 3047 /* 3048 * Test if any discarding of memory in ram blocks is disabled. 3049 */ 3050 bool ram_block_discard_is_disabled(void); 3051 3052 /* 3053 * Test if any discarding of memory in ram blocks is required to work reliably. 3054 */ 3055 bool ram_block_discard_is_required(void); 3056 3057 #endif 3058 3059 #endif 3060